OPTIMAL TRANSPORT AND THE GEOMETRY OF $L^1(\mathbb{R}^d)$

IVAR EKELAND AND WALTER SCHACHERMAYER

ABSTRACT. A classical theorem due to R. Phelps states that if C is a weakly compact set in a Banach space E, the strongly exposing functionals form a dense subset of the dual space E'. In this paper, we look at the concrete situation where $C \subset L^1(\mathbb{R}^d)$ is the closed convex hull of the set of random variables $Y \in L^1(\mathbb{R}^d)$ having a given law ν . Using the theory of optimal transport, we show that every random variable $X \in L^{\infty}(\mathbb{R}^d)$, the law of which is absolutely continuous with respect to the Lebesgue measure, strongly exposes the set C. Of course these random variables are dense in $L^{\infty}(\mathbb{R}^d)$.

1. INTRODUCTION

Throughout this paper we deal with a fixed probability space (Ω, \mathcal{F}, P) . It will be assumed that (Ω, \mathcal{F}, P) has no atoms. The space of *d*-dimensional random vectors will be denoted by $L^0(\Omega, \mathcal{F}, P; \mathbb{R}^d)$, and the space of *p*-integrable ones by $L^p(\Omega, \mathcal{F}, P; \mathbb{R}^d)$, shortened to L^0 and L^p if there is no ambiguity. The law μ_X of a random vector X is the probability on \mathbb{R}^d defined by:

$$\forall f \in C^{b}(\mathbb{R}^{d}), \ \int_{\Omega} f\left(X\left(\omega\right)\right) dP = \int_{\mathbb{R}^{d}} f\left(x\right) d\mu_{X}$$

where $C^{b}(\mathbb{R}^{d})$ is the space of continuous and bounded functions on \mathbb{R}^{d} . The last term is, as usual, denoted by $\mathbb{E}_{\mu_{X}}[f]$. Clearly, $X \in L^{p}(\mathbb{R}^{d})$ iff $E_{\mu_{X}}[|x|^{p}] < \infty$.

Our aim is to prove the following result:

Theorem 1. Let $X \in L^1(\mathbb{R}^d)$ be given, and let $C \subset L^1(\mathbb{R}^d)$ be the closed convex hull of all random variable Y such that $\mu_X = \mu_Y$. Take any $Z \in L^\infty(\mathbb{R}^d)$ the law of which is absolutely continuous with respect to Lebesgue measure. Then there exists a unique $\overline{X} \in C$ where Z attains its maximum on C. The law of \overline{X} is μ_X , and for every sequence $X_n \in C$ such that

$$\langle Z, X_n \rangle \to \langle Z, \overline{X} \rangle$$

we have $||X_n - \overline{X}||_1 \rightarrow 0$.

This will be proved as Theorem 18 at the end of this paper. In addition, Theorem 19 will provide a converse.

2. Preliminaries

2.1. Law-invariant subsets and functions. We shall write $X_1 \sim X_2$ to mean that X_1 and X_2 have the same law. This is an equivalence relation on the space of random vectors. A set $C \subset L^0$ will be called *law-invariant* if:

$$\begin{bmatrix} X_1 \in C \text{ and } X_1 \sim X_2 \end{bmatrix} \implies X_2 \in C,$$

and a function $\varphi : L^0 \to R$ is law-invariant if $\varphi(X_1) = \varphi(X_2)$ whenever $X_1 \sim X_2$. Given $\mu \in \mathcal{P}(\mathbb{R}^d)$, we shall denote by $M(\mu)$ the equivalence class consisting of all X with law μ :

$$M(\mu) := \{X \mid \mu_X = \mu\}$$

The set $M(\mu)$ is not convex in general.

Lemma 2. If μ has finite p-moment, $\int |x|^p d\mu < \infty$, for $| \leq p \leq \infty$, the set $C(\mu)$ is closed in the L^p -norm.

Proof. If $X_n \in C(\mu)$ and $||X_n - X||_p \to 0$, then we can extract a subsequence which converges almost everywhere. If $f \in C^b(\mathbb{R}^d)$, applying Lebesgue's dominated convergence theorem, we have $\int f(x)dP = \lim_n \int f(X_n)dP$ for every $f \in C^b(\mathbb{R}^d)$. But the right-hand side is equal to $\int f(x)d\mu$ for every n.

We shall say that $\sigma : \Omega \to \Omega$ is a measure-preserving transformation if it is a bijection, σ and σ^{-1} are measurable, and $P(\sigma^{-1}(A)) = P(A) = P(\sigma(A))$ for all $A \in \mathcal{A}$. The set Σ of all measure-preserving transformations is a group which operates on random vectors and preserves the law:

$$\forall \sigma \in \Sigma, \, \forall X \in L^0, \ X \sim X \circ \sigma.$$

The converse is not true, that is, equivalence classes do not coincide with orbits for the group action. However, it comes close. By Lemma A.4 from [2], we have:

Proposition 3. Let C be a norm-closed subset of $L^p(\Omega, \mathcal{A}, P)$, $1 \leq p \leq \infty$. Then C is law-invariant if and only if it is transformation-invariant. As a consequence:

$$\forall X \in M(\mu), \quad M(\mu) = \overline{\{X \circ \sigma \mid \sigma \in \Sigma\}}$$

the closure being taken L^p -norm.

