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Abstract
Kusuoka (2001) has obtained explicit representation theorems for

comonotone risk measures and, more generally, for law invariant risk
measures. These theorems pertain, like most of the previous literature,
to the case of scalar-valued risks.

Jouini-Meddeb-Touzi (2004) and Burgert-Rüschendorf (2006) ex-
tended the notion of risk measures to the vector-valued case. Recently
Ekeland-Galichon-Henry (2009) obtained extensions of the above the-
orems of Kusuoka to this setting. Their results were confined to the
regular case.

In general, Kusuoka’s representation theorem for comonotone risk
measures also involves a singular part. In the present work we give
a full generalization of Kusuoka’s theorems to the vector-valued case.
The singular component turns out to have a richer structure than in
the scalar case.

1 Introduction

Coherent risk measures have been intensively studied since their introduction
in the seminal paper by Artzner, Delbaen, Eber and Heath[1]. We recall their
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definition in the slightly more general setting of convex risk measures [6], [7].

Definition 1.1. A function % : L∞(Ω,ℱ ,ℙ)→ ℝ is a convex risk measure if

∙ (normalisation) %(0) = 0

∙ (monotonicity) X ≥ Y ⇒ %(X) ≤ %(Y ),

∙ (cash invariance) %(X +m) = −m+ %(X), for m ∈ ℝ,

∙ (convexity) %(�X + (1− �)Y ) ≤ �%(X) + (1− �)%(Y ), for 0 ≤ � ≤ 1.

If, in addition, % is positively homogeneous, i.e., %(�X) = �%(X), for
� ≥ 0, we say that % is a coherent risk measure.

Throughout this paper (Ω,ℱ ,ℙ) denotes a standard probability space,
i.e., free of atoms and such that L2(Ω,ℱ ,ℙ) is separable. In fact, all our
results hold true without this separability assumptions, but we don’t want
to elaborate on this level of generality which seems to be of little relevance
in the applications.

A number of papers ([2],[14],[8],[5]) have pointed out that in certain sit-
uations it is desirable to pass to risk measures defined for ℝd-valued ran-
dom variables X ∈ L∞(Ω,ℱ ,ℙ;ℝd) = L∞(ℝd) modeling portfolio vectors.
Instead of ℝ-valued random variables X ∈ L∞(Ω,ℱ ,ℙ), modeling portfo-
lios expressed in terms of a unique numéraire, we now consider ℝd-valued
bounded random variables. We refer to the above quoted papers for a dis-
cussion of the economic aspects. Here is a mathematical definition.

Definition 1.2. Fix d ∈ ℕ. A function % : L∞(Ω,ℱ ,ℙ;ℝd)→ ℝ is a convex
risk measure in dimension d if

(i) (normalisation) %(0) = 0,

(ii) (monotonicity) X ≥ Y ⇒ %(X) ≤ %(Y ),

(iii) (cash invariance) %(X +me) = −m+ %(X), for m ∈ ℝ,

(iv) (convexity) %(�X+(1−�)Y ) ≤ �%(X)+(1−�)%(Y ), for 0 ≤ � ≤ 1.

We call % a coherent risk measure in dimension d if , in addition, we have

(v) (positive homogeneity) %(�X) = �%(X), for � ≥ 0.
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The order in (ii) is the usual order in ℝd, namely X ≥ Y if Xi ≥ Yi, for
1 ≤ i ≤ d. We denote by ℝd

+ the set of all vectors x ∈ ℝd with x ≥ 0, and
we shall often write L1

+ for L1(ℝd
+). We denote by e ∈ L∞(ℝd) the constant

vector e= (1, 1, . . . , 1).
The notion of cash invariance is not as obvious a generalization of the

scalar case as it might seem at first glance. For example, Burgert and
Rüschendorf [2] use a different (stronger) notion of cash invariance, namely

(iii′) %(X +mei) = −m+ %(X), for 1 ≤ i ≤ d, m ∈ ℝ. (1)

Clearly (iii′) implies (iii) (after renormalizing % by the factor d). From an
economic point of view there are pros and cons for adapting the point of view
of (iii) or (iii′) (compare [8] for an ample discussion of the economic aspects).
In the present paper we do not want to elaborate on the economics but rather
focus on the mathematical aspects. As (iii) is the more general concept, we
have chosen (iii) as the definition of cash invariance in order to obtain results
in maximal generality. We shall indicate below which specializations have to
be made if one chooses definition (iii′).

The following definition, due to Sh. Kusuoka, makes sense in the d-
dimensional just as in the one-dimensional case.

Definition 1.3. ([11], Def. 3) A function % : L∞(Ω,ℱ ,ℙ;ℝd)→ ℝ is called
law invariant if law(X) = law(Y ) implies that %(X) = %(Y ).

In this paper we shall extend two well-known theorems from the one-
dimensional to the d-dimensional case.

We start with Kusuoka’s representation of comonotone risk measures in
the one-dimensional case. Recall ([11], Def. 6) that two scalar random vari-
ables X, Y are comonotone if

(X(!)−X(!′)) (Y (!)− Y (!′)) ≥ 0, ℙ(d!)⊗ ℙ(d!′)− a.s.

and that map % : L∞(Ω,ℱ ,ℙ)→ ℝ is comonotone if

%(X + Y ) = %(X) + %(Y ),

for any comonotone pair X, Y ∈ L∞.
An example of a comonotone coherent risk measure is, for F ∈ L1

+(Ω,ℱ ,ℙ)
normalized by E[F ] = 1, the function

%F (X) = sup
{
E[−X̃F ] : X̃ ∼ X

}
(2)
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where X̃ ∼ X means that law(X) = law(X̃) (compare [11]). Note that

%F (X) = sup
{
E[−X̃F ] : X̃ ∼ X

}
= sup

{
E[−XF̃ ] : F̃ ∼ F

}
= sup

{
E[−X̃F̃ ] : X̃ ∼ X, F̃ ∼ F

}
.

We now rephrase Kusuoka’s theorem in a form which will be suitable for
the generalization to the d-dimensional case.

Theorem 1.4. ([11], Th. 7): For a law invariant convex risk measure % :
L∞(Ω,ℱ ,ℙ)→ ℝ the following are equivalent.

(i) % is a comonotone risk measure.
(ii) There is F ∈ L1

+(Ω,ℱ ,ℙ) with E[F ] = 1, and 0 ≤ s ≤ 1 such that

%(X) = s ess sup(−X) + (1− s)%F (X). (3)

(iii) % is strongly coherent, i.e. for X, Y ∈ L∞(Ω,ℱ ,ℙ) we have

%(X) + %(Y ) = sup
X∼X̃

%(X̃ + Y ).

A thorough discussion of this remarkable theorem is postponed to Ap-
pendix A. There are several ways to extend the notion of comonotonicity
from the one- to the d-dimensional case: see [5], [13],[15]. In this paper, we
will concentrate on d-dimensional strong coherence, following the definition
of Ekeland, Galichon and Henry [5] to extend the notion of comonotonicity
from the one- to the d-dimensional case; compare the recent paper [13] which
elucidates the issue. On the other hand, Ekeland, Galichon and Henry have
extended the notion of strong coherence from the one- to the d-dimensional
case.

Definition 1.5. ([5], Def. 2): A convex risk measure % : L∞(Ω,ℱ ,ℙ;ℝd)→
ℝ in dimension d is strongly coherent if

%(X) + %(Y ) = sup{%(X̃ + Y ) : X ∼ X̃}, X, Y ∈ L∞(ℝd). (4)

Observe that a strongly coherent risk measure % is coherent. Indeed, for
rational � > 0 and X ∈ L∞(ℝd), we quickly deduce from (4) and convexity
that %(�X) = �%(X); by continuity this property extends to real � > 0.
It is also obvious, by considering Y = 0, that strong coherence implies law
invariance.

The risk measures of the form %F defined in (2) have been generalized to
the d-dimensional case by Rüschendorf [14].
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Definition 1.6. ([2, 14]): Let F ∈ L1
+(ℝd) be normalized by E

[
∣F ∣l1d

]
=

E
[
d∑
i=1

∣Fi∣
]

= 1. The maximal correlation risk measure in the direction F is

defined as

%F (X) = sup
{
E[(−X̃∣F )] : X̃ ∼ X

}
. (5)

where (⋅ ∣⋅) denotes the inner product in ℝd.

Again we note that %F only depends on the law of F.
We now can formulate the “regular version” of the extension of Kusuoka’s

theorem to the d-dimensional case (compare also [15, Theorem 2.2]). Recall
that the Mackey topology on L∞ is the topology of uniform convergence over
all weakly compact subsets of L1. For instance, the unit ball of Lp, 1 < p ≤ ∞,
is weakly compact in L1, so the map x → ∥x∥Lq , 1 ≤ q < ∞, is continuous
in the Mackey topology.

Theorem 1.7. For a law invariant, convex risk measure % : L∞(ℝd) → ℝ
the following are equivalent.

(i) % is strongly coherent and continuous with respect to the Mackey
topology �(L∞(ℝd), L1(ℝd)).

