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Abstract. A classical theorem due to R. Phelps states that if C is a weakly
compact set in a Banach space E, the strongly exposing functionals form a
dense subset of the dual space E1. In this paper, we look at the concrete
situation where C � L1pRdq is the closed convex hull of the set of random
variables Y P L1pRdq having a given law ν. Using the theory of optimal
transport, we show that every random variableX P L8pRdq, the law of which is
absolutely continuous with respect to the Lebesgue measure, strongly exposes
the set C. Of course these random variables are dense in L8pRdq.

1. Introduction

Throughout this paper we deal with a �xed probability space pΩ,F , P q. It will
be assumed that pΩ,F , P q has no atoms. The space of d-dimensional random
vectors will be denoted by L0

�
Ω,F , P ;Rd

�
, and the space of p-integrable ones by

Lp
�
Ω,F , P ;Rd

�
, shortened to L0 and Lp if there is no ambiguity. The law µX of

a random vector X is the probability on Rd de�ned by:

@f P CbpRdq,
»

Ω

f pX pωqq dP �

»
Rd

f pxq dµX

where CbpRdq is the space of continuous and bounded functions on Rd. The last
term is, as usual, denoted by EµX

rf s. Clearly, X P Lp
�
Rd

�
i� EµX

r|x|
p
s   8.

Our aim is to prove the following result:

Theorem 1. Let X P L1
�
Rd

�
be given, and let C � L1pRdq be the closed convex

hull of all random variable Y such that µX � µY . Take any Z P L8
�
Rd

�
the law of

which is absolutely continuous with respect to Lebesgue measure. Then there exists
a unique X P C where Z attains its maximum on C. The law of X is µX , and for
every sequence Xn P C such that

xZ,Xny Ñ
@
Z,X

D
we have }Xn �X}1Ñ 0.

This will be proved as Theorem 18 at the end of this paper. In addition, Theorem
19 will provide a converse.

2. Preliminaries

2.1. Law-invariant subsets and functions. We shall write X1 � X2 to mean
that X1 and X2 have the same law. This is an equivalence relation on the space of
random vectors. A set C � L0 will be called law-invariant if:

rX1 P C and X1 � X2s ùñ X2 P C,
1
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and a function ϕ : L0 Ñ R is law-invariant if ϕ pX1q � ϕ pX2q whenever X1 � X2.
Given µ P P

�
Rd

�
, we shall denote by M pµq the equivalence class consisting of all

X with law µ:

M pµq :� tX |µX � µu

The set Mpµq is not convex in general.

Lemma 2. If µ has �nite p-moment,
³
|x|pdµ   8, for | ¤ p ¤ 8, the set Cpµq is

closed in the Lp-norm.

Proof. If Xn P Cpµq and }Xn � X}p Ñ 0, then we can extract a subsequence
which converges almost everywhere. If f P CbpRdq, applying Lebesgue's dominated
convergence theorem, we have

³
fpxqdP � limn

³
fpXnqdP for every f P CbpRdq.

But the right-hand side is equal to
³
fpxqdµ for every n. �

We shall say that σ : Ω Ñ Ω is a measure-preserving transformation if it is a
bijection, σ and σ�1 are measurable, and P

�
σ�1 pAq

�
� P pAq � P pσ pAqq for

all A P A. The set Σ of all measure-preserving transformations is a group which
operates on random vectors and preserves the law:

@σ P Σ, @X P L0, X � X � σ.

The converse is not true, that is, equivalence classes do not coincide with orbits
for the group action. However, it comes close. By Lemma A.4 from [2], we have:

Proposition 3. Let C be a norm-closed subset of Lp pΩ,A, P q, 1 ¤ p ¤ 8. Then
C is law-invariant if and only if it is transformation-invariant. As a consequence:

@X PM pµq , M pµq � tX � σ | σ P Σu

the closure being taken Lp-norm.