2.2. Choquet ordering of probability laws. Denote by $\mathcal{P}(\mathbb{R}^d)$ the space of probability laws on \mathbb{R}^d , and endow it with the weak-* topology induced by $C^0(\mathbb{R}^d)$, the space of continuous functions on \mathbb{R}^d which go to zero at infinity. It is known that there is complete metric on $\mathcal{P}(\mathbb{R}^d)$ which is compatible with this topology:

$$[\mu_n \to \mu \quad \text{weak-*}] \iff \left[\forall f \in C^0 \left(R^d \right), \int f_n d\mu \to \int f d\mu \right]$$

Denote by $\mathcal{P}_1(\mathbb{R}^d)$ the set of probability laws on \mathbb{R}^d which have finite first moment:

$$\mu \in \mathcal{P}_1\left(\mathbb{R}^d\right) \Longleftrightarrow \int_{\mathbb{R}^d} |x| \, d\mu < \infty$$

Note that $\mathcal{P}_1(\mathbb{R}^d)$ is convex, but not closed in $\mathcal{P}(\mathbb{R}^d)$. If $\mu \in \mathcal{P}_1(\mathbb{R}^d)$, every linear function f(x) is μ -integrable. The point:

$$x := \int_{\mathbb{R}^d} y d\mu(y)$$

will be called the *barycenter* of the probability μ .

Since every convex function on \mathbb{R}^d is bounded below by an affine function, we find that $\mathbb{E}_{\mu}[f]$ is well-defined (possibly $+\infty$) for every convex function. So the following definition makes sense:

Definition 4. For ν and μ in $\mathcal{P}_1(\mathbb{R}^d)$, we shall say that $\nu \leq \mu$ if, for every convex function $f : \mathbb{R}^d \to \mathbb{R}$, we have:

$$\int_{\mathbb{R}^{d}} f(x) \, d\nu \leqslant \int_{\mathbb{R}^{d}} f(x) \, d\mu$$

For technical reasons, in order to avoid infinities, we shall introduce an equivalent definition. Denote by \mathcal{C} the set of convex functions $f : \mathbb{R}^d \to \mathbb{R}$ which have linear growth:

$$\exists M, m : \forall x, \quad f(x) \leq m + M \|x\|$$

If $f \in \mathcal{C}$ then $\int f(x)d\mu < \infty$.

Lemma 5. Let $g : \mathbb{R}^d \to \mathbb{R}$ be a convex function. Then $g = \sup_n f_n$, for some increasing sequence $f_n \in \mathcal{C}$.

Proof. Define the family f_n as follows:

$$f_n(x) = \sup \left[\left\{ \langle y, x \rangle - a \mid (y, a) \in A_n \right\}, 0 \right]$$

$$A_n = \left\{ (y, a) \mid \|y\| \le n \text{ and } \langle y, x \rangle - a \le f(x) \quad \forall x \right\}$$

Two results follow immediately:

Lemma 6. Let $g : \mathbb{R}^d \to \mathbb{R}$ be a convex function. Then the linear functional $\mu \to \int g(x) d\mu$ is l.s.c on $\mathcal{P}_1(\mathbb{R}^d)$

Proof. We can find an affine functional $\ell(x)$ such that $\ell \leq f_n \leq g$ for all n. Since $\mu \in \mathcal{P}_1$, the function ℓ is integrable, and we can apply the motone convergence theorem:

$$\int g(x)d\mu = \sup_{n} \int f_n d\mu$$

Since each map $\mu \to \int f_n d\mu$ is weak-* continuous, the map $g \to \int g(x) d\mu$ is weak-* l.s.c.

Lemma 7. For $\nu, \mu \in P_1(\mathbb{R}^d)$, $\nu \leq \mu$ holds iff:

$$\int f(x)d\nu \leqslant \int f(x)d\mu$$

for every $f \in \mathcal{C}$.

Proof. For any g convex, we have, by the preceding lemma $g = \sup_m f_m$, for some sequence $f_m \in \mathcal{C}$. The inequality holds for each f_m , and we conclude by Fatou's lemma.

This is an (incomplete) order relation on the set of probability measures with finite first moment. It is known in potential theory as the *Choquet ordering* (see [5], chapter XI.2). Note that if f is linear, both f and -f are convex, so that, if $\nu \leq \mu$, then:

$$\int_{\mathbb{R}^d} f(x) \, d\nu = \int_{\mathbb{R}^d} f(x) \, d\mu$$

In particular, if $\nu \leq \mu$ then ν and μ have the same barycenter.

Informally speaking, $\nu \leq \mu$ means that they have the same barycenter, but μ is more spread out than ν . In potential theory, this is traditionally expressed by saying that " μ est une balayée de ν ", that is, " μ is swept away from ν ". The following elementary properties illustrates this basic intuition:

- (1) (certainty equivalence) If $x_0 = E_{\mu}[x]$ (x_0 is the barycenter of μ) and δ_{x_0} is the Dirac mass carried at x_0 , then $\delta_{x_0} \leq \mu$
- (2) (diversification) If $X_1 \sim X_2$ have law μ , and $Y = \frac{1}{2}(X_1 + X_2)$ has law ν , then $\nu \leq \mu$. Indeed, if f is convex:

$$\begin{aligned} \int_{\mathbb{R}^d} f\left(x\right) d\nu &= \int_{\Omega} f\left(Y\right) dP \leqslant \frac{1}{2} \int_{\Omega} f\left(X_1\right) dP + \frac{1}{2} \int_{\Omega} f\left(X_2\right) dP \\ &= \left(\frac{1}{2} + \frac{1}{2}\right) \int_{\mathbb{R}^d} f\left(x\right) d\mu = \int_{\mathbb{R}^d} f\left(x\right) d\mu \end{aligned}$$

