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Abstract. The dual attainment of the Monge–Kantorovich transport problem is ana-

lyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with

Borel probability measures µ and ν. The transport cost function c : X × Y → [0,∞] is
assumed to be Borel measurable. We show that a dual optimizer always exists, provided

we interpret it as a projective limit of certain finitely additive measures. Our methods

are functional analytic and rely on Fenchel’s perturbation technique.

1. Introduction

We consider the Monge-Kantorovich transport problem for Borel probability measures µ, ν
on polish spaces X,Y . See [Vil03, Vil09] for an excellent account of the theory of optimal
transportation. The set Π(µ, ν) consists of all Monge-Kantorovich transport plans, that is,
Borel probability measures on X × Y which have X-marginal µ and Y -marginal ν. The
transport costs associated to a transport plan π are given by

〈c, π〉 =

∫
X×Y

c(x, y) dπ(x, y). (1)

In most applications of the theory of optimal transport, the cost function c : X × Y → [0,∞]
is lower semicontinuous and only takes values in R+. But equation (1) makes perfect sense
if the [0,∞]-valued cost function only is Borel measurable. We therefore assume throughout
this paper that c : X × Y → [0,∞] is a Borel measurable function which may very well
assume the value +∞ for “many” (x, y) ∈ X × Y . The subset {c =∞} of X × Y is a set of
forbidden transitions.

Optimal transport on the Wiener space [FÜ02, FÜ04a, FÜ04b, FÜ06] and on config-
uration spaces [Dec08, DJS08] provide natural infinite dimensional settings where c takes
infinite values.

The (primal) Monge-Kantorovich problem is to determine the primal value

P := inf{〈c, π〉 : π ∈ Π(µ, ν)} (2)

and to identify a primal optimizer π̂ ∈ Π(µ, ν) which is also called an optimal transport plan.
Clearly, without loss of generality this minimization can be performed among the finite cost
transport plans, i.e. the infimum is taken over the plans π ∈ Π(µ, ν) verifying 〈c, π〉 <∞.

The dual Monge-Kantorovich problem consists in determining

D := sup

{∫
X

ϕdµ+

∫
Y

ψ dν

}
(3)
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for (ϕ,ψ) varying over the set of pairs of functions ϕ : X → [−∞,∞) and ψ : Y → [−∞,∞)
which are integrable, i.e. ϕ ∈ L1(µ), ψ ∈ L1(ν), and satisfy ϕ ⊕ ψ ≤ c. We have denoted
ϕ⊕ ψ(x, y) := ϕ(x) + ψ(y), x ∈ X, y ∈ Y.

We say that there is no duality gap if the primal value P of the problem equals the dual
value D, there is primal attainment if there exists some optimal plan π̂ and there is integrable

dual attainment if the above dual Monge-Kantorovich problem is attained for some (ϕ̂, ψ̂).
There is a long line of research on these questions, initiated already by Kantorovich ([Kan42])
himself and continued by numerous others (we mention [KR58, Dud76, Dud02, dA82, GR81,
Fer81, Szu82, RR95, RR96, Mik06, MT06], see also the bibliographical notes in [Vil09, p
86, 87]). Important progresses were done by Kellerer [Kel84]. We also refer to the seminal
paper [GM96] by Gangbo and McCann. Recently the authors of the present article have
obtained in [BLS09a] a general duality result which is recalled below at Theorem 1.1.

It is well-known that there is primal attainment under the assumptions that c is lower
semicontinuous and the primal value P is finite. On the other hand, it is easy to build
examples where c is not lower semicontinuous and no primal minimizer exists.

In this article we focus onto the question of the dual attainment.

The dual optimizers (ϕ̂, ψ̂) are sometimes called Kantorovich potentials. In the Euclidean
case with the quadratic cost c(x, y) = |y − x|2/2, it is well-known that these potentials are

such that x 7→ |x|2/2 − ϕ̂(x) and y 7→ |y|2/2 − ψ̂(y) are convex conjugate to each other
and that any optimal plan is supported by the subdifferential of x 7→ |x|2/2 − ϕ̂(x). In
the general case, these potentials are c-conjugate to each other, a notion introduced by
Rüschendorf [Rüs96].

Kellerer [Kel84, Theorem 2.21] established that integrable dual attainment holds true in
the case of bounded c. This was extended by Ambrosio and Pratelli [AP03, Theorem 3.2],
who gave appropriate moment conditions on µ and ν which are sufficient to guarantee the
existence of integrable dual optimizers. Easy examples show that one cannot expect that
the dual problem admits integrable maximizers unless the cost function satisfies certain
integrability conditions with respect to µ and ν [BS09, Examples 4.4, 4.5]. In fact [BS09,
Example 4.5] takes place in a very “regular” setting, where c is the squared Euclidean

distance on R. In this case there exist natural candidates (ϕ̂, ψ̂) for the dual optimizer
which, however, fail to be dual maximizers in the usual sense as they are not integrable.

The following solution was proposed in [BS09, Section 1.1]. If ϕ and ψ are integrable
functions and π ∈ Π(µ, ν) then∫

X

ϕdµ+

∫
Y

ψ dν =

∫
X×Y

ϕ⊕ ψ dπ. (4)

If we drop the integrability condition on ϕ and ψ, the left hand side need not make sense.
But if we require that ϕ⊕ψ ≤ c and if π is a finite cost transport plan, i.e.

∫
X×Y c dπ <∞,

then the right hand side of (4) still makes good sense, assuming possibly the value −∞, and
we set

Jc(ϕ,ψ) =

∫
X×Y

ϕ⊕ ψ dπ.

It is not difficult to show (see [BS09, Lemma 1.1]) that this value does not depend on the
choice of the finite cost transport plan π and satisfies Jc(ϕ,ψ) ≤ D. Under the assumption
that there exists some finite cost transport plan, we then say that we have measurable
dual attainment in the optimization problem (3) if there exist Borel measurable functions

ϕ̂ : X → [−∞,∞) and ψ̂ : Y → [−∞,∞) verifying ϕ̂⊕ ψ̂ ≤ c such that

D = Jc(ϕ̂, ψ̂). (5)
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In [BS09, Theorem 2] it was shown that, for Borel measurable c : X × Y → [0,∞] such
that c < ∞, µ ⊗ ν-almost surely, there is no duality gap and there is measurable dual
attainment in the sense of (5).

A necessary and sufficient condition for the measurable dual attainment was proved in
[BLS09a, Theorems 1.2 and 3.5]. We need some more notation to state this result below
as Theorem 1.1. Fix 0 ≤ ε ≤ 1 and define Πε(µ, ν) = {π ∈ M+

X×Y , ‖π‖ ≥ 1 − ε, pX(π) ≤
µ, pY (π) ≤ ν} whereM+

X×Y denotes the non-negative Borel measures π onX × Y with norm
‖π‖ = π(X × Y ). By pX(π) ≤ µ (resp. pY (π) ≤ ν) we mean that the projection of π onto
X (resp. onto Y ) is dominated by µ (resp. ν). We denote P ε := inf {〈c, π〉 : π ∈ Πε(µ, ν)} .
This partial transport problem has recently been studied by Caffarelli and McCann [CM06]
as well as Figalli [Fig09]. In their work the emphasis is on a finer analysis of the Monge
problem for the squared Euclidean distance on Rn, and pertains to a fixed ε > 0. In the
present paper, we do not deal with these more subtle issues of the Monge problem and
always remain in the realm of the Kantorovich problem (2). We call

P rel := lim
ε→0

P ε (6)

the relaxed primal value of the transport plan. Obviously this limit exists (assuming possibly
the value + ∞) and P rel ≤ P .

