
Illinois Journal of Mathematics
Volume 54, Number 4, Winter 2010, Pages 1463–1480
S 0019-2082

HIDING A CONSTANT DRIFT—A STRONG SOLUTION

VILMOS PROKAJ AND WALTER SCHACHERMAYER

Abstract. Let B be a Brownian motion. We show that there is
a process H predictable in the natural filtration of B, such that

H · S is a Brownian motion in its own filtration, where St = Bt +t.

In other words, H hides the constant drift. This gives a positive
answer to a question posed by Marc Yor.

1. Introduction

In this paper, we continue the work initiated in [4] and [2]. These papers
deal with the following question of Marc Yor: let B be a Brownian motion in
its natural filtration (Ft)t≥0. Is it possible to define an (Ft)t≥0 predictable
sign process H such that the stochastic integral H · S with St = Bt + t gives
a Brownian motion in its own filtration?

In [4], a process (μt)t≥0 uniformly close to a given constant μ was con-
structed such that, with a suitable choice of H , predictable in the filtration
of B, the integral βt =

∫ t

0
Hu(dBu +μu du) is a Brownian motion in its own fil-

tration. Next, in [2], we found a weak solution to the problem for constant μ,
namely we have proved that one can define two predictable process (B,H) in
the filtration (F W

t )t≥0 of a Brownian motion W , such that B is a Brownian
motion in (F W

t )t≥0 and β = H · S is a Brownian motion in its own filtration,
where St = Bt + t. This was a weak solution as H was not adapted to the
filtration generated by B.
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In this note, we show that there exists a strong solution, that is H can be
defined from B in a predictable way, solving the problem posed by Marc Yor
in its original form. Our main theorem is the following.

Theorem 1. Let B be a Brownian motion and denote by (Ft)t≥0 its natural
filtration. Fix μ ∈ R. There is an (Ft)t≥0-predictable process H such that H · S
is a Brownian motion in its own filtration, where St = Bt + μt.

In the next section, we describe the strategy of our solution. Then we
motivate our construction in the discrete time setting. Section 4 contains the
proof of a simplified version of Theorem 1, which is followed by the proof of
Theorem 1 and the proof of the auxiliary results.

2. Heuristic description

In what follows B is a Brownian motion in the filtration (Ft)t≥0. The case
μ = 0 in Theorem 1 is of no interest. If μ �= 0, then without loss of generality
we may assume that μ = 1 by the scaling invariance of the Brownian motion.
Hence, in most of the paper we may and do assume that μ = 1.

Assume, that we have found a predictable process H such that β = H · S is
a Brownian motion in its own filtration, where St = Bt + t. Then considering
the quadratic variation of β we obtain that Ht takes its value in {−1,+1} for
almost all t with probability one. It is also easy to see that β = H · S is a
Brownian motion in its own filtration if and only if Ht is independent of F β

t ,
for almost all t ≥ 0. Indeed, let γ be any measurable F β-adapted bounded
process then

0 = E
(∫ t

0

γs dβs

)
= E

(∫ t

0

γsHs ds

)
=

∫ t

0

E
(
γsE

(
Hs| F β

s

))
ds.

First, we used that β is Brownian motion in its own filtration, then we sub-
stituted its definition and used that B is a Brownian motion. To finish the
argument, let γ be a measurable version of the process γs = E(Hs| F β

s ). This
gives that E(Hs| F β

s ) = 0 for almost all s ≥ 0 and since Hs ∈ { −1,1} we also
obtain that Hs is independent of F β

s .
So, we can reformulate our problem as follows:
Is it possible to define a { −1,1}-valued process H which is predictable with

respect to the filtration (Ft)t≥0 such that for almost all t ≥ 0 the random
variable Ht is independent of F β

t , where β = H · S and St = Bt + t?
We temporarily relax the requirement that (Ft)t≥0 is the filtration gener-

ated by B. Instead, we assume that besides B there is a random variable U
independent of B and uniformly distributed on [0,1]. Then, (Ft)t≥0 is the
smallest filtration such that U is F0 measurable and B is adapted to (Ft)t≥0.

This was the starting point of [2], where we defined H such that Ht is one
if the value of the random variable U is below its conditional median, given
(βs)0≤s≤t, and minus one otherwise.
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Next, we give a heuristic explanation, why we could not obtain a strong
solution in [2]. In the next paragraph we assume that the reader is familiar
with [2] and freely use its notation. The random sign H is based on D̂t(x), the
conditional distribution function of U given F β

t . By standard arguments, see
Lemma 10 of [2], Dt = D̂t(U) is independent of F β

t and uniformly distributed
on [0,1], hence Ht = sign(1/2 − Dt) defined by the median rule takes ±1
with equal probability independently from F β

t . The problem occurs when the
process Dt reaches 1/2, say at the stopping time τ . Then H starts bouncing
between plus and minus one. Roughly speaking, this flickering is driven by
the fluctuation of βτ+t − βτ around zero. Hence, S is like the Lévy-transform
of β and this prevents β from being adapted to (F S,U

t )t≥0. This argument
will be made precise in Remark 11 below.