(ii) There is F ∈ L1
+(ℝd) normalized by E

[
∣F ∣l1d

]
= E

[
d∑
i=1

∣Fi∣
]

= 1

such that
%(X) = %F (X).

Comparing this theorem to Kusuoka’s Theorem 1.4 it corresponds to the
case where in (3) the “singular mass” s equals zero or, equivalently, when %
is continuous from below (see Corr. 4.74 in [6]).

The above theorem was proved by Ekeland, Galichon and Henry [5] in
the framework of L2(ℝd) which is in natural duality with itself (see also [15]
for a simpler proof). We have reformulated this result for the space L∞(ℝd)
equipped with the Mackey topology induced by L1(ℝd) to obtain an if and
only if result.

We still note that, if we define cash invariance as in (1), the above theorem
remains valid, provided we change the normalization of F to E[∣Fi∣] = 1, for
i = 1, . . . , d.

In [5] the question remained open how the generalization of Kusuoka’s
theorem to ℝd reads in the general case. In other words, what takes the
place of the singular part s when we extend Kusuoka’s theorem to ℝd ?
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Denote by Sd the unit simplex in ℝd

Sd =

{
� ∈ ℝd

+,
d∑
i=1

�i = 1

}
.

Definition 1.8. (i) For every � ∈ Sd, we define the worst case risk measure
%� in the direction � by

%�(X) = ess sup(−X∣�) = ess sup

(
−

d∑
i=1

�iXi

)
.

(ii) More generally, for a probability measure � on Sd, we define %� as
the “mixture”

%�(X) =

∫
Sd
%�(X) d�(�). (6)

We shall verify below that %� is a strongly coherent risk measure.
We now can formulate the general extension of Kusuoka’s theorem to the

vector-valued case which is the main result of this paper.

Theorem 1.9. For a law invariant convex risk measure % : L∞(ℝd)→ ℝ in
dimension d the following are equivalent.

(i) % is strongly coherent.
(ii) There is a number 0 ≤ s ≤ 1, a probability measure � on Sd, and a

function F ∈ L1
+(ℝd), normalized by E

[
d∑
i=1

∣Fi∣
]

= 1, such that

%(X) = s%�(X) + (1− s)%F (X). (7)

Let us still discuss what happens to the above theorem if, following
Rüschendorf [14], and Burgert and Rüschendorf [2], we define cash invari-
ance by (1). We show in Remark 5.2 after the proof of Theorem 1.9 that the
condition equivalent to strong coherence in the above theorem then reads as

(ii’) For i = 1, . . . , d, there are numbers 0 ≤ si ≤ 1 and functions
Fi ∈ L1(ℝ+) normalized by E[∣Fi∣] = 1, such that,

%(X) =
d∑
i=1

si ess sup(−Xi) + (1− si)%Fi(X), (8)

where F = (F1, . . . , Fd).
Note that condition (ii) is, from a mathematical point of view, more

subtle than (ii′), as it involves the general �-mixtures of the risk measures

6



%� in the direction �, while (ii′) only involves the risk measure %ei in the
directions of the unit vectors ei. This is one of the reasons why we adapted
the more general notion of cash invariance in Definition 1.2.

We now pass to a second theme which again consists in a generalization
of results of Kusuoka [11], Rüschendorf [14], [15] and Ekeland, Galichon,
Henry [5]. Denoting by P the set of functions F ∈ L1(ℝd

+) normalized by

E
[
d∑
i=1

∣Fi∣
]

= 1, and byℳ1
+(Sd) the probability measures on Sd, we can state

the following representation result for law invariant convex risk measures.
The emphasis is on the fact that the theorem below involves a max rather
than a sup (compare [14] for a version of this theorem where the max below
is replaced by a sup as well as [15, Theorem 2.2], where a max rather than
a sup type result is given).

Theorem 1.10. Assume that % : L∞(ℝd)→ ℝ is a convex, law invariant risk
measure in dimension d. Then there is a function v : [0, 1]×P ×ℳ1

+(Sd)→
[0,∞] such that

%(X) = max
(s,F,�)∈[0,1]×P×ℳ1

+(Sd)
{s%�(X) + (1− s)%F (X)− v(s, F, �)} (9)

The law invariant risk measure % is coherent if and only if v can be chosen
to take only values in {0,∞}.

The remainder of the paper is organized as follows. In section 2 we study
law invariant, convex, closed subsets C ⊆ P ⊆ L1(ℝd

+); they are the polar sets
of law invariant coherent risk measures % = %C in dimension d. We identify
a property, called strong coherence, of the set C which is equivalent to the
strong coherence of %C . The main result of this section is Proposition 2.9:
for a strongly coherent set C ⊆ P , there is 0 ≤ s ≤ 1 such that C uniquely
decomposes as C = (1 − s)Cr + sCs. Here Cr is a weakly compact strongly
coherent subset of P , while Cs ⊆ P has the property that all extreme points
of the �∗-closure of Cs in L1(ℝd)∗∗ are purely singular. This decomposition
will turn out in Section 5 to correspond to the decomposition (7) in Theorem
1.9.

In Section 3 we consider the case when the set C satisfies C = Cr, i.e.
the weakly compact case. We thus obtain a proof of Theorem 1.7.

In Section 4 we analyze the other extreme case when C = Cs. We then
find a representation of the polar function % = %C as being of the form %�
(see (6)).

Finally, in Section 5, we put things together, obtaining proofs of Theorems
1.9 and 1.10.
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2 Convex law invariant sets in L1(ℝd)

In this section, we investigate closed, convex, law-invariant subsets C of
P ⊂ L1(ℝ+

d ), where P is the set of vector probability densities normalized

by E[
∑d

i=1 Fi] = 1. We shall define what it means for such a subset to be
strongly coherent (Definition 2.3), and we show that C is strongly coherent
if and only if the associated risk measure:

%(X) = sup
F∈C
⟨−X,F ⟩

is strongly coherent. We then show that such a subset decomposes into a
weighed sum:

C = (1− t)Cr + tCs

where Cr is a weakly compact, convex, law-invariant subset of P and Cs is
“totally singular” in a sense made precise in Proposition 2.9. Both Cr and
Cs then are strongly coherent (Lemma 2.10).

We review some general functional analytic results. Fix a vector space
E equipped with a locally convex topology �. Denote by E∗ its topological
dual, and fix a convex, bounded subset C ⊆ E.

We start with a well-known result which seems to be of folklore type.
Recall that a point x ∈ C is extremal (or extreme) if it is not a convex
combination of two different points in C.

Proposition 2.1. Let x be an extremal point of a convex, � -compact set
C ⊆ E. The slices of the form

S(f, ") = {y ∈ C : ⟨y, f⟩ > ⟨x, f⟩ − "}, f ∈ E∗, " > 0,

form a basis for the relative � -neighborhoods of x in C.

Proof: As C is assumed to be � -compact, the � - and the weak, i.e.
�(E,E∗)-topology coincide on C. Let V be a weak neighborhood of x. There
are f1, . . . , fn in E∗ and " > 0 such that

V ⊇ {y ∈ E : ⟨y, fi⟩ > ⟨x, fi⟩ − ", i = 1, . . . , n} .

Denote by Ci the set

Ci = {y ∈ C : ⟨y, fi⟩ ≤ ⟨x, fi⟩ − "} , i = 1, . . . , n,

which are compact, convex subsets of C. The convex hull

C̃ =

{
n∑
i=1

�iyi : yi ∈ Ci, �i ≥ 0,
n∑
i=1

�i = 1

}
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is compact, convex too and does not contain the extremal point x ∈ C. Hence
by Hahn-Banach we may separate x from C̃ by a functional f ∈ E∗ which
yields the assertion.

Proposition 2.2. (compare [5]): Let C be a convex, compact set in E. For
a subset K ⊆ C × C the following are equivalent

(i) conv(K) = C × C

(ii) K ⊇ ℰ(C)× ℰ(C) = ℰ(C × C)

(iii) ΦK(f, g) = ΦC(f) + ΦC(g), f, g ∈ E∗.

The bar above denotes the closure with respect to the topology of E×E,
and ℰ(C) denotes the extremal points of the set C. By ΦC we denote the
polar function of C, i.e.

ΦC(f) = sup{⟨x, f⟩ : x ∈ C}, f ∈ E∗. (10)

In other words ΦC is the Legendre transform

ΦC(f) = �∗C(f) = sup
x∈E
{−�C(x) + ⟨x, f⟩},

of the indicator function

�C(x) =

{
0, for x ∈ C,
∞, otherwise.

Proof: (i)⇒ (ii) : Clearly we have ℰ(C)× ℰ(C) = ℰ(C × C).
If (ii) were wrong, we could apply Proposition 2.1 to separate an extremal

point (x, y) ∈ ℰ(C ×C) from K̄ by an element (f, g) ∈ E∗×E∗ which yields
a contradiction to (i).

(ii)⇒ (iii) : Assuming (ii) we have

ΦK(f, g) = sup {⟨(x, y), (f, g)⟩ : (x, y) ∈ K}
= sup {⟨x, f⟩+ ⟨y, g⟩ : (x, y) ∈ ℰ(C)× ℰ(C)}
= ΦC(f) + ΦC(g).

