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CHRISTA CUCHIERO, WALTER SCHACHERMAYER AND TING-KAM LEONARD WONG

Abstract. Cover’s celebrated theorem states that the long run yield of a

properly chosen “universal” portfolio is almost as good as that of the best
retrospectively chosen constant rebalanced portfolio. The “universality” refers

to the fact that this result is model-free, i.e., not dependent on an underlying

stochastic process. We extend Cover’s theorem to the setting of stochastic
portfolio theory: the market portfolio is taken as the numéraire, and the re-

balancing rule need not be constant anymore but may depend on the current

state of the stock market. By fixing a stochastic model of the stock market
this model-free result is complemented by a comparison with the numéraire

portfolio. Roughly speaking, under appropriate assumptions the asymptotic

growth rate coincides for the three approaches mentioned in the title of this
paper. We present results in both discrete and continuous time.

1. Introduction

In [19] the question was raised whether there is a relation between T. Cover’s
theory of universal portfolio (which appeared as the very first paper of the present
journal, see [9]) and stochastic portfolio theory (SPT henceforth) as initiated by
R. Fernholz (see [17] and the references therein). After all, both theories ask for
general recipes for choosing in a preference-free way good (at least in the long run)
portfolios among d assets, whose prices over time are given by

S = (S1
t , . . . , S

d
t ).

Here the time t varies in T, where T stands either for N = {0, 1, . . .} (discrete time)
or R+ = [0,∞) (continuous time). In many cases S is modeled by a stochastic
process defined on some probability space. We note, however, that one may also
consider a model-free approach where S = (s1

t , . . . s
d
t )t∈T is just a deterministic tra-

jectory with values in (0,∞)d. Indeed, Cover and Ordentlich’s discrete time results
in [9, 10] are formulated in this model-free sense. The situation is more subtle in
continuous time due to stochastic integration. In [25], F. Jamishidian extended
Cover’s universal portfolio to continuous time under a setting of Itô processes sat-
isfying some asymptotic stability conditions.
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In stochastic portfolio theory one also seeks robust investment strategies. More
precisely, the strategies should be constructed using only observable quantities (such
as market weights and their quadratic variations) and should not depend on quan-
tities that are non-observable or difficult to estimate. In particular, no drift estima-
tion is involved which is usually required in expected utility maximization. These
are exactly the principles behind the concept of functionally generated portfolios
(see [17, Chapter 3]). While in most of the literature an Itô process setting is as-
sumed, much of SPT can be developed in a model-free setting as done by S. Pal and
L. Wong [30] in discrete time and by A. Schied et al. [31] in continuous time. The
reason why it works in continuous time is that the value processes of functionally
generated portfolios can be defined without stochastic integration.

In this paper we connect the two theories and provide additionally a comparison
with the numéraire portfolio, which corresponds to the classical log-optimal port-
folio.1 Relationships between the two theories were studied in the recent papers
by T. Ichiba and M. Brod [23, 4] as well as L. Wong [33]. In particular, Wong
[33] extends Cover’s approach to the family of functionally generated portfolios in
discrete time and shows that the distribution of wealth in this family satisfies a
pathwise large deviation principle.

1.1. Summary and discussion of the main results. In this article we work
under the setting of SPT. Namely, the market portfolio is taken as the benchmark,
or “numéraire”, so that the primary assets are the market weights which take values

in the open d-simplex defined by ∆d = {x ∈ (0, 1)d |
∑d
i=1 x

i = 1}. Its closure is

denoted by ∆̄d = {x ∈ [0, 1]d |
∑d
i=1 x

i = 1}. This enables us to analyze strategies
which depend on the market weights, and the performance of relative wealth with
respect to the market portfolio.

1.1.1. Discrete time. We start by summarizing our results in discrete time. We
extend Cover’s universal portfolio to a class of M -Lipschitz portfolio maps denoted
by LM . Each element of LM maps the market weights to long-only portfolio
weights in ∆̄d (see Definition 3.1).

Denoting by (V πt )∞t=0 the relative wealth process corresponding to a portfolio
strategy2 (πt)

∞
t=1, we are interested in comparing the asymptotic growth rates

lim
T→∞

1

T
log(V πT ),

for certain “optimal” portfolio choices π. More precisely, under suitable conditions
we establish asymptotic equality of the growth rates of the following portfolios:

• the best retrospectively chosen portfolio at time T in the class L :=⋃∞
M=1 LM (in this context V ∗,MT will denote the relative wealth at time T

achieved by investing according to the best strategy in LM over the time
interval [0, T ]);

• the analogue of Cover’s universal portfolio whose relative wealth process
(Vt(ν))∞t=0 is defined in (3.2) (here ν is a probability measure on L with
full support on each LM );

• the log-optimal portfolio among the class of long-only strategies, whose

relative wealth process is denoted by (V̂t)
∞
t=0.

1Henceforth, we only use the terminlogy log-optimal portfolio.
2Here, the portfolio weight πt is chosen at time t− 1 and is used over the time interval [t− 1, t].
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The first two portfolios can be compared in a model-free way (see Theorem 3.9).
To compare them with the log-optimal portfolio we have to introduce a probabilistic
setting. Our main result can then be roughly stated as follows:

Theorem 1.1. Let (µt)
∞
t=0 be a time-homogenous ergodic Markov process in dis-

crete time describing the dynamics of the market weights. Then

lim
M→∞

lim
T→∞

1

T
log(V ∗,MT ) = lim

T→∞

1

T
log(VT (ν)) = lim

T→∞

1

T
log(V̂T )(1.1)

holds almost surely.

Intuitively, this theorem says that a suitable full support mixture of strategies
(given by the universal portfolio) is asymptotically as good as the best one chosen
with hindsight, and the log-optimal portfolio constructed with full knowledge of
the underlying process.

1.1.2. Continuous time. Theorem 1.1, which involves Lipschitz portfolio maps, can-
not be extended directly to continuous time because of stochastic integrals. Instead,
we consider functionally generated portfolios (see Section 4) whose relative wealth
processes can be defined in a pathwise manner (see e.g. [31]). This choice not only
allows model-free considerations but also perfectly connects Cover’s theory with
SPT in continuous time. By replacing the set LM by certain spaces of function-
ally generated portfolios and assuming that the log-optimal portfolio is functionally
generated, we get essentially the same theorem as above.

Apart from the work by F. Jamshidian [25], universal portfolio theory has only
been studied sparingly in continuous time; see for example the paper [24] which
studied the performance of the universal portfolio under the “Hybrid Atlas” model.
To the best of our knowledge generalizations to nonparametric families of portfolio
maps (in continuous time) have not been considered so far. In this sense, our results
significantly extend the continuous time literature.

While our approach focuses on the mathematical aspects, universal portfolio
strategies have also been studied extensively in an algorithmic framework. See [29]
for a recent survey and in particular [21].

1.1.3. Discussion of the results. Our model-free approach has clear advantages over
classical ones which heavily rely on a particular model choice. Even in the case
when the model class (e.g. the Heston model or Lévy models) is correctly specified,
model parameters cannot be estimated precisely and always come with a confidence
interval. So, in practice the estimated optimal portfolio is always different from the
true optimal one. Our results support the idea that a Bayesian average in the spirit
of Cover’s universal portfolio is, in the long run, better than a suboptimal estimate.

As for the original theorems of Cover and Jamshidian, a valid criticism is of
course that we only establish asymptotic equality on a first-order log-return basis.
As such, a lot of important information is lost in the limit. However, one cannot
expect to obtain any information on higher-order terms unless further quantitative
assumptions are made on the considered models. Cover’s aim and also the goal of
the present article is to be as model-free as possible.3 Nevertheless, it is of great
theoretical and practical interest to strengthen the asymptotic results to quantita-
tive ones under suitable additional conditions. We hope to address this important
question in future research.

3We are grateful to one of anonymous referees for pointing this out.
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The remainder of the paper is organized as follows. In Section 2 we provide a
brief overview (in discrete time for convenience) of the main topics of this paper, i.e.,
Cover’s theorem, the setting of SPT and the log-optimal portfolio. In Section 3 we
establish Theorem 1.1 in discrete time (see Theorem 3.10 and Corollary 3.11), while
Section 4 is dedicated to proving the corresponding statements in continuous time
in the setting of functionally generated portfolios and – for the comparison with
the log-optimal portfolio – under the assumption that the market weights follow an
ergodic Itô diffusion (see Theorem 4.11 and Corollary 4.13). Some auxiliary and
technical proofs are gathered in the appendix.

2. Overview of the three portfolios

For expositional simplicity time is discrete in this section.

2.1. Cover’s universal portfolio. Cover’s insight reveals that the “wisdom of
hindsight” does not give significant advantages over a properly chosen “universal”
portfolio constructed using only historical and current prices of the assets. The
relevant optimality criterion here is the asymptotic growth rate of the portfolio.