A strong solution requires an additional randomness. Instead of the “me-
dian rule” a somewhat more complicated rule will be used in the present
paper. With the median rule, we divide the range of U into two subsets hav-
ing equal conditional probability. However, this can be done in many ways,
not only with the median rule. Let h : R → R be the function h(x) = (−1)[2x],
where [·] denotes the integer part. The random sign Ht = h(Dt) defines the
median rule, used in [2]. However, with Ht = h(Dt + a) we also get a random
sign independent from F β

t for any a ∈ R. Moreover a can be time-varying, for
example, the value of an independent Brownian motion W at t. To be pre-
cise, we modify the definitions D̂(x) = P(U < x| F β,W

t ), Ht = h(D̂t(U) + Wt)
and β = H · S, where U,W,B are independent, (B,W ) is a two dimensional
Brownian motion, U uniformly distributed on [0,1] and St = Bt + t. With this
modification, when D̂t(U)+Wt reaches a point in 1

2Z, then the flickering of H

comes from the fluctuation of D̂t(U) + Wt. By oversimplifying the problem,
that is, replacing D̂t(U) by β we arrive at the following question:

Is there a strong solution of the perturbed Tanaka equation

(1) dXt = sign(Xt)dBt + dWt,

where B and W are independent Brownian motions?
We call (1) the perturbed Tanaka equation. It was investigated in [1]. It

turns out that if the additional noise W is strong enough then the answer is
affirmative. We recall the result of this paper with the following theorem.

Theorem 2 (Theorem 2 of [1]). Let (M,N) be a two dimensional contin-
uous local martingale on a filtered probability space. Assume that 〈M,N 〉 = 0
and d〈M 〉 ≤ cd〈N 〉 for some constant c > 0. Then, the solution of

dXt = sign(Xt)dMt + dNt

is pathwise unique.
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The heuristic reasoning above, although somewhat over-simplifying, cap-
tures an important feature of the problem and in Section 6 below Theorem 2
will be the key tool.

3. The discrete case

To motivate equation (9) below, we illustrate things in a discrete time
setting, similarly as in [2]. Fix the time increment Δt and a time grid tj = jΔt,
j ≥ 0. Let μ ∈ R be such that |μ(Δt)

1
2 | < 1 and define the process (Stj )j≥0

by S0 = 0 and requiring that the increments ΔStj = Stj+1 − Stj , j ≥ 0 form
an i.i.d. sequence with

P
(
ΔStj = +(Δt)

1
2
)

=
1 + μ(Δt)

1
2

2
,

P
(
ΔStj = −(Δt)

1
2
)

=
1 − μ(Δt)

1
2

2
,

so that S is a discrete analog of Brownian motion with drift μ.
Similarly as in [2] let U be a random variable uniformly distributed on [0,1]

and independent of S. The filtration (Ftj )j≥0 is assumed to be such that U
is F0 measurable and (Stj )j≥0 is (Ftj )j≥0-adapted. As a new ingredient,
in comparison to [2] we suppose that there also is given a sequence of real
numbers (wtj )j≥0. This will play the role of a trajectory of the process W
in the above heuristic discussion pertaining to the continuous limit. Since
the Brownian motion W is supposed to be independent of all other variables,
we can first condition on W and work under the conditional probability. In
other words, we can use a typical trajectory of W . In analogy, we assume in
the present discrete setting that (wtj )

∞
j=0 simply is any given sequence of real

numbers.
As in [2], we shall construct inductively a predictable, {−1,1}-valued pro-

cess (Htj )j≥0 such that ((H · S)tj )j≥0 is an unbiased random walk, that is, a
martingale, in its own filtration.

To do so, we again construct inductively the [0,1]-valued process Dtj =
D̂tj (U) adapted to (Ftj )j≥0. Denoting by (Gtj )j≥0 the filtration generated
by H · S we want to have that the law of the random variable Dtj condition-
ally on Gtj , equals the law of the random variable U , that is, is uniform on
[0,1]. This is achieved by evaluating the conditional distribution function of
U given Gtj , denoted by (D̂tj (x))x∈[0,1], at the random point U . We use here
that D̂tj (x) is continuous in x. As we shall see, it even has a density.

We start by letting Dt0 = D̂t0(U) = U . In [2], we then defined the Ft0 -
measurable {−1,1}-valued random variable Ht1 by the “median rule”

(2) Ht1 = sign
(

1
2

− D̂t0(U)
)

= sign
(

1
2

− U

)
.
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In the present paper, we replace this rule by the “wt-shifted median rule,”
that is,

Htj+1 =

{
+1 if D̂tj (U) � wtj ∈ ]0, 1

2 [,
−1 if D̂tj (U) � wtj ∈ ] 12 ,1[,

(3)

where � denotes addition modulo one.
For example, if wt0 = 0 or, more generally, if wtj ∈ Z, we again find the

“median rule” (2) which was used in [2].
If wt0 ∈ ]0, 1

2 [ or, more generally, wt0 ∈ ]0, 1
2 [+Z, we have that Ht1 equals 1,

if U ∈ ]0, 1
2 − wt0 [ ∪ ]1 − wt0 ,1[, and Ht1 equals −1, if U ∈ ] 12 − wt0 ,1 − wt0 [.

The case wt0 ∈ ] 12 ,1[+Z is similar.
Clearly P(Ht1 = 1) = P(Ht1 = −1) = 1

2 , independently of the choice of wt0 .
What is slightly different now in comparison to [2] is the Bayesian updating
rule to obtain D̂t1(x) which is the conditional law of U given Ht1St1 .