Theorem 1.1 (Measurable dual attainment [BLS09a]). Let X,Y be polish spaces, equipped
with Borel probability measures µ, ν, and let c : X × Y → [0,∞] be Borel measurable.

(a) There is no duality gap if the primal problem is defined in the relaxed form (6) while the
dual problem is formulated in its usual form (3). In other words, we have P rel = D.

(b) Assume that in addition there exists a finite cost transport plan π ∈ Π(µ, ν). The
following statements are equivalent.

(i) There is measurable dual attainment, i.e. there exist measurable functions ϕ̂, ψ̂ such

that ϕ̂⊕ ψ̂ ≤ c and P rel = D = Jc(ϕ̂, ψ̂).
(ii) There exists a µ ⊗ ν-a.s. finite function h : X × Y → [0,∞] such that P rel =

Pc∧h := inf{〈c ∧ h, π〉 : π ∈ Π(µ, ν)}.

The aim of the present paper is to go beyond the setting of this theorem where the
measurable dual attainment is realized. We are going to discuss the existence of an optimizer
of an extension of the dual problem (3), without imposing any further conditions on the Borel
measurable cost function c : X × Y → [0,∞].

When it happens that µ ⊗ ν(c = ∞) > 0, the problem is trickier. Remark that one
doesn’t lose anything considering the Monge-Kantorovich problem (2) on the set of finite
cost transport plans

Π(µ, ν, c) :=

{
π ∈ Π(µ, ν) :

∫
X×Y

c dπ <∞
}
,

rather than Π(µ, ν). Our strategy consists of covering the relevent part of the set {c <∞}
by the “supports” of all the finite plans. We’ll use finite plan as a shorthand for finite
cost transport plan till the end of the paper. In Section 4 we choose one such finite plan
π0 which need not be an optimal plan and prove a dual attainment result for a modified
Monge-Kantorovich problem which is restricted to plans which are absolutely continuous
with respect to π0. Finally, in Section 5, we glue all these restricted problems together by
means of a projective limit argument, in order to recover our original problem.

Therefore, in Theorem 4.1 we take a somewhat unorthodox view at the general optimiza-
tion problem, starting with a finite plan π0 ∈ Π(µ, ν, c) which is not supposed to be optimal.
We then optimize over all the transport plans π ∈ Π(µ, ν) such that the Radon-Nikodym
derivative dπ

dπ0
is bounded. In this setting we show that there is no duality gap and that

there is a dual optimizer. However, this dual optimizer is not given by a pair of functions
ϕ⊕ψ ∈ L1(π0), but rather as a weak star limit of a sequence (ϕn ⊕ψn)∞n=1 ∈ L1(π0) in the
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bidual L1(π0)∗∗. A rather elaborate example in the accompanying paper [BLS09b] shows
that this passage to the bidual is indeed necessary, in general.

While Theorem 4.1 depends on the choice of the finite plan π0 ∈ Π(µ, ν, c), we formulate
in Theorem 5.2 a result which does not depend on this choice. There we pass to a projective
limit along a net in Π(µ, ν, c). Again we can prove that there is no duality gap and can
identify a dual optimizer.

2. What is dual attainment useful for?

We first give an informal derivation of a typical primal-dual attainment result. Then
we quickly draw the main lines of a potential application of dual attainment to stochastic
analysis.

An informal derivation. Let π stand in the space M of all bounded measures on X × Y ,
denote πX (resp. πY ) its first (resp. second) marginal measure and define the marginal
operator Aπ := (πX , πY ) so that

π ∈ Π(µ, ν)⇔
{

π ≥ 0
Aπ = (µ, ν)

, π ∈M.

For any bounded Borel measurable functions ϕ and ψ on X and Y, we have

〈(ϕ,ψ), Aπ〉 =

∫
X

ϕdπX +

∫
Y

ψ dπY =

∫
X×Y

ϕ⊕ ψ dπ

and we see that the formal adjoint of A is A∗(ϕ,ψ) = ϕ⊕ ψ. This is the main reason why
dual optimizers share this specific form. Let us apply the Lagrange multipliers method to
the Monge-Kantorovich problem (2). We introduce the Lagrange function, defined for all
π ∈M and ϕ,ψ bounded measurable functions on X and Y, by

L(π; (ϕ,ψ)) =

∫
X×Y

c dπ + ιM+(π)− 〈(ϕ,ψ), (πX , πY )− (µ, ν)〉

=

∫
X×Y

(c− ϕ⊕ ψ) dπ + ιM+(π) +

∫
X

ϕdµ+

∫
Y

ψ dν

where ιM+(π) =

{
0 if π ≥ 0
+∞ othewise

is the convex indicator of the coneM+ of all nonnegative

bounded measures. We see that

{
∂ϕL(π; (ϕ,ψ)) = 0
∂ψL(π; (ϕ,ψ)) = 0

is equivalent to

{
πX = µ
πY = ν.

On the other hand, we have ∂πL(π; (ϕ,ψ)) = 0 ⇔ −c + ϕ ⊕ ψ ∈ ∂ιM+
(π) where ∂ιM+

(π)
is the subdifferential of ιM+

at π. Denoting ι∗M+
the convex conjugate of ιM+

and using

Fenchel’s identity, we obtain

−c+ ϕ⊕ ψ ∈ ∂ιM+
(π)⇔ 〈−c+ ϕ⊕ ψ, π〉 = ιM+

(π) + ι∗M+
(h) = sup

ξ∈M+

〈−c+ ϕ⊕ ψ, ξ〉

and it follows that

〈c− ϕ⊕ ψ, π〉 = inf
ξ∈M+

〈c− ϕ⊕ ψ, ξ〉 =

{
0, if ϕ⊕ ψ ≤ c
−∞, otherwise.

Therefore, we expect (since this line of reasoning is informal) that any optimal plan π̂ and

any dual maximizer (ϕ̂, ψ̂) both satisfy ϕ̂⊕ ψ̂ ≤ c and 〈c− ϕ̂⊕ ψ̂, π̂〉 = 0, i.e.{
ϕ̂⊕ ψ̂ ≤ c, everywhere

ϕ̂⊕ ψ̂ = c, π̂-a.e.
(7)

A rigorous version of this statement is recalled below at Theorem 3.1.
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Connection with the Monge optimal transport problem. Consider all the measur-
able maps T : X → Y such that the image (push-forward) measure T#µ of µ by T satisfies
T#µ = ν. The Monge problem is

inf

{∫
X

c(x, T (x))µ(dx);T : T#µ = ν

}
where µ and ν are prescribed probability measures on X and Y, as in (2). It corresponds
to the Monge-Kantorovich problem with the extra requirement that the transport plans π
share the specific structure π(dxdy) = µ(dx)δT (x)(dy) where δT (x) is the Dirac measure at
T (x). In other words π assigns full measure to the graph {(x, y) ∈ X × Y ; y = T (x), x ∈ X}
of T. The easiest way to solve this difficult problem is to solve the easier Monge-Kantorovich
problem and hope that there exist optimal plans π̂ with this graph structure. But in view

of (7) this is not hopeless since π̂(ϕ̂ ⊕ ψ̂ = c) = 1 expresses some functional constraint on
the support of π̂.