Let us sketch this – at first glance surprising – result in a particularly easy
setting (compare [9, 10]): Fix T ∈ N and think of an investor who at time T looks
back which stock she should have bought at time t = 0 (by investing her initial
endowment and subsequently holding the stock). There is an obvious solution: pick
i ∈ {1, . . . , d} which maximizes the normalized logarithmic return

1

T
(log(SiT )− log(Si0)).(2.1)

The problem with this trading strategy is, of course, that we have to make our
choice at time t = 0 instead of t = T . Here is the remedy (compare e.g., [3]): at
time t = 0 simply divide the initial endowment, say 1AC, into d portions of 1

dAC,
invest each portion in each of the stocks and then hold the resulting portfolio. At
time T the normalized logarithmic return satisfies4

1

T
log(VT ) ≥ 1

T
log

1

d

d∑
j=1

SjT
Sj0

 ≥ 1

T

(
log(SiT )− log(Si0)− log d

)
,(2.2)

where again i denotes the stock which performed best during the time interval

[0, T ]. Hence the difference between (2.1) and (2.2) can be bounded by log(d)
T which

tends to zero as T →∞. Hence this buy-and-hold portfolio, which corresponds to
a universal portfolio in the sense of Cover, has asymptotically the same normalized
logarithmic return as the – only retrospectively known – best performing stock.

Instead of these “pure” investments Cover considered a more ambitious setting,
namely all constant rebalanced portfolio strategies: let b = (b1, . . . , bd) ∈ ∆̄d, i.e.,

bj ≥ 0 and
∑d
j=1 b

j = 1. The value of the corresponding constant rebalanced

portfolio (Vt(b))
∞
t=0 starting at V0(b) = 1 is defined by holding throughout the

proportion bj of the current wealth in stock j, so that V0(b) = 1 and

Vt+1(b)

Vt(b)
(s) =

d∑
j=1

bj
sjt+1

sjt
,(2.3)

4Later we will use V to denote instead the relative wealth of the portfolio.
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for each trajectory s = ((sjt )
d
j=1)∞t=0 ⊂ (0,∞)d of the stocks.

Fix again T and define the quantity V ∗T by

V ∗T (s) = max
b∈∆̄d

VT (b)(s),(2.4)

which is a function of the trajectory s = (s1
t , . . . , s

d
t )
T
t=0. Again, the idea is that,

with hindsight, i.e., knowing (s1
t , . . . , s

d
t )
T
t=0, one considers the best weight b ∈ ∆̄d

which attains the maximum (2.4). Cover’s goal is to construct a portfolio which
generates wealth that performs asymptotically as well as the process (V ∗T )∞T=0 as
T → ∞, uniformly over all price paths. For this reason the portfolio is said to be
universal. In order to do so, let ν be a probability measure on ∆̄d which replaces
the previous uniform distribution over the d stocks. The universal portfolio is
built by investing at time 0 the portion dν(b) of initial capital in the constant
rebalanced portfolio V (b) and by subsequently following the constant rebalanced
portfolio process (Vt(b))

T
t=0. The explicit formula for the wealth is

Vt(ν)(s) =

∫
∆̄d

Vt(b)(s)dν(b),(2.5)

where Vt(b) is defined by (2.3). The portfolio weight of the corresponding universal
portfolio is given by the wealth-weighted average

bνt (s) =

∫
∆̄d bVt(b)(s)dν(b)∫
∆̄d Vt(b)(s)dν(b)

.(2.6)

Let us now recall Cover’s celebrated result:

Theorem 2.1. (Cover [9]): Let ν be a probability measure on ∆̄d with full support.
Then

lim
T→∞

1

T
(log(VT (ν)(s))− log(V ∗T (s))) = 0,(2.7)

for all trajectories s = (s1
t , . . . , s

d
t )
∞
t=0 for which there are constants 0 < c ≤ C <∞

such that

c ≤
sjt+1

sjt
≤ C, for all j = 1, . . . , d and all t ∈ N.(2.8)

The proof is given in the Appendix.

Remark 2.2. As shown by T. Cover and E. Ordentlich [10], the condition (2.8) can
be dropped at least when ν is the uniform or Dirichlet( 1

2 , · · · ,
1
2 ) distribution on

∆d (see also A. Blum and A. Kalai [3] for an elegant proof in case of the uniform
distribution).

Remark 2.3. Let M1(∆̄d) be the set of probability measures on ∆̄d. For each
µ ∈ M1(∆̄d), consider the value

∫
∆̄d VT (b)(s)dµ(b) of the mixture portfolio with

initial measure µ. Note that the constant rebalanced portfolio VT (b) corresponds
to the case where µ is the point mass at b. It is easy to see that

sup
µ∈M1(∆̄)

∫
∆̄d

VT (b)(s)dµ(b) = V ∗T (s),
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where V ∗T (s) is defined by (2.4). It follows that the universal portfolio (2.5) (with
initial measure ν) is still asymptotically optimal in the larger class{( ∫

∆̄d bVt(b)dµ(b)∫
∆̄d Vt(b)(s)dµ(b)

)
t≥0

|µ ∈M1(∆̄d)

}
.(2.9)

2.2. Stochastic portfolio theory, portfolio maps and the corresponding
universal portfolio. In SPT we let (s1, . . . , sd) denote the market capitalizations
of the stocks rather than their prices. Then we define the vector of market weights
(µ1, . . . , µd) ∈ ∆d by

(µ1, . . . , µd) =

(
s1

s1 + · · ·+ sd
, . . . ,

sd

s1 + · · ·+ sd

)
.

This amounts to taking the market portfolio (whose value at time t is
∑d
j=1 s

j
t ) as

the numéraire (compare [11] and [15]).
The relative wealth process (V πt )∞t=0, expressed in units of the market portfolio

and starting at V0 = 1, is obtained by the following recursive relation5

V πt+1

V πt
=

d∑
j=1

πjt+1

µjt+1

µjt
.(2.10)

In general, we allow all predictable, admissible trading strategies (πt)
∞
t=1, where the

portfolio weight πt is used over the time interval [t− 1, t]. In this paper all trading
strategies are fully invested in the equity market, i.e., the portfolio weights sum to
1 for all t. In particular, the strategies do not lend or borrow money. Henceforth
all wealth processes are measured in units of the market portfolio.

We will focus on trading strategies defined by (deterministic) portfolio maps.
These are (Borel) measurable functions

π : ∆d → ∆̄d(2.11)

which associate to the current market capitalization µt = (µ1
t , . . . , µ

d
t ) the weights

(π(µt) = (π1(µt), . . . , π
d(µt)) according to which an agent distributes current wealth

among the d stocks at time t. The constant rebalanced portfolio strategies considered
by Cover correspond to the constant functions π : ∆d → ∆̄d.

In this paper we extend Cover’s theory of constant rebalanced portfolios to certain
families of portfolio maps. First we note that Cover’s and Jamshidian’s definition
of a universal portfolio as in (2.6) and (2.5) can be easily extended to a general
setting. Let G denote some appropriate space of portfolio maps, B(G) its Borel
σ-algebra and ν some probability measure on G.

Definition 2.4. Let ν be a probability measure on (G,B(G)). Then the correspond-
ing universal portfolio at time t is given by the wealth-weighted average

πνt =

∫
G πV

π
t dν(π)∫

G V
π
t dν(π)

.(2.12)

From (2.10) it is easily seen that the wealth generated by πν is given by

VT (ν) =

∫
G
V πT dν(π).(2.13)

5Here it is assumed implicitly that the stocks do not pay dividends. This assumption is common
in universal and stochastic portfolio theory and allows us to focus on the main ideas.
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2.3. The log-optimal portfolio. To define the log-optimal portfolio we consider
a probabilistic setting. The stock price process S = (S1

t , . . . , S
d
t )∞t=0 and the cor-

responding relative market capitalizations µ = (µ1
t , . . . , µ

d
t )
∞
t=0 are now assumed to

be stochastic processes defined on a filtered probability space (Ω,F , (Ft)∞t=0,P).
There is a large literature on the log-optimal portfolio (see e.g., [2], [26] and the

references given there). For a fixed horizon T , this portfolio is by definition the
maximizer of the expected logarithmic growth rate

E[log(V πT )] = E

T−1∑
t=0

log

 d∑
j=1

πjt+1

µjt+1

µjt

(2.14)

over all predictable, admissible trading strategies (πt)
T
t=1. Under mild assumptions

on the process a unique optimizer exists; see e.g., [2, 28].
To connect the log-optimal portfolio with universal portfolios in the sense of

Definition 2.4 we need appropriate assumptions. We will assume that µ is a time-
homogenous Markov process, and we will restrict to long-only portfolios in the
optimization of (2.14). These imply that the optimal portfolio in (2.14) (over the
set of predictable processes taking values in ∆̄d) has the form πt = π(µt−1), where
π : ∆d 7→ ∆̄d as in (2.11). We denote the corresponding optimizer by π̂.

The Markovian assumption can be motivated by the stability of capital dis-
tributions of equity markets (see [17, Chapter 5]). In SPT, this led to systems
of interacting Brownian particles whose dynamics depend on their relative rank-
ings. Under suitable conditions, these systems show behaviors observed in large
equity markets. See, for example [1, 24] for “Atlas”-type models and the references
therein6. We also refer to [27] which studies the growth optimal portfolio in a
Markovian setting with uncertainties.

3. A comparison of the three approaches - the discrete time case

Throughout this section we work in discrete time and assume that the market
weights are described by a d-dimensional path µ = (µt)

∞
t=0 with values in ∆d. We

consider as far as possible a model-free approach, but will introduce a probabilistic
setting when the log-optimal portfolio is involved.

3.1. Definitions of the portfolios. We start by defining rigorously, in the present
setting, the three portfolios introduced in Section 1 and Section 2.