To fix ideas let us assume that wt0 ∈ ]0, 1
2 [. Conditionally on the event

{Ht1St1 = (Δt)1/2}, we obtain for the conditional distribution function D̂t1(x)

D̂t1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + μ(Δt)

1
2
)
x for 0 ≤ x ≤ 1

2 − wt0 ,(
1 + μ(Δt)

1
2
)(

1
2 − wt0

)
+

(
1 − μ(Δt)

1
2
)(

x −
(

1
2 − wt0

))
for 1

2 − wt0 ≤ x ≤ 1 − wt0 ,(
1 + μ(Δt)

1
2
)(

1
2 − wt0

)
+

(
1 − μ(Δt)

1
2
)

1
2

+
(
1 + μ(Δt)

1
2
)(

x − (1 − wt0)
)

for 1 − wt0 ≤ x ≤ 1.

The random variable Dt1 = D̂t1(U) is defined as the conditional distribution
function D̂t1(·) at the random point U .

Using the function f(x) = dist(x,Z) and remembering that we condition
on the event {Ht1St1 = (Δt)1/2}, this may be compactly written as

(4) D̂t1(U) − D̂t0(U) = μ
(
f
(
wt0 + D̂t0(U)

)
− f(wt0)

)
Ht1St1 .

This is the special case, for j = 0, of the formula

(5) ΔDtj = μ
(
f(wtj + Dtj ) − f(wtj )

)
Δ(H · S)tj .

In fact, repeating the above argument one verifies that formula (5) gives the
random variable Dtj , which is nothing else then the conditional distribution
function D̂tj (·) of U given Gtj evaluated at the random point U , hence

(6) law
[
Dtj |

(
(H · S)ti

)j

i=0

]
= law[U ].
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Using the above defined function f(x) = dist(x,Z) formula (3) may in fact
be written more compactly as

(7) Htj+1 = f ′(wtj + Dtj ).

We recall that, as in [2] formulas (2), (3) and (7) are only defined almost
surely. In the present discrete time setting, this does not cause a problem as
only countably many time steps are involved.

Summing up our new findings as compared to [2] in the discrete case:
for any real sequence (wtj )j≥0, formula (7) inductively defines a predictable
process (Htj )j≥0, for which we get, for j ≥ 1,

P
(
Htj+1 = 1|

(
(H · S)ti

)j

i=0

)
= P

(
Htj+1 = −1|

(
(H · S)ti

)j

i=0

)
=

1
2
,

as follows from the fact that the Bayesian updating rule (5) inductively defines
the random variable Dtj verifying (6).

We did these extra miles involving an additional trajectory w of a process
W in order to prepare for the continuous time limit of the above construction,
in particular for the SDE

(8) dDt = μ
(
f(Wt + Dt) − f(Wt)

)
Ht dSt

which is the formal limit of the difference equation (5). Here the continuous
time process St = Bt + μt is a standard Brownian motion (Bt)t≥0 with drift
μ and Ht = f ′(Wt + Dt). While in [2] we considered the situation W = 0,
we now let W = (Wt)t≥0 be a standard Brownian motion independent of the
Brownian motion B.

The crucial issue is the question whether the SDE has a solution D =
(Dt)t≥0, with initial value D0 = U , where the uniformly distributed [0,1]-
valued random variable U is independent of B and W .

In [2], it was shown that, letting W = 0, there is a unique weak solution
D = (Dt)t≥0 of (8) but no strong solution. In the present paper, we shall
show that, if we choose W to be a standard Brownian motion independent of
U and B, we obtain a unique strong solution to (8). Why the presence of a
nontrivial W changes the situation drastically was motivated in the previous
section and is explained in more detail in [1].

We finish this section with two remarks. The first is on the drift μ. If
we replace the constant drift μ ∈ R above by a bounded, real-valued process
(μt)t≥0, which is adapted to the filtration of W , nothing essential changes in
the above discrete setting as well as in the continuous setting analyzed below,
so that the results formulated for constant μ carry over to this setting in
a straightforward way. If, however, the process (μt)t≥0 also depends on B
and/or U , things are not so evident and we do not know whether there is a
positive solution to Yor’s question in this general framework.

For the second remark, let μ �= 0 be constant and H a {−1,1}-valued pro-
cess obtained from Theorem 1. It defines a transformation T on the Wiener
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space C([0,1]) which takes the Brownian motion B into another Brownian
motion β = H · S, where St = Bt + μt. Of course, the transformation T is not
unique in any sense, there are many possible choices even in the construction
presented below. Nonetheless, T is a measure preserving transformation on
the Wiener-space, similarly to the Lévy-transform. We do not know whether
it is possible to construct H in such a way that the corresponding transfor-
mation T is ergodic.

4. Simplified form of Theorem 1

We shall show in Section 5 below how to deduce Theorem 1 from the
following more technical version.

Proposition 3. Let B be a Brownian motion, and U a random variable
independent of B, uniformly distributed on [0,1]. Denote by (Ft)t≥0 the small-
est filtration satisfying the usual hypotheses, such that U is F0 measurable, and
B is (Ft)t≥0 adapted.

Fix μ ∈ R. Then, there is an (Ft)t≥0-predictable process H such that

(i) β = H · S is a Brownian motion in its own filtration, where St = Bt +μt,
(ii) τ = inf{t > 0 : L(β)t �= L(S)t} is almost surely positive, where L is the

“Lévy” transform L(X) = sign(X) · X .