Lemma 8. Let $\mu \in \mathcal{P}_1(\mathbb{R}^d)$ and let $I[\mu]$ be the Choquet order interval of μ in $\mathcal{P}_1(\mathbb{R}^d)$

$$I[\mu] = \{\nu \in \mathcal{P}_1(\mathbb{R}^d) : \nu \prec \mu\}.$$

Then $I[\mu]$ is a compact subset of $\mathcal{P}(\mathbb{R}^d)$ with respect to the weak-star topology induced by $C^0(\mathbb{R}^d)$.

Proof. As the weak-star topology on $\mathcal{P}_1(\mathbb{R}^d)$ is metrisable it will suffice to show that every sequence $(\nu_n)_{n=1}^{\infty}$ in $I[\mu]$ has a cluster point.

The relation $\nu_n \ll \mu$ implies in particular that the first moment of ν_n are bounded by the first moment of μ . This in turn implies that Prokhorov's condition is satisfied, i.e. for $\varepsilon > 0$ there is a compact $K \subseteq \mathbb{R}^d$ such that $\nu_n(K) \ge 1 - \varepsilon$, for all $n \in \mathbb{N}$.

By Prokhorov's theorem we may find a subsequence, still denoted by $(\nu_n)_{n=1}^{\infty}$, and a probability measure $\nu \in \mathcal{P}(\mathbb{R}^d)$ which is the weak-star limit. To show that $\nu \in I[\mu]$, let $f : \mathbb{R}^d \to \mathbb{R}$ be convex. By Lemma 6, we have:

$$\langle f, \nu \rangle \leq \limsup_{n \to \infty} \langle f, \nu_n \rangle \leq \langle f, \mu \rangle.$$

The relationship with weak convergence in L^1 is given by the next result. To motivate it, consider a sequence of i.i.d. random variables X_n such that P[X = -1] = 1/2 = P[X = 1]. Then $X_n \to 0$ weakly, and the law of the limit is δ_0 , but all the X_n have the law $\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$. Clearly $\delta_0 \leq \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$.

Proposition 9. Suppose X_n is a sequence in $L^1(\Omega, \mathcal{A}, P; \mathbb{R}^d)$, converging weakly to Y. Denote by μ_n the law of X_n and by ν the law of Y. Suppose μ_n converges weak-* to some $\bar{\mu} \in \mathcal{P}_1(\mathbb{R}^d)$. Then $\nu \leq \bar{\mu}$, with equality if and only if $||X_n - Y||_1 \to 0$

Proof. First note that $\mu \geq \delta_{E[y]}$. Indeed, for any convex function f with linear growth, we have, by Jensen's inequality:

$$\int f(x)d\mu_n = \int_{\Omega} f(X_n)dP \ge f(E[X_n])$$

and the left hand side converges to $\int f(x)d\mu$ while the right-hand side converges to f(E[y]).

Now consider a finite σ -algebra $G \subset \mathcal{F}$. Denote by \mathcal{A} the collection of atoms of \mathcal{G} . We have:

$$\int f(x)d\mu_n = \int E[f(X_n)|G]dP$$

and by the same method we show that:

$$\mu \geq \sum_{A \in G} P[A] \delta_{E[Y|A]}$$

Now let $(\mathcal{G}_k), k \in \mathbb{N}$, be a sequence of finite sub-sigma-algebras of \mathcal{F} such that Y is measurable w.r.t. $\sigma(\cup_k \mathcal{G}_k)$. Denoting by ν_k the law of $E[Y \mid \mathcal{G}_k]$, we have by the above argument:

$$\bar{\mu} \geq \nu_k$$
 for all k

and hence $\bar{\mu} \geq \nu$ by taking the limit when $k \to \infty$.

Turning to the final assertion, it follows from Lebesgue's dominated convergence theorem that, since X_n converges to Y in the L^1 norm, the law μ_n of X_n converges to the law ν of Y weak-* in $\mathcal{P}_1(\mathbb{R}^d)$.

Conversely suppose that $(X_n)_{n=1}^{\infty}$ converges to Y weakly in $L^1(\mathbb{R}^d)$ and $\bar{\mu} \leq \nu$. For every $A \in \mathcal{F}$ and every convex function f with $\limsup_{x \to \infty} \frac{|f(x)|}{(x)} < \infty$ we then have

(2.1)
$$\lim_{n \to \infty} \mathbb{E}\left[f(X_n)\mathbb{1}_A\right] = \mathbb{E}\left[f(Y)\mathbb{1}_A\right].$$

Indeed the inequality \geqslant follows from Jensen as above. The reverse inequality follows from the fact that

$$\lim_{n \to \infty} \mathbb{E}[f(X_n)] = \lim_{n \to \infty} \langle f, \mu_n \rangle = \langle f, \bar{\mu} \rangle = \langle f, \nu \rangle = \mathbb{E}[f(Y)].$$

In conjunction with

$$\lim_{n \to \infty} \mathbb{E}[f(X_n) \mathbb{1}_{\Omega \setminus A})] \ge \mathbb{E}[f(Y) \mathbb{1}_{\Omega \setminus A})]$$

this yields the inequality \leq in (2.1).