3.1.1. The best retrospectively chosen portfolio. Consider Cover’s theme of choosing
retrospectively at time T a strategy which is optimal within a certain class of
strategies, in our case portfolio maps π : ∆d → ∆̄d. A moment’s reflection reveals
that it does not make sense to allow to choose among all measurable functions
π : ∆d → ∆̄d. Indeed, there is no restriction to choose π such that π(µt) = ej(t),

where j(t) ∈ {1, . . . , d}maximizes µjt+1/µ
j
t . This is asking for too much clairvoyance

and does not allow for meaningful results (compare [10] and [3, Section 5]).
However, it does make sense (economically as well as mathematically) to restrict

to more regular trading strategies. In particular, we work with the following set of
M -Lipschitz portfolio maps. For ε > 0 we let ∆̄d

ε denote the set of x ∈ ∆d satisfying
xj ≥ ε

d , for j = 1, . . . , d. Also we let ‖ · ‖1 be the usual 1-norm.

6A comparison between the log-optimal portfolio and Cover’s universal portfolio is studied in [24].
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Definition 3.1. For M > 0 we denote by LM the set of all M -Lipschitz functions
∆d → ∆̄d

M−1 , i.e., ‖π(x)− π(y)‖1 ≤ L‖x− y‖1, x, y ∈ ∆d.

Remark 3.2. The set LM of M -Lipschitz functions π : ∆d → ∆̄d
M−1 is a compact

metric space with respect to the topology of uniform convergence induced by the
norm ‖π‖∞ = sup{‖π(x)‖1 : x ∈ ∆d}.

Remark 3.3. Instead of Lipschitz functions we could just as well consider other
compact function spaces, e.g., Hölder spaces equipped with a proper norm. This is
done in the context of functionally generated portfolios in Section 4.

The retrospectively chosen best performing portfolio among the above Lipschitz
maps is defined as follows:

Definition 3.4. For a given trajectory (µt)
T
t=0 ∈ (∆d)T+1 we define

V ∗,MT = sup
π∈LM

V πT = sup
π∈LM

T−1∏
t=0

 d∑
j=1

πj(µt)
µjt+1

µjt

 .(3.1)

By compactness (see Remark 3.2) and continuity of the map π 7→ V πT there exists

an optimizer π∗,M ∈ LM (not necessarily unique) such that V ∗,MT = V π
∗,M

T , thus
the sup above can be replaced by max.

3.1.2. The universal portfolio. Our aim is to find a predictable process πM =
(πMt )∞t=1, i.e., one which depends only on the history of the market weights, such

that the performance of (V π
M

t )∞t=0 is asymptotically as good as that of (V ∗,Mt )∞t=0.
This can be achieved by the universal portfolio introduced in Definition 2.4, where
the G is now LM as in Definition 3.1. As LM is a compact metric space, we may
find a (Borel) probability measure ν on (LM , ‖ · ‖∞) with full support; this will be
essential for establishing an analog to Theorem 2.1. The (relative) wealth of the
universal portfolio is given, as in (2.13), by

VMT (ν) =

∫
LM

V πT dν(π).(3.2)

3.1.3. The log-optimal portfolio. In order to relate the universal portfolio to the
(long-only) log-optimal portfolio, we assume that µ = (µt)

∞
t=0 is a time-homogeneous

Markov process (see Section 2.3). Here is a precise statement.

Assumption 3.5. The process µ is a time homogeneous, ergodic Markov process
with a unique invariant measure % on the open simplex ∆d.

We denote the transition kernel of the chain by by (%(x, ·))x∈∆d , i.e., for all Borel
sets A ⊆ ∆̄d we have P[µt+1 ∈ A|Ft] = %(µt, A). For further notions concerning
ergodic Markov processes we refer to [14].

The long-only log-optimal trading strategy π̂, as noted above, is given in terms
of a portfolio map. Given that µt = x ∈ ∆d, we know the conditional law %(x, ·) of
µt+1. We therefore choose π̂(x) ∈ ∆̄d as the maximizer

π̂(x) = arg max
p∈∆̄d

(∫
∆d

log(〈p, y
x

〉
)%(x, dy)

)
(3.3)
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and assume that π̂(·) can be chosen to be measurable (here 〈, 〉 denotes the Euclidean
dot product). For x ∈ ∆d define the number L(x) as the value of the optimization
problem (3.3), i.e.,

L(x) = max
p∈∆̄d

(∫
∆d

log(〈p, y
x
〉)%(x, dy)

)
=

∫
∆d

log(〈π̂(x),
y

x
〉)%(x, dy).(3.4)

Considering π(x) = x (which corresponds to the market portfolio) we clearly have
L(x) ≥ 0 for each x ∈ ∆d. We obtain the a.s. relation

L(x) = E

[
log

(
V̂t+1

V̂t

)∣∣∣∣∣µt = x

]
,

where V̂ = (V̂t)
∞
t=0 denotes the long-only log-optimal wealth process V π̂ defined by

the portfolio map π̂ via (2.10).

Assumption 3.6. Using the above notation we assume that

L :=

∫
∆d

L(x)d%(x) <∞.(3.5)

Applying Birkhoff’s ergodic theorem for discrete time Markov processes (see [14,
Theorem 2.2, Section 2.1.4] we have the following result.

Theorem 3.7. Under Assumptions 3.5 and 3.6, we have that, for %-a.e. starting
value µ0 ∈ ∆d,

(3.6) lim
T→∞

1

T
log(V̂T ) = L,

the limit holding true a.s. as well as in L1.
More generally, let π : ∆d → ∆̄d be any measurable portfolio map such that

(3.7) Lπ :=

∫
∆d

(∫
∆d

log
(〈
π(x),

y

x

〉)
%(x, dy)

)
d%(x) > −∞.

We then have, for %-a.s. starting value µ0, that

(3.8) lim
T→∞

1

T
log(V πT ) = Lπ

a.s. as well as in L1.

In general there is little reason why the function π̂ should have better regularity
properties than being just measurable. On the other hand, we may approximate π̂
by more regular functions, in particular by functions in LM . This will be crucial for
comparing the asymptotic growth rates. The following result is intuitively obvious,
but the proof turns out to be quite technical and will be given in the appendix.

Lemma 3.8. Under Assumptions 3.5 and 3.6, for any ε > 0 there exist M > 0
and an M -Lipschitz function πLip ∈ LM such that

LπLip > L− ε,

where L and Lπ are given in (3.5) and (3.7) respectively. In particular, we have
L = supM supπ∈LM Lπ.
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3.2. Asymptotically equivalent growth rates. We are now ready to compare
the asymptotic performance of the three approaches. We first establish an analogue
of Theorem 2.1.

Theorem 3.9. Fix M > 0 and a Borel probability measure ν with full support on
LM . For every trajectory (µt)

∞
t=0 in ∆d we have

lim
T→∞

1

T
(log(V ∗,MT )− log(VMT (ν))) = 0.(3.9)

Proof. The inequality “≥” is obvious. For the reverse inequality we follow the
argument of [3]. As LM is compact and ν has full support, it is not difficult to see
that for any η > 0, there exists δ > 0 such that every η-neighbourhood of a point
π ∈ LM has ν-measure bigger than δ.

Let a trajectory (µt)
∞
t=0 in ∆d be given. For a fixed time T let π∗,M ∈ LM be an

optimizer of (3.1). Consider a portfolio map πM ∈ LM with ‖πM − π∗,M‖∞ < η,

i.e., such that, for every x ∈ ∆d we have ‖πM (x) − π∗,M (x)‖1 =
∑d
j=1 |πM (x)j −

π∗,M (x)j | < η.
Choose η > 0 small enough so that α = ηMd < 1 and define, for x ∈ ∆d,

π̃(x) =
1

α
πM (x)− 1− α

α
π∗,M (x).(3.10)

Rearranging, we have

πM (x) = (1− α)π∗,M (x) + απ̃(x).(3.11)

It is easy to see that that π̃ maps ∆d into ∆̄d.
Using (3.11), we have the estimate

1

T
log V π

M

T =
1

T

T−1∑
t=0

log(〈πM (µt),
µt+1

µt
〉)

≥ 1

T

T−1∑
t=0

log(〈(1− α)π∗,M (µt),
µt+1

µt
〉)

=
1

T
log(V ∗,MT ) + log(1− α).

(3.12)

Fix ε > 0. Choosing η > 0 sufficiently small we can make α = ηMd small enough
such that the final term is bigger than −ε. Summing up, we have

1

T
[log(V ∗,MT )− log(V π

M

T )] < ε(3.13)

whenever ‖πM − π∗,M‖∞ < η.
Denote by B = Bη(π∗,M ) the ‖ · ‖∞-ball with radius η in LM which has ν-

measure at least δ > 0, where δ only depends on η. As each element πM of B
satisfies (3.13) we have

1

T
log(VMT (ν)) ≥ log(δ)

T
+

1

T
log(V ∗,MT )− ε.(3.14)

Now (3.9) is proved by sending in (3.14) T to infinity and letting ε to zero. �
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Note that in Theorem 3.9 we do not need the uniform boundedness condition
(2.8) (compare this result with [33, Lemma 3.3]). We now combine Lemma 3.8
(which is probabilistic) with Theorem 3.9 (which is pathwise) to obtain – under
suitable assumptions – equality of the asymptotic performance among the three
portfolios. We first consider the space LM for a fixed M . In Corollary 3.11 below
we then formulate a result for L =

⋃
M LM .