(iii) ⇒ (i) : If (i) were false, we could find by Hahn Banach f, g ∈ E∗

such that

sup {⟨(x, y), (f, g)⟩ : (x, y) ∈ K} < sup {⟨(x, y), (f, g)⟩ : (x, y) ∈ C × C}

9



which contradicts (iii).

Note that for the equivalence of (i) and (iii) in Proposition 2.2 the com-
pactness assumption is not needed. In other words, (i)⇔ (iii) holds true for
closed, convex sets C ⊆ E.

We now consider a closed, convex subset C ⊆ P , where P again denotes
the set of vector probability densities

P =

{
F ∈ L1(ℝd

+) : E
[
∣F ∣l1d

]
= E

[
d∑
i=1

∣Fi∣

]
= 1

}
, (11)

which is a bounded subset of the Banach space L1(ℝd). In general, C will not
be compact with respect to the �(L1(ℝd), L∞(ℝd))- topology. But passing
to the closure C̄ of C in the Banach space bi-dual L1(ℝd)∗∗ = L∞(ℝd)∗

with respect to the �∗ := �(L∞(ℝd)∗, L∞(ℝd))-topology we always find a
�∗-compact, convex subset C̄ of L∞(ℝd)∗.

Letting
ΦC(X) = sup

F∈C
⟨−X,F ⟩, for X ∈ L∞(ℝd),

we find a coherent risk measure in dimension d (compare [1], [14]).

We denote by T the set of bijective, bi-measurable, measure preserving
maps � : Ω→ Ω. The subsequent definition relates Proposition 2.2 with the
concept of strong coherence.

Definition 2.3. Let C be a closed, convex, law invariant subset of P ⊆
L1(ℝd

+). Define K ⊆ C × C as

K = {(F, F ∘ �) : F ∈ C, � ∈ T } .

We say that C is strongly coherent if

(SC) conv(K) = C × C ⊂ L1
+ × L1

+. (12)

It follows from Proposition 2.2 and the subsequent remark that a closed,
convex, law invariant subset C of P is strongly coherent if and only if the
risk measure %(X) = ΦC(−X) satisfies

%(X) + %(Y ) = sup {⟨−X,F ⟩+ ⟨−Y, F ∘ �⟩ : F ∈ C, � ∈ T }
= sup

{
⟨−X − Y ∘ �−1, F ⟩ : F ∈ C, � ∈ T

}
≤ sup

{
%(X + Ỹ ) : Ỹ ∼ Y

}
.
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As the reverse inequality

%(X) + %(Y ) ≥ sup{%(X + Ỹ ) : Ỹ ∼ Y }

always holds true by the law invariance of C and the subsequent Proposition
2.4, we conclude that C is strongly coherent if and only if the corresponding
risk measure %(X) = ΦC(−X) is strongly coherent.

We have used the following proposition which is a straightforward exten-
sion of a result of Jouini et al. ([8], Lemma A.4) in the scalar case. Its proof
carries over verbatim to the vectorial case.

Proposition 2.4. Fixing a closed, convex subset C ⊆ P ⊆ L1(ℝd) the fol-
lowing are equivalent:

(i) C is law invariant, i.e., F ∈ C and F̃ ∼ F implies that F̃ ∈ C.

(i’) ΦC is law invariant, i.e., ΦC(X) = ΦC(X̃), for X ∼ X̃.

(ii) C� := {F ∘ � : F ∈ C} = C, for each � ∈ T .

(ii’) ΦC = ΦC ∘ �, for each � ∈ T .

(ii”) C̄� := {� ∘ � : � ∈ L∞(ℝd)∗, � ∈ C̄} = C̄, for each � ∈ T .

The notation of (ii”) deserves some explanation: C̄ denotes the �∗-closure
of C in L1(ℝd)∗∗ and the functional � ∘� on L∞(ℝd) is defined as ⟨X, � ∘�⟩ =
⟨X ∘ �−1, �⟩.

The next result again is due to Jouini et al. in the scalar case ([8], Propo-
sition 4.1). Denote by P̄ the �∗-closure of P in L1(ℝd)∗∗.

Proposition 2.5. Let C̃ denote a non-empty, �∗-closed, convex subset of P̄
such that C̃� := {� ∘ � : � ∈ C̃} = C̃, for each � ∈ T .

Then C := C̃ ∩ L1(ℝd) is �∗-dense in C̃.

Proof: For � ∈ L∞(ℝd)∗ we may define the expectation E[�] ∈ ℝd (com-

pare [9]): consider the subspace of L∞(ℝd) consisting of the constant func-
tions which we may identify with ℝd in an obvious way. The restriction of
� to this space defines a linear functional on ℝd, namely E[�]. Of course, if
� ∈ L1(ℝd) ⊆ L∞(ℝd)∗, this definition coincides with the usual definition of
the expectation of a random variable.

More generally, for a finite sub sigma-algebra G of ℱ we may, by reasoning
on the atoms of G, well-define E[�∣G] which is a simple function in L1(ℝd)
(compare [9]). Observe that, for � ∈ P , we have E[�∣G] ∈ P .
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Next we show that, for � ∈ C̃, we have that E[�], considered as a constant

ℝd-valued function, is in C̃ too. To do so it will suffice to show that, for
X1, . . . , XK ∈ L∞(ℝd) and " > 0, there is  ∈ C̃ such that

∣⟨Xk,  − E[�]⟩∣ < ", k = 1, . . . , K.

Similarly as in ([9], Proof of Lemma 4.2), we find, for � > 0, natural
numbers M ≤ N and a partition A1, . . . , AN of Ω into ℱ−measurable sets
of probability N−1 such that
(i) osc{Xk∣Ai} < �, for k = 1, . . . , K and for i = M + 1, . . . , N
(ii) M/N < �.

Here osc{Xk∣Ai} denotes the essential oscillation of Xk on Ai, i.e., the
smallest number a ≥ 0 such that ∣Xk(!) −Xk(!

′)∣l∞d ≤ a, for ℙ ⊗ ℙ almost
all (!, !′) ∈ Ai.

Continuing as in ([9], Proof of Lemma 4.2) we find, for each permutation
� : {1, . . . , N} → {1, . . . , N}, a measure preserving transformation �� : Ω→
Ω, mapping Ai onto A�(i). Defining

 =
1

N !

∑
�

� ∘ ��

we infer from the law invariance and convexity of C̃ that  ∈ C̃. For each
1 ≤ k ≤ K we then may estimate∥∥∥∥∥ 1

N !

∑
�

Xk ∘ �� − E[Xk]

∥∥∥∥∥
L∞(ℝd)

≤ � +
M

N
osc{X}

so that

⟨Xk,  − E[�]⟩ =

〈
1

N !

∑
�

Xk ∘ �� − E[Xk], �

〉
< � + 2�∥X∥L∞(ℝd).

The same argument, localized to the atoms of an arbitrary finite sub-
sigma-algebra G of ℱ , yields

E[�∣G] ∈ C̃ ∩ L1(Ω,ℱ ,ℙ;ℝd) = C̃ ∩ P .

To show that C̃ ∩ L1(ℝd) is, in fact, �∗-dense in C̃, it now suffices to

note that, for � ∈ C̃, the net (E[�∣G])G, where G runs through the directed
set of finite sub-sigma-algebras of ℱ , converges to � with respect to the
�∗ = �(L∞(ℝd)∗, L∞(ℝd)) topology.

12



Exactly as in ([9], Proof of Theorem 2.2) we quickly deduce from Proposi-
tion 2.4 and Proposition 2.5 the automatic Fatou property of a law invariant
convex risk measure on L∞(ℝd). We summarize this fact in the next theorem.

Theorem 2.6. Let % : L∞(ℝd) → ℝ be a law invariant, convex risk mea-
sure. Then % is lower semi-continuous with respect to the �(L∞(ℝd), L1(ℝd))
topology. In other words, % has the Fatou property or, using the terminology
of [6], is continuous from above.

Hence, defining the conjugate function %∗ of % with respect to the dual
pair ⟨L1(ℝd), L∞(ℝd)⟩ by

%∗(F ) = sup
{
⟨−X,F ⟩ − %(X) : X ∈ L∞(ℝd)

}
, F ∈ L1(ℝd),

we obtain the duality formula

%(X) = sup
{
⟨−X,F ⟩ − %∗(F ) : F ∈ L1(ℝd)

}
, X ∈ L∞(ℝd).

The function %∗ takes finite values only on P , and the convex risk measure %
is coherent if and only if %∗ only takes the values 0 and ∞.

In the rest of this section we again consider a convex, closed set C ⊆
P ⊆ L1(ℝd) which we now assume to be strongly coherent (Definition 2.3).
We denote by C̄ the �∗-closure of C in P̄ ⊆ L1(ℝd)∗∗ = L∞(ℝd)∗. Each
� ∈ P̄ admits a Hahn decomposition � = �r + �s, where �r is the regular
part, which we identify with a function F ∈ L1

+(ℝd), and where �s is purely
singular, i.e., for " > 0 there is A ∈ ℱ ,ℙ[A] < " such that �s = �s1A. Here
we define

⟨X, �s1A⟩ := ⟨X1A, �
s⟩, for X ∈ L∞(ℝd).