Now suppose that $(X_n)_{n=1}^{\infty}$ fails to converge to Y in the norm of $L^1(\mathbb{R}^d)$, i.e., there is $1 > \alpha > 0$ such that

$$\mathbb{P}[|X_n - Y| \ge \alpha] \ge \alpha,$$

for infinitely many *n*. Approximating *Y* by step functions we may find a set $A \in \mathcal{F}$, P[A] > 0, and a point $y_0 \in A$ such that $|Y - y_0| < \frac{\alpha^2}{5}$ on *A* and

$$\mathbb{P}[A \cap |X_n - <_0] \ge \frac{\alpha}{2} \mathbb{P}[A]$$

We then have

$$\mathbb{E}[|Y - y_0| \mathbb{1}_A] \leq \frac{\alpha^2}{5} \mathbb{P}[A]$$

while

$$\mathbb{E}[|X_n - y_0|\mathbb{1}_A] \leq \frac{\alpha^2}{4} \mathbb{P}[A],$$

a contradiction to (2.1).

The Choquet ordering can be completely characterized in terms of Markov kernels

Definition 10. A Borel map $\alpha : \mathbb{R}^d \to \mathcal{P}_1(\mathbb{R}^d)$ is a *Markov kernel* if, for every $x \in X$, the barycenter of α_x is x:

$$\forall x \in X, \quad \int_{\mathbb{R}^d} y d\alpha_x = x$$

If α is a Markov kernel, and $\nu \in \mathcal{P}(\mathbb{R}^d)$, we define $\mu := \int_{\mathbb{R}^d} \alpha_x d\nu \in \mathcal{P}(\mathbb{R}^d)$ by:

$$\int_{\mathbb{R}^d} f(x) \, d\mu = \int_{\mathbb{R}^d} \alpha_x(f) \, d\nu$$

Theorem 11. If ν and μ are in $\mathcal{P}_1(\mathbb{R}^d)$ we have $\nu \leq \mu$ if and only if there exists a Markov kernel α_x such that $\mu = \int_{\mathbb{R}^d} \alpha_x d\nu$

Proof. Suppose there exists such a Markov kernel. For any convex function f, since x is the barycenter of α_x , Jensen's inequality implies that $\alpha_x(f) \ge f(x)$. Integrating, we get:

$$\int_{\mathbb{R}^d} f(x) \, d\mu = \int_{\mathbb{R}^d} \alpha_x(f) d\nu \ge \int_{\mathbb{R}^d} f(x) \, d\nu$$

so $\nu \leq \mu$. The converse is known as Strassen's theorem (see [7], [5])

2.3. **Optimal transport.** In the sequel, μ and ν will be given in $\mathcal{P}_1(\mathbb{R}^d)$, and μ will have bounded support. We are interested in the following problem: maximize

$$\int_{\mathbb{R}^d} \langle x, T(x) \rangle d\mu$$

among all Borel maps $T : \mathbb{R}^d \to \mathbb{R}^d$ which map μ on ν :

$$T \natural \mu = \nu \Longleftrightarrow \int f(y) d\nu = \int f(T(x)) d\mu \; \forall f \in C^0(\mathbb{R})$$

In the sequel, this will be referred to as the *basic problem*, and denoted by $(BP[\mu, \nu])$. If there is an optimal solution T, it has the property that if X is any r.v. with law μ , then, among all r.v. Y with law ν , the one such that the correlation $E_{\mu}[\langle X, Y \rangle]$ is maximal is T(X).

There is also a *relaxed problem*, denoted $(\operatorname{RP}[\mu, \nu])$. It consists of maximizing:

$$\int_{\mathbb{R}^d\times\mathbb{R}^d} \langle x,y\rangle \, d\lambda$$

among all probability measures λ on $\mathbb{R}^d \times \mathbb{R}^d$ which have μ and ν as marginals. Obviously, we have $\sup(BP) \leq \sup(RP)$, and the latter is finite because μ has bounded support and ν has finite first moment.

Finally, there is a *dual problem*, defined by $(DP[\mu, \nu])$, which consists of minimizing

$$\int_{\mathbb{R}^d} \varphi(x) d\mu + \int_{\mathbb{R}^d} \psi(y) d\nu$$

over all pairs of functions $\varphi(x)$ and $\psi(y)$ such that $\varphi(x) + \psi(y) \ge \langle x, y \rangle$.

The following theorem summarizes results due to Kantorovitch [3], Kellerer [4] Rachev and Ruschendorf [6], and Brenier [1]. It was originally formulated for the case when μ and ν have finite second moment, and this is also what is found in [8]. Indeed, in this case, since $T \ddagger \mu = \nu$, we have:

$$\begin{aligned} \int \|x - T(x)\|^2 d\mu &= \int \|x\|^2 d\mu + \int \|T(x)\|^2 d\mu - 2 \int \langle x, T(x) \rangle d\mu \\ &= \int \|x\|^2 d\mu + \int \|y\|^2 d\nu - 2 \int \langle x, T(x) \rangle d\mu \end{aligned}$$

Since the two first terms on the right-hand side do not depend on T, the problem of maximising $\int \langle x, T(x) \rangle d\mu$ (bilinear cost) is equivalent to the problem of maximizing $\int ||x - T(x)||^2 d\mu$ (quadratic cost), for which general techniques are available. In the case at hand, we will not assume that ν has finite second moment, so this approach is not available: the square distance is not defined, while the correlation maximisation still makes sense.