A well-known instance is the Euclidean case when c(x, y) = |y−x|2/2, see [Bre91, McC95].
Indeed, standard considerations about convex conjugates lead us to

y ∈ ∂θ(x), π̂(dxdy)-a.e. (8)

where ∂θ(x) is the subdifferential at x of the lower semicontinuous convex function θ(x) =
|x|2/2− ϕ̂(x), x ∈ Rn. Since a convex function on Rn is almost everywhere differentiable, it
follows that if µ is an absolutely continuous measure,

y = ∇θ(x) = x−∇ϕ̂(x) =: T (x), π̂(dxdy)-a.e.

i.e. the support of any optimal plan is included in the graph of the gradient of a convex
function.

Similar considerations are developed in the context of the Wiener space in [FÜ04a, FÜ06].
Let µ be the Wiener measure on the space X = C([0, 1],Rn) of all vector-valued continuous
paths. The cost function is given for all x, y ∈ X by

c(x, y) =

{ ∫
[0,1]

1
2 |ḣt|

2 dt, if h := y − x ∈ H
+∞, otherwise,

where H is the space of all absolutely continuous paths h such that
∫

[0,1]
|ḣt|2 dt < ∞.

It is shown in [FÜ04a] that, if the relative entropy of ν with respect to µ : H(µ|ν) :=∫
X

log(dν/dµ) dν, is finite, then there exists a map τ : X → H which verifies

ν = (Id + τ)#µ. (9)

This is a nontrivial result since on one hand in general the push-forward T#µ of µ is not
absolutely continuous with respect to µ and on the other hand the analogue of the gradient
structure τ = ∇(−ϕ̂) is useful for applications, see [FÜ04a, FÜ04b, FÜ06, ÜZ07, Üst08].

Potential applications to stochastic analysis. The Feyel-Üstünel setting is restricted
to Wiener space. When considering a possible extension of this optimal transport approach
to a wider class of stochastic processes, one will face again a transport problem with a cost
function c that takes finite values only a tiny subset. In order to derive the analogue of the
pathwise representation (9), one will also have to exhibit some dual maximizer ϕ̂.

Let us briefly describe a potential application of this approach. The stochastic calculus of
variation (Malliavin calculus) is aimed at investigating the behavior of a stochastic process
µ under small absolutely continuous variations. More precisely, in the context of vector-
valued diffusions (with or without jumps) which means that µ is a probability measure on
the space D([0, 1],Rn) of all right-continuous left-limited (càdlàg) paths, we wish to collect
some information about the small perturbation τ 7→ µτ = Zτµ � µ of µ = µτ |τ=0. Once a

coupling (9):
µτ = (Id + τ)#µ, (10)
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is obtained, one might take advantage of the interplay between Girsanov’s theory, which
gives a representation of Zτ = dµτ/dµ in terms of drift vector fields and jump measures,
and the pathwise representation (10) via

EµτF − EµF = Eµ[(Zτ − 1)F ] = Eµ[F (Id + τ)− F ]

where F is a bounded measurable function on the path space.

Some remarks. Let us comment a little bit what has just been written.

(a) As a first ingredient for deriving Monge transport maps such as (9), one needs that the

optimal plans π̂ satisfy a condition π̂(ĥ = c) = 1 where ĥ is some measurable function

on X × Y . We didn’t use explicitly the splitting ĥ = ϕ̂⊕ ψ̂. The main point is that the

dual optimizer ĥ is a function.

(b) In the case of quadratic transport, the splitting ĥ = ϕ̂⊕ ψ̂ is useful to show (8), namely
that π̂ is supported by the subdifferential of a convex function θ, and also that this
property characterizes the optimal plans. In particular, when any such θ is differentiable
µ-a.e., this implies that there is a unique solution to the Monge-Kantorovich problem
and that it also solves the Monge problem, see [Bre91] for this easy argument.
For a general cost function c, the notion of c-conjugate has been introduced in [Rüs96]

to exploit the splitting ĥ = ϕ̂⊕ ψ̂ for obtaining results on the structure of π̂ which are
similar to (8).

(c) In [BLS09b], the authors give an example where the dual maximizers are not functions.
Such an event is a bad omen for building a Monge map. But fortunately, it is shown
below at Corollary 4.2 and Theorem 5.2 that under the assumption that there exists
an optimal map, the corresponding dual maximizers can be represented by means of
projective limits of functions.

(d) As regards previous Remark (c), if the cost funtion c is not lower semicontinuous, it
is unlikely that an optimal plan exists. Hence one could think that assuming that the
cost function is only Borel measurable is a high price to pay for an abstraction. But in
fact, assuming that c is lower semicontinuous would not be helpful in the present paper
where the existence of dual maximizers is considered; lower semicontinuity is only useful
for the existence of primal minimizers.

3. Two types of accident

In this section, we point out some difficulties which arise when going one step beyond the
measurable dual attainment. We shall face two types of troubles which might be called

• measurability accident;
• singular concentration accident.

Before describing these phenomena, it is worth recalling some results from [BS09] and [Léo]
about optimal plans. The proofs of the present paper and of Theorems 3.1 and 3.2 below
rely on three different types of techniques.

About the optimal plans. The following characterization of the optimal plans was proved
in [BS09].

Theorem 3.1 ([BS09, Theorem 2]). Assume that X,Y are polish spaces equipped with Borel
probability measures µ, ν, that c : X × Y → [0,∞] is Borel measurable and µ⊗ ν-a.e. finite
and that there exists a finite plan.

(a) Let π be a finite plan and assume that there exist measurable functions ϕ : X → [−∞,∞)
and ψ : Y → [−∞,∞) which satisfy{

ϕ⊕ ψ ≤ c everywhere
ϕ⊕ ψ = c π-almost everywhere.

(11)
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Then Jc(ϕ,ψ) = 〈c, π〉, thus π is an optimal transport plan and ϕ,ψ are dual maximizers
in the sense of (5).

(b) Assume that π̂ is an optimal transport plan. Then π̂ verifies (11) for every pair (ϕ̂, ψ̂)
of dual maximizers in the sense of (5).

As a definition which was introduced in [ST09], a transport plan π is said to be strongly c-
cyclically monotone if there exist measurable functions ϕ : X → [−∞,∞), ψ : Y → [−∞,∞)
which satisfy (11).

We say that a property holds Π(µ, ν, c)-almost everywhere if it holds true outside a
measurable set N such that π(N) = 0, for all π ∈ Π(µ, ν, c).

In [Léo], the assumption that c is µ⊗ν-a.e. finite was removed under the extra requirement
that c is lower semicontinuous and the following analogous results were obtained.

Theorem 3.2 ([Léo]). Assume that X,Y are polish spaces equipped with Borel probability
measures µ, ν, that c : X × Y → [0,∞] is lower semicontinuous and that there exists a finite
plan.

(a) Let π be a finite plan and assume that there exist measurable functions ϕ : X → [−∞,∞)
and ψ : Y → [−∞,∞) which satisfy{

ϕ⊕ ψ ≤ c Π(µ, ν, c)-almost everywhere
ϕ⊕ ψ = c π-almost everywhere.

(12)

Then Jc(ϕ,ψ) = 〈c, π〉, thus π is an optimal transport plan and ϕ,ψ are dual maximizers
in the sense of (5).