We also define the total variation measure ∣�∣ ∈ L∞+ (ℝ)∗ by

∣�∣[A] = ⟨e1A, �⟩.

Lemma 2.7. Let C be a strongly coherent subset of P . Define the function
� : ]0, 1]→]0, 1] as

�(�) = sup
{
E[1A∣F ∣l1d ] : F ∈ C,ℙ[A] ≤ �

}
(13)

= sup
{
∣�∣[A] : � ∈ C̄,ℙ[A] ≤ �

}
,

and let
�(C) := lim

�→0
�(�). (14)

13



For � = �r + �s ∈ C̄ we then have ∥�s∥L1(ℝd,∣⋅∣
l1
d

)∗∗ ≤ �(C). The set

C̃ =
{
� = �r + �s ∈ C̄ : ∥�s∥L1(ℝd,∣⋅∣

l1
d

)∗∗ = �(C)
}

(15)

is �∗-dense in C̄, convex, and contains the extreme points ℰ(C̄) of C̄.

Proof: Recall that C is strongly coherent if and only if the corresponding
risk measure %(X) = ΦC(−X) is strongly coherent. The equality of the first
and second line in (13) then follows from Theorem 2.6. Clearly � → �(�) is
an increasing function from ]0, 1] to ]0, 1] so that �(C) ∈ [0, 1] is well-defined.

Let �̂ ∈ ℰ(C̄) be an extreme point of C̄ and V (�̂) a relative �∗-neighborhood
of �̂ in C̄.

Defining

�V (�̂)(�) = sup
{
∣�∣[A] : � ∈ V (�̂),ℙ[A] ≤ �

}
, 0 < � ≤ 1,

we trivially obtain that
�V (�̂)(�) ≤ �(�). (16)

We claim that equality holds true in (16). Indeed, suppose that there is
some � ∈]0, 1] and � > 0 such that

�V (�̂)(�) ≤ �(�)− �.

For every extreme point �̌ of C̄ and every A ∈ ℱ with 0 < ℙ[A] ≤ � we
have

�̌[A] ≤ �(�)− �. (17)

Indeed, by the strong coherence of C and Proposition 2.4 we can find a
net (��)�∈I which �∗-converges to �̂, as well as a net (��)�∈I in T such that
(�� ∘ ��)�∈I does �∗-converge to �̌. For � big enough, we get �� ∈ V (�̂) so
that ��[A] ≤ �(�)− �, for every A ∈ ℱ with ℙ[A] ≤ �. This property carries
over to �� ∘ �� and therefore also to �̌, thus showing (17).

To show that �V (�)(�) ≥ �(�), note that there is some (not necessarily
extremal) �̄ ∈ C̄ and an element Ā ∈ ℱ , 0 < ℙ[Ā] ≤ � such that V (�̄) :=
{� ∈ C̄ : ∣�∣[A] > �(�) − �

2
} is a �∗-neighborhood of �̄. Since C ⊂ P , C̄ is

compact in (L∞)∗. By Krein-Milman there are extreme points �1, . . . , �n and
convex weights �1, . . . , �n such that

n∑
i=1

�i�i ∈ V (�̄)

14



so that
n∑
i=1

�i∣�i∣[A] > �(�)− �

2

in contradiction to (17). Hence �V (�̂)(�) = �(�), for each relative �∗-neighbor-

hood V (�̂) of an extreme point �̂ ∈ ℰ(C̄), thus showing (16)
It follows that, for every extreme point �̂ = �̂r + �̂s ∈ ℰ(C̄), we have

∥�̂s∥L1(ℝd,∣⋅∣
l1
d

)∗∗ = �(c). Indeed, we may find, for " > 0, a decreasing sequence

(An)∞n=1 in ℱ with limn→∞ ℙ[An] = 0, and a decreasing sequence Vn(�̂) of
relative �∗-neighborhoods of �̂, such that ∣�∣[An] > �(C) − (1 − 2−n)", for
each � ∈ Vn(�̂), which readily shows that ∥�̂s∥L1(ℝd,∣⋅∣

l1
d

)∗∗ ≥ �(C).

The fact that the set C̃ defined in (15) is �∗-dense in C̄ now follows
from Krein-Milman: the convex combinations of the extreme points of C̄ are
�∗-dense in C̄.

We now shall decompose C into a weighted sum of a “regular” set Cr ⊆ P
and a “purely singular” set Cs ⊆ P . Supposing 0 < �(C) < 1 (in the cases
�(C) = 0 and �(C) = 1 the decomposition will be trivial) and using the
notation (15), define

Cr =
{
�r/(1− �(C)) : there is � ∈ C̃ with � = �r + �s

}
, (18)

C̄s = conv
{
�s/�(C) : there is � ∈ C̃ with � = �r + �s

}
, (19)

where conv denotes the �∗-closed convex hull. Finally, let Cs = C̄s∩L1(ℝd).

Lemma 2.8. Under the above hypotheses Cr is a weakly compact, convex,
law invariant subset of P .

Proof: Convexity and law invariance being rather obvious, let us show
that Cr is uniformly integrable. This follows from the definition of �(⋅). For
� ∈ C̃ and A ∈ ℱ we have by (13) and (14)

ℙ[A] < � ⇒ ∣�r∣[A] ≤ �(�)− �(C).

As regards the closedness of Cr, let (�n)∞n=1 = (�rn +�sn)∞n=1 be a sequence
in C̃ such that (�rn)∞n=1 converges to �r0 in the norm of L1(ℝd).

Any �∗-cluster-point �0 of (�n)∞n=1 will then be an element of C̃ that has
a Hahn-decomposition �0 = �s0 + �r0 for some purely singular �s0, so that
�r0 ∈ Cr.

15



Proposition 2.9. Under the above hypotheses we have

C = (1− �(C)) Cr + �(C) Cs. (20)

Proof: Since Cr ⊂ L1(ℝd), it is enough to prove that C̄ = (1−�(C))Cr +
�(C)C̄s. For the set C̃ defined in (15) we have C̃ ⊆ (1−�(C)) Cr +�(C) C̄s.
As the right hand side is a convex, �∗-compact subset of L1(ℝd)∗∗ we also
have

C̄ = conv(C̃) ⊆ (1− �(C)) Cr + �(C)C̄s. (21)

Conversely, fix extremal elements �̂ = �̂r + �̂s and �̌ = �̌r + �̌s in C̄. We
shall show that �̂r + �̌s is in C̄ too. This will prove the reverse inclusion in
(21). Indeed, the elements �̂r (resp. �̌s) originating from extremal elements
�̂ and �̌ of C̄ in the above way, form a set whose convex hull is dense in
(1− �(C))Cr (resp. sC̄s) with respect to the norm (resp. �∗) topology.

It follows from the assumption of strong coherence of C and Proposition
2.4. that there is a net (�̂�)�∈I = (�̂r� + �̂s�)�∈I in C̃ which �∗-converges to
�̂, as well as a net (��)�∈I in T such that (�̂� ∘ ��)�∈I �

∗-converges to �̌.
Fix a decreasing sequence (An)∞n=1 ∈ ℱ with limn→∞ ℙ[An] = 0 such

that �̂s = limn→∞ �̂1An , the limit now holding true in the norm topol-
ogy of L1(ℝd)∗∗. Then (�̂�1An)�∈I �

∗-converges to �̂1An , for each n ∈ ℕ.
Observe that (�̂�1An ∘ ��)�∈I �

∗-converges (after possibly passing to a �∗-
converging subnet) to some �̌n := �̄rn + �̌s, where �̄rn is in L1(ℝd

+) satisfying
limn→∞ ∥�̄rn∥L1(ℝd) = 0.

Define �̄n,� and �̄n by:

�̄n,� = �̂�1Ω∖An + �̂�1An ∘ ��,

�̄n = lim
�∈I

�̄n,�

= �̂r1Ω∖An + �̌s + �̄rn.

As
lim
n→∞

∥�̂rn − �̂rn1An∥+ lim
n→∞

∥�̄rn∥ = 0

we readily obtain an element

�̄ = lim
n→∞

�̄n

in C̃ with Hahn decomposition �̄ = �̂r + �̌s.
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Lemma 2.10. Under the above hypotheses the sets Cr as well as Cs are
strongly coherent.

The extremal points of C̄s are purely singular and therefore the purely
singular elements of C̄s are �∗-dense in C̄s.

Proof: Assume w.l.g. that 0 < �(C) < 1. Denoting by %C , %Cr , and %Cs
the coherent risk measures induced by the respective sets, we infer from the
preceding lemma that

%C = (1− �(C))%Cr + �(C) %Cs .

As we assumed that the set C is strongly coherent, we have that %C is
strongly coherent. This implies that %Cr and %Cs are both strongly coherent
too which in turn implies the strong coherence of Cr and Cs.

The final assertion follows from Lemma 2.7.

Proposition 2.9 allows to separate the analysis of strongly coherent sets
C ⊆ P into two extreme cases: either C = Cr is weakly compact or C = Cs

is purely singular as in the previous lemma. This will be done in the next
two sections.