For the proof of Proposition 3, we need some preparation. Denote by f the
function f(x) = dist(x,Z), where dist denotes the distance of its arguments.
It is a periodic function with period one. On the interval [0,1] it equals
x ∧ (1 − x). Let us consider the formal analogue to (5), that is,

(9) dDt = μ
(
f(Dt + wt) − f(wt)

)
f ′(Dt + wt)dSt, D0 = U,

where St = Bt +μt, f ′ is the derivative of f and w is a deterministic continuous
function. At the points of 1

2Z, where f ′ is undefined, we set the value of f ′

to 1.
We prove in Section 6 below the following statement.

Proposition 4. There is a continuous function w : [0, ∞) → R such that
the stochastic differential equation (9) admits a strong solution, that is we
have a process D adapted to the filtration (Ft)t≥0 and satisfying (9).

In particular, a typical trajectory of a Brownian motion can serve as w.

Letting Ht = f ′(Dt + wt) we want to prove that β = H · S is a Brownian
motion in its own filtration, following the ideas used in [2]. To show this, it
is enough to prove that (βt)t∈[0,T ] has the correct law for each T > 0.

On FT we can define a new measure Q by the Cameron–Martin formula
dQ = exp{−μBT − Tμ2/2} dP. Under Q the process (St)t∈[0,T ] is a Brownian
motion and therefore (βt)t∈[0,T ] is so too, as H takes values in {−1,+1}.
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Hence, it is enough to prove that on F β
T the measures P and Q coincide. In

other words, it is enough to show that

(10) EQ

(
dP
dQ

∣∣F β
T

)
= 1.

Here dP/dQ = exp{μBT + Tμ2/2} = exp{μST − Tμ2/2}.
Now, let us consider for x ∈ [0,1] the parametric SDE:

(11) dD̂t(x) = μ
(
f
(
D̂t(x) + wt

)
− f(wt)

)
dβt, D̂0(x) = x.

We use the notation D̂ rather than D to distinguish between the family D̂t(x),
x ∈ [0,1] of processes and the single process Dt which is the solution of (9).

We use the next result, whose proof is also deferred to Section 6. It is
somewhat more general than we actually need. Roughly speaking it states
that under suitable conditions the solution of a one dimensional SDE as a
function of the initial value is absolutely continuous.

Proposition 5. Let β be a continuous semimartingale on the filtered prob-
ability space (Ω, (Ft)t≥0,P) and F : R × Ω × [0, ∞) → R be a bounded mapping.
Assume that
(i) F is B(R) × P measurable where P is the predictable sigma-field of Ω ×

[0, ∞).
(ii) There is a constant L > 0, such that for each fixed (ω, t) the real function

x �→ F (x,ω, t) is Lipschitz continuous with constant L. The derivative
in x, also B(R) × P measurable, is denoted by ∂xF .

Then, the parametric equation

(12) dD̂t(x) = F
(
D̂t(x), ·, t

)
dβt, D̂0(x) = x,

has a solution which is continuous in (x, t) almost surely. This solution is
absolutely continuous in x. If

S̄t(x) =
∫ t

0

∂xF
(
D̂s(x), ·, s

)
dβs

is the B(R) × P measurable version of the parametric integral on the right, then
Yt(x) = exp{S̄t(x) − 1

2 〈S̄(x)〉t} is a possible choice for the Radon–Nikodym
derivative of x �→ D̂t(x).

In our case, F (x,ω, t) = μ(f(x+wt) − f(wt)) clearly fulfills the assumptions
of Proposition 5. The process β is a continuous semimartingale in the filtration
(Ft)t≥0 hence the same holds in its natural filtration (F β

t )t≥0. Since D̂T (0) = 0
and D̂T (1) = 1, we get by Proposition 5

(13) 1 = D̂T (1) − D̂T (0) =
∫ 1

0

Yt(x)dx =
∫ 1

0

eS̄T (x)− 〈S̄(x)〉T /2 dx,
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where

(14) S̄T (x) = μ

∫ T

0

f ′(D̂s(x) + ws

)
dβs

is clearly B(R) × F β
T measurable.

We still need a simple observation on parametric processes, whose proof is
left to the reader.

Proposition 6. Let β be a continuous semimartingale on the filtered prob-
ability space (Ω, (Ft)t≥0,P) and ξt(x,ω) be a parametric B(R) × P measurable
process, where P is the predictable σ-field. Assume that the stochastic integral
X(x) = ξ(x) · β exists for all x and Xt(x,ω) is B(R) × P measurable.

If U is F0-measurable, then Xt(U) =
∫ t

0
ξ̄s dβs, where ξ̄s = ξs(U).

We apply Proposition 6 to obtain that the process D̂ := D̂(U) solves the
equation

dD̂t = μ
(
f(D̂t + wt) − f(wt)

)
dβt, D̂0 = U.

The solution of this equation is pathwise unique and since by the definition
of β, the process D also solves this equation, we have D = D̂(U). Then, Ht =
f ′(Dt + wt) = f ′(D̂t(U) + wt) and the combination of (14) and Proposition 6
gives that

S̄t(U) =
∫ t

0

μf ′(D̂s(x) + ws

)
dβs

∣∣∣∣
x=U

= μ

∫ t

0

f ′(D̂s(U) + ws

)
dβs = μSt.