(b) Take any optimal plan π̂, ε > 0 and πo any probability measure on X × Y such that∫
X×Y c dπo <∞. Then, there exist functions h ∈ L1(π̂ + πo), ϕ and ψ bounded contin-

uous on X and Y respectively and a measurable subset Zε ⊂ (X × Y ) such that
(i) h = c, π̂-almost everywhere on (X × Y ) \ Zε;

(ii)
∫
Zε

(1 + c) dπ̂ ≤ ε;
(iii) −c/ε ≤ h ≤ c, (π̂ + πo)-almost everywhere;
(iv) −c/ε ≤ ϕ⊕ ψ ≤ c, everywhere;
(v) ‖h− ϕ⊕ ψ‖L1(π̂+πo) ≤ ε.

As regards (a), the examples [BGMS09, Example 5.1] and [BS09, Example 4.2] exhibit
optimal plans which are not strongly c-cyclically monotone but which satisfy the weaker
property (12). As regards (b), let us emphasize the appearance of the probability measure
πo in items (iii) and (v). One can read (iii-v) as an approximation of ϕ⊕ψ ≤ c, (π̂+πo)-a.e.
Since it is required that

∫
X×Y c dπo <∞, one can choose πo in Π(µ, ν, c), and the properties

(i-v) are an approximation of (12) where Π(µ, ν, c)-a.e. is replaced by the weaker (π̂+πo)-a.e.
In view of (b), we see that taking π0 = π̂ + πo in Theorem 4.1 provides us with a way of
exploring a part of the domain {c <∞} around the support of the optimal plan π̂.

Note also that for any (ϕ,ψ) verifying (11) or (12) with π ∈ Π(µ, ν, c), we have

µ(ϕ = −∞) = ν(ψ = −∞) = 0. (13)

As a consequence of this remark and a result of Kellerer [Kel84], see [BLS09a, Lemma A.1],
we can replace“ϕ⊕ ψ ≤ c everywhere” in (11) by “ϕ⊕ ψ ≤ c, Π(µ, ν)-almost everywhere.”
The comparison between (11) and (12) becomes clearer.

Measurability accident. To develop a feeling for what we are after, we consider a specific
example.

Example 3.3 (Ambrosio-Pratelli, [AP03, Example 3.2]). Let X = Y = [0, 1), equipped
with Lebesgue measure λ = µ = ν. Pick α ∈ [0, 1) irrational. Set

Γ0 = {(x, x) : x ∈ X} Γ1 = {(x, x⊕ α) : x ∈ X},
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where ⊕ is addition modulo 1. Define c : X × Y → [0,∞] by

c(x, y) =


1 for (x, y) ∈ Γ0

2 for (x, y) ∈ Γ1, x ∈ [0, 1/2)
0 for (x, y) ∈ Γ1, x ∈ [1/2, 1)
∞ else

.

This cost function is a variation on [AP03]’s original example which has been proposed in
[BS09, Example 4.3]. For i = 0, 1, let πi be the obvious transport plan supported by Γi.
Following the arguments of [AP03], it is easy to see that all finite plans are given by convex
combinations of the form ρπ0 + (1− ρ)π1, ρ ∈ [0, 1] and each of these transport plans leads
to costs of 1.
Note that since c is lower semicontinuous, there is no duality gap. This was proved in [Kel84]
and is an easy consequence of Theorem 1.1-(a). Thus, for each ε > 0, there are integrable
functions ϕ,ψ : [0, 1) → [−∞,∞) such that ϕ ⊕ ψ ≤ c and 0 ≤

∫
(c − ϕ ⊕ ψ) dπi ≤ ε for

i = 0, 1.
On the other hand, it is shown in [BS09] that there do not exist measurable functions
ϕ,ψ : [0, 1) → [−∞,∞) satisfying ϕ ⊕ ψ ≤ c such that ϕ ⊕ ψ = c holds π0- as well as
π1-almost surely.

Let us have a closer look at the previous example: while it is not possible to find Borel

measurable limits ϕ̂, ψ̂ of an optimizing sequence (ϕn, ψn)∞n=1, it is possible to find a limiting

Borel function ĥ(x, y) of the sequence of functions (ϕn(x) + ψn(y))∞n=1 on the set {(x, y) ∈
X × Y : c(x, y) < ∞}. Indeed, on this set, which simply equals Γ0 ∪ Γ1, any optimizing

sequence (ϕn(x) + ψn(y))∞n=1 for (3) has a subsequence which converges π-a.s. to ĥ(x, y) :=
c(x, y), for any finite plan π.

Summing up: in the context of the previous example, there is a Borel function ĥ(x, y) on
X × Y , which equals c(x, y) on Γ0 ∪ Γ1; it may take any value on (X × Y ) \ (Γ0 ∪ Γ1), e.g.

the value +∞. This function ĥ(x, y) may be considered as a kind of dual optimizer: it is,
for any finite plan π, the limit of an optimizing sequence (ϕn(x) + ψn(y))∞n=1 with respect
to the norm ‖ · ‖L1(π).

Singular concentration accident. One can rewrite the sufficient conditions of Theorems

3.1-(a) and 3.2-(a) as follows: π̂ and (ϕ̂, ψ̂) solve the primal and dual problems if π̂ ∈
Π(µ, ν, c), (ϕ̂ ⊕ ψ̂)π̂ = cπ̂ and (ϕ̂ ⊕ ψ̂)π ≤ cπ, ∀π ∈ Π(µ, ν, c), in the space of bounded

measures. In view of Example 3.3 and of part (b) of Theorem 3.2, we are aware that ϕ̂⊕ ψ̂
should be replaced by a jointly measurable ĥ such that for each π ∈ Π(µ, ν, c), ĥπ can be
approximated in variation norm by a sequence ((ϕn ⊕ ψn)π)∞n=1 verifying (ϕn ⊕ ψn)π ≤ cπ
for all n ≥ 1. But this is not the end of the story.

In the accompanying paper [BLS09b], rather elaborate extensions of the above example
are analyzed. By means of examples (which are too long to be recalled here), it is shown

that instead of the functions or, equivalently, countably additive measures ĥπ, one has to
consider finitely additive measures. This might be seen as a consequence of the limiting
behavior of functions ϕ⊕ ψ tending to −∞ somewhere, under the seemingly contradictory
requirement (13).

4. Existence of a dual optimizer

The remainder of this article is devoted to developing a theory which makes this circle of
ideas precise in the general setting of Borel measurable cost functions c : X × Y → [0,∞].
To do so we shall apply Fenchel’s perturbation method as in [BLS09a]. In addition, we need
some functional analytic machinery, in particular we shall use the space (L1)∗∗ = (L∞)∗ of
finitely additive measures.

Assume Π(µ, ν, c) 6= ∅ to avoid the trivial case.
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Recall that our strategy consists of covering the relevent part of the set {c <∞} by the
“supports” of all the finite plans π0 ∈ Π(µ, ν, c). The covering procedure will be considered
at next Section 5.