3 The regular case

In this section we prove Theorem 1.7, where the strongly coherent risk mea-
sure % : L∞(ℝd) → ℝ is Mackey continuous with respect to the dual pair
⟨L∞(ℝd), L1(ℝd)⟩.

Proof of Theorem 1.7: (ii)⇒ (i) : obvious.
(i)⇒ (ii) : Given a strongly coherent, convex risk measure % : L∞(ℝd)→

ℝ we know by the remark after Definition 1.5 that % is coherent. By Theorem
2.6 we know that there is a closed convex subset C ⊆ P such that

%(X) = sup {⟨−X,F ⟩ : F ∈ C} .

By assumption % is Mackey continuous with respect to ⟨L∞(ℝd), L1(ℝd)⟩
which implies that C is weakly compact in L1(ℝd).

A classical theorem of R. Phelps [12] implies that a weakly compact subset
of a Banach space is the closed convex hull of its strongly exposed points.
Recall that F̂ is strongly exposed if there is some F̂ ∈ C and X ∈ L∞(ℝd)
such that, for (Fn)∞n=1 ∈ C verifying

lim
n→∞
⟨X,Fn⟩ = sup

F∈C
⟨X,F ⟩

17



we have that
lim
n→∞

∥F̂ − Fn∥L1(ℝd) = 0.

We want to show that % = %F̂ , i.e. for Y ∈ L∞(ℝd)

%F̂ (Y ) := sup
{
E[(−Y ∣F̃ )] : F̃ ∼ F̂

}
= %(Y ).

As % is strongly coherent we deduce from Proposition 2.2 and Definition
2.3 that

%(X) + %(Y ) = sup {⟨−X,F ⟩+ ⟨−Y, F ∘ �⟩ : F ∈ C, � ∈ T } .

If (Fn, �n)∞n=1 is a maximizing sequence in the above equation, we must
have

%(X) = ⟨−X, F̂ ⟩ = lim
n→∞
⟨−X,Fn⟩

so that (Fn)∞n=1 norm-converges to F̂ . Hence

%(Y ) = lim
n→∞

sup
{
⟨−Y, F̃n⟩ : F̃n ∼ Fn

}
which implies

%(Y ) = sup
{
⟨−Y, F̃ ⟩ : F̃ ∼ F̂

}
.

The proof of Theorem 1.7 now is complete.

We summarize our findings in the subsequent proposition which is a more
abstract reformulation of Theorem 1.7.

Proposition 3.1. A Mackey continuous risk measure % : L∞(ℝd) → ℝ is

strongly coherent if and only if there is F̂ ∈ P such that

% = %F̂ .

Defining C = conv{F̂ ∘ � : � ∈ T } the point F̂ is strongly exposed in C
by some −X ∈ L∞(ℝd) and we have

%(X) = max {⟨−X,F ⟩ : F ∈ C} = ⟨−X, F̃ ⟩.

If F ∈ C is another strongly exposed point in C we have

law(F̂ ) = law(F )

and
conv(F ∘ � : � ∈ T ) = C.
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4 The purely singular case

In this section we analyze the “purely singular” case where we assume that
C satisfies the “pure singularity” condition i.e. �(C) = 1 in Lemma 2.7.

We know that the extremal points of C̄ are purely singular. An ordinary
point of C̄ need not be singular, however, since C̄ is �∗-compact, we have,
by the Krein-Milman theorem:

C̄ = conv{� ∈ C̄ : � is singular} (22)

where conv denotes the �∗-closed convex hull. We then have that every
� ∈ C is some sort of “integral” convex combination of purely singular mea-
sures (Choquet’s theorem). We associate with any purely singular � ∈ P̄
a probability �(�) on Sd (Definition 4.5). We then show that, if % is the
(strongly coherent) risk measure associated with C̄

%(X) = sup{⟨−X, �⟩ : � ∈ C̄},

we have %(X) = %�(X), where the right-hand side is defined by formula (6),
and � = �(�) for some purely singular � ∈ C̄ (Proposition 4.7).

The main result of this section is the following analogue to Theorem 1.7.

Proposition 4.1. For a law invariant, convex risk measure % : L∞(ℝd)→ ℝ
the following are equivalent.

(i) % is strongly coherent and the polar set of %

C̄ =
{
� ∈ P̄ : %(X) ≥ ⟨−X, �⟩, X ∈ L∞(ℝd)

}
(23)

satisfies the pure singularity condition (22).
(ii) There is a probability measure � on Sd such that

%(X) = %�(X) :=

∫
Sd

ess sup(−X, �) d�(�). (24)

The proof will be postponed to the end of this section.

For � ∈ L∞+ (ℝd)∗ we define the total variation measure ∣�∣ ∈ L∞+ (ℝ)∗ by

∣�∣[A] = ⟨e1A, �⟩.

If � ∈ P̄ we clearly have that ∣�∣(Ω) = 1, hence ∣�∣ is a normalized,
positive, finitely additive measure on (Ω,ℱ), vanishing on the null sets.
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To a purely singular � ∈ P̄ we want to associate a Borel probability
measure � = �(�) on Sd as in Definition 1.8.

We first assume that � = �s is of the following “simple” form, corre-
sponding to simple functions in the case of L1(ℝd) :

� =
M∑
j=1

�j
(
∣�∣1Gj

)
(25)

where (�j)
M
j=1 ∈ Sd and G = (G1, . . . , GM) is a partition of Ω into ℱ -

measurable sets of strictly positive measure.

Definition 4.2. For a purely singular � ∈ P̄ of the simple form (25) we
define the element � = �(�) ∈ℳ1

+(Sd) as

� =
M∑
j=1

∣�∣[Gj] ��j . (26)

To extend this notion to general purely singular elements � ∈ P̄ we
have to approximate � in the norm of L∞(ℝd)∗ by simple elements. For
G = (G1, . . . , GM) as above, where in the sequel we identify a partition G
with the sigma-algebra generated by G, we define the conditional expectation
with respect to ∣�∣, given G, as

�G := E∣�∣[�∣G] :=
M∑
j=1

�j(∣�∣1Gj) (27)

where the elements �j ∈ Sd are defined as

(�j)i =
⟨ei1Gj , �⟩
⟨e1Gj , �⟩

, i = 1, . . . , d,

with the convention 0
0

= 0 (only those j where ∣�∣[Gj] > 0 matter in (27)
above).

For a purely singular �, the simple �G is purely singular too. It is rather
obvious that �G converges to � along the filter of finite partitions G in the
�∗ topology of L∞(ℝd)∗. In fact, we even get norm-convergence as shown by
the next result.

Lemma 4.3. Let � ∈ P̄ ⊆ L∞(Ω,ℱ ,ℙ;ℝd)∗ be a purely singular element.
For " > 0, there is a finite partition G = (G1, . . . , GM) such that, for

every refinement ℋ = (H1, . . . , HK) of G we have

∥� − �ℋ∥L∞(ℝd)∗ < ".
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Proof: Let G = (G1, . . . , GM) be any partition of Ω into ℱ -measurable
sets and let

�G =
M∑
j=1

�j(∣�∣1Gj)

be as in (27) above. As �j ∈ Sd we have

d−
1
2 ≤ ∣�j∣l2d ≤ 1.

We define the function V (�G) as

V (�G) =
M∑
j=1

∣�j∣2l2d pj,

where pj = ∣�∣(Gj). Note that V (�g) ≤ 1.
Let ℋ = (H1,1, . . . , H1,K1 , H2,1, . . . , H2,K2 , . . . , HM,1, . . . , HM,KM ) be a re-

finement of G into sets of strictly positive measure such that

Gj =

Kj∪
k=1

Hj,k, j = 1, . . . ,M.

We get

V (�ℋ) =
M∑
j=1

Kj∑
k=1

∣�j,k∣2l2d pj,k

where �j,k = E∣�∣[�∣Hj,k] and pj,k = ∣�∣[Hj,k]. As
∑Kj

k=1 pj,k�j,k = pj�j we
obtain the “Pythagorean” relation

V (�ℋ) =
M∑
j=1

Kj∑
k=1

∣�j,k∣2l2d pj,k

=
M∑
j=1

∣�j∣2l2d pj +
M∑
j=1

Kj∑
k=1

∣�j,k − �j∣2l2d pj,k

= V (�G) +
M∑
j=1

Kj∑
k=1

∣�j,k − �j∣2l2d pj,k.

For � > 0 and G such that V (�G) > supℋ V (�ℋ) − � we conclude that
the last term is smaller than �. Noting that the diameter of Sd is

√
2 so that

∣�j,k − �j∣2l2d ≤ 2, we obtain that, for " > 0, there is � > 0 such that

M∑
j=1

Kj∑
k=1

∣�j,k − �j∣2l2d pj,k < � ⇒
M∑
j=1

Kj∑
k=1

∣�j,k − �j∣l2d pj,k = ∥�G − �ℋ∥L∞(ℝd)∗ < "
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Hence, for this choice of G,

∥� − �G∥L∞(ℝd)∗ ≤ sup
ℋ⊇G
∥�ℋ − �G∥L∞(ℝd)∗ ≤ ",

and the same inequality holds true for every ℋ ⊇ G.