2.2. Choquet ordering of probability laws. Denote by P
�
Rd

�
the space of

probability laws on Rd, and endow it with the weak-* topology induced by C0pRdq,
the space of continuous functions on Rd which go to zero at in�nity. It is known
that there is complete metric on P

�
Rd

�
which is compatible with this topology:

rµn Ñ µ weak-*s ðñ

�
@f P C0

�
Rd

�
,

»
fndµÑ

»
fdµ

�

Denote by P1

�
Rd

�
the set of probability laws on Rd which have �nite �rst

moment:

µ P P1

�
Rd

�
ðñ

»
Rd

|x| dµ   8

Note that P1

�
Rd

�
is convex, but not closed in P

�
Rd

�
. If µ P P1

�
Rd

�
, every

linear function f pxq is µ-integrable. The point:

x :�

»
Rd

ydµpyq

will be called the barycenter of the probability µ.
Since every convex function on Rd is bounded below by an a�ne function, we

�nd that Eµ rf s is well-de�ned (possibly �8) for every convex function. So the
following de�nition makes sense:
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De�nition 4. For ν and µ in P1

�
Rd

�
, we shall say that ν ¤ µ if, for every convex

function f : Rd Ñ R, we have:»
Rd

f pxq dν ¤

»
Rd

f pxq dµ

For technical reasons, in order to avoid in�nities, we shall introduce an equivalent
de�nition. Denote by C the set of convex functions f : Rd Ñ R which have linear
growth:

DM,m : @x, fpxq ¤ m�M}x}

If f P C then
³
fpxqdµ   8.

Lemma 5. Let g : Rd Ñ R be a convex function. Then g � supn fn, for some
increasing sequence fn P C.
Proof. De�ne the family fn as follows:

fnpxq � sup rtxy, xy � a | py, aq P Anu , 0s

An � tpy, aq | }y} ¤ n and xy, xy � a ¤ fpxq @xu

�

Two results follow immediately:

Lemma 6. Let g : Rd Ñ R be a convex function. Then the linear functional
µÑ

³
gpxqdµ is l.s.c on P1pRdq

Proof. We can �nd an a�ne functional ` pxq such that ` ¤ fn ¤ g for all n. Since
µ P P1, the function ` is integrable, and we can apply the motone convergence
theorem: »

gpxqdµ � sup
n

»
fndµ

Since each map µÑ
³
fndµ is weak-* continuous, the map g Ñ

³
gpxqdµ is weak-*

l.s.c. �

Lemma 7. For ν, µ P P1pRdq, ν ¨ µ holds i�:»
fpxqdν ¤

»
fpxqdµ

for every f P C.
Proof. For any g convex, we have, by the preceding lemma g � supm fm, for some
sequence fm P C. The inequality holds for each fm, and we conclude by Fatou's
lemma. �

This is an (incomplete) order relation on the set of probability measures with
�nite �rst moment. It is known in potential theory as the Choquet ordering (see
[5], chapter XI.2 ). Note that if f is linear, both f and �f are convex, so that, if
ν ¤ µ, then: »

Rd

f pxq dν �

»
Rd

f pxq dµ

In particular, if ν À µ then ν and µ have the same barycenter.
Informally speaking, ν ¤ µ means that they have the same barycenter, but µ

is more spread out than ν. In potential theory, this is traditionally expressed by
saying that "µ est une balayée de ν", that is, "µ is swept away from ν". The
following elementary properties illustrates this basic intuition:



4 IVAR EKELAND AND WALTER SCHACHERMAYER

(1) (certainty equivalence) If x0 � Eµ rxs (x0 is the barycenter of µ) and δx0
is

the Dirac mass carried at x0, then δx0 ¤ µ
(2) (diversi�cation) If X1 � X2 have law µ, and Y � 1

2 pX1 �X2q has law ν,
then ν ¤ µ. Indeed, if f is convex:»

Rd

f pxq dν �

»
Ω

f pY q dP ¤
1

2

»
Ω

f pX1q dP �
1

2

»
Ω

f pX2q dP

�

�
1

2
�

1

2


»
Rd

f pxq dµ �

»
Rd

f pxq dµ

Lemma 8. Let µ P P1pRdq and let Irµs be the Choquet order interval of µ in
P1pRdq

Irµs � tν P P1pRdq : ν Î µu.

Then Irµs is a compact subset of PpRdq with respect to the weak-star topology
induced by C0pRdq.

Proof. As the weak-star topology on P1pRdq is metrisable it will su�ce to show
that every sequence pνnq

8
n�1 in Irµs has a cluster point.

The relation νn Î µ implies in particular that the �rst moment of νn are bounded
by the �rst moment of µ. This in turn implies that Prokhorov's condition is satis�ed,
i.e. for ε ¡ 0 there is a compact K � Rd such that νnpKq ¥ 1� ε, for all n P N.