In the present section, we fix π0 ∈ Π(µ, ν, c) and stress that we do not assume that π0 has
minimal transport cost. In fact, there is little reason in the present setting (where c is not
assumed to be lower semicontinuous) why a primal optimizer π̂ should exist. We denote by
Π(π0)(µ, ν) the set of elements π ∈ Π(µ, ν) such that π � π0 and

∥∥ dπ
dπ0

∥∥
L∞(π0)

< ∞. Note

that Π(π0)(µ, ν) = Π(µ, ν) ∩ L∞(π0) ⊆ Π(µ, ν, c).
We shall replace the usual Kantorovich optimization problem over the set Π(µ, ν, c) by

the optimization over the smaller set Π(π0)(µ, ν) and consider

P (π0) = inf{〈c, π〉 =
∫
c dπ : π ∈ Π(π0)(µ, ν)}. (14)

As regards the dual problem, we define for ε > 0,

D(π0,ε) = sup
{∫

ϕdµ+

∫
ψ dν : ϕ ∈ L1(µ), ψ ∈ L1(ν),∫

X×Y
(ϕ⊕ ψ − c)+ dπ0 ≤ ε

}
and

D(π0) = lim
ε→0

D(π0,ε). (15)

Define the “summing” map S by

S : L1(X,µ)× L1(Y, ν)→ L1(X × Y , π0)

(ϕ,ψ) 7→ ϕ⊕ ψ

and denote by L1
S(X × Y , π0) the ‖.‖1-closed linear subspace of L1(X × Y , π0) spanned by

S(L1(X,µ) × L1(Y, ν)). Clearly L1
S(X × Y , π0) is a Banach space under the norm ‖.‖1

induced by L1(X × Y , π0).
We shall also need the bi-dual L1

S(X × Y , π0)∗∗ which may be identified with a subspace
of L1(X × Y , π0)∗∗. In particular, an element h ∈ L1

S(X × Y , π0)∗∗ can be decomposed into
h = hr + hs, where hr ∈ L1(X × Y , π0) is the regular part of the finitely additive measure
h and hs its purely singular part. Note that it may happen that h ∈ L1

S(X × Y , π0)∗∗ while
hr 6∈ L1

S(X × Y , π0), and therefore also hs 6∈ L1
S(X × Y , π0)∗∗.

Theorem 4.1. Let c : X × Y → [0,∞] be Borel measurable and let π0 ∈ Π(µ, ν, c) be a
finite plan. We have

P (π0) = D(π0). (16)

There is an element ĥ ∈ L1
S(X × Y , π0)∗∗ which verifies the inequality1 ĥ ≤ c in the Banach

lattice L1(X × Y , π0)∗∗ and

D(π0) = 〈ĥ, π0〉.
If π ∈ Π(π0)(µ, ν) (identifying π with dπ

dπ0
) satisfies

∫
c dπ ≤ P (π0) + α for some number

α ≥ 0, then

−α ≤ 〈ĥs, π〉 ≤ 0. (17)

In addition, we may find a sequence of elements (ϕn, ψn) ∈ L1(µ)× L1(ν) such that

ϕn ⊕ ψn → ĥr, π0-a.s.,

‖(ϕn ⊕ ψn − ĥr)+‖L1(π0) → 0 and

lim
δ→0

sup
A⊆X×Y ,π0(A)<δ

lim
n→∞

−〈(ϕn ⊕ ψn)1A, π0〉 = ‖ĥs‖L1(π0)∗∗ . (18)

1The inequality ĥ ≤ c pertains to the lattice order of L1(X × Y )∗∗, where we identify the π0-integrable

function c with an element of L1(X × Y , π0)∗∗. If ĥ decomposes into ĥ = ĥr + ĥs, the inequality ĥ ≤ c holds

true if and only if ĥr(x, y) ≤ c(x, y), π0-a.s. and ĥs ≤ 0 (compare the discussion after (22))
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Before giving the proof of this theorem, let us state an interesting consequence.

Corollary 4.2. Let c : X × Y → [0,∞] be Borel measurable and π̂ be an optimal solution
of the Monge-Kantorovich problem (2). For any finite plan π∗ ∈ Π(µ, ν, c), there exists a

function ĥ ∈ L1(π̂ + π∗) such that

{
ĥ ≤ c, (π̂ + π∗)-a.e.

ĥ = c, π̂-a.e.

In addition, we may find a sequence of elements (ϕn, ψn) ∈ L1(µ)× L1(ν) such that

ϕn ⊕ ψn → ĥ, (π̂ + π∗)-a.e. and

‖(ϕn ⊕ ψn − ĥ)+‖L1(π̂+π∗) → 0.

Proof. Consider π0 = (π̂ + π∗)/2 in Theorem 4.1. By (17) we have ĥs = 0 on the set

{ dπ̂dπ0
> 0} which means that ĥ ∈ L1(π0). �

Proof of Theorem 4.1. It is straightforward to verify the trivial duality relation D(π0) ≤
P (π0). To show the reverse inequality and to find the dual optimizer ĥ ∈ L1(X × Y , π0)∗∗,
as in [BLS09a] we apply W. Fenchel’s perturbation argument. (For an elementary treatment,
compare also [BLS09b].) The summing map S factors through L1

S(π0) as indicated in the
subsequent diagram:

L1(µ)× L1(ν)
S−→ L1(π0)

S1

↘
S2

↗
L1
S(π0)

Then S1 has dense range and S2 is an isometric embedding. Denote by
(
L1
S(π0)∗, ‖.‖L1

S(π0)∗
)

the dual of L1
S(π0) which is a quotient space of L∞(π0). Transposing the above diagram we

get

L∞(µ)× L∞(ν)
T←− L∞(π0)

T1

↖
T2

↙
L1
S(π0)∗

where T, T1, T2 are the transposed maps of S, S1, resp. S2. Clearly T (γ) = (pX(γ), pY (γ))
for γ ∈ L∞(π0), where pX , pY are the projections of a measure γ (identified with the Radon-

Nikodym-derivative dγ
dπ0

) onto its marginals. By elementary duality relations we have that
T2 is a quotient map and T1 is injective; the latter fact allows us to identify the space
L1
S(π0)∗ with a subspace of L∞(µ)× L∞(ν).

For example, consider the element 1 ∈ L∞(π0), which corresponds to the measure π0 on
X × Y . The element T2(1) ∈ L1

S(π0)∗ may then be identified with the element (1,1) = T (1)
in L∞(µ)× L∞(ν) which corresponds to the pair (µ, ν). We take the liberty to henceforth
denote this element simply by 1, independently of whether we consider it as an element of
L∞(π0), L1

S(π0)∗ or L∞(µ)× L∞(ν).
We may now rephrase the primal problem (14) as

〈c, γ〉 =

∫
X×Y

c(x, y) dγ(x, y)→ min, γ ∈ L∞+ (π0),

under the constraint

T (γ) = 1. (19)

The decisive trick is to replace (19) by the trivially equivalent constraint

T2(γ) = 1,



DUAL TRANSPORT PROBLEM 11

and to perform the Fenchel perturbation argument not in the space L∞(µ) × L∞(ν) but
rather in the subspace L1

S(π0)∗ which is endowed with a stronger norm. The map Φ:
L1
S(π0)∗ → [0,∞],

Φ(p) := inf{〈c, γ〉 : γ ∈ L∞+ (π0), T2(γ) = p}, p ∈ L1
S(π0)∗,

is convex, positively homogeneous and Φ(1) = P (π0).

Claim. There is a neighbourhood V of 1 in L1
S(π0)∗ on which Φ is bounded.

Indeed, let U =
{
γ ∈ L∞(π0) | ‖γ − 1‖L∞(π0) <

1
2

}
. Then U is contained in the positive

orthant L∞+ (π0) of L∞(π0) and

Φ(T2(γ)) ≤ 〈c, γ〉 ≤ 3
2‖c‖L1(π0) for all γ ∈ U.