Lemma 4.3 allows us to extend the notion of the measure �(�) associ-
ated to a simple, purely singular � ∈ P̄ to a general purely singular ele-
ment � ∈ P̄ via the following Lipschitz continuity result with respect to the
Wasserstein-distance on ℳ1

+(Sd). Recall that for two probability measures
�, � on the compact space Sd, equipped with the metric d(�, �) = ∣� − �∣l2d ,
the Wasserstein-distance of � and � is defined as

d(�, �) = inf{∥f − g∥L2(ℝd) : law(f) = �, law(g) = �}.

Lemma 4.4. Let �,  be purely singular elements in P̄ of the simple form
(25), i.e.

� =
M∑
j=1

�j(∣�∣1Gj),  =
K∑
k=1

�k(∣∣1Hk)

and �, � the associated measures by (26). Then

d(�, �) ≤ 5∥� − ∥L1(ℝd,∣⋅∣
l1
d

)∗∗ . (28)

Proof: Passing to a common refinement of the partitions G = (G1, . . . , GM)
and ℋ = (H1, . . . , HK) corresponding to � and  respectively, we may as-
sume that G = ℋ. We still denote this partition by G = (G1, . . . , GM). We
assume w.l.g. that ℙ[Gj] > 0, for each j.

Hence � =
∑M

j=1 �j∣�∣1Gj and  =
∑M

j=1 �j∣∣1Gj where (�j)
M
j=1 and

(�j)
M
j=1 are elements of Sd and ∣�∣ and ∣∣ are purely singular, normalized

elements of L∞+ (ℝ)∗.
Suppose that ∥� − ∥L1(ℝd,∣⋅∣

l1
d

)∗∗ < ", for " > 0. Consider the restrictions

�∣G and ∣G of � and  to the finite sigma-algebra G. We denote the corre-
sponding Radon-Nikodym derivatives with respect to ℙ by F and G:

F :=
d�∣G
dℙ

=
M∑
j=1

bj�j1Gj , G :=
d∣G
dℙ

=
M∑
j=1

cj�j1Gj ,

where

bj =
∣�∣[Gj]

ℙ[Gj]
, cj =

∣∣[Gj]

ℙ[Gj]
.
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Clearly
∥F −G∥L1(ℝd,∣⋅∣

l1
d

) ≤ ∥� − ∥L1(ℝd,∣⋅∣
l1
d

)∗∗ < ".

For aj = max(bj, cj) we find that 1 ≤ a :=
∑M

j=1 aj ≤ 1+∥F −G∥L1(ℝd,∣⋅∣
l1
d

) <

1 + ". The density

d�

dℙ
:=

M∑
j=1

aj
a
1Gj

defines a probability measure � on (Ω,ℱ). The positive weights (pj)
M
j=1

pj = min(�[Gj], bj, cj)

satisfy 1− 2" ≤ p :=
∑M

j=1 pj ≤ 1.

We define the measures �̃ and �̃ of total mass �̃(Sd) = �̃(Sd) = p as

�̃ =
M∑
j=1

pj��j and �̃ =
M∑
j=1

pj��j .

There is an obvious transport of the measure �̃ ∈ℳ+(Sd) to �̃ ∈ℳ+(Sd)
which maps each piece pj��j to pj��j . For the corresponding transport cost
we find

M∑
j=1

pj∣�j − �j∣l1d ≤ ∥F −G∥L1(ℝd,∣⋅∣
l1
d

) < ".

Noting that (Sd, ∣ ⋅ ∣1) has diameter 2 and choosing an arbitrary transport
that maps the remaining mass �− �̃ to �− �̃, we obtain from (�− �̃)(Ω) < 2"
and (� − �̃)(Ω) < 2" the desired estimate (28)

d(�, �) < 2 . 2"+ " < 5".

The two previous lemmas justify the following concept.

Definition 4.5. For a purely singular � ∈ P̄ we define the Borel probability
measure � := �(�) ∈ℳ1

+(Sd) as

�(�) = lim
G
�(�G),

where G runs through the directed set of finite partitions (G1, . . . , GM) of Ω
into sets Gj of strictly positive ℙ-measure, and the convergence takes place
with respect to the Wasserstein distance on ℳ1

+(Sd).
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The map �(⋅) : � → �(�) is law invariant in the following sense: for a mea-
sure preserving transformation � ∈ T and � as above we have
�(�∘�) = �(�). Indeed, it suffices to observe that � maps the finite partitions
G of Ω bijectively onto themselves.

Lemma 4.6. Let � ∈ P̄ be purely singular. For X ∈ L∞(ℝd) we have

sup
�∈T
⟨−X, � ∘ �⟩ =

∫
Sd

ess sup(−X∣�) d�(�)(�). (29)

For " > 0 denote by A" the set

A" =
{

(−X∣�) < ess sup(−X∣�)− ", for each � ∈ Sd
}
. (30)

Then, for " > 0 and a maximizing sequence (�n)∞n=1 in (29) we have

lim
n→∞

∣� ∘ �n∣[A"] = 0. (31)

Proof: Let � ∈ P̄ be purely singular and of the simple form (25)

� =
M∑
j=1

�j
(
∣�∣1Gj

)
(32)

so that
�(�) =

∑
∣�∣[Gj] ��j .

Fix X ∈ L∞(ℝd) and � ∈ T . Noting that �(� ∘ �) = �(�) we find∫
Sd

ess sup(−X, �)d�(�)(�) =

∫
Sd

ess sup(−X ∘ �−1, �)d�(�)(�) (33)

=
M∑
j=1

ess sup(−X ∘ �−1, �j)∣�∣[Gj]

≥
M∑
j=1

⟨−X, � ∘ �1Gj⟩ = ⟨−X, � ∘ �⟩.

Applying Lemma 4.3 and 4.4 the inequality carries over to general purely
singular � ∈ P̄ .

To prove the reverse inequality in (29) assume again that � is of the
simple form (32).
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For " > 0 find elements (xj)
M
j=1 in ℝd, and disjoint sets (Bj)

M
j=1 in ℱ with

ℙ[Bj] > 0 such that

ess sup(−X∣�j) = (−xj∣�j) and Bj ⊆ {∣X − xj∣l2d < "}.

As � is purely singular we may findA ∈ ℱ , with 0 < ℙ[A] ≤ min1≤j≤M ℙ[Bj]
such that � = �1A. Let � ∈ T be any measure preserving transformation of
Ω such that �−1 maps Gj ∩ A into Bj. We then have

M∑
j=1

∣�∣[Gj] ess sup(−X, �j) =
M∑
j=1

∣�∣[Gj](−xj, �j)

≥
M∑
j=1

⟨−X ∘ �−1, ∣�∣1A∩Gj⟩ − "

= ⟨−X, � ∘ �⟩ − "

which yields ∫
Sd

ess sup(−X∣�) d�(�)(�) ≤ sup
�∈T
⟨−X, � ∘ �⟩.

By continuity and Lemma 4.3 this relation again passes from elements of
the form (32) to general � ∈ P̄ which readily shows (29).

Finally let us prove (31) where again we first assume that � is of the
simple form (32). Fix " > 0 and a maximizing sequence (�n)∞n=1 in (29) and
suppose that there is � > 0 s.t.

∣� ∘ �n∣[A"] ≥ �, n ∈ ℕ. (34)

We may suppose that A" is an element of the sigma-algebra generated by
the partition (Gj)

M
j=1 and we may split {1, . . . ,M} into I ∪J such that j ∈ J

iff Gj ⊆ A".
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We then have as in (33) above, for n ∈ ℕ,

M∑
j=1

ess sup(−X ∘ �−1
n ∣�j)∣�∣(Gj)

≥
∑
j∈I

ess sup(−X ∘ �−1
n ∣�j)∣�∣(Gj)

+
∑
j∈J

(
ess sup(−X ∘ �−1

n ∣�j)− "
)
∣�∣(Gj) + "�

≥
M∑
j=1

⟨−X, � ∘ �n1Gj⟩+ "�

=⟨−X, � ∘ �n⟩+ "�,

which contradicts (29). So (34) is not possible with � > 0.

Fix again C̄ to be a �∗-closed, convex, law invariant subset of P̄ satisfying
the “pure singularity” condition (22). Denote by K ⊆ C̄ × C̄ the set

K =
{

(�, � ∘ �) : � ∈ C̄, � = �s, � ∈ T
}
.

We suppose in the sequel that C̄ satisfies the following strong coherence
property analogous to (12)

(SCs) K̄ ⊇ ℰ(C̄)× ℰ(C̄), (35)

where ℰ(C̄) denotes the extreme points of C̄ and K̄ the �∗-closure ofK(compare
Proposition 2.1).

Recall from the previous section that a decisive tool in the proof of Theo-
rem 1.7 was the existence of X0 ∈ L∞(ℝd) which strongly exposes the weakly
compact subset C ⊆ L1(ℝd). In the present context a somewhat analogous
role is taken by elements X0 ∈ L∞(ℝd) described by the subsequent lemma.