By Prokhorov's theorem we may �nd a subsequence, still denoted by pνnq
8
n�1,

and a probability measure ν P PpRdq which is the weak-star limit. To show that
ν P Irµs, let f : Rd Ñ R be convex. By Lemma 6, we have:

xf, νy ¤ lim sup
nÑ8

xf, νny ¤ xf, µy.

�

The relationship with weak convergence in L1 is given by the next result. To
motivate it, consider a sequence of i.i.d. random variables Xn such that P rX �
�1s � 1{2 � P rX � 1s . Then Xn Ñ 0 weakly, and the law of the limit is δ0, but
all the Xn have the law 1

2δ�1 �
1
2δ1. Clearly δ0 ¤

1
2δ�1 �

1
2δ1.

Proposition 9. Suppose Xn is a sequence in L1
�
Ω,A, P ;Rd

�
, converging weakly

to Y . Denote by µn the law of Xn and by ν the law of Y . Suppose µn converges
weak-* to some µ̄ P P1

�
Rd

�
. Then ν ¤ µ̄, with equality if and only if }Xn�Y }1 Ñ 0

Proof. First note that µ © δErys. Indeed, for any convex function f with linear
growth, we have, by Jensen's inequality:»

fpxqdµn �

»
Ω

fpXnqdP ¥ fpErXnsq

and the left hand side converges to
³
fpxqdµ while the right-hand side converges to

fpErysq.
Now consider a �nite σ-algebra G � F . Denote by A the collection of atoms of

G. We have: »
fpxqdµn �

»
ErfpXnq|GsdP

and by the same method we show that:

µ ©
¸
APG

P rAsδErY |As
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Now let pGkq , k P N, be a sequence of �nite sub-sigma-algebras of F such that
Y is measurable w.r.t. σ pYkGkq. Denoting by νk the law of E rY | Gks, we have by
the above argument:

µ̄ © νk for all k

and hence µ̄ © ν by taking the limit when k Ñ8.
Turning to the �nal assertion, it follows from Lebesgue's dominated convergence

theorem that, since Xn converges to Y in the L1 norm, the law µn of Xn converges
to the law ν of Y weak-* in P1

�
Rd

�
.

Conversely suppose that pXnq
8
n�1 converges to Y weakly in L1pRdq and µ̄ ¤ ν.

For every A P F and every convex function f with lim supxÑ8
|fpxq|
pxq   8 we then

have

(2.1) lim
nÑ8

E rfpXnq1As � E rfpY q1As .

Indeed the inequality ¥ follows from Jensen as above. The reverse inequality
follows from the fact that

lim
nÑ8

ErfpXnqs � lim
nÑ8

xf, µny � xf, µ̄y � xf, νy � ErfpY qs.

In conjunction with

lim
nÑ8

ErfpXnq1ΩzAqs ¥ ErfpY q1ΩzAqs

this yields the inequality ¤ in (2.1).
Now suppose that pXnq

8
n�1 fails to converge to Y in the norm of L1pRdq, i.e.,

there is 1 ¡ α ¡ 0 such that

Pr|Xn � Y | ¥ αs ¥ α,

for in�nitely many n. Approximating Y by step functions we may �nd a set A P

F , P rAs ¡ 0, and a point y0 P A such that |Y � y0|  
α2

5 on A and

PrAX |Xn�  0 | ¥
α
2 s ¥

α
2PrAs.

We then have
Er|Y � y0|1As ¤

α2

5 PrAs
while

Er|Xn � y0|1As ¤
α2

4 PrAs,
a contradiction to (2.1). �

The Choquet ordering can be completely characterized in terms of Markov ker-
nels

De�nition 10. A Borel map α : Rd Ñ P1

�
Rd

�
is a Markov kernel if, for every

x P X, the barycenter of αx is x:

@x P X,

»
Rd

ydαx � x

If α is a Markov kernel, and ν P P
�
Rd

�
, we de�ne µ :�

³
Rd αxdν P P

�
Rd

�
by:»

Rd

f pxq dµ �

»
Rd

αx pfq dν

Theorem 11. If ν and µ are in P1

�
Rd

�
we have ν ¤ µ if and only if there exists

a Markov kernel αx such that µ �
³
Rd αxdν



6 IVAR EKELAND AND WALTER SCHACHERMAYER

Proof. Suppose there exists such a Markov kernel. For any convex function f ,
since x is the barycenter of αx, Jensen's inequality implies that αx pfq ¥ f pxq.
Integrating, we get: »