Theorem 3.10. Let Ω = (∆d)N be the canonical path space equipped with its natural
filtration and a probability measure P. Define µ = (µt)

∞
t=0 to be the canonical

process, i.e., µt(ω) = ωt, which takes values in ∆d and satisfies Assumptions 3.5
and 3.6. Moreover, let M > 0 be a fixed Lipschitz constant for the space LM .
Consider the following objects that are defined for each trajectory (µt)

∞
t=0: 7

(i) Define for each T ∈ N the portfolio map π∗,M ∈ LM as well as the

corresponding wealth V ∗,MT := V π
∗,M

T as in (3.1).
(ii) Fix a probability measure ν on LM with full support and consider the

wealth process of the universal portfolio (VMt (ν))∞t=0 as of (3.2).
(iii) Define the log-optimal portfolio among the portfolio maps π ∈ LM by

π̂M = arg max
π∈LM

∫
∆d

[∫
∆d

log(〈π(x),
y

x
〉)%(x, dy)

]
d%(x)(3.15)

and the corresponding wealth process (V̂Mt )∞t=0 = (V π̂
M

t )∞t=0 via (2.10).

Then, we have P-a.s.

lim inf
T→∞

1

T
log(V ∗,MT ) = lim inf

T→∞

1

T
log(VMT (ν)) = lim

T→∞

1

T
log(V̂MT ) = sup

π∈LM

Lπ,

(3.16)

where Lπ is given in (3.7). In addition, the first equality holds for all trajectories
(µt)

∞
t=0 in ∆d.

Proof. We first note that π̂M is well-defined; simply use the compactness of LM

with respect to ‖ · ‖∞ (compare the proof of Lemma 3.8). Note also that by the
ergodic theorem (Theorem 3.7), we have for each π ∈ LM

lim
T→∞

1

T
log V πT = Lπ P-a.s.,

where Lπ is defined by (3.7). In particular, as π̂M ∈ LM by definition, we have

lim
T→∞

1

T
log V̂MT = sup

π∈LM

Lπ P-a.s.(3.17)

That the first equality in (3.16) holds for all trajectories (µt)
∞
t=0 in ∆d was shown

in Theorem 3.9.
For each fixed T ∈ N we obviously have

1

T
log(V̂MT ) ≤ 1

T
log(V ∗,MT ) P-a.s.(3.18)

Using (3.17), (3.18) and Theorem 3.9 we thus have P-a.s.

sup
π∈LM

Lπ = lim
T→∞

1

T
log(V̂MT ) ≤ lim inf

T→∞

1

T
log(V ∗,MT ) = lim inf

T→∞

1

T
log(VMT (ν)).

(3.19)

7To simplify the notations we will suppress ω.
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On the other hand, by the definition of (V̂Mt )∞t=0 as the log-optimizer within the
class LM , we have

E[log(VMT (ν))] ≤ sup
π∈LM

E[log(V πT )] = E[log(V̂MT )].(3.20)

To see this, note that the universal portfolio is given by (2.12). By the time-
homogenous Markovianity it is thus sufficient to dominate the left hand side of
(3.20) by taking the supremum over elements in LM .

Combining now (3.20), Theorem 3.7 and (3.19) yields that

E
[
lim inf
T→∞

1

T
log(VMT (ν))

]
≤ lim inf

T→∞

1

T
E[log(VMT (ν)]

≤ lim
T→∞

1

T
E[log(V̂MT )]

= lim
T→∞

1

T
log(V̂MT )

≤ lim inf
T→∞

1

T
log V ∗,MT

= lim inf
T→∞

1

T
log(VMT (ν)), P-a.s.

Here, the first inequality follows from Fatou’s lemma (note here that 1
T log(VMT (ν))

is bounded from below, see e.g., (3.14)). From this we see that the quantity

lim infT→∞
1
T log(VMT (ν)) is P-a.s. constant and equal to limT→∞

1
T log(V̂MT ). This

completes the proof of the theorem. �

Next we will send M to infinity in the following way. For M = 1, 2, 3, . . . choose
a measure νM on LM with full support. Define ν =

∑∞
M=1 2−MνM and the wealth

of the universal portfolio V (ν) as in (3.2) by

Vt(ν) =

∫
L

V πt dν(π), t ∈ N.(3.21)

where L =
⋃∞
M=1 LM . Recall that (V̂t)

∞
t=0 is the wealth process of the (long-only)

log-optimal portfolio (3.3).

Corollary 3.11. Under the assumptions of Theorem 3.10 we have P-a.s.

lim
M→∞

lim
T→∞

1

T
log V ∗,MT = lim

T→∞

1

T
log VT (ν) = lim

T→∞

1

T
log V̂T = L,(3.22)

where L is defined in (3.5).

Proof. Letting M →∞ in (3.16), we have

lim
M→∞

lim inf
T→∞

1

T
log V ∗,MT = lim

M→∞
sup

π∈LM

Lπ = L = lim
T→∞

1

T
log V̂T ,

where the last equality follows from Theorem 3.7 and the second last follows from
Lemma 3.8. By construction VT (ν) ≥ 2−MVMT (νM ) for every M , so we have by
Theorem 3.9 for every M

lim inf
T→∞

1

T
log VT (ν) ≥ lim inf

T→∞

1

T
(−M log 2 + log VMT (νM )) = lim inf

T→∞

1

T
log V ∗,MT ,

and hence also

lim inf
T→∞

1

T
log VT (ν) ≥ lim

M→∞
lim inf
T→∞

1

T
log V ∗,MT .
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Using the same argument as in the last part of the proof of Theorem 3.10, we get

lim
M→∞

lim inf
T→∞

1

T
log V ∗,MT = lim inf

T→∞

1

T
log VT (ν) = lim

T→∞

1

T
log V̂T = L.(3.23)

Now the corollary is proved if

lim sup
T→∞

1

T
(log VT (ν)− log V̂T ) = lim sup

T→∞

1

T
log

(
VT (ν)

V̂T

)
= 0,(3.24)

holds P-a.s. As by Lemma 3.12, (Vt(ν)

V̂t
)∞t=0 is a non-negative supermartingale, it

converges P-a.s. to a finite limit as t→∞. This in turn implies (3.24) and proves
the assertion. �

Lemma 3.12. The process (Vt(ν)

V̂t
)∞t=0 is a non-negative supermartingale.

Proof. First note that for any π : ∆d → ∆̄d, (
V πt
V̂t

)∞t=0 is a non-negative supermartin-

gale. Indeed, by Lemma 3.13 below we have

E

[
V πt+1

V̂t+1

∣∣Ft] =
V πt

V̂t

∫
∆d

〈π(µt),
y
µt
〉

〈π̂(µt),
y
µt
〉
%(µt, dy) ≤ V πt

V̂t
.

By Fubini’s theorem we get the supermartingale property of (Vt(ν)

V̂t
)∞t=0,

E

[
Vt+1(ν)

V̂t+1

∣∣Ft] = E

[∫
L

V πt+1

V̂t+1

dν(π)
∣∣Ft]

=

∫
L

E

[
V πt+1

V̂t+1

∣∣Ft] dν(π)

≤
∫

L

V πt

V̂t
dν(π) =

Vt(ν)

V̂t
.

�

Here we establish the supermartingale property used in the previous proof.

Lemma 3.13. Let π̂ be given by (3.3). Then for every π : ∆d → ∆̄d and every
x ∈ ∆d, ∫

∆d

〈π(x), yx 〉
〈π̂(x), yx 〉

%(x, dy) ≤ 1.

Proof. We proceed as in the proof of [2, Proposition 4.3]. Fix π and α ∈ (0, 1) and
define πα = απ + (1 − α)π̂. Then by the (long only) log-optimality of π̂ we have
for every x ∈ ∆d

0 ≤
∫

∆d

(
log〈π̂(x),

y

x
〉 − log〈πα(x),

y

x
〉
)
%(x, dy) =

∫
∆d

(∫ 〈π̂(x), yx 〉

〈πα(x), yx 〉

1

z
dz

)
%(x, dy)

≤
∫

∆d

〈π̂(x), yx 〉 − 〈π
α(x), yx 〉

〈πα(x), yx 〉
%(x, dy) =

∫
∆d

〈α(π̂(x)− π(x)), yx 〉
〈πα(x), yx 〉

%(x, dy).

Hence,∫
∆d

〈π(x), yx 〉
〈πα(x), yx 〉

%(x, dy) ≤
∫

∆d

〈π̂(x), yx 〉
〈πα(x), yx 〉

%(x, dy) ≤
∫

∆d

〈π̂(x), yx 〉
〈(1− α)π̂(x), yx 〉

%(x, dy),
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where the last equality follows from πα ≥ (1−α)π̂. By Fatou’s lemma we therefore
have∫

∆d

〈π(x), yx 〉
〈π̂(x), yx 〉

%(x, dy) =

∫
∆d

lim
α→0

〈π(x), yx 〉
〈πα(x), yx 〉

%(x, dy) ≤ lim
α→0

∫
∆d

〈π(x), yx 〉
〈πα(x), yx 〉

%(x, dy)

≤ lim
α→0

1

1− α

∫
∆d

〈π̂(x), yx 〉
〈π̂(x), yx 〉

%(x, dy) = 1.