Proposition 4.7. Let C̄ be a �∗-closed, convex, law invariant subset of P̄
satisfying the strong coherence property (35) and the pure singularity property
(22). Define %(X) = sup{⟨−X, �⟩ : � ∈ C̄}.

Then there is � = �(�) ∈ℳ1
+(Sd) such that, for X ∈ L∞(ℝd),

%(X) = %�(X) =

∫
Sd

ess sup(−X∣�)d�(�). (36)
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Fix X0 ∈ L∞(ℝd) such that the support of the law of X0 is the unit ball
of (ℝd, ∣ ⋅ ∣2) and limr→1 ℙ[∣X0∣l2d < r] = 1. Then for each � ∈ C̄ such that
%(X0) = ⟨−X0, �⟩ we have that � is purely singular and

%(X0) = ∥�∥L∞(ℝd,∣⋅∣2d)∗ =

∫
Sd

∣�∣l2d d�(�) (37)

where � = �(�). For each sequence (�n)∞n=1 of purely singular elements in C̄,
such that

%(X0) = lim
n→∞
⟨−X0, �n⟩

the sequence (�(�n))∞n=1 converges to � in the Wasserstein-distance ofℳ1
+(Sd).

Proof: We start with the final assertion. Let X0 be as above and denote
by �̂ an extreme point of C̄ on which −X0 attains its maximum. By (22) we
have that �̂ is purely singular.

Fix an increasing sequence (Gn)∞n=1 of finite partitions of ℱ such that
(�Gn)∞n=1 converges to �̂ in norm. We also assume that the set {∣X0∣l2d ≤ 1− 1

n
}

is in the sigma-algebra Gn. Drop n in the notation for the moment and write

�G =
M∑
j=1

�j(∣�∣1Gj).

As in the previous lemma, but using now that the support of X0 is the
unit ball of (ℝd, ∣ ⋅ ∣l2d) we find

⟨−X0, �G⟩ =
M∑
j=1

∣�j∣l2d∣�∣[Gj]

= ∥�G∥L∞(ℝd,∣⋅∣
l2
d

)∗ (38)

=

∫
Sd

∣�∣l2d d�(�G)(�).

By writing again G = Gn and sending n to infinity we have shown (37).
Define the �∗-neighborhoods Vn of �̂

Vn =
{
� ∈ C̄ : ∥�n(�̂ − �)∥L1(Gn,ℝd) < n−1

}
, (39)

=
{
� ∈ C̄ : ∥�n(�̂G − �)∥L1(Gn,ℝd) < n−1

}
,

where �n : L1(Ω,ℱ ,ℙ;ℝd)∗∗ → L1(Ω,Gn,ℙ;ℝd) denotes the restriction of � ∈
L1(ℝd)∗∗ to the finite sigma-algebra Gn and where we identify this restriction
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with the Radon-Nikodym derivative
d�∣Gn
dℙ to obtain an element of the finite-

dimensional space L1(Gn;ℝd).
By the same “Pythagorean” reasoning as in Lemma 4.3 we conclude that,

for every sequence of purely singular elements �n ∈ Vn, we have that �(�n)
converges to �(�̂) in the Wasserstein-distance.

Let �̂′ be another extreme point of C on which X0 attains its maximum.
Again we find a sequence of �∗-neighborhoods V ′n defined in a similar way
such that, for every sequence (�′n)∞n=1 of purely singular elements in V ′n, we
have that (�(�′n))∞n=1 Wasserstein-converges to �(�̂′).

We know from hypothesis (35) that, for each n ∈ ℕ, there is �n ∈ T such
that, for

Vn ∘ �n = {� ∘ �n : � ∈ Vn}
we have

Vn ∘ �n ∩ V ′n ∕= ∅.
The above set is relatively �∗-open in C̄ so that there is a simple, purely

singular element �n ∈ Vn ∘ �n ∩ V ′n. We must have that �(�n) is close in the
Wasserstein distance to �(�̂) as well as to �(�̂′) which implies, by passing to
the limit n→∞, that

�(�̂) = �(�̂′).

Hence for every extreme point � ∈ C on which X0 attains its maximum,
we have

�(�̂) = �(�),

and there is a sequence of �∗-neighborhoods Vn(�) such that, for each se-
quence of simple, purely singular elements �n ∈ Vn(�) we have

lim
n→∞

�(�n) = �(�̂), (40)

with respect to the Wasserstein-distance.

Now let �̄ be an arbitrary, not necessarily extremal, point of C̄, where
−X0 attains its maximum.

Applying again Pythagoras we find �∗-neighborhoods Vn of �̄ of the form
(39) such that, for every sequence (�n)∞n=1 ∈ Vn, we have that (�(�n))∞n=1

Wasserstein-converges to �(�̄). We have to show that �̄ is purely singular and
�(�̄) = �(�̂). For each n ∈ ℕ, there is a finite number �̂1, . . . , �̂m of extreme
points on which X0 attains its maximum, and convex weights �1, . . . , �m such
that

∑m
j=1 �j�̂j ∈ Vn. In addition, we may find relative �∗-neighborhoods V̂j

of �̂j in C such that
m∑
j=1

�jV̂j ⊆ Vn.

28



For each j = 1, . . . ,m, we may find a purely singular �j ∈ V̂j such that the

Wasserstein distance of �(�j) to �(�̂j) is smaller than 1
n
. Hence Vn contains a

purely singular element in
∑m

j=1 �jV̂j with Wasserstein-distance to �(�̂) less

than 1
n

which yields that �̄ is purely singular and �(�̂) = �(�̄).

Summing up, for every �̄ in the face set

C̄X0 :=

{
� ∈ C̄ : ⟨−X0, �⟩ = sup


⟨−X0, ⟩

}
we have that �̄ is purely singular, �(�̄) = �(�̂) and that, for k ∈ ℕ, there
is a �∗-neighborhood Vk(�̄) such that W -dist (�(�k), �(�̂)) < k−1, for each
purely singular � ∈ Vk(�̄). By compactness, there is a �∗-neighborhood Uk
of the �∗-compact face C̄X0 such that each purely singular � ∈ Uk satisfies
W -dist (�(�), �(�̂)) < k−1.

If (�n)∞n=1 is a sequence as in the assertion of Proposition 4.7. i.e.

lim
n→∞
⟨−X0, �n⟩ = sup

�∈C
⟨−X, �⟩, (41)

then, for fixed k ≥ 0, we have �n ∈ Uk for n large enough so that

lim
n→∞

W -dist (�(�n), �(�̂)) = 0.

Letting � = �(�̂) this proves the second part of Proposition 4.7.

For the first part it follows from the fact that C̄ is strongly coherent (see
formula (35)) that, for X ∈ L∞(ℝd) we have

%(X0) + %(X) = sup {⟨X0, �⟩+ ⟨X, � ∘ �⟩ : � ∈ C, � ∈ T } =

= %(X0) + lim
n→∞
⟨−X, �n ∘ �n⟩

for some sequence (�n)∞n=1 of purely singular elements of C satisfying (41).
It follows by the same argument as in the proof of Theorem 1.7 that (36)
holds true.

Proof of Proposition 4.1.: (i) ⇒ (ii) : This implication is the first asser-
tion of Proposition 4.7.

(ii) ⇒ (i) : If %(⋅) = %�(⋅) is of the form (24) then clearly % is strongly
coherent. Hence we only have to check that C̄ defined in (23) satisfies the
pure singularity condition (22).
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Note that the elements X ∈ L∞(ℝd) such that

lim
"→0

ℙ[A"] = 1, (42)

where A" = {(−X∣�) < ess sup(−X∣�) − ", for each � ∈ Sd}, are norm
dense in L∞(ℝd). If C̄ would fail the singularity condition (22), we could find
X ∈ L∞(ℝd) satisfying (42) such that

sup
{
⟨−X, �⟩ : � ∈ C̄

}
> sup

{
⟨−X, �⟩ : � ∈ C̄, � = �s

}
. (43)

By compactness the sup on the left hand side is a max and attaind at
some �̄ ∈ C̄. As in the proof of Proposition 4.7 we deduce from (42) that �̄
is purely singular, a contradiction to (43) finishing the proof of Proposition
4.1.

5 Proofs of the theorems

We have assembled all the ingredients to show our main result.
Proof of Theorem 1.9.: The implication (ii) ⇒ (i) being obvious let us

show (i)⇒ (ii).
We have seen (Proposition 2.9) that, for a given strongly coherent risk

measure % the polar set C ⊆ P ⊆ L1(ℝd) decomposes as

C = (1− �)Cr + � Cs,

for some � ∈ [0, 1] where Cr is weakly compact in L1(ℝd
+), while the extreme

points of C̄s are purely singular.
Hence

% = (1− �)%Cr + � %Cs

and the result now follows from Theorem 1.7. and Proposition 4.7.