We now recall Brenier's theorem [1] in the present setting. In order to obtain a transport of Monge type rather than Kantorovich type, we assume that μ is absolutely continuous w.r.t Lebesgue measure. We note in passing that it would be sufficient to assume that only that μ does not "give mass to small sets", i.e. that sets of Haussdorff dimension d-1 have μ -measure 0 ([9]

Theorem 12. Suppose μ has compact support and is absolutely continuous w.r.t. Lebesgue measure. Suppose also ν has finite first moment. Then the basic problem $(BP[\mu,\nu])$ has a solution T, which is unique up to negligible subsets, and there is a convex function $\varphi : \mathbb{R}^d \to \mathbb{R}$ such that $T(x) = \nabla \varphi(x)$ a.e.

The relaxed problem $(RP[\mu,\nu])$ has $\lambda = \int \delta_{T(x)} d\mu(x)$ as a unique solution.

Denoting by ψ the Fenchel transform of φ , all solutions to the dual problem $(DP[\mu, \nu])$ are of the form $(\varphi + a, \psi - a)$ for some constant a, up to μ -, resp ν -., a.s. equivalence. The values of the minimum in problem (DP) and of the maximum in problems (BP) and (RP) are equal:

(2.2)
$$\max(BP[\mu,\nu]) = \max(RP[\mu,\nu]) = \min(DP[\mu,\nu])$$

Let us denote by $\mathbf{mc}[\mu, \nu]$ this common value. We shall call it the maximal correlation between μ and ν . It follows from the theorem that for any $T', \lambda', \varphi', \psi'$ satisfying the admissibility conditions, we have:

$$\begin{split} \int_{\mathbb{R}^d} \left\langle x, T'(x) \right\rangle d\mu &\leq \mathbf{mc}[\mu, \nu] \\ \int_{\mathbb{R}^d \times \mathbb{R}^d} \left\langle x, y \right\rangle d\lambda' &\leq \mathbf{mc}[\mu, \nu] \\ \int_{\mathbb{R}^d} \varphi'(x) d\mu + \int \psi'_{\mathbb{R}^d}(y) d\nu &\geq \mathbf{mc}[\mu, \nu] \end{split}$$

As an interesting consequence, we have:

Proposition 13. Let μ,ν_1,ν_2 be probability measures on \mathbb{R}^d such that μ is absolutely continuous w.r.t the Lebesgue measure and has bounded support, while ν_1 and ν_2 have finite first moment. Suppose $\nu_1 \leq \nu_2$ and $\nu_1 \neq \nu_2$. Then $\mathbf{mc}[\mu,\nu_1] < \mathbf{mc}[\mu,\nu_2]$.

Proof. By Theorem 11, there is a Markov kernel α such that:

(2.3)
$$\nu_2 = \int_{\mathbb{R}^d} \alpha_x d\nu_1$$

Let T_1 be the optimal solution of $(BP[\mu, \nu_1])$. Consider the probability measure λ on $\mathbb{R}^d \times \mathbb{R}^d$ defined by:

(2.4)
$$\int f(x,y) d\lambda(x,y) = \int d\mu(x) \int f(x,y) d\alpha_{T_1(x)}(y)$$

Since $\alpha_{T_1(x)}$ is a probability measure, the first marginal of λ is μ . Let us compute the second marginal. We have, for any $f \in C^0(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} f(y) d\lambda(x, y) = \int_{\mathbb{R}^d} \alpha_{T_1(x)}(f) d\mu(x)$$
$$= \int_{\mathbb{R}^d} \alpha_x(f) d\nu_1(x)$$
$$= \nu_2(f)$$

where the second equality comes from the fact that T_1 maps μ on ν_1 and the second from equation (2.3). So the second marginal of λ is ν_2 , and λ is admissible in problem ($\operatorname{RP}[\mu, \nu_2]$). A similar computation gives:

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} \langle x, y \rangle d\lambda(x, y) = \int_{\mathbb{R}^d} \left\langle x, \int_{\mathbb{R}^d} d\alpha_{T_1(x)}(y) \right\rangle d\mu(x)$$
$$= \int_{\mathbb{R}^d} \langle x, T_1(x) \rangle d\mu(x) = \mathbf{mc}[\mu, \nu_1]$$

Since λ has marginals μ and ν_2 , it is admissible in the relaxed problem ($\operatorname{RP}[\mu, \nu_2]$), so that the left-hand side is at most $\operatorname{mc}[\mu, \nu_2]$ while the right-hand side is equal to $\operatorname{mc}[\mu, \nu_1]$. It follows that $\operatorname{mc}[\mu, \nu_1] \leq \operatorname{mc}[\mu, \nu_2]$. If there is equality, then λ is an optimal solution to ($\operatorname{RP}[\mu, \nu_2]$). By the uniqueness part of Theorem 12, we must have $\lambda = \int \delta_{T_1(x)} d\mu(x)$. Comparing with equation (2.4), we find $\alpha_y = \delta_y$, holding true ν_1 -almost surely. Writing this in equation (2.3) we get $\nu_1 = \nu_2$.