Rd

f pxq dµ �

»
Rd

αxpfqdν ¥

»
Rd

f pxq dν

so ν ¤ µ. The converse is known as Strassen's theorem (see [7], [5]) �

2.3. Optimal transport. In the sequel, µ and ν will be given in P1

�
Rd

�
, and µ

will have bounded support. We are interested in the following problem: maximize»
Rd

xx, T pxqy dµ

among all Borel maps T :RdÑ Rd which map µ on ν:

T 6µ � ν ðñ

»
fpyqdν �

»
fpT pxqqdµ @f P C0pRq

In the sequel, this will be referred to as the basic problem, and denoted by
(BPrµ, νs). If there is an optimal solution T , it has the property that if X is any
r.v. with law µ, then, among all r.v. Y with law ν, the one such that the correlation
EµrxX,Y ys is maximal is T pXq.

There is also a relaxed problem, denoted (RPrµ, νs). It consists of maximizing:»
Rd�Rd

xx, yy dλ

among all probability measures λ on Rd�Rd which have µ and ν as marginals.
Obviously, we have suppBP q ¤ suppRP q, and the latter is �nite because µ has
bounded support and ν has �nite �rst moment.

Finally, there is a dual problem, de�ned by (DPrµ, νs), which consists of mini-
mizing »

Rd

ϕpxqdµ�

»
Rd

ψpyqdν

over all pairs of functions ϕpxq and ψpyq such that ϕpxq � ψpyq ¥ xx, yy.
The following theorem summarizes results due to Kantorovitch [3], Kellerer [4]

Rachev and Ruschendorf [6], and Brenier [1]. It was originally formulated for the
case when µ and ν have �nite second moment, and this is also what is found in [8].
Indeed, in this case, since T 6µ � ν,we have:»

}x� T pxq }2dµ �

»
}x}2dµ�

»
}T pxq }2dµ� 2

»
xx, T pxqy dµ

�

»
}x}2dµ�

»
}y}2dν � 2

»
xx, T pxqy dµ

Since the two �rst terms on the right-hand side do not depend on T , the problem of
maximising

³
xx, T pxqy dµ (bilinear cost) is equivalent to the problem of maximizing³

}x�T pxq }2dµ (quadratic cost), for which general techniques are available. In the
case at hand, we will not assume that ν has �nite second moment, so this approach is
not available: the square distance is not de�ned, while the correlation maximisation
still makes sense.

We now recall Brenier's theorem [1] in the present setting. In order to obtaine
a transport of Monge type rather than Kantorovich type, we assume that µ is
absolutely continuous w.r.t Lebesgue measure. We note in passing that it would be
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su�cient to assume that only that µ does not "give mass to small sets", i.e. that
sets of Haussdor� dimension d� 1 have µ-measure 0 ([9]

Theorem 12. Suppose µ has compact support and is absolutely continuous w.r.t.
Lebesgue measure. Suppose also ν has �nite �rst moment. Then the basic problem
(BPrµ, νs) has a solution T , which is unique up to negligible subsets, and there is
a convex function ϕ : RdÑ R such that T pxq � ∇ϕpxq a.e..

The relaxed problem (RPrµ, νs) has λ �
³
δT pxqdµpxq as a unique solution.

Denoting by ψ the Fenchel transform of ϕ, all solutions to the dual problem
(DPrµ, νs) are of the form pϕ � a, ψ � aq for some constant a, up to µ-, resp ν-.,
a.s. equivalence. The values of the minimum in problem (DP) and of the maximum
in problems (BP) and (RP) are equal:

(2.2) maxpBP rµ, νsq � maxpRP rµ, νsq � minpDP rµ, νsq

Let us denote by mcrµ, νs this common value. We shall call it the maximal
correlation between µ and ν. It follows from the theorem that for any T 1, λ1, ϕ1, ψ1

satisfying the admissibility conditions, we have:»
Rd

@
x, T 1pxq

D
dµ ¤mcrµ, νs

»
Rd�Rd

xx, yy dλ1 ¤mcrµ, νs

»
Rd

ϕ1pxqdµ�

»
ψ1Rdpyqdν ¥mcrµ, νs

As an interesting consequence, we have:

Proposition 13. Let µ,ν1, ν2 be probability measures on Rd such that µ is abso-
lutely continuous w.r.t the Lebesgue measure and has bounded support, while ν1 and
ν2 have �nite �rst moment. Suppose ν1 ¤ ν2 and ν1 � ν2. Then mcrµ, ν1s  
mcrµ, ν2s.