Proof of Proposition 3. We use (13) and apply the formula E(g(U,X)|X) =
E(g(U,x))|x=X , which holds provided that U,X are independent. We apply
this formula under Q with X = (βt)t∈[0,T ] and

g
(
x, (βt)t∈[0,T ]

)
= exp

{
S̄T (x) −

〈
S̄T (x)

〉
T
/2

}
= exp

{
S̄T (x) − μ2T/2

}
.

Recall that (βt)t∈[0,T ] is a Brownian motion under Q in the filtration (Ft)t≥0

and the variable U is F0-measurable, whence the independence. Thus,

EQ

(
eμST −Tμ2/2| F β

T

)
= EQ

(
eS̄T (U)−Tμ2/2| F β

T

)
(15)

=
∫ 1

0

eS̄T (x)− 〈S̄(x)〉T /2 dx = D̂T (1) − D̂T (0) = 1.

Thus, (10) holds and Property (i) of Proposition 3 follows.
To finish the proof put τ = inf{t > 0 : Dt + wt ∈ 1

2Z}. Then τ is strictly
positive almost surely, and up to the stopping time τ the sign process H
is identical to sign(1

2 − U). This implies that (L(β))t∧τ = (L(S))t∧τ , hence
Property (ii) of Proposition 3 also holds. �

Next we formulate some peculiar properties of the construction. Through-
out, we use the notation introduced in Proposition 3 and in its proof.

Integrating over [0, x] in (15) instead of [0,1], we obtain the next statement.
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Corollary 7. The parametric process D̂t(x) defined by (11) satisfies

D̂t(x) = P
(
U < x| F β

t

)
.

Similarly, as in [2], U is encoded in the sample path of β, provided w in (9)
is e.g. a typical trajectory of a Brownian motion. More precisely, we assume
that w has divergent occupation density (local time) in the following sense

(i) the function s(t, x) =
∫ t

0
1(ws<x) ds. is absolutely continuous in the vari-

able x for all t and
(ii) limt→∞ ∂xs(t, x) = ∞ for Lebesgue almost all x.
These properties clearly hold for a typical trajectory of a Brownian motion.

Corollary 8. Assume that μ �= 0 and the shift w used in (9) has divergent
occupation density. Then the random variable U is σ(β) measurable.

Proof. Note that by Corollary 7 the process D̂t(x) defined by (11) is a
closed martingale under P and

D̂∞(x) = lim
t→∞

D̂t(x) = P
(
U < x|σ(β)

)
for each x ∈ [0,1].

Since, for a fixed x the process D̂(x) is a convergent martingale its quadratic
variation remains bounded almost surely. This can only happen if the limit
D̂∞(x) takes values in {0,1}. To see this, fix a typical ω and ε > 0. Let T so
large that |D̂t(x) − D̂∞(x)| < ε if t > T . Then

∞ >
〈
D̂(x)

〉
∞ ≥

∫ ∞

T

μ2
(
f
(
D̂t(x) + wt

)
− f(wt)

)2
dt.

The integrand has a lower estimate in the form

μ2
(
f
(
D̂t(x) + wt

)
− f(wt)

)2 ≥ g
(
D̂∞(x),wt

)
for t > T ,

where
g(x, y) = μ2

((∣∣f(x + y) − f(y)
∣∣ − ε

)
∨ 0

)2
.

Now using that w has an occupation density lt(x) = ∂xs(t, x) we can write

∞ >
〈
D̂(x)

〉
∞ ≥

∫
R

lim
K→∞

g
(
D̂∞(x), y

)(
lK(y) − lT (y)

)
dy.

Since (lK(y) − lT (y)) → ∞ for Lebesgue almost all y, the boundedness of the
integral implies that g(D̂∞(x), y) = 0 for almost all y. In other words∣∣f(

D̂∞(x) + y
)

− f(y)
∣∣ ≤ ε

μ2
for Lebesgue almost all y.

Letting ε → 0 we obtain

f
(
D̂∞(x) + y

)
= f(y) for Lebesgue almost all y.

This clearly gives that D̂∞(x) ∈ Z ∩ [0,1] = {0,1} for a typical ω ∈ Ω.
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We obtained that for a fixed x ∈ [0,1]

lim
t→∞

D̂t(x) = P
(
U < x|σ(β)

)
∈ {0,1} almost surely.

This holds almost surely for all x ∈ [0,1] ∩ Q simultaneously and we conclude
that U is measurable with respect to the complete σ-algebra F β

∞. �

Corollary 9. Assume that μ �= 0 and the shift w used in (9) has divergent
occupation density. Then σ(β) = σ(B,U).

Proof. By construction σ(β) ⊂ σ(B,U). The other direction follows from
the previous corollary using that D̂t(U) = Dt and S = H · β with Ht =
f ′(Dt + wt). �

5. Proof of Theorem 1 from Proposition 3

We use the same idea as in [4] and [2], that is, we take a partition of (0, ∞)
into non overlapping subintervals Ik = [tk, tk+1], where tk is an increasing
sequence indexed by integers, accumulating at zero and at infinity. On each
subinterval Ik, we apply Proposition 3 using the extra randomness obtained
from the past of the process B.

In what follows, we again let μ = 1 as this does not restrict the generality
and use the notation

B
(k)
t = Bt+tk

− Btk
, t ∈ [0, tk+1 − tk],

S
(k)
t = B

(k)
t + t, t ∈ [0, tk+1 − tk],

and similarly for other processes. To carry out the above program, we have
to define random variable Uk for each k ∈ Z, that can be used on the next
subinterval Ik+1.