�

4. The continuous time case with functionally generated portfolios

This section is dedicated to a similar analysis in continuous time and with func-
tionally generated portfolio maps [17, Chapter 3]. Using the pathwise Itô calculus
developed by H. Föllmer [20], we can define the corresponding wealth processes in
a pathwise manner for any continuous market path admitting a quadratic variation
process. This allows us to define the best retrospectively chosen portfolio which is
not well-defined in general (and in particular for the Lipschitz portfolio maps).

4.1. Functionally generated portfolios. We consider the following set of con-
cave functions. For some fixed M > 0 and 0 ≤ α ≤ 1, we define

GM,α =

{
G ∈ C2,α(∆̄d), concave such that ‖G‖C2,α ≤M and G ≥ 1

M

}
,

where C2,α(∆̄d) denotes the Hölder space of 2-times continuously differentiable
functions from ∆̄d → R whose derivatives are α-Hölder continuous. That is,

C2,α(∆̄d) = {G ∈ C2(∆̄d) | ‖G‖C2,α <∞},
where

‖G‖C2,α = max
|k|≤2

‖DkG‖∞ + max
|k|=2

sup
x 6=y

|DkG(x)−DkG(y)|
‖x− y‖α

with k denoting a multi-index in N2. For α = 0 the second term in this norm
is left away. Note that G is only defined on the simplex ∆d. In order that the
partial derivatives are well defined, we assume that each G is extended to an open
neighborhood of ∆d such that G(x) = G(x′), where x′ is the orthogonal projection
of x onto ∆d. The choice of the extension is irrelevant.

Here is an analytical lemma whose proof is given in the appendix.

Lemma 4.1. For any M,α > 0 the set GM,α is compact with respect to ‖ · ‖C2,0 .

To the set of generating functions GM,α we associate now the set of functionally
generated portfolios FGM,α in the spirit of [17] defined by

FGM,α =

{
πG : ∆d → ∆̄d,

x 7→ (πG(x))i = xi

DiG(x)

G(x)
+ 1−

d∑
j=1

DjG(x)

G(x)
xj

 , i = 1, . . . d, |G ∈ GM,α

}
.

(4.1)

By the concavity of G, πG takes values in ∆̄d, i.e., it is long-only (see e.g. [19,

Remark 11.1]). The corresponding wealth processes are denoted by V π
G

or V G.
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For these portfolios it is possible to obtain a pathwise expression for V π
G

. We
refer the reader to [31] for extensions of this pathwise approach to time-dependent
and path-dependent generating functions. There this is achieved by applying the
functional Itô calculus developed by B. Dupire [13] and R. Cont and D. Fournié
[7, 8], which generalizes Föllmer’s Itô calculus to path-dependent functionals. In
this paper we only consider functionally generated portfolio maps as defined in
(4.1).

We adopt the notation of [31] and fix a refining sequence of partitions (Tn)∞n=1

of [0,∞), i.e., Tn = {t0, t1, . . .} is such that 0 = tn0 < tn1 < · · · and tnk → ∞ as
k → ∞, and T1 ⊂ T2 ⊂ · · · . Moreover, the mesh of Tn tends to zero on each
compact interval as n→∞. Furthermore, we denote the successor of t ∈ Tn by t′.
That is, t′ = min{u ∈ Tn |, u > t}. Throughout this section the market weights
are described by a d-dimensional continuous path µ = (µt)t≥0 with values in ∆d.
Here and henceforth we let S+

d be the set of d× d positive definite matrices.

Assumption 4.2. The path (µt)t≥0 admits a continuous S+
d -valued quadratic vari-

ation [µ] along (Tn) in the sense of [20], i.e., for any 1 ≤ i, j ≤ d and all t ≥ 0 the
sequence ∑

s∈Tn,s≤t
(µis′ − µis)(µ

j
s′ − µ

j
s)

converges to a finite limit, as n → ∞, denoted [µi, µj ]t, such that t 7→ [µi, µj ]t is
continuous.

The dynamics of the relative wealth process V π
G

built by investing according to
πG ∈ FGM,α are given in this continuous time case by

dV π
G

t

V π
G

t

=

d∑
i=1

(πG(µt))
i dµ

i
t

µit
=

d∑
i=1

DiG(µt)

G(µt)
dµit, V π0 = 1,(4.2)

(compare (2.10) in the discrete time case), where the right hand side has to be
understood as Föllmer’s pathwise integral (c.f. Equation (2.5) in [31]). Note that

the second equality holds by the definition of πG and the fact that
∑d
i=1 dµ

i
t = 0.

Using (4.2) and Föllmer’s Itô calculus, we have the following pathwise version of
Fernholz’s [17] master equation (also see [31, Theorem 2.9]).

Corollary 4.3. Let G ∈ C2(∆̄d) and πG be defined as in (4.1). Let (µt)t≥0 be a

continuous path satisfying Assumption 4.2. Then V π
G

satisfies

V π
G

T ≡ V GT =
G(µT )

G(µ0)
eg([0,T ]), 0 ≤ T <∞,(4.3)

where g(dt) = − 1
2G(µt)

∑
i,j D

ijG(µt)d[µi, µj ]t.

4.2. Definitions of the portfolios. We again consider (i) the best retrospectively
chosen portfolio, (ii) the universal portfolio and (iii) the log-optimal portfolio. To
define the log-optimal portfolio we will restrict to a specific stochastic model intro-
duced in Section 4.2.3. In Section 4.2.4 we derive the asymptotic growth rate for
this model class under an additional ergodicity assumption.
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4.2.1. The best retrospectively chosen portfolio. We consider the set of function-
ally generated portfolios FGM,α and a given continuous path (µt)t≥0 satisfying
Assumption 4.2. For M,α > 0 fixed, we define

V ∗,M,α
T = sup

πG∈FGM,α
V π

G

T = sup
G∈GM,α

V GT .(4.4)

We first prove that an optimizer exists by establishing the following continuity
property whose proof can be found in the appendix.

Lemma 4.4. Let T,M,α > 0 be fixed and (µt)t≥0 be a continuous path satisfying
Assumption 4.2. Consider the function G 7→ V GT where V GT is given by (4.3). Then
G 7→ V GT is continuous from (GM,α, ‖ · ‖C2,0) to R.

Proposition 4.5. Let T be fixed and (µt)t≥0 be a continuous path satisfying As-

sumption 4.2. Let V ∗,M,α
T be defined by (4.4). Then there exists an optimizer

G∗T ∈ GM,αand in turn a portfolio π∗T generated by G∗T such that

V ∗,M,α
T = V

π∗T
T = V

G∗T
T .

Proof. This is simply a consequence of continuity as proved in Lemma 4.4 and
compactness of (GM,α, ‖ · ‖C2,0) as shown in Lemma 4.1. �

4.2.2. Universal portfolio. To define the analogue of Cover’s/Jamshidian’s portfolio
in the present setting, let m be a Borel probability measure on (GM,α, ‖ · ‖C2,0).
Consider the map

F : GM,α → FGM,α; G 7→ F (G) = πG,(4.5)

where πG is given by (4.1). Define now on (FGM,α, ‖ · ‖∞) a Borel probability
measure ν via the pushforward ν = F∗m. As in Definition 2.4, we then define the
corresponding universal portfolio via

πνT =

∫
FGM,α π

G(µT )V π
G

T dν(πG)∫
FGM,α V

πG
T dν(πG)

.(4.6)

Analogous to (2.13), the value of the universal portfolio is given by

VM,α
T (ν) := V π

ν

T =

∫
FGM,α

V π
G

T dν(πG) =

∫
GM,α

V GT dm(G).(4.7)

Remark 4.6. More precisely, we need to verify that the universal portfolio still
allows for pathwise integration and that the value of the portfolio (as a pathwise
integral) is given by the right hand side of (4.7). These claims can be easily checked
using the definitions and results in [31], so we omit the details.

4.2.3. Functionally generated log-optimal portfolios. By definition, the log-optimal
portfolios requires a stochastic model for the market weights. We suppose that
µ = (µ1

t , . . . , µ
d
t )t≥0 follows a time-homogeneous Markovian Itô diffusion, defined

on (Ω,F , (Ft)t≥0,P) with values in ∆d, given by

µt = µ0 +

∫ t

0

c(µs)λ(µs)ds+

∫ t

0

√
c(µs)dWs, µ0 ∈ ∆d,(4.8)
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where
√
· denotes the matrix square root, W is a d-dimensional Brownian motion, λ

is a Borel measurable function from ∆d → Rd and c is a Borel measurable function
from ∆d → Sd+, satisfying∫ T

0

λ>(µt)c(µt)λ(µt)dt <∞, ∀T ∈ [0,∞),(4.9)

c(x)1 = 0,
∑
i,j

cij(x)λ(x)j = 0, ∀x ∈ ∆d.(4.10)

The requirements in (4.10) are necessary to guarantee that the process µ lies in
∆d. Note that (µt)t≥0 given by (4.8) satisfies the so called structure condition (see

[32]) (because of (4.9) and the fact that the drift part is of form
∫ t

0
c(µs)λ(µs)ds).

This structural condition characterizes the condition of “no unbounded profit with
bounded risk” (NUPBR) in the case of continuous semimartingales (see e.g., [22]).