Proof. By Theorem 11, there is a Markov kernel α such that:

(2.3) ν2 �

»
Rd

αxdν1

Let T1be the optimal solution of (BPrµ, ν1s). Consider the probability measure
λ on Rd � Rd de�ned by:

(2.4)

»
f px, yq dλ px, yq �

»
dµ pxq

»
f px, yq dαT1pxqpyq

Since αT1pxq is a probability measure, the �rst marginal of λ is µ. Let us compute

the second marginal. We have, for any f P C0pRdq,

»
Rd�Rd

fpyqdλpx, yq �

»
Rd

αT1pxqpfqdµpxq

�

»
Rd

αxpfqdν1pxq

� ν2pfq
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where the second equality comes from the fact that T1 maps µ on ν1 and the
second from equation (2.3). So the second marginal of λ is ν2, and λ is admissible
in problem (RPrµ, ν2s). A similar computation gives:»

Rd�Rd

xx, yy dλpx, yq �

»
Rd

B
x,

»
Rd

dαT1pxqpyq

F
dµ pxq

�

»
Rd

xx, T1pxqy dµ pxq �mcrµ, ν1s

Since λ has marginals µ and ν2, it is admissible in the relaxed problem(RPrµ, ν2s),
so that the left-hand side is at most mcrµ, ν2s while the right-hand side is equal to
mcrµ, ν1s. It follows that mcrµ, ν1s ¤ mcrµ, ν2s. If there is equality, then λ is an
optimal solution to (RPrµ, ν2s). By the uniqueness part of Theorem 12, we must
have λ �

³
δT1pxqdµpxq. Comparing with equation (2.4), we �nd αy � δy, holding

true ν1-almost surely. Writing this in equation (2.3) we get ν1 � ν2. �

2.4. Strongly exposed points. Let E be a Banach space, and C � E a closed
subset. For v P E1, consider the optimization problem:

(2.5) sup
u1PC

@
v, u1

D

De�nition 14. We say that v P E1exposes u P C if u solves problem (2.5) and is
the unique solution. We shall say that v P E1 it strongly exposes u P C if it exposes
u and all maximizing sequences in problem (2.5) converge to u:!

un P C, lim
n
xv, uny � xv, uy

)
ùñ lim

n
}u� un} � 0

We shall say that u P C is an exposed point (resp. strongly exposed) if it is
exposed (resp. strongly exposed) by some continuous linear functional v. It is a
classical result of Phelps that every weakly compact convex subset C of E is the
closed convex hull of its strongly exposed points.

3. Some geometric properties of law-invariant subsets of L1

Given ν P P1

�
Rd

�
, we de�ne two subsets Mpνq and Cpνq of L1by:

M pνq �
 
X P L1 |µX � ν

(
C pνq � tX |µX ¤ νu

Mpνq is closed in L1but not convex. To investigate the relation between M pνq
and C pνq, we shall need the following result:

Proposition 15. Let Y P L1pRdq with law ν, and let µ P P1pRdq such that µ Á ν.
Then there is a sequence pXnq

8
n�1 in Mpµq such that pXnq

8
n�1 converges weakly to

Y in L1pRdq.
In addition, there is a sequence pYnq

8
n�1 in the convex hull of pMpµqq which

converges strongly to Y in L1pRdq.

We start by recalling a well-known result from ergodic theory.

Lemma 16. Let Ω � t�1, 1uZ equipped with the Borel sigma-algebra F and Haar-
measure P, and let Tn the n'th shift, i.e.

Tn ppηkqkPZq � pηk�nqkPZ
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Let Z P L1pt�1, 1uZ,F ,P;Rdq. Then pZnq
8
n�1 :� pZ � Tnq

8
n�1 converges weakly to

the constant function ErZs.

Proof. Suppose that Z depends only on �nitely many coordinates and let A P F
also depend only on �nitely many coordinates of t�1, 1uZ. Then, for n large enough,
Zn :� Z0Tn is independent of A so that

ErZn|As � ErZns � ErZs.

The general case follows from approximation. �

Proof. (of the Proposition): Assume w.l.o.g. that L1pΩq is separable. Recall that,
pΩ,F ,Pq has no atoms. Suppose �rst that Y takes only �nitely many values, i.e.