Hence on T2(U), which simply is the open ball of radius 1
2 around 1 in the Banach space

L1
S(π0)∗, we have that Φ is bounded by 3

2‖c‖L1(π0).

It follows from elementary geometric facts that the convex function Φ is continuous on
T2(U) with respect to the norm of L1

S(π0)∗. By Hahn-Banach there exists f ∈ L1
S(π0)∗∗ such

that

〈f,1〉 = Φ(1),

〈f, p〉 ≤ Φ(p) for all p ∈ L1
S(π0)∗.

The adjoint T ∗2 of T2 maps L1
S(π0)∗∗ isometrically onto a subspace E of L1(π0)∗∗ =

L∞(π0)∗. The space E consists of those elements of L1(π0)∗∗ which are σ∗-limits of nets

(ϕα ⊕ ψα)α∈I with ϕα ∈ L1(µ), ψα ∈ L1(ν). Write ĥ := T ∗2 (f). Then for all γ ∈ L∞+ (π0),

〈ĥ, γ〉 = 〈T ∗2 (f), γ〉 = 〈f, T2(γ)〉 ≤ Φ(T2(γ)) ≤ 〈c, γ〉, (20)

and if π ∈ L∞+ (π0), T2(π) = 1 then

〈ĥ, π〉 = 〈T ∗2 (f), π〉 = 〈f, T2(π)〉 = 〈f,1〉 = Φ(1) = P (π0). (21)

By (20), the inequality ĥ ≤ c holds true in the Banach-lattice L∞(π0)∗. Combining this

with (21) we obtain that ĥ is a dual optimizer in the sense of

D
(π0)
∗∗ := sup

{
〈g, π0〉 : g ∈ L1

S(π0)∗∗, g ≤ c
in the Banach lattice L1(π0)∗∗

} (22)

(where we identify π0 with the element 1 of L∞(π0)) and that there is no duality gap in

this sense, i.e. D
(π0)
∗∗ = P (π0).

As mentioned above, every element g ∈ L∞(π0)∗ splits in a regular part gr lying in L1(π0)
and a purely singular part gs. Given g1, g2 ∈ L∞(π0)∗, we have g1 ≤ g2 if and only if gr1 ≤ gr2
and gs1 ≤ gs2. Since c ∈ L1(π0) we have cs = 0. The inequality ĥ ≤ c implies that ĥs ≤ cs = 0

and ĥr ≤ cr = c. It follows that for each π ∈ L∞+ (π0)

〈ĥr, π〉 ≤ 〈c, π〉. (23)

Assume additionally that π satisfies T2(π) = 1 and choose α ≥ 0 such that 〈c, π〉 ≤ P (π0)+α.

Then 〈ĥ, π〉 = P (π0) and subtracting this quantity from (23) we get

〈−ĥs, π〉 = 〈ĥr − ĥ, π〉 ≤ 〈c, π〉 − P (π0) ≤ α

showing (17).
We still have to show the existence of a sequence (ϕn, ψn)∞n=1 satisfying the above asser-

tions about convergence. So far we know that there is a net (ϕα, ψα)α∈I such that ϕα ⊕ψα
weak-star converges to ĥ. First we claim that there exists a net (fα)α∈I of elements of

L1(π0), such that ‖fα‖1 ≤ ‖ĥs‖, ĥr + fα ∈ L1
S(π0) and ĥr + fα → ĥ in the σ∗-topology.

To see this, note that Alaoglu’s theorem [RS80, Theorem IV.21] implies that in a Banach
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space V , the unit ball B1(V ) is σ∗-dense in the unit ball B1(V ∗∗) of the bidual. Thus

ĥr + ‖ĥs‖B1(L1
S(π0)) is σ∗-dense in ĥr + ‖ĥs‖B1(L1

S(π0)∗∗) which yields the existence of a
net (fα)α∈I as required.

As ĥs is purely singular, we may find a sequence (αn)∞n=1 in I such that ‖fαn‖ ≤ ‖ĥs‖
and

∫
fαn dπ0 = −‖ĥs‖ + 2−n, and that

∫
(|fαn | ∧ 2n) dπ0 ≤ 2−n, which implies that the

sequence (fαn)∞n=1 converges π0-a.s. to zero.

As ĥr + fαn ∈ L1
S(π0) we may find (ϕn, ψn) ∈ L1(µ)× L1(ν) such that

‖ϕn ⊕ ψn − (ĥr + fαn)‖L1(π0) < 2−n.

We then have that (ϕn⊕ψn)∞n=1 converges π0-a.s. to ĥr and that ‖(ϕn⊕ψn−ĥr)+‖L1(π0) → 0.

As regards assertion (18) we note that, for Am =
⋃∞
n=m+1{|fαn | > 2−n} we have

π0(Am) ≤ 2−m and

lim inf
n→∞

(−〈(ϕn ⊕ ψn)1Am , π0〉) = − lim sup
n→∞

〈(ĥr + fαn)1Am , π0〉

= −〈ĥr1Am , π0〉 − lim
n→∞

〈fαn1Am , π0〉

= −〈ĥr1Am , π0〉+ ‖ĥs‖L1(π0)∗∗.

Letting m tend to infinity we obtain that the left hand side of (18) is greater than or
equal to the right hand side. As regards the reverse inequality it suffices to note that

‖fαn‖L1(π0) ≤ ‖ĥs‖L1(π0)∗∗ .

As ĥr ≤ c, π0-a.s., we obtain in particular that ‖(ϕn ⊕ψn − c)+‖L1(π0) → 0 showing that

D(π0) ≥ P (π0) and therefore (16), the reverse inequality being straightforward. �

As a by-product of this proof, we have shown in (22) that

D
(π0)
∗∗ = D(π0) = P (π0). (24)

Admittedly, Theorem 4.1 is rather abstract. However, we believe that it may be useful in

applications to have the possibility to pass to some kind of limit ĥ of an optimizing sequence
(ϕn, ψn)∞n=1 in the dual optimization problem, even if this limit is somewhat awkward. To
develop some intuition for the message of Theorem 4.1, we shall illustrate the situation at
the hand of some examples.

Let us start with Example 3.3. In this case we may apply Theorem 4.1 to the finite plan
π 1

2
= 1

2 (π0 + π1), (we apologize for using π 1
2

instead of π0 in Theorem 4.1 as the notation

π0 is already taken). As we have seen above, there are sequences (ϕn ⊕ ψn)∞n=1 converging

π 1
2
-a.s. as well as in the norm of L1(π 1

2
) to ĥ = c, as defined in Example 3.3 above. In

particular we do not have to bother about the singular part ĥs of ĥ, as we have ĥ = ĥr in
this example. We find again that h represents the limit of (ϕn ⊕ ψn)∞n=1, considered as a
Borel function on {c <∞} which is the support of π 1

2
.

We now make the example a bit more interesting and challenging. (See Example 4.3
below.)