In this setting the proportions of current (relative) wealth invested in each of
the assets are described by processes π in the following set

Π = {π |Hd-valued, predictable, R-integrable},(4.11)

where the process R is defined componentwise by Rit =
∫ t

0
dµis
µis

. Here, Hd denotes

the hyperplane corresponding to portfolio weights that are not necessarily long-

only, i.e., Hd = {x ∈ Rd|
∑d
j=1 x

j = 1}. Note that the set FGM,α is clearly a
subset of long-only strategies in Π. The relative wealth process V π satisfies

dV πt
V πt

=

d∑
i=1

πit
dµit
µit

, V π0 = 1.(4.12)

In contrast to Section 4.1, this is a usual stochastic integral because we are dealing
with general integrands π. Note that we can also write

V πT = E((π •R))T = exp

(∫ T

0

(
π

µt

)>
dµt −

1

2

∫ T

0

(
π

µt

)>
c(µt)

π

µt
dt

)
(4.13)

= exp

∫ T

0

d∑
i=1

πi
dµit
µit
− 1

2

∫ T

0

∑
i,j

πi

µit

πj

µjt
cij(µt)dt

 ,

where, for two vectors p, q ∈ Rd, p/q always denotes the componentwise quotient

(p
1

q1 , . . . ,
pd

qd
).

Next we consider the log-optimal portfolio defined by (2.14) (but in continuous
time now). As in [16, Section 3.1], we derive the ratio of two wealth processes V π

and V θ for π, θ ∈ Π. Using (4.12) (for the processes π and θ) and Itô’s lemma, this
ratio is given by

d

(
V πt
V θt

)
=
V πt
V θt

(
πt
µt
− θt
µt

)>(
dµt − c(µt)

θt
µt
dt

)
=
V πt
V θt

(
πt
µt
− θt
µt

)>(√
c(µt)dWt + c(µt)

(
λ(µt)−

θt
µt

)
dt

)
.
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The finite variation part of the expression vanishes for every π ∈ Π if we choose
θ ∈ Π such that

c(µt)

(
θt
µt
− λ(µt)

)
= 0, P-a.s. for all t ≥ 0.(4.14)

By passing from the scaled relative weights θ/µ to ordinary portfolio weights via [16,
Equation (5)], the generic solution of (4.14), which we denote by π̂8, is given by

π̂it = µit

λi(µt) + 1−
d∑
j=1

µjtλ
j(µt)

 .(4.15)

Let V̂ be the associated wealth process. From (4.14), the ratio V πt /V̂t is, for any

π ∈ Π, a non-negative local martingale and therefore a supermartingale. Hence V̂t
yields the relative wealth process corresponding to the log-optimal portfolio (see
e.g., [26, 16]). Indeed, by the supermartingale property and Jensen’s inequality

E
[
log(V πT )− log(V̂T )

]
= E

[
log

(
V πT

V̂T

)]
≤ log

(
E
[
V πT

V̂T

])
≤ 0.

Thus E[log(V πT )] ≤ E[log(V̂T )] for all π ∈ Π.
By (4.13), the expected value of the log-optimal portfolio is given by

sup
π∈Π

E[log V πT ] =
1

2
E

[∫ T

0

λ>(µt)c(µt)λ(µt)dt

]
.

So far we have optimized over all strategies in Π. In the sequel we shall mainly
consider suprema taken over smaller sets, in particular over FGM,α. Note that in
this case the optimizer will still be a function of the market weights due to the
Markov property of (µt)t≥0.

In this context let us also answer the question of when the log-optimal portfolio
is functionally generated. This is needed to relate its asymptotic growth rate to the
one of the best retrospectively chosen portfolio and the universal portfolio.

Proposition 4.7. Let (µt)t≥0 be of the form (4.8). Then the log-optimal portfolio
is generated by a differentiable function G, i.e.,

π̂it = µit

DiG(µt)

G(µt)
+ 1−

d∑
j=1

µjt
DjG(µt)

G(µt)

 , i = 1, . . . , d,

if the drift characteristic λ satisfies

λ(x) = ∇ logG(x) =
∇G(x)

G(x)
, x ∈ ∆d.

Proof. The assertion follows from expression (4.15). �

8By a slight abuse of notation, we here write π̂ although we do not restrict to long-only portfolios
as in Section 2.3.
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4.2.4. Asymptotic growth rates for an ergodic market weights process.

Assumption 4.8. The process µ as given in (4.8) is an ergodic process with sta-
tionary measure % on ∆d.

With this assumption we derive an expression of the asymptotic growth rate
limT→∞

1
T log V πT . For the precise notion of ergodicity in continuous time we refer

to [14, Section 2.2., Theorem 2.4 and Section 2.2.3]. Assumption 4.8 is essentially
satisfied under a mean reversion condition. Examples include polynomial models
for the market weights staying in the interior of the simplex (see [5, Theorem 5.1])
with the subclass of volatility stabilized models [18].

In the following theorem we consider portfolio maps which are not necessarily
long-only, but can take values in the hyperplane Hd.

Theorem 4.9. Under Assumption 4.8 the following statements hold true:

(i) Let π : ∆d → Hd be any (%-measurable) portfolio map such that∫
∆d

∣∣∣∣∣
(
π(x)

x

)>
c(x)λ(x)

∣∣∣∣∣ %(dx) <∞,

Qπ :=

∫
∆d

(
π(x)

x

)>
c(x)

(
π(x)

x

)
%(dx) <∞.(4.16)

We then have, for %-a.e. starting value µ0, that

lim
T→∞

1

T
log(V πT ) = Lπ :=

∫
∆d

(
π(x)

x

)>
c(x)λ(x)%(dx)

− 1

2

∫
∆d

(
π(x)

x

)>
c(x)

(
π(x)

x

)
%(dx), P-a.s.

(ii) Assume that L := 1
2

∫
∆d λ

>(x)c(x)λ(x)%(dx) <∞. Then, for %-a.e. start-
ing value µ0, it holds that

lim
T→∞

1

T
log V̂T = L, P-a.s.

The proof of Theorem 4.9 relies on the following lemma which is stated and
proved in [17, Lemma 1.3.2].

Lemma 4.10. Let M be a continuous local martingale such that

lim
T→∞

1

T 2
〈M,M〉T log log T = 0, P-a.s.(4.17)

Then limT→∞
1
TMT = 0, P-a.s.

Proof of Theorem 4.9. Let us start by proving statement (i). By (4.12), log V πT
reads as

log V πT =

∫ T

0

(
π(µt)

µt

)>
c(µt)λ(µt)dt−

1

2

∫ T

0

(
π(µt)

µt

)>
c(µt)

π(µt)

µt
dt

+

∫ T

0

(
π(µt)

µt

)>√
c(µt)dWt.

(4.18)

The local martingale part

Mπ
T :=

∫ T

0

(
π(µt)

µt

)>√
c(µt)dWt
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satisfies Condition (4.17) of Lemma 4.10 below. Indeed, by the ergodic theorem in
continuous time (see e.g.,[14, Theorem 2.4 and Section 2.2.3]) and (4.16) we have

1

T
〈Mπ,Mπ〉T =

1

T

∫ T

0

(
π(µt)

µt

)>
c(µt)

π(µt)

µt
dt

T→∞→ Qπ <∞, P-a.s.

Multiplying the left hand side with (log log T )/T , therefore yields Condition (4.17)
and

1

T
Mπ
T =

1

T

∫ T

0

(
π(µt)

µt

)>√
c(µt)dWt → 0, P-a.s.

Hence, evoking again the ergodic theorem yields

lim
T→∞

1

T
log V πT = lim

T→∞

1

T

(∫ T

0

(
π(µt)

µt

)>
c(µt)λ(µt)dt−

1

2

∫ T

0

(
π(µt)

µt

)>
c(µt)

π(µt)

µt
dt

)

=

∫
∆d

(
π(x)

x

)>
c(x)λ(x)%(dx)− 1

2

∫
∆d

(
π(x)

x

)>
c(x)

(
π(x)

x

)
%(dx),

P-a.s. (and also in L1(Ω,F , P )) and thus assertion (i).
Concerning statement (ii), note from (4.14) that the scaled relative weights cor-

responding to the log-optimal portfolio satisfy

c(x)

(
π̂(x)

x
− λ(x)

)
= 0.

Thus, by (4.18) and (4.12), log V̂T simplifies to

log V̂T =
1

2

∫ T

0

λ>(µt)c(µt)λ(µt)dt+

∫ T

0

λ>(µt)
√
c(µt)dWt.

In this case we have

1

T
〈M π̂,M π̂〉T =

1

T

∫ T

0

λ>(µt)c(µt)λ(µt)dt
T→∞→ 2L, P-a.s.,

which yields by the same argument as above

1

T
M π̂
T =

1

T

∫ T

0

λ>(µt)
√
c(µt)dWt → 0, P-a.s.

and in turn

lim
T→∞

1

T
log V̂T = lim

T→∞

1

2T

∫ T

0

λ>(µt)c(µt)λ(µt)dt = L, P-a.s.

�

4.3. Asymptotically equivalent growth rates. As in discrete time we will es-
tablish asymptotic equality of the growth rates of all three portfolio types intro-
duced in Section 4.2. First we compare the best retrospectively chosen portfolio
with the universal one. For an analogous result in the context of optimal arbitrage
see Theorem 4.5 of Kardaras and Robertson [27].

Theorem 4.11. Let M,α > 0 be fixed and let (µt)t≥0 be a continuous path satis-
fying Assumption 4.2 such that for all i ∈ {1, . . . , d}

lim
T→∞

1

T
[µi, µi]T <∞.(4.19)
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Consider a probability measure m on GM,α with full support and set ν = F∗m with
F defined in (4.5). Then

lim
T→∞

1

T
(log V ∗,M,α

T − log VM,α
T (ν)) = 0,

where V ∗,M,α and VM,α(ν) are defined in (4.4) and (4.7) respectively.