Y �
Ņ

j�1

yj1Aj

where pyjq
N
j�1 P Rd and pA1, . . . , AN q forms a partition of Ω into sets in F with

strictly positive measure.
By an elementary version of Strassen's theorem we may �nd a Markov kernel

α � pαyj q
N
j�1 such that the barycenter of αyj is yj and

(3.1) µ �
Ņ

j�1

PrAjsαyj

Each of the sets Aj , equipped with the conditional probability P rAjs
�1P |Aj

is

Borel isomorphic to t�1, 1uZ, equipped with the Haar measure. Hence for each
j � 1, . . . , N we may �nd a random variable Zj : Aj Ñ Rd under P rAjs

�1P |Aj

such that law pZjq � αyj , so that its barycenter equals yj , as well as a sequence

pTj,nq
8
n�1 of measure-preserving transformations of Aj such that in the weak L

1pRdq
topology we have:

lim
nÑ8

pZj � Tnq1Aj � yj1Aj , j � 1, . . . , N.

Letting

Xn �
Ņ

j�1

pZj � Tnq1Aj

we obtain by (3.1) a sequence in L1pRdq such that the law of pXnq is � µ, converging

weakly to Y �
°N
j�1 yj1Aj

.

Now drop the assumption that Y is a simple function and �x a sequence pGmq8m�1

of �nite sub-sigma-algebras of F , generating F . Note that for Ym � ErY |Gms and
νm � law pYmq we have that νm   ν, by Jensen's inequality.

By the �rst part we may �nd, for each m ¥ 1, a sequence pXm,nq
8
n�1 in Mpµq

such that pXm,nq
8
n�1 converges weakly to Ym . Noting that pYmq

8
m�1 converges to Y

(in the norm of L1pRdq and therefore also weakly) we may �nd a sequence pnmq
8
m�1

tending su�ciently fast to in�nity, such that pXm,nm
q8m�1 converges weakly to Y .

As regards the �nal assertion it follows from Komlos' theorem that there is a
sequence of convex combinations of the above pXm,nmq

8
m�1 converging to Y in the

norm of L1pRdq. �

The relationship between C pνq and M pµq follows immediately:
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Theorem 17. The set C pνq is convex, weakly compact, and equals the weak closure
of M pνq:

C pνq �Mpνq
w
� coMpνq

Proof. Obviously Mpνq
w
� C pνq. Conversely, take any X P Cpνq. By Theorem

11, there is some Markov kernel α such that

ν �

»
Rd

αxdµX �

»
Ω

αXpωqdP

By the above proposition, there is a sequence Xn in M pνq such that Xn Ñ X

weakly, so X PMpνq
w
. This shows that C pνq �Mpνq

w
.

By Proposition 9, Cpνq is convex. It remains to show that it is weakly compact.
Since C pµq is the weak closure or M pµq, it is enough to show that M pµq is weakly
relatively compact. To do that, we shall use the Dunford-Pettis criterion. We claim
that Mpνq is equiintegrable. Indeed, for any X PMpνq and m ¡ 0, we have:»

|X|¡m

|X|dP � ν p|x| ¡ mq

which goes to 0 when mÑ8, independently of X. The result follows. �

We now investigate strongly exposing functionals and strongly exposed points
of Cpνq. We will show that any Z P L8, the law of which is a.c. w.r.t. Lebesgue
measure, strongly exposes a point of Cpνq (which must then belong to Mpνq) and
conversely, provided ν is absolutely continuous w.r.t. Lebesgue measure, that any
point of Mpνq is strongly exposed by such a Z.

Theorem 18. Let ν P P1

�
Rd

�
, Z P L8 and suppose the law of Z is absolutely

continuous with respect to Lebesgue measure. Then Z strongly exposes some point
of Cpνq, and the exposed point in fact belongs to Mpνq

Proof. Let µ be the law of Z and consider the maximal correlation problem (BPrµ, νs).
By Theorem 12, it has a unique solution T . Set X � T pZq. Clearly X has law ν,
and by uniqueness:

(3.2) rX 1 PMpνq, X 1 � Xs ùñ xZ,Xy ¡
@
Z,X 1

D
So X is an exposed point in Mpνq. Take any Y P Cpνq, so that µY ¤ν. By

Proposition 13, we have xZ,Xy ¥ xZ, Y y, and if xZ,Xy � xZ, Y y, then µY � µX �
ν. So Y must belong to Mpνq, and by formula (3.2), we must have Y � X. So X
is an exposed point in Cpνq as well.