Fix in the context of Example 3.3 (where we now write c̃ instead of c to keep the letter
c free for a new function to be constructed) a sequence (ϕn, ψn)∞n=1 such that ‖c̃ − ϕn ⊕
ψn‖L1(πi) → 0 for i = 0, 1. We claim that (ϕn ⊕ ψn)∞n=1 converges in ‖.‖L1(πk) where, for
each k ∈ N, πk is the measure which is uniformly distributed on

Γk = {(x, x⊕ kα) : x ∈ [0, 1)}. (25)
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Let us prove this convergence whose precise statement is given below at (30) and (31). We
know that2

ϕn(x) + ψn(x) → c̃(x, x) and (26)

ϕn(x) + ψn(x⊕ α) → c̃(x, x⊕ α),whence

ψn(x⊕ α)− ψn(x) → c̃(x, x⊕ α)− c̃(x, x)︸ ︷︷ ︸
=:g(x)

=

{
+1 for x ∈ [0, 1

2 ),
−1 for x ∈ [ 1

2 , 1).
(27)

Replacing x by x⊕ iα, i = 1, . . . , k − 1 in (27) this yields

ψn(x⊕ α)− ψn(x)→
k−1∑
i=0

g(x⊕ iα).

Combined with (26) we have

lim
n→∞

[ϕn(x) + ψn(x⊕ kα)] = 1 +

k−1∑
i=0

g(x⊕ iα) (28)

= 1 + #
{

0 ≤ i < k : x⊕ iα ∈ [0, 1
2 )
}
− #

{
0 ≤ i < k : x⊕ iα ∈ [ 1

2 , 1)
}

=: ρk(x). (29)

Define the function h on X × Y

h(x, y) =

{
ρk(x) for (x, y) ∈ Γk, k ∈ N,
∞ else.

(30)

By (28), we have, for each k ∈ N, limn ‖h− ϕn ⊕ ψn‖L1(πk) = 0. Somewhat more precisely,
one obtains that

‖h− ϕn ⊕ ψn‖L1(πk) ≤ k‖c̃− ϕn ⊕ ψn‖L1(π0+π1). (31)

Now we shall modify the cost function c̃ of Example 3.3 by defining it to be finite not
only on Γ0 ∪ Γ1, but rather on

⋃
k∈N Γk. We then obtain the following situation.

Example 4.3. Using (30) define c : [0, 1)× [0, 1)→ [0,∞] by

c(x, y) = h(x, y)+,

so that {c <∞} =
⋃
k∈N Γk. For the resulting optimal transport problem we then find:

(i) The primal value P of the problem (2) equals zero and ϕ̂ = ψ̂ = 0 are (trivial)
optimizers of the dual problem (3).

(ii) For strictly positive scalars (ak)k≥0, normalized by
∑
k≥0 ak = 1 apply Theorem 4.1

to the transport plan π :=
∑
k≥0 akπk. (Again we apologize for using the notation

π for the measure π0 in Theorem 4.1, as all the letters πk are already taken.) If
(ak)≥0 tends sufficiently fast to zero, as |k| → ∞, the following facts are verified.

- The primal value is

P (π) = inf

{∫
X×Y

c dπ̄ : π̄ ∈ Π(µ, ν), ‖dπ̄dπ‖L∞ <∞
}

= 1.

- The Borel function h ∈ L1(π) defined in (30) is a dual optimizer in the sense
of Theorem 4.1, i.e.

D(π) =

∫
X×Y

h dπ = 1.

- There is a sequence (ϕn, ψn)∞n=1 in L1(µ) × L1(ν) such that (ϕn ⊕ ψn)∞n=1

converges to h in the norm of L1(π).

2The equations (26) to (29) refer to integrable functions on [0, 1) and convergence is understood to be
with respect to ‖.‖L1(µ).
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Before proving the above assertions let us draw one conclusion: in (ii) we can not assert
that the functions (ϕn, ψn)∞n=1 satisfy – in addition to the properties above – the inequality
ϕn(x) + ψn(y) ≤ c(x, y), for all (x, y) ∈ X × Y . Indeed, if this were possible then, because
of limn→∞(

∫
X
ϕn dµ +

∫
Y
ψn dν) = D(π) = 1, we would have that the dual value D of the

original dual problem (3) would equal D = 1, in contradiction to (i).

Proof of the assertions of Example 4.3. We start with assertion (ii). Fix an optimizing se-
quence (ϕn, ψn)∞n=1 in the context of Example 3.3 such that

‖c̃− ϕn ⊕ ψn‖L1(π0+π1) ≤ 1/n3. (32)

Pick a sequence (ak)k∈N of positive numbers such that

(a) ak‖h‖L1(πk) ≤ C2−k for all k ∈ N,

(b) ak(‖ϕn‖1 + ‖ψn‖1) ≤ C2−k for all k ∈ N with n ≤ k,
for some real constant C. After re-normalizing, if necessary, we may assume that

∑∞
k=1 ak =

1. Set π :=
∑∞
k=1 akπk. From (a) we obtain h ∈ L1(π) ⊆ L1(π)∗∗ thus h is viable for the

problem D
(π)
∗∗ and hence D

(π)
∗∗ ≥ 1. Clearly P (π) ≤ 1, hence P (π) = D

(π)
∗∗ = 1 and h is a dual

maximizer. Combining (32) with (31) we obtain

‖h− ϕn ⊕ ψn‖L1(πk) ≤ k/n3.

Therefore

‖h− ϕn ⊕ ψn‖L1(π) ≤
∑
k≤n

‖h− ϕn ⊕ ψn‖L1(πk) +
∑
k>n

ak(‖h‖L1(πk) + ‖ϕn‖1 + ‖ψn‖1)

≤ 1/n+ 2C
∑
k>n

2−k.

Hence ϕn ⊕ ψn converges to h in ‖.‖L1(π). This shows assertion (ii) above.

To obtain (i) we construct a transport plan πβ ∈ Π(µ, ν) such that
∫
X×Y c dπβ = 0. Note

in passing that in view of (ii) we must have ‖dπβdπ ‖L∞(π) = ∞ for the π constructed above.

On the other hand, we must have
dπβ
dπ ∈ L

1(π), if ak > 0 for all k ∈ N, as every finite cost
transport plan must be absolutely continuous with respect to π.

The idea is to concentrate πβ on the set

Γ := {(x, y) : c(x, y) = 0}

= {(x, x⊕ kα) : k ≥ 1,
∑k−1
i=0 (1[0, 12 )(x⊕ iα)− 1[ 12 ,1)(x⊕ iα)) ≤ −1}.

To prove that this can be done it is sufficient to show that whenever A ⊆ X, B ⊆ Y,
µ(A), ν(B) > 0, a subset A′ of A can be transported to a subset B′ of B with ν(B′) =
µ(A′) > 0 via Γ. Then an exhaustion argument applies.

At this stage we encounter an interesting connection to the theory of measure preserving
systems. For x ∈ X and m ∈ N set

S(x,m) :=
(
x⊕ α,m+ 1[0, 12 )(x)− 1[ 12 ,1)(x)

)
.