Before tackling the proof of Theorem 1.10 let us sum up our findings.
In the regular setting we found in Theorem 1.7 that the general form of a
strongly coherent �(L∞(ℝd), L1(ℝd))-continuous risk measure % is % = %F for
some F ∈ L1

+(ℝd) normalized by E[
∑d

i=1 ∣Fi∣] = 1. In fact, % only depends
on the law of F, and the risk measures % = %F as above are in one to one
correspondence with the weakly compact convex subsets C of P such that
C ∘ � = C holds true, for � ∈ T , and such that condition (SC) defined in
(12) is satisfied by C. In this case each strongly exposed point of C has the
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same law as F (Proposition 3.1). Conversely starting with F ∈ P as above
and defining C to be the closed, convex hull of {F ∘ �, � ∈ T } we find the
compact, convex set C corresponding to %F and F is a strongly exposed point
of C.

In the purely singular setting (22) we found in Proposition 4.1 that in
this case the general form of a strongly coherent risk measure is of the form
% = %� as in (24). These risk measures are in one to one correspondence
with the law invariant (i.e. C̄ = C̄ ∘ �, for � ∈ T ) convex, compact subsets
C̄ of P̄ ⊆ L1(ℝd)∗∗ satisfying the pure singularity condition (22) and the
strong coherence property (SCs) defined in (35). The extreme points � of
C̄ are not (necessarily) strongly exposed with respect to the norm of the
Banach space L1(ℝd)∗∗, but there is a kind of strong exposition in terms
of the Wasserstein distance of the measure � on Sd (see Propostion 4.7).
Conversely, starting with a purely singular element � ∈ P̄ and defining C̄
as the �∗-closed, convex hull of {� ∘ � : � ∈ T }, we find the �∗-compact,
convex subset C̄ corresponding to �(�). We could alternatively start with
� ∈ℳ1

+(Sd) and associate to � the strongly coherent risk measure %�.
For the general case we isolate the following corollary to the above results

which will be used in the proof of Theorem 1.10 below.

Proposition 5.1. Let � ∈ P̄ with Hahn decomposition � = (1− �)F + ��s,
where 0 ≤ � ≤ 1, F ∈ P and �s is a purely singular element of P̄ .

CF = conv{F ∘ � : � ∈ T }
C�s = conv{�s ∘ � : � ∈ T }
C� = conv{� ∘ � : � ∈ T },

where the first closure is taken w.r. to the norm of L1(ℝd), and the two
subsequent ones taken w.r. to the �∗-topology of L1(ℝd)∗∗. Then

C� = �CF + (1− �) C�s (44)

Hence, defining % : L∞(ℝd)→ ℝ by

%(X) = sup{⟨−X, � ∘ �⟩ : � ∈ T }

we get
% = (1− �)%F + �%�(�s). (45)

Proof: The set C� obviously satisfies the strong coherence property (12),
hence (44) follows from Proposition 2.9. Assertion (45) now follows from
Lemma 2.10, Theorem 1.7, and Proposition 4.7.
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Let us now pass to the setting of Theorem 1.10 where we consider a
convex, law invariant risk measure % in dimension d. Denote by

%∗ : L∞(ℝd)∗ → [0,∞]

the Legendre transform

%∗(�) = sup{⟨−X, �⟩ − %(X) : X ∈ L∞(ℝd)}.

By the norm-continuity of % (in fact, % is Lipschitz on L∞(ℝd)) we obtain
the reverse formula

%(X) = sup{⟨−X, �⟩ − %∗(�) : � ∈ L∞(ℝd)∗}.

In fact, the above sup is a max . Indeed, %∗ is a �∗-l.s.c. function on
L∞(ℝd)∗ taking finite values only on P̄ . Hence, for fixed X ∈ L∞(ℝd) the
function

� → ⟨−X, �⟩ − %∗(�) (46)

is �∗-u.s.c. and bounded from above on the �∗-compact subset P̄ ; it therefore
attains its maximum.

Proof of Theorem 1.10.: Using the above notation, fix � ∈ P̄ and Hahn-
decompose � as � = (1 − �)F + � �s, where 0 ≤ � ≤ 1, F ∈ P̄ , and �s a
purely singular element of P̄ .

We may associate to � the triple (�, F, �(�s)) ∈ [0, 1]×P ×ℳ1
+(Sd) and

define �(�, F, �) := %∗(�). It follows from the law invariance of % and the
above discussion that � is well-defined, i.e. if �′ ∈ P̄ leads to the same triple
(s, F, �), then %(�) = %(�′). In fact � depends on F only via the law of F ,
but it seems notationally easier to write � as a function of (�, F, �) rather
then as a function of (�, law(F ), �).

In any case, this well-defines a function � on [0, 1]×P ×ℳ1
+(Sd). In the

extreme cases we need a little care: for � = 0 we define �(0, F, �) = %∗(F ),
for all � ∈ ℳ1

+(Sd), and, for � = 1, we define �(1, F,mu) = %∗(�) for all
F ∈ P , where � is chosen such that �(�) = �.

For every (�, F, �) ∈ [0, 1]× P ×ℳ1
+(Sd) we have

%(X) ≥ (1− �)%F (X) + � %�(X)− �(�, F, �).

Indeed, let � = (1 − �)F + � �s be such that � = �(�s). Then we get
from the law-invariance of X

%(X) ≥ sup{⟨−X, � ∘ �⟩ − %∗(�) : � ∈ T }
= (1− s)%F (X) + � %�(X)− �(�, F, �),
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where the last line follows from Proposition 5.1. This proves the inequality
“≥” in (9).

For the reverse inequality fix X ∈ L∞(ℝd). As observed in (46), there is
�̄ = (1− �̄)F̄ + �̄ �̄s such that

%(X) = ⟨−X, �̄⟩ − %∗(�̄)

= sup{⟨−X, �̄ ∘ �⟩ − %∗(�̄) : � ∈ T }
= (1− �̄%F (X) + �̄%�(�̄)(X)− �(�̄, F̄ , �(�̄)),

which readily shows (9).
The final assertion of Theorem 1.10 is standard and straight-forward to

prove.

Remark 5.2. If the risk measure % in Theorem 1.9 satisfies, following Burg-
ert and Rüschendorf [2], the cash invariance property (iii′) defined in (1)
rather than (iii), then it is straighthforward to check that % is strongly co-
herent iff each of its coordinates (%i)

d
i=1 is strongly coherent. A direct ap-

plication of Kusuoka’s Theorem 1.4 now yields the characterisation (ii′) in
(8).

A Appendix:

We now give a more detailed discussion of Theorem 1.4 which we restate for
the convenience of the reader.

Theorem A.1. ([11], Th. 7): For a law invariant convex risk measure % :
L∞(Ω,ℱ ,ℙ)→ ℝ the following are equivalent.

(i) % is a comonotone risk measure.
(ii) There is F ∈ L1

+(Ω,ℱ ,ℙ) with E[F ] = 1, and 0 ≤ s ≤ 1 such that

%(X) = s ess sup(−X) + (1− s)%F (X).

(iii) % is strongly coherent, i.e. for X, Y ∈ L∞(Ω,ℱ ,ℙ) we have

%(X) + %(Y ) = sup
X∼X̃

%(X̃ + Y ).

Firstly, we note that Kusuoka also imposed the Fatou property of % in
the formulation of (i). This additional assumption has been shown in [8] to
automatically follow from the law invariance and can simply be dropped.
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Secondly, Kusuoka formulated (ii) as

%(X) =

∫ 1

0

%�(X)m(d�), (47)

where %�(⋅) denotes expected shortfall at level � ∈ [0, 1], i.e.,

%�(X) = sup{E[−X∣A] : A ∈ ℱ ,ℙ[A] = �],

for 0 ≤ � ≤ 1 and, for � = 0, we let

%0(X) = ess sup(−X).

The measure m in (47) runs through all probability measures on [0, 1].
The link to the present representation (ii) is that the “singular mass” s in
(ii) corresponds to m({0}) in Kusuoka’s representation.

As regards the regular part, note that, if m is a Dirac measure m = ��,
for some � ∈]0, 1] in (47) then % = %� = %F� , where F� takes the value �−1

on some set of measure � and zero otherwise.
Noting that only the law of F is relevant in definition (2) and assuming

w.l.g. that (Ω,ℱ ,ℙ) equals [0, 1] equipped with Lebesgue measure on the
Borel sets, we may represent F� as

F�(t) =

{
�−1, for 0 ≤ t ≤ �
0, otherwise.

This representation has the feature that the functions (F�)�∈]0,1] are (pair-
wise) comonotone.

If m in (47) is a probability measure on ]0, 1], the corresponding F in (3)
is given by

F =

∫ 1

0

F�m(d�),

i.e.

F (t) =

∫ 1

t

�−1m(d�), for t ∈]0, 1].

It is straightforward to check that we then have

%(X) = %F (X), X ∈ L∞(Ω,ℱ ,ℙ).

For a thorough study of the correspondence of m and F and the relation
to Choquet integrals we refer to [3] and [6].

Finally let us discuss item (iii) of strong coherence in Theorem 1.4: it is
an easy exercise to verify that (iii) is equivalent to (i) in the one-dimensional
case. The notion of strong coherence was introduced in [5] precisely for the
purpose of extending the notion of comonotone risk measure to the vector
valued case.
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