Proof. The inequality “≥” is obvious. For the converse inequality we proceed sim-
ilarly as in the previous section (using only generating functions). As m has full
support and GM,α is compact, we have that, for η > 0 there exists some δ > 0, such
that every η-neighborhood of a point G ∈ GM,α has m-measure bigger than δ.

Let T ≥ 1 and denote by G∗T the optimizer as of Proposition 4.5. Consider now
a generating function G such ‖G−G∗T ‖C2,0 ≤ η. Then it follows from (A.9) that

1

T

(
log(V GT )− log(V

G∗T
T )

)
≥ 1

T

(
−2Mη −

(
M

2
d2η +

M3

2
d2η

)
max
i

[µi, µi]T

)
=: −KT .

(4.20)

Fix ε > 0 and note that by assumption (4.19) and continuity of T 7→ 1
T [ui, ui]T on

[1,∞), supT∈[1,∞)
1
T [µi, µi]T can be bounded by some constant. Therefore we can

choose η sufficiently small such that KT ≤ ε for all T ≥ 1.
Denote by B = Bη(G∗T ) the ‖ · ‖C2,0-ball with radius η in GM,α which has m-

measure at least δ > 0, where δ only depends on η. We then may estimate using
Jensen’s inequality and (4.20)(

VM,α
T (ν)

V
G∗T
T

) 1
T

=

(∫
GM,α V

G
T m(dG)

V
G∗T
T

) 1
T

≥

(∫
Bη(G∗T )

V GT m(dG)

V
G∗T
T

) 1
T

≥ δ 1
T −1

∫
Bη(G∗T )

(V GT )
1
Tm(dG)

(V
G∗T
T )

1
T

≥ δ 1
T e−KT ≥ δ 1

T e−ε.

Letting T → ∞ for any given ε (which determines η and in turn δ) yields the
assertion. �

To compare the asymptotic performance with that of the log-optimal portfolio,
we optimize over portfolio maps in FGM,α and suppose henceforth that (µt)t≥0 is
of the form (4.8). Under Assumption 4.8 and from Theorem 4.9 define

π̂M,α := arg max
πG∈FGM,α

(∫
∆d

(
πG(x)

x

)>
c(x)λ(x)%(dx)

−1

2

∫
∆d

(
πG(x)

x

)>
c(x)

(
πG(x)

x

)
%(dx)

)(4.21)

and the corresponding wealth process V̂M,α by V̂M,α = V π̂
M,α

, whenever π̂M,α is
well defined. As

sup
πG∈FGM,α

E
[
log(V π

G

T )
]

yields π̂M,α as optimizer for all T > 0, V̂M,α corresponds to the log-optimal portfolio
among functionally generated portfolios with generating function in GM,α.
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Theorem 4.12. Let M,α > 0 be fixed and let (µt)t≥0 be a stochastic process of
the form (4.8) satisfying Assumption 4.8. Moreover, suppose that∫

∆d

cii(x)%(dx) <∞, for all i ∈ {1, . . . , d},(4.22) ∫
∆d

max
i∈{1,...,d}

|(c(x)λ(x))i|%(dx) <∞.(4.23)

Consider a probability measure m on GM,α with full support and set ν = F∗m with
F defined in (4.5). Then

lim inf
T→∞

1

T
log V ∗,M,α

T = lim inf
T→∞

1

T
log VM,α

T (ν) = lim
T→∞

1

T
log V̂M,α

T , P-a.s.(4.24)

where V̂M,α
T denotes the log-optimal portfolio among FGM,α-maps defined via (4.21),

V ∗,M,α and VM,α(ν) are defined pathwise in (4.4) and (4.7) respectively.

Proof. We first note that π̂M,α is well-defined. Indeed, the map

G 7→
∫

∆d

(
πG(x)

x

)>
c(x)λ(x)%(dx)− 1

2

∫
∆d

(
πG(x)

x

)>
c(x)

(
πG(x)

x

)
%(dx)

=

∫
∆d

(
∇G(x)

G(x)

)>
c(x)λ(x)%(dx)− 1

2

∫
∆d

(
∇G(x)

G(x)

)>
c(x)

(
∇G(x)

G(x)

)
%(dx)

is continuous from (GM,α, ‖ · ‖2,0) to R. This together with compactness of GM,α

with respect to ‖ · ‖2,0 imply the well-definedness of π̂M,α.
Note also that (4.22) and (4.23) as well as the conditions on G imply the assump-

tions of the ergodic theorem (Theorem 4.9). Hence, we have for each πG ∈ FGM,α

the P-a.s. limit

lim
T→∞

1

T
log V π

G

T = Lπ
G

.

In particular,

lim
T→∞

1

T
log V̂M,α

T = sup
πG∈FGM,α

Lπ
G

=: LM,α(4.25)

holds P-a.s.
Due to (4.22), we can now apply Theorem 4.11 which implies the first equality in

(4.24). Moreover, we have by the definition of V ∗,M,α
T for each fixed T the inequality

1

T
log(V̂M,α

T ) ≤ 1

T
log(V ∗,M,α

T ), P-a.s.(4.26)

Using (4.25), (4.26) and Theorem 4.11, we thus have P-a.s.,

LM,α = lim
T→∞

1

T
log(V̂M,α

T ) ≤ lim inf
T→∞

1

T
log(V ∗,M,α

T ) = lim inf
T→∞

1

T
log(VM,α

T (ν)).

(4.27)

On the other hand, by the definition of (V̂M,α
t )t≥0 as log-optimizer within the class

FGM,α

E[log(VM,α
T (ν))] ≤ sup

πG∈FGM,α
E[log(V π

G

T )] = E[log(V̂M,α
T )](4.28)

holds. Concerning the first inequality, note that the universal portfolio to build the

wealth VM,α
T (ν) is given by (4.6). By the time-homogenous Markovianity it is thus
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sufficient to dominate the left hand side of (4.28) by taking the supremum over

elements in FGM,α.
Combining now (4.28), Theorem 4.9 and (4.27) yields,

E[lim inf
T→∞

1

T
log(VM,α

T (ν))] ≤ lim inf
T→∞

1

T
E[log(VM,α

T (ν))]

≤ lim
T→∞

1

T
E[log(V̂M,α

T )]

= lim
T→∞

1

T
log(V̂M,α

T )

≤ lim inf
T→∞

1

T
log(VM,α

T (ν)), P-a.s.,

where the first inequality follows from Fatou’s lemma. From this we see that

lim inf
T→∞

1

T
log(VM,α

T (ν))

is P-a.s. constant and equal to limT→∞
1
T log(V̂M,α

T ). Hence the assertion is proved.
�

As in the previous section we can formulate a result not depending explicitly on
the constant M on α. Setting α = 1

M we choose for M = 1, 2, 3, . . . a measure mM

on GM, 1
M with full support. Define m =

∑∞
M=1 2−MmM and the process V (ν) by

VT (ν) =

∫
⋃∞
M=1 G

M, 1
M

V GT m(dG).

In order to compare the performance with the one of the global log-optimal
portfolio, whenever it is functionally generated, we combine the above results with
Proposition 4.7.

Corollary 4.13. Let (µt)t≥0 be a stochastic process of form (4.8) satisfying As-
sumption 4.8. Moreover, suppose that λ and c satisfy (4.22) and

λ(x) =
∇Ĝ(x)

Ĝ(x)
,(4.29)

L =
1

2

∫
∆d

∇Ĝ(x)

Ĝ(x)
c(x)
∇Ĝ(x)

Ĝ(x)
%(dx) <∞(4.30)

for some concave function Ĝ ∈ C2(∆̄d). Then we have P-a.s.

lim
M→∞

lim
T→∞

1

T
log(V

∗,M, 1
M

T ) = lim
T→∞

1

T
log(VT (ν)) = lim

T→∞

1

T
log(V̂T ) = L.(4.31)

Proof. Note first that L is well defined due to (4.30). Furthermore, note that for

every ε > 0, there exists some M > 0 and some function G ∈ GM, 1
M such that

lim
T→∞

1

T
log(V GT ) ≥ lim

T→∞

1

T
log(V̂T ) + ε.

Indeed this simply follows from continuity of G 7→ V G as asserted in Lemma 4.4
and by choosing G ∈ GM, 1

M close enough with respect to the ‖ · ‖C2,0 to the opti-

mizing function Ĝ ∈ C2(∆̄d) whose generated portfolio yields V̂ due to (4.29) and
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Proposition 4.7. By Theorem 4.12, we can therefore conclude (following the proof
of Corollary 3.11) that

lim
M→∞

lim inf
T→∞

1

T
log(V

∗,M, 1
M

T ) = lim inf
T→∞

1

T
log(VT (ν)) = lim

T→∞

1

T
log(V̂T ) = L(4.32)

holds true. As Theorem 4.11 implies that

lim sup
T→∞

1

T
log VT (ν) = lim

M→∞
lim sup
T→∞

1

T
log V

∗,M, 1
M

T ,

the assertion is proved if

lim sup
T→∞

1

T
(log VT (ν)− log V̂T ) = lim sup

T→∞

1

T
log

(
VT (ν)

V̂T

)
= 0, P-a.s.(4.33)

By the considerations of Section 4.2.3 (see also [2, Propostion 4.3]), it follows that

(Vt(ν)

V̂t
)t≥0 is a non-negative supermartingale. It converges P-a.s. to a finite limit as

t→∞. This in turn implies (4.33) and proves the statement. �

Finally, a similar result can be obtained by restricting the log-optimal portfolio
to the class of C2-functionally generated portfolios without imposing the drift con-

dition in Proposition 4.7. We denote by V fun
T the wealth process of the log-optimal

portfolio among concave C2-functionally generated portfolios, i.e., πfun is defined as
in (4.21), however by taking the arg max over all concave C2-functionally generated
portfolios.