2.4. Strongly exposed points. Let E be a Banach space, and $C \subset E$ a closed subset. For $v \in E'$, consider the optimization problem:

(2.5)
$$\sup_{u'\in C} \left\langle v, u' \right\rangle$$

Definition 14. We say that $v \in E'$ exposes $u \in C$ if u solves problem (2.5) and is the unique solution. We shall say that $v \in E'$ it strongly exposes $u \in C$ if it exposes u and all maximizing sequences in problem (2.5) converge to u:

$$\left\{u_n \in C, \quad \lim_n \langle v, u_n \rangle = \langle v, u \rangle\right\} \Longrightarrow \lim_n \|u - u_n\| = 0$$

We shall say that $u \in C$ is an *exposed point* (resp. *strongly exposed*) if it is exposed (resp. strongly exposed) by some continuous linear functional v. It is a classical result of Phelps that every weakly compact convex subset C of E is the closed convex hull of its strongly exposed points.

3. Some geometric properties of law-invariant subsets of L^1

Given $\nu \in \mathcal{P}_1(\mathbb{R}^d)$, we define two subsets $M(\nu)$ and $C(\nu)$ of L^1 by:

$$M(\nu) = \left\{ X \in L^1 \mid \mu_X = \nu \right\}$$
$$C(\nu) = \left\{ X \mid \mu_X \leq \nu \right\}$$

 $M(\nu)$ is closed in L^1 but not convex. To investigate the relation between $M(\nu)$ and $C(\nu)$, we shall need the following result:

Proposition 15. Let $Y \in L^1(\mathbb{R}^d)$ with law ν , and let $\mu \in \mathcal{P}^1(\mathbb{R}^d)$ such that $\mu \geq \nu$. Then there is a sequence $(X_n)_{n=1}^{\infty}$ in $M(\mu)$ such that $(X_n)_{n=1}^{\infty}$ converges weakly to Y in $L^1(\mathbb{R}^d)$.

In addition, there is a sequence $(Y_n)_{n=1}^{\infty}$ in the convex hull of $(M(\mu))$ which converges strongly to Y in $L^1(\mathbb{R}^d)$.

We start by recalling a well-known result from ergodic theory.

Lemma 16. Let $\Omega = \{-1, 1\}^{\mathbb{Z}}$ equipped with the Borel sigma-algebra \mathcal{F} and Haarmeasure \mathbb{P} , and let T_n the n'th shift, i.e.

$$T_n\left((\eta_k)_{k\in\mathbb{Z}}\right) = (\eta_{k-n})_{k\in\mathbb{Z}}$$

Let $Z \in L^1(\{-1,1\}^{\mathbb{Z}}, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$. Then $(Z_n)_{n=1}^{\infty} := (Z \circ T_n)_{n=1}^{\infty}$ converges weakly to the constant function $\mathbb{E}[Z]$.

Proof. Suppose that Z depends only on finitely many coordinates and let $A \in \mathcal{F}$ also depend only on finitely many coordinates of $\{-1,1\}^{\mathbb{Z}}$. Then, for n large enough, $Z_n := Z_0 T_n$ is independent of A so that

$$\mathbb{E}[Z_n|A] = \mathbb{E}[Z_n] = \mathbb{E}[Z].$$

The general case follows from approximation.

Proof. (of the Proposition): Assume w.l.o.g. that $L^1(\Omega)$ is separable. Recall that, $(\Omega, \mathcal{F}, \mathbb{P})$ has no atoms. Suppose first that Y takes only finitely many values, i.e.

$$Y = \sum_{j=1}^{N} y_j \mathbb{1}_{A_j}$$

where $(y_j)_{j=1}^N \in \mathbb{R}^d$ and (A_1, \ldots, A_N) forms a partition of Ω into sets in \mathcal{F} with strictly positive measure.

By an elementary version of Strassen's theorem we may find a Markov kernel $\alpha = (\alpha_{y_j})_{j=1}^N$ such that the barycenter of α_{y_j} is y_j and

(3.1)
$$\mu = \sum_{j=1}^{N} \mathbb{P}[A_j] \alpha_{y_j}$$

Each of the sets A_j , equipped with the conditional probability $P[A_j]^{-1}P|_{A_j}$ is Borel isomorphic to $\{-1,1\}^{\mathbb{Z}}$, equipped with the Haar measure. Hence for each $j = 1, \ldots, N$ we may find a random variable $Z_j : A_j \to \mathbb{R}^d$ under $P[A_j]^{-1}P|_{A_j}$ such that law $(Z_j) = \alpha_{y_j}$, so that its barycenter equals y_j , as well as a sequence $(T_{j,n})_{n=1}^{\infty}$ of measure-preserving transformations of A_j such that in the weak $L^1(\mathbb{R}^d)$ topology we have:

$$\lim_{n \to \infty} (Z_j \circ T_n) \mathbb{1}_{A_j} = y_j \mathbb{1}_{A_j}, \qquad j = 1, \dots, N.$$

Letting

$$X_n = \sum_{j=1}^N (Z_j \circ T_n) \mathbb{1}_{A_j}$$

we obtain by (3.1) a sequence in $L^1(\mathbb{R}^d)$ such that the law of (X_n) is $= \mu$, converging weakly to $Y = \sum_{j=1}^N y_j \mathbb{1}_{A_j}$.