Assume that we have a candidate for Uk−1. Applying Proposition 3 with
Uk−1 and B(k) yields a Brownian motion β̄(k) = β̄(k)(Uk−1,B

(k)). Taking the
Lévy transform L(β̄(k)) gives another Brownian motion which agrees with
high probability with L(S(k)) provided that the length of Ik is small.

Now, we can define Uk from the random signs of the excursions of L(β̄(k)).
Formally, we have a mapping φk that gives Uk from the data Uk−1 and B(k),
that is,

φk : [0,1] × C[0, tk+1 − tk] → [0,1]

such that φk(U,B(k)) is independent of L2(β̄(k)(U,B(k))) and uniformly dis-
tributed on [0,1] provided that U is uniform and independent of B(k).

We show below how to define Vk from the random signs of the excursions
of L(S(k)) such that

(16) P
(
φk

(
U,B(k)

)
�= Vk

)
≤ Fτ

(
|Ik |

)
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for any U which is independent of B(k) and uniformly distributed in [0,1].
In (16) Fτ denotes the distribution function of the strictly positive random
variable τ = inf{t > 0 : L(β)t �= L(S)t}.

Now, let us start at the interval In, define U (n,n) = Vn and continue recur-
sively with U (n,k) = φk(U (n,k−1),B(k)) for k > n. Then, U (n,k) is measurable
with respect to the σ–algebra Ftk+1 and uniformly distributed on [0,1] for
each k ≥ n.

By definition we have

P
(

∃k ≥ n,U (n,k) �= U (n−1,k)
)

≤ P
(
φn

(
Vn−1,B

(n)
)

�= Vn

)
≤ Fτ

(
|In|

)
.

If tn tends to zero sufficiently fast as n goes to −∞, then∑
n≤0

Fτ

(
|In|

)
< ∞.

With such a choice limn→ − ∞ U (n,k) exists by the Borel–Cantelli lemma. More-
over, this convergence is quasi-constant, that is for almost all ω, there is n0(ω)
such that for n < n0(ω), even U (n,k)(ω) = Uk(ω) holds for k ≥ n. This implies
that φk(Uk−1,B

(k)) = Uk almost surely, Uk is Ftk+1 -measurable and uniformly
distributed on [0,1].

Now, we are done. On each interval Ik we can use the random variable
Uk−1 and B(k) to obtain β̄(k) as above by applying Proposition 3, that is

β̄
(k)
t =

∫ t

0

H̄(k)
s dS(k)

s for t ≤ tk+1 − tk,

where S
(k)
t = B

(k)
t + t. Put

H
(k)
t = sign

(
L

(
β̄(k)

)
t

)
sign

(
β̄

(k)
t

)
H̄

(k)
t for k ∈ Z, t ∈ [0, tk+1 − tk].

Then

β
(k)
t =

∫ t

0

H(k)
s dS(k)

s = L2
(
β̄(k)

)
t

is independent of Uk and we obtain that β(k), k ∈ Z is a sequence of indepen-
dent processes. For each k ∈ Z the process β(k) is a Brownian motion in its
own filtration on the finite time horizon [0, tk+1 − tk].

The last step is the joining of these pieces. Let

Ht = H
(k)
t−tk

for t ∈ [tk, tk+1)

and observe that

βt =
∫ t

0

Hs dSs =
∑

k

β
(k)
0∨((t∧tk+1)−tk)

is a Brownian motion in its own filtration.
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We used relation (16) in the above proof. Next we show, how to define Vk

and φk such that (16) holds. As it is indicated above, φk yields a random vari-
able from the signs of the excursions of L(β̄(k)) and Vk is a uniform variable
from the random signs of the excursions of L(S(k)). To obtain β̄(k) we applied
Proposition 3: it provides us with a mapping ψ : [0,1] × C[0, ∞) → C[0, ∞)
such that if U and B are independent, U is uniform on [0,1] and B is
a Brownian motion then ψ(U,B) is Brownian motion. The restriction to
C[0, tk+1 − tk] is denoted by ψk which is then a mapping ψk : [0,1] × C[0, tk+1 −
tk] → C[0, tk+1 − tk]. Proposition 15 of [2] gives an example of a function
uk : C[0, tk+1 − tk] → [0,1] with the property that uk(B) is a random variable
uniformly distributed on [0,1] provided that B is a Brownian motion with
time horizon [0, tk+1 − tk], moreover uk(B) is independent of L(B).

Now uk(L(β̄(k))) and uk(L(S(k))) coincide if L(β̄(k)) = L(S(k)), that is
with probability Fτ (tk+1 − tk). So relation (16) holds if Uk and Vk is defined
as g(uk(L(β̄(k)))) and g(uk(L(S(k)))) respectively, with the same measurable
function g. This is the content of the next lemma. For the application of
the lemma, we only need that both uk(L(β̄(k))) and uk(L(S(k))) have diffuse
laws. It is obvious for uk(L(β̄(k))). For the other variable it follows from the
fact that the law of S(k) is absolutely continuous with respect to the law of
the Brownian motion, that is, that of β̄(k), and then the same holds for their
functions, for example, to uk ◦ L.

Lemma 10. Let U and V be random variables with diffuse law. Then, there
exists a Borel measurable function g : R → [0,1] such that both g(U) and g(V )
are uniformly distributed on [0,1].