Then S is a measure preserving transformation of the space ([0, 1]×Z, λ×#). (See [Aar97]
for an introduction to infinite ergodic theory and the basic definitions in this field.) It is not
hard to see that the ergodic theorem, applied to the rotation by α on the torus, shows that
S is non wandering. Much less trivial is the fact that S is also ergodic. This was shown by
K. Schmidt [Sch78] for a certain class of irrational numbers α ∈ [0, 1), and in full generality
by M. Keane and J.-P. Conze [CK76], see also [AK82].
The relevance of these facts to our situation is that for k ≥ 1, the pair (x, x ⊕ kα) is an
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element of Γ if and only if Sk(x, 0) ∈ [0, 1)× {−1,−2, . . .}. By ergodicity of S, there exists
k such that

(λ×#)
(
(Sk[A× {0}]) ∩ (B × {−1,−2, . . .})

)
> 0,

thus it is possible to shift a positive portion of A to B as required. By exhaustion, there
indeed exists a transport πβ such that 〈c, πβ〉 = 0. �

The above example illustrates some of the subtleties of Theorem 4.1. However, it does not

yet provide evidence for the necessity of allowing for the singular part ĥs of the optimizer ĥ
in Theorem 4.1. We have constructed yet a more refined – and rather longish – variant of the
Ambrosio–Pratelli example above, which shows that, in general, there is no way of avoiding
these complications in the statement of Theorem 4.1. We refer to the accompanying paper
[BLS09b, Section 3] for a presentation of this example, where it is shown that it can indeed

occur that the singular part ĥs in Theorem 4.1 does not vanish.

5. The Projective Limit Theorem

We again consider the general setting where c is a [0,∞]-valued Borel measurable function.
To avoid trivialities we shall always assume that Π(µ, ν, c) is non-empty.

Theorem 4.1 only pertains to the situation of a fixed element π0 ∈ Π(µ, ν, c): one then
optimizes the transport problem of all π ∈ Π(µ, ν) with ‖ dπdπ0

‖L∞(π0) <∞.
The purpose of this section is to find an optimizer h which does work simultaneously, for

all π0 ∈ Π(µ, ν, c). We are not able to provide a result showing that a function h – plus
possibly some singular part hs – exists which fulfills this duty, for all π0 ∈ Π(µ, ν, c). We
have to leave the question whether this is always possible as an open problem. But we can

show that a projective limit Ĥ = (ĥπ)π∈Π(µ,ν,c) exists which does the job.
We introduce an order relation on Π(µ, ν, c) : we say that π1 � π2 if π1 � π2 and

‖dπ1

dπ2
‖L∞(π2) < ∞. For π1 � π2 there is a natural, continuous projection Pπ1,π2

: L1(π2) →
L1(π1) associating to each hπ2 ∈ L1(π2), which is an equivalence class modulo π2-null
functions, the equivalence class modulo π1-null functions which contains the equivalence
class hπ2

(and where this inclusion of equivalence classes may be strict, in general). We may
define the locally convex vector space E as the projective limit

E = lim
←−π∈Π(µ,ν,c)

L1(X × Y , π).

The elements of E are families H = (hπ)π∈Π(µ,ν,c) such that, for π1 � π2, we have
Pπ1,π2

(hπ2
) = hπ1

.
A net (Hα)α∈I ∈ E converges to H ∈ E if,

lim
α∈I
‖ hαπ − hπ ‖L1(π)= 0, for each π ∈ Π(µ, ν, c).

We may also define the projective limit

ES = lim
←−π∈Π(µ,ν,c)

L1
S(X × Y , π),

which is a closed subspace of E.
We start with an easy result.

Proposition 5.1. Let X and Y be polish spaces equipped with Borel probability measures
µ, ν, and let c : X × Y → [0,∞] be Borel measurable. Assume that Π(µ, ν, c) is non-empty.

There is π0 ∈ Π(µ, ν, c) such that

P (π0) = inf
π∈Π(µ,ν,c)

P (π).
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Proof. Let (πn)∞n=1 be a sequence in Π(µ, ν, c) such that

lim
n→∞

P (πn) = inf
π∈Π(µ,ν,c)

P (π).

It suffices to define π0 as

π0 =

∞∑
n=1

2−n πn

as we then have πn � π0, for each n ∈ N. �

Of course, if the primal problem (2) is attained, we have P (π0) = P.
The above proposition allows us to suppose w.l.o.g. in our considerations on the projective

limit E that the π appearing in the definition are all bigger than π0:

E = lim
←−π∈Π(µ,ν,c)

L1(π) = lim
←−π∈Π(µ,ν,c),π�π0

L1(π).

Clearly, we then have that the optimal transport cost P (π) is equal to P (π0), for all π � π0.

Theorem 5.2. Let X and Y be polish spaces equipped with Borel probability measures µ, ν,
and let c : X × Y → [0,∞] be Borel measurable. Assume that Π(µ, ν, c) is non-empty. Let
π0 be as in Proposition 5.1

There is an element Ĥ = (ĥπ)π∈Π(µ,ν,c),π�π0
∈ E such that, for each π ∈ Π(µ, ν, c), π �

π0, the element ĥπ ∈ L1
S(π)∗∗ satisfies ĥπ ≤ c in the order of L1(π)∗∗ and ĥπ is an optimizer

of the dual problem (22)

〈ĥπ, π〉 = D
(π)
∗∗ := sup{〈h, π〉 : h ∈ L1

S(π)∗∗, h ≤ c}.

We then have that, for each π ∈ Π(µ, ν, c), π � π0, the decomposition ĥπ = ĥrπ + ĥsπ of ĥπ
into its regular and singular parts verifies

- ĥrπ ∈ L1
S(π) and ĥrπ ≤ c in L1(π);

- ĥsπ ∈ L1
S(π)∗∗ and ĥsπ ≤ 0 in the space of purely finitely additive measures which are

absolutely continuous with respect to π.

Moreover, for each π ∈ Π(µ, ν, c), π � π0, there is no duality gap in the sense that

D
(π)
∗∗ = D(π) = P (π) = P (π0) (33)

where D(π) := lim
ε→0

sup
{∫

ϕdµ+
∫
ψ dν : ϕ ∈ L1(µ), ψ ∈ L1(ν),

∫
(ϕ⊕ ψ − c)+ dπ ≤ ε

}
and

P (π) := inf{〈c, π′〉 : π′ ∈ Π(π)(µ, ν)}. If in addition the primal problem (2) is attained, for

instance if c is lower semicontinuous, then D
(π)
∗∗ = D(π) = P (π) = P.

Proof. Fix π ∈ Π(µ, ν, c), π � π0. We have seen in Theorem 4.1 that the set

Kπ = {h ∈ L1
S(π)∗∗ : h ≤ c, 〈h, π〉 = 〈c, π〉}

is non-empty. In addition Kπ is closed and bounded in L1(π)∗∗ and hence compact with
respect to the σ(L1

S(π)∗∗, L1
S(π)∗)-topology.

For π, π′ ∈ Π(µ, ν, c) with π � π′ the set

Kπ,π′ = Pπ,π′(Kπ′)

is contained in Kπ and still a non-empty σ∗-compact convex subset of L1(π)∗∗. By com-
pactness the following set is σ∗-compact and non-empty too:

Kπ,∞ =
⋂
π′�π

Kπ,π′ .

We have Kπ,∞ = Pπ,π′(Kπ′,∞) for π � π′. Hence by Tychonoff’s theorem the projective
limit

lim
←−π∈Π(µ,ν,c),π�π0

Kπ,∞
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of the compact sets (Kπ,∞)π�π0
is non-empty, which is precisely the main assertion of the

present theorem.
Finally, (33) is a restatement of (24) and when the primal problem (2) is attained, the last
series of equalities follows from P (π0) = P . �

Clearly P rel ≤ P ≤ P (π0), hence with Theorem 1.1 and (33) one sees that

D = P rel ≤ P ≤ P (π0) = P (π) = D
(π)
∗∗ = D(π)

for every π ∈ Π(µ, ν, c) such that π � π0.
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