Now drop the assumption that Y is a simple function and fix a sequence $(\mathcal{G}_m)_{m=1}^{\infty}$ of finite sub-sigma-algebras of \mathcal{F} , generating \mathcal{F} . Note that for $Y_m = \mathbb{E}[Y|\mathcal{G}_m]$ and $\nu_m = \text{law}(Y_m)$ we have that $\nu_m < \nu$, by Jensen's inequality.

By the first part we may find, for each $m \ge 1$, a sequence $(X_{m,n})_{n=1}^{\infty}$ in $M(\mu)$ such that $(X_{m,n})_{n=1}^{\infty}$ converges weakly to Y_m . Noting that $(Y_m)_{m=1}^{\infty}$ converges to Y(in the norm of $L^1(\mathbb{R}^d)$ and therefore also weakly) we may find a sequence $(n_m)_{m=1}^{\infty}$ tending sufficiently fast to infinity, such that $(X_{m,n_m})_{m=1}^{\infty}$ converges weakly to Y.

As regards the final assertion it follows from Komlos' theorem that there is a sequence of convex combinations of the above $(X_{m,n_m})_{m=1}^{\infty}$ converging to Y in the norm of $L^1(\mathbb{R}^d)$.

The relationship between $C(\nu)$ and $M(\mu)$ follows immediately:

Theorem 17. The set $C(\nu)$ is convex, weakly compact, and equals the weak closure of $M(\nu)$:

$$C(\nu) = \overline{M(\nu)}^w = \overline{co} M(\nu)$$

Proof. Obviously $\overline{M(\nu)}^w \subset C(\nu)$. Conversely, take any $X \in C(\nu)$. By Theorem 11, there is some Markov kernel α such that

$$\nu = \int_{\mathbb{R}^d} \alpha_x d\mu_X = \int_{\Omega} \alpha_{X(\omega)} dP$$

By the above proposition, there is a sequence X_n in $M(\nu)$ such that $X_n \to X$ weakly, so $X \in \overline{M(\nu)}^w$. This shows that $C(\nu) = \overline{M(\nu)}^w$.

By Proposition 9, $C(\nu)$ is convex. It remains to show that it is weakly compact. Since $C(\mu)$ is the weak closure or $M(\mu)$, it is enough to show that $M(\mu)$ is weakly relatively compact. To do that, we shall use the Dunford-Pettis criterion. We claim that $M(\nu)$ is equiintegrable. Indeed, for any $X \in M(\nu)$ and m > 0, we have:

$$\int_{|X|>m} |X|dP = \nu \left(|x|>m\right)$$

which goes to 0 when $m \to \infty$, independently of X. The result follows.

We now investigate strongly exposing functionals and strongly exposed points of $C(\nu)$. We will show that any $Z \in L^{\infty}$, the law of which is a.c. w.r.t. Lebesgue measure, strongly exposes a point of $C(\nu)$ (which must then belong to $M(\nu)$) and conversely, provided ν is absolutely continuous w.r.t. Lebesgue measure, that any point of $M(\nu)$ is strongly exposed by such a Z.

Theorem 18. Let $\nu \in \mathcal{P}_1(\mathbb{R}^d)$, $Z \in L^{\infty}$ and suppose the law of Z is absolutely continuous with respect to Lebesgue measure. Then Z strongly exposes some point of $C(\nu)$, and the exposed point in fact belongs to $M(\nu)$

Proof. Let μ be the law of Z and consider the maximal correlation problem (BP[μ, ν]). By Theorem 12, it has a unique solution T. Set X = T(Z). Clearly X has law ν , and by uniqueness:

$$(3.2) \qquad [X' \in M(\nu), X' \neq X] \Longrightarrow \langle Z, X \rangle > \langle Z, X' \rangle$$

So X is an exposed point in $M(\nu)$. Take any $Y \in C(\nu)$, so that $\mu_Y \leq \nu$. By Proposition 13, we have $\langle Z, X \rangle \geq \langle Z, Y \rangle$, and if $\langle Z, X \rangle = \langle Z, Y \rangle$, then $\mu_Y = \mu_X = \nu$. So Y must belong to $M(\nu)$, and by formula (3.2), we must have Y = X. So X is an exposed point in $C(\nu)$ as well.

It remains to prove that it is strongly exposed. For this, take a maximizing sequence X_n in $C(\nu)$. Since $C(\nu)$ is weakly compact and $\nu_n \leq \nu$, where ν_n is the law of X_n , there is a subsequence X_{n_k} which converges weakly to some $X' \in C(\nu)$. By Proposition, the set of all $\mu \leq \nu$ is weak-* compact, so we may assume that the laws ν_{n_k} converge weak-* to some $\bar{\nu}$. Obviously X' maximizes $\langle Z, X' \rangle$, and since Z exposes X, we must have X' = X. So the X_{n_k} converge weakly to X, and, by Proposition 9, $\mu_X = \nu \leq \bar{\nu}$.

On the other hand, take any convex function f with linear growth. Since $\nu_{n_k} \leq \nu$ we have:

$$\int f(x)d\nu_{n_k} \leqslant \int f(x)d\nu$$

Letting $k \to \infty$, we get:

$$\int f(x)d\overline{\nu} \leqslant \liminf_k \int f(x)d\nu_{n_k} \leqslant \int f(x)d\nu$$

So $\nu = \overline{\nu}$, and Proposition 9 then implies that $||X_{n_k} - X||_1 \to 0$. Since the limit does not depend on the subsequence, the whole sequence X_n converges, and X is strongly exposed, as announced.