Proof. We can and do assume that U,V takes values in [0,1]. Denote by μ
and ν the law of U and V , respectively. We prove that there is a sequence (αn)
of partitions of [0,1], such that αn+1 is finer than αn and μ(I) = ν(I) = 2−n

for each I ∈ αn. Then each I ∈ αn is the union of two elements of αn+1,
denote one of them by I1, and the other with I0. Once we have done this,
we can define εn(x) = 1(x∈∪I∈αn I1) and g(x) =

∑∞
n=0 2−(n+1)εn(x). It is a

routine exercise to check that for t ∈ (0,1) we have μ(g < t) = ν(g < t) = t,
where (g < t) = {x : g(x) < t}.

We define the partition sequence (αn)n≥0 recursively. Let α0 = [0,1]. As-
sume that αn is already defined and let I ∈ αn. For the recursion step, it is
enough to show that if μ(I) = ν(I) then there is a decomposition I = I0 ∪ I1

into disjoint sets such that μ(I0) = μ(I1) = ν(I0) = ν(I1).
Let h(x) = (−1)[2x] where [x] is the integer part of x and define

L(t) =
∫

I

h

(
t +

ν(I ∩ [0, x])
ν(I)

)
μ(dx).

The integrand in this formula depends on the conditional distribution function
ν(I ∩ [0, x])/ν(I). By definition ±1 level sets of h split I into two equal part
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with respect to the measure ν for any t.
The function L is continuous, since μ is diffuse, and L(0) = −L(1/2),

whence L(t0) = 0 for some t0 ∈ [0,1/2]. Then I1 = {x ∈ I : h(t0 + ν(I ∩
[0, x])/ν(I)) = 1} and I0 = I \ I divides I into two subset such that μ(I1) =
μ(I0) = ν(I1) = ν(I0). �

6. Proof of the auxiliary results

6.1. Proof of Proposition 4. We prove here that the following equation
has a pathwise unique solution

(17) dDt = μ
(
f(Dt + Wt) − f(Wt)

)
f ′(Dt + Wt)d(Bt + μt)

for any initial value. The driving process of this equation is (B,W ) a two
dimensional Brownian motion. Application of a classical theorem of Yamada
and Watanabe, see, for example, [5, Theorem 1.7 of Chapter IX] gives that
the pathwise uniqueness of the solution implies that every solution is strong,
that is, adapted to the filtration generated by the initial value and the driv-
ing Brownian motion (B,W ). Conditioning on W we obtain that almost all
sample paths of W can serve as w in Proposition 4.

A weak solution to (17) can be easily given. Indeed, let (β,W ) be a two
dimensional Brownian motion and U independent of (β,W ) be the initial
value. Then there is a solution of the equation

dDt = μ
(
f(Dt + Wt) − f(Wt)

)
dβt, D0 = U,

since f is a Lipschitz continuous function. Define St =
∫ t

0
f ′(Du + Wu)dβu.

Then (S,W ) is also a two-dimensional Brownian motion.
Then we have a solution to (9) by the usual measure change argument. For-

mally, (9) is a two dimensional equation driven by the two dimensional Brow-
nian motion (B,W ). The first, is the displayed equation (9) and the second
hidden equation is simply W = W . The diffusion coefficient is the diagonal
matrix σ(Dt,Wt) = diag(μ(f(Dt + Wt) − f(Wt)),1), the drift is b(Dt,Wt) =
(μ(f(Dt + Wt) − f(Wt)),0)T . The previous argument shows that e(σ,0) has
a solution, hence application of Theorem 1.11 in Chapter IX of [5] gives that
e(σ, b) also has a solution, since b = σc with c = (1,0)T .

So let us assume that (D,S,W ) is a solution on some filtered probability
space. We prove that if (D′, S,W ) is another solution on the same filtered
space with D′

0 = D0 then D′ and D are indistinguishable. This proves the
pathwise uniqueness, and hence the statement.

Let (τk)∞
k=0 be the following sequence of stopping times:

τ0 = 0, τ1 = inf
{

t ≥ 0 : Dt + Wt ∈ 1
2

Z

}
,

τk+1 = inf
{

t > τk :
∣∣Dt + Wt − (Dτk

+ Wτk
)
∣∣ >

1
2

}
, k ≥ 1
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and similarly (τ ′
k)∞

k=0 with D′ instead of D. By induction on k we show that
τk = τ ′

k and Dt∧τk
= D′

t∧τk
for all t ≥ 0 almost surely. This is clearly proved if

we show that between τk and τk+1 the triple (D,S,W ) satisfies an equation
with pathwise unique solution.

Up to the time τ1 any solution (D,S,W ) of (9) satisfies the equation

dDt = μ
(
f(Wt + Dt) − f(Wt)

)
f ′(W0 + D0)dSt

which has pathwise unique solution, hence τ1 = τ ′
1 and Dt∧τ1 = D′

t∧τ1
for all

t ≥ 0.
Assume that we already know that τk = τ ′

k and up to this stopping time
D = D′. At the time point τk, the value of the process D + W ∈ 1

2Z. Fixing
k ≥ 1 denote

Xt = Dt+τk
+ Wt+τk

− (Dτk
+ Wτk

),
S̄t = St+τk

− Sτk
,

W̄t = Wt+τk
,

B̄t = S̄t − t.