It remains to prove that it is strongly exposed. For this, take a maximizing
sequence Xn in Cpνq. Since C pνq is weakly compact and νn ¨ ν, where νn is the
law of Xn, there is a subsequence Xnk

which converges weakly to some X 1 P Cpνq.
By Proposition , the set of all µ À ν is weak-� compact, so we may assume that the
laws νnk

converge weak-� to some ν̄. Obviously X 1 maximizes xZ,X 1y, and since
Z exposes X, we must have X 1 � X. So the Xnk

converge weakly to X, and, by
Proposition 9, µX � ν ¤ ν.

On the other hand, take any convex function f with linear growth. Since νnk
¤ ν

we have: »
fpxqdνnk

¤

»
fpxqdν
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Letting k Ñ8, we get:»
fpxqdν ¤ lim inf

k

»
fpxqdνnk

¤

»
fpxqdν

So ν � ν, and Proposition 9 then implies that }Xnk
�X}1 Ñ 0. Since the limit

does not depend on the subsequence, the whole sequence Xn converges, and X is
strongly exposed, as announced. �

Here is a kind of converse:

Theorem 19. Fix two measures µ and ν on Rd, the �rst one having �nite �rst
moment and the second one compact support. Suppose both of them are absolutely
continuous with respect to Lebesgue measure. Then, for every X with law µ, there
is a unique Z with law ν which strongly exposes X in C pµq.

Proof. Consider the maximal correlation problem (BP[µ, ν]). It has a unique solu-
tion T : Rd Ñ Rd verifying T 7µ � ν. Since both µ and ν are absolutely continuous
with respect to Lebesgue measure, the problem (BP[µ, ν]) also has a unique solution
S : Rd Ñ Rd verifying S7µ � ν. Clearly S � T�1 and T � S�1. De�ne Z � S pXq.
It is then the case that the law of Z is µ and T pZq � T � S pXq � X. Repeating
the preceding proof we �nd that Z strongly exposes X in C pXq. �

Note that the condition that ν be absolutely continuous with respect to the
Lebesgue measure cannot be dropped from the preceding theorem. This may be
seen by a variant of a well-known example in optimal transport theory ([9], Example
4.9). On R2 consider the measure ν which is uniformly distributed on the interval
t0u�r0, 1s while µ is uniformly distributed on the rectangle r�1, 1s�r0, 1s. Then
µ is absolutely continuous w.r.t. Lebesgue measure, while ν is not. Clearly the
optimal transport T from µ to ν for the maximal correlation problem is given by
the projection on the vertical axis. This map is not invertible.

Let pΩ,A, P q be given by Ω � r0, 1s equipped with the Lebesgue measure P
on the Borel σ-algebra. De�ne a random vector X P L1

�
Ω,A, P ;R2

�
by X pωq �

p0, ωq , so that the law of X is ν. Let us now calculate the maximal correlation
between µ and ν. Let Z0 P L

8 have law µ. and de�ne X0 � T pZ0q so that X0 has
law ν. By the proof of theorem 18 we get:

mc pµ, νq �

»
Ω

xX0, Z0y dP �

»
R2

xx, T pxqy dµ

�
1

2

» 1

�1

�» 1

0

x2
2dx2

�
dx1 �

» 1

0

x2
2dx2 �

1

3

On the other hand, we claim that:

(3.3)

»
xX,Z0y dP  

1

3

Since this holds for any Z0 with law µ, it shows that X does not expose any
point in C pµq. This is the desired counterexample.To prove (3.3), write Z0 pωq �
pZ0,1 pωq , Z0,2 pωqq and note that P rZ0,2 � X2s ¡ 0. Indeed, assume otherwise,
so that Z0,2 pωq � X2 pωq � ω almost surely. Then Z0,1 pωq is fully determined
by Z0,2 pωq, meaning that, in the image of Ω by Z, the second coordinate z1 is
determined by the �rst z2. This contradicts the fact that the law of Z is µ, which
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is absolutely continuous. Since the law of Z0,2 is the Lebesgue measure, but Z0,2

does not coincide with X, we have, from the uniqueness of the Brenier map:»
XZ0dP �

»
X2Z0,2dP  

»
X2

2dP �
1

3

Let us summarize our �ndings: There are measures µ and ν on R2 with compact
support, µ being absolutely continuous with respect to Lebesgue measure, and some
X P L8

�
R2

�
with law ν such that there is no Z P L8

�
R2

�
wich exposes X in C pµq
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