Here is a kind of converse:

Theorem 19. Fix two measures μ and ν on \mathbb{R}^d , the first one having finite first moment and the second one compact support. Suppose both of them are absolutely continuous with respect to Lebesgue measure. Then, for every X with law μ , there is a unique Z with law ν which strongly exposes X in $C(\mu)$.

Proof. Consider the maximal correlation problem $(BP[\mu, \nu])$. It has a unique solution $T : \mathbb{R}^d \to \mathbb{R}^d$ verifying $T \sharp \mu = \nu$. Since both μ and ν are absolutely continuous with respect to Lebesgue measure, the problem $(BP[\mu, \nu])$ also has a unique solution $S : \mathbb{R}^d \to \mathbb{R}^d$ verifying $S \sharp \mu = \nu$. Clearly $S = T^{-1}$ and $T = S^{-1}$. Define Z = S(X). It is then the case that the law of Z is μ and $T(Z) = T \circ S(X) = X$. Repeating the preceding proof we find that Z strongly exposes X in C(X).

Note that the condition that ν be absolutely continuous with respect to the Lebesgue measure cannot be dropped from the preceding theorem. This may be seen by a variant of a well-known example in optimal transport theory ([9], Example 4.9). On \mathbb{R}^2 consider the measure ν which is uniformly distributed on the interval $\{0\} \times [0, 1]$ while μ is uniformly distributed on the rectangle $[-1, 1] \times [0, 1]$. Then μ is absolutely continuous w.r.t. Lebesgue measure, while ν is not. Clearly the optimal transport T from μ to ν for the maximal correlation problem is given by the projection on the vertical axis. This map is not invertible.

Let (Ω, \mathcal{A}, P) be given by $\Omega = [0, 1]$ equipped with the Lebesgue measure Pon the Borel σ -algebra. Define a random vector $X \in L^1(\Omega, \mathcal{A}, P; \mathbb{R}^2)$ by $X(\omega) = (0, \omega)$, so that the law of X is ν . Let us now calculate the maximal correlation between μ and ν . Let $Z_0 \in L^{\infty}$ have law μ . and define $X_0 = T(Z_0)$ so that X_0 has law ν . By the proof of theorem 18 we get:

$$\mathbf{mc}(\mu,\nu) = \int_{\Omega} \langle X_0, Z_0 \rangle dP = \int_{\mathbb{R}^2} \langle x, T(x) \rangle d\mu$$
$$= \frac{1}{2} \int_{-1}^1 \left[\int_0^1 x_2^2 dx_2 \right] dx_1 = \int_0^1 x_2^2 dx_2 = \frac{1}{3}$$

On the other hand, we claim that:

(3.3)
$$\int \langle X, Z_0 \rangle \, dP < \frac{1}{3}$$

Since this holds for any Z_0 with law μ , it shows that X does not expose any point in $C(\mu)$. This is the desired counterexample. To prove (3.3), write $Z_0(\omega) = (Z_{0,1}(\omega), Z_{0,2}(\omega))$ and note that $P[Z_{0,2} \neq X_2] > 0$. Indeed, assume otherwise, so that $Z_{0,2}(\omega) = X_2(\omega) = \omega$ almost surely. Then $Z_{0,1}(\omega)$ is fully determined by $Z_{0,2}(\omega)$, meaning that, in the image of Ω by Z, the second coordinate z_1 is determined by the first z_2 . This contradicts the fact that the law of Z is μ , which is absolutely continuous. Since the law of $Z_{0,2}$ is the Lebesgue measure, but $Z_{0,2}$ does not coincide with X, we have, from the uniqueness of the Brenier map:

$$\int X Z_0 dP = \int X_2 Z_{0,2} dP < \int X_2^2 dP = \frac{1}{3}$$

Let us summarize our findings: There are measures μ and ν on \mathbb{R}^2 with compact support, μ being absolutely continuous with respect to Lebesgue measure, and some $X \in L^{\infty}(\mathbb{R}^2)$ with law ν such that there is no $Z \in L^{\infty}(\mathbb{R}^2)$ wich exposes X in $C(\mu)$

$\operatorname{References}$

- Brenier, Yann, "Polar factorization and monotone rearrangements of vector-valued functions", Comm. Pure and Applied Math. 64, 375-417 (1991)
- [2] Elyes, Jouini, Walter Schachermayer and Nizar Touzi, "Law-invariant risk measures have the Fatou property", Adv. Math. Econ. 9, 49-71
- [3] Kantorovitch. L.V. "On the transfer of masses", Doklady Akad. Nauk. CCCR (1942), 113-161
- Kellerer, H.G. "Duality theorems for marginal problems" Z. Wahrsch. Verw. Gebiete 67 (1984), 399-432
- [5] Meyer, Paul-André, "Probabilités et potentiel", Hermann (1966)
- [6] Rachev, S.T. and Rüschendorf, L., "A characterization of random variables with minimal L² distance", J. Multivariate An. 32, 48-54 (1990)
- [7] Strassen, V. "The existence of probability measures with given marginals" Ann. Math. Stat 36 (1965) p.423-439
- [8] Villani, Cedric, "Topics in optimal transportation", Publications of the AMS, 2003
- [9] Villani, Cedric "Optimal transport, old and new", Springer Verlag