If Dτk
+ Wτk

∈ Z, then on [0, τk+1 − τk] the process X solves the equation

dXt = μ
(
f(Xt) − f(W̄t)

)
f ′(Xt)dS̄t + dW̄t

= μf(Xt)f ′(Xt)dS̄t − μf ′(Xt)f(W̄t)dS̄t + dW̄t.

For |x| < 1
2 , we have f(x) = |x| and f(x)f ′(x) = x, hence to prove the induc-

tion step for this case we have to show, that the solution of the next equation
is pathwise unique:

(18) dXt = μXt dS̄t − μ sign(Xt)f(W̄t)dS̄t + dW̄t.

An application of Itô’s formula gives that X satisfies this equation if and only
Yt = e−μB̄t −μ2t/2Xt solves

dYt = − sign(Yt)μf(W̄t)e−μB̄t −μ2t/2 dB̄t + e−μB̄t −μ2t/2 dW̄t

= sign(Yt)dMt + dNt,

where

Mt = −μ

∫ t

0

f(W̄s)e−μB̄s −μ2s/2 dB̄s,

Nt =
∫ t

0

e−μB̄s −μ2s/2 dW̄s.

Now, (M,N) is a given two dimensional martingale (defined from S̄ and W̄ ).
They are strongly orthogonal, i.e. 〈M,N 〉 = 0 and N dominates M , that is,
d〈M 〉 ≤ μ2d〈N 〉, hence by Theorem 2 of [1] the solution of this equation is
pathwise unique.
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The other case that can be treated similarly. If Dτk
+ Wτk

∈ 1
2 + Z then

for t ∈ [τk+1 − τk] we have that f(Dt+τk
+ Wt+τk

) = f(Xt + 1
2 ) and similarly

for f ′. So we have to deal with the equation

dXt = μ

(
f

(
Xt +

1
2

)
− f(W̄t)

)
f ′

(
Xt +

1
2

)
dS̄t + dW̄t.

Now, we can use that f(x + 1
2 ) = 1

2 − f(x). So in this case, we have to show
that the solution of the next equation is pathwise unique:

dXt = μ

(
f(Xt) − f

(
W̄t +

1
2

))
f ′(Xt)dS̄t + dW̄t.

This is the same type of equation as (18) was in the other case. So, we have
proved the induction step and the proposition as well.

Remark 11. The above reasoning shows that the fundamental equation
used in [2], that is,

(19) dDt = −μ
(
Dt ∧ (1 − Dt)

)
sign

(
Dt − 1

2

)
dSt, D0 = U

is a transformed version of the Tanaka equation. Indeed, application of the
Itô formula gives that D is the solution of (19) if and only if Yt = (Dt −
1
2 ) exp{−μBt − μ2t/2} is the solution of

(20) dYt = sign(Yt)dMt, Y0 = U,

where Mt =
∫ t

0
e−μBt −μ2t/2 dBt. The driving local martingale M in (20) is a

time-changed Brownian motion, where the time change is obtained from B
and Y can be viewed as the time-changed solution of the Tanaka equation.

6.2. Proof of Proposition 5. By assumption F is random Lipschitz, hence
functional Lipschitz in the terminology of Protter, see [3, pp. 250] and [3,
Chapter V, Theorem 37] gives the existence and continuity of the solution.

The proof of Lemma 12 in [2] applies without any serious changes to the
process D̂t(x), since it only uses the fact that F (D̂t(x), ·, t) − F (D̂t(y), ·, t) =
qt(D̂t(x) − D̂t(y)) with a uniformly bounded predictable process q. So we have
that there is a parametric process Ȳt(x), such that sups≤t

∫ y

x
Ȳ 2

s (u)du < ∞
almost surely for all x, y, t and on a common almost sure event Ω′∫ y

x

Ȳt(u)du = D̂t(y) − D̂t(x) for all (x, y, t).

Then, if ω ∈ Ω′∫ y

x

∂xF
(
D̂t(u), ω, t

)
Ȳt(u)du

= F
(
D̂t(y), ω, t

)
− F

(
D̂t(x), ω, t

)
for all (x, y, t).
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The Fubini theorem for stochastic integrals [3, Chapter V, Theorem 65]
can be applied since

∫ y

x
Ȳ 2

t (u)du is locally bounded for all (x, y), i.e.,∫ y

x

Ȳt(u)du = D̂t(y) − D̂t(x)(21)

= y − x +
∫ t

0

F
(
D̂s(y), ·, s

)
− F

(
D̂s(x), ·, s

)
dβs

=
∫ y

x

(
1 +

∫ t

0

∂xF
(
D̂s(u), ·, s

)
Ȳs(u)dβs

)
du

=
∫ y

x

Yt(u)du,

where Yt(u) is the B(R) × P measurable version of the parametric integral

(22) Y (u) = 1 +
∫

∂xF
(
D̂s(u), ·, s

)
Ȳs(u)dβs.

Identity (21) holds for all (x, y, t) on an almost sure event Ω′ ′ ⊂ Ω′. For ω ∈ Ω′ ′

and s ≥ 0, the equality Ȳs(u) = Ys(u) holds for Lebesgue almost all u. Thus,
we can replace Ȳ by Y on right hand side of (22), obtaining that

Y (u) = 1 +
∫

∂xF
(
D̂s(u), ·, s

)
Ys(u)dβs

for Lebesgue almost all u. Hence, for these u values Yt(u) = exp{S̄t(u) −
1
2 〈S̄(u)〉t} and the stochastic exponential of S̄ gives the Radon–Nikodym de-
rivative.
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