Corollary 4.14. Let (µt)t≥0 be a stochastic process of form (4.8) satisfying As-
sumption 4.8. Moreover, suppose that (4.22) and (4.23) hold true. Then

lim
M→∞

lim inf
T→∞

1

T
log V

∗,M, 1
M

T = lim inf
T→∞

1

T
log VT (ν) = lim

T→∞

1

T
log V fun

T , P-a.s.

(4.34)

Proof. The proof is the same as the first part of Corollary 4.13 up to (4.32). Note
that we cannot get rid of the lim inf because the supermartingale argument from
the proof of Corollary 4.13 does not hold. �

Appendix A. Proofs of certain results and lemmas

Proof of Theorem 2.1. Fix T > 0 and the trajectory s = (s1
t , . . . , s

d
t )
T
t=0 ∈ (Rd)T+1.

For fixed s the function b 7→ VT (b)(s) is continuous on ∆̄d. Hence there is b̄ = b̄(s) ∈
∆̄d such that

V ∗T (s) = VT (b̄)(s).(A.1)

In fact, condition (2.8) implies that the sequence of functions (b 7→ 1
T log VT (b))∞T=1

is Lipschitz on ∆̄d, uniformly in T ∈ N and s satisfying (2.8) for some fixed constants
C > c > 0.

Indeed, consider the distance on ∆̄d defined by ‖b− b̃‖1 =
∑d
j=1 |bj − b̃j |. Then

we may estimate

| 1
T

log VT (b)− 1

T
log VT (̃b)| ≤ (log(C)− log(c))‖b− b̃‖1.
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For ε > 0 we may therefore define δ := cε
C > 0 such that, for every δ-neighborhood

U(b̄) around any b̄ ∈ ∆̄d we have

1

T
log VT (b) ≥ 1

T
log VT (b̄)− ε,

for every b ∈ U(b̄). If the probability measure ν has full support, we also may find
η = η(ε, c, C) > 0 such that each such δ-neighborhood U(b̄), where b̄ runs through
∆̄d, satisfies ν(U(b̄)) > η. Using (A.1) we therefore may conclude, similarly as in
(A.8), that (2.7) holds true, uniformly in s = (s1

t , . . . , s
d
t )
∞
t=0 satisfying (2.8) for

some fixed constants C > c > 0. �

Proof of Lemma 3.8. Let π̂ : ∆d → ∆̄d be the optimizer of (3.3) and define, for
0 < ε < 1,

πε = (1− ε)π̂ + ε

(
1

d
, . . . ,

1

d

)
.

Note that πε takes values in ∆̄d
ε (see Definition 3.1), which is crucial for the sub-

sequent arguments and the reason why we do not directly work with π̂. Also note
that, for p ∈ ∆̄d

ε , we have

〈p, y
x
〉 =

d∑
j=1

pj
yj

xj
≥ ε

d
,(A.2)

for x, y ∈ ∆d, as at least one of the terms yj

xj is greater than or equal to one.
The average performance Lπε defined via (3.7) for the portfolio map πε is still

almost as good as the optimal average performance L ≡ Lπ̂:

Lπε =

∫
∆d

[∫
∆d

log(〈πε(x),
y

x
〉)%(x, dy)

]
d%(x)

≥
∫

∆d

[∫
∆d

log((1− ε)〈π̂(x),
y

x
〉)%(x, dy)

]
d%(x)

≥ L+ log(1− ε).

(A.3)

To approximate πε by a Lipschitz function πLip taking its values in ∆̄d
ε , we need

some preparation. By Assumption 3.6 we can find δ > 0 such that, for A ⊆ ∆d,

(A.4)

∫
A

[∫
∆d

(log(
ε

d
)− log(〈πε(x),

y

x
〉))%(x, dy)

]
d%(x) > −ε,

provided that %[A] < δ. In particular, we may find η > 0 such that

(A.5)

∫
∆d\∆̄d

η

[∫
∆d

(log(
ε

d
)− log(〈πε(x),

y

x
〉))d%(x, y)

]
d%(x) > −ε.

Now we find a Lipschitz function πLip : ∆d → ∆̄d
ε such that

(A.6) ‖πLip(x)− πε(x)‖1 =

d∑
j=1

|πLip(x)j − πε(x)j | < ηε2,

for all x ∈ ∆d\A, where the exceptional set A satisfies %[A] < δ. Indeed, the
functions from Rd → ∆̄d

ε which are continuously differentiable in a neighborhood
of ∆d are dense with respect to the L1(Rd, %;Rd)-norm. Let M be a Lipschitz
constant for πLip such that M−1 ≤ ε.
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To estimate LπLip − Lπε we argue separately on the sets ∆d\∆̄d
η, A ∩ ∆̄d

η and

∆̄d
η\A. To start with the latter set note that, for x ∈ ∆̄d

η and y ∈ ∆d we have that
the function

p 7→ 〈p, y
x
〉 =

n∑
i=1

pj
yj

xj
, p ∈ ∆̄d,

is Lipschitz on ∆̄d with Lipschitz constant bounded by (ηd )−1. From (A.6) we get

∫
∆̄d
η\A

[

∫
∆d

(log(〈πLip(x),
y

x
〉)− log(〈πε(x),

y

x
〉)d%(x, y)]d%(x)

≥ −(η · ε2)(
η

d
)−1(

ε

d
)−1 ≥ −d2ε.

(A.7)

The term ( εd )−1 above comes from the fact that 〈πLip(x), yx 〉 as well as 〈πε(x), yx 〉
takes values in [ εd ,∞[ and the function z 7→ log(z) is Lipschitz on this set with

constant ( εd )−1.

As regards the set A ∩ ∆̄d
η we obtain from (A.2) and (A.4) the estimate

(A.8)

∫
A∩∆̄d

η

[

∫
∆d

(log(〈πLip(x),
y

x
〉)− log(〈πε(x),

y

x
〉)d%(x, y)]d%(x) ≥ −ε

and a similar estimate holds true for the set ∆d\∆̄d
η by (A.5). Hence, we obtain

from (A.3), (A.7), and (A.8)

LπLip ≥ L+ log(1− ε)− d2ε− 2ε.

As ε > 0 is arbitrary, we have proved Lemma 3.8. �

Proof of Lemma 4.1. This follows from the fact that the embedding from C2,α(∆̄d)→
C2,α′(∆̄d) is compact for α′ < α (see e.g., [12, Satz 2.42]). This means in particular
that any bounded set in C2,α(∆̄d) is totally bounded in C2,0(∆̄d), thus relatively
compact. To prove compactness it thus suffices to prove that GM,α is closed. Take
a sequence Gn ∈ GM,α converging to G with respect to the ‖ · ‖C2,0 norm. Then,
we can estimate ‖G‖C2,α by

‖G‖C2,α = ‖G‖C2,0 + max
|k|=2

sup
x6=y

|DkG(x)−DkG(y)|
‖x− y‖α

≤ ‖G−Gn‖C2,0 + ‖Gn‖C2,0

+ max
|k|=2

sup
x 6=y

|DkG(x)−DkGn(x)|+ |DkGn(x)−DkGn(y)|+ |DkGn(y)−DkG(y)|
‖x− y‖α

for any n ∈ N. Letting n → ∞ and using the fact that ‖Gn − G‖C2,0 → 0 yields
‖G‖C2,α ≤ M . Similarly, we obtain G ≥ 1

M . This together with the fact that

G is concave as a limit of concave functions proves G ∈ GM,α and thus in turn
compactness of GM,α with respect to ‖ · ‖C2,0 . �
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Proof of Lemma 4.4. For G, G̃ ∈ GM,α, we have

log(V GT )− log(V G̃T ) = log(G(µT ))− log(G̃(µT ))− (log(G(µ0))− log(G̃(µ0)))

−
∫ T

0

∑
i,j

DijG(µt)

2G(µt)
− DijG̃(µt)

2G̃(µt)

 d[µi, µj ]t

= log(G(µT ))− log(G̃(µT ))− (log(G(µ0))− log(G̃(µ0)))

−
∑
i,j

∫ T

0

DijG(µt)−DijG̃(µt)

2G(µt)
+
DijG̃(µt)

(
G̃(µt)−G(µt)

)
2G̃(µt)G(µt)

 d[µi, µj ]t.

Hence, using the fact that ‖G̃‖C2,0 ≤ M as well as G ≥ 1
M and G̃ ≥ 1

M and that

z 7→ log(z) is Lipschitz continuous on [ 1
M ,∞) with constant M , we obtain the

estimate

| log(V GT )− log(V G̃T )| ≤ 2M‖G− G̃‖C2,0

+

(
M

2
d2‖G− G̃‖C2,0 +

M3

2
d2‖G− G̃‖C2,0

)
max
i

[µi, µi]T .

(A.9)

This proves the asserted continuity. �
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