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Abstract

Famously mathematical finance was started by Bachelier in his 1900 PhD thesis where –
among many other achievements – he also provides a formal derivation of the Kolmogorov
forward equation. This forms also the basis for Dupire’s (again formal) solution to the
problem of finding an arbitrage free model calibrated to the volatility surface. The later result
has rigorous counterparts in the theorems of Kellerer and Lowther. In this survey article we
revisit these hallmarks of stochastic finance, highlighting the role played by some optimal
transport results in this context.
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1 Bachelier’s work relating Brownian motion to mass transport
and the heat equation

In this section, which is mainly dedicated to the historic point of view, we follow [54] and point
out that Bachelier already had some thoughts on “horizontal transport of probability measures”
in his dissertation “Théorie de la spéculation” [4], which he defended in Paris in 1900.

In this thesis he was the first to consider a mathematical model of Brownian motion. Bachelier
argued using infinitesimals by visualizing Brownian motion (W (t))t>0 as an infinitesimal version
of a random walk. His 19th century style argument runs as follows. Suppose that the grid in
space is given by

. . . , xn−2, xn−1, xn, xn+1, xn+2, . . . (1.1)

having the same (infinitesimal) distance ∆x = xn − xn−1, for all n, and such that at time t these
points have (infinitesimal) probabilities

. . . , ptn−2, p
t
n−1, p

t
n, p

t
n+1, p

t
n+2, . . . (1.2)

under the random walk under consideration. What are the probabilities

. . . , pt+∆t
n−2 , p

t+∆t
n−1 , p

t+∆t
n , pt+∆t

n+1 , p
t+∆t
n+2 , . . . (1.3)

of these points at time t+ ∆t?
The random walk moves half of the mass ptn, sitting on xn at time t, to the point xn+1. En

revanche, it moves half of the mass ptn+1, sitting on xn+1 at time t, to the point xn. We thus
may calculate the net difference between ptn/2 and ptn+1/2, which Bachelier identifies with

−1
2

∂pt

∂x
(x), (1.4)
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where we let x = xn = xn+1 which is legitimate for Bachelier as xn and xn+1 only differ by an
infinitesimal.

This amount of mass is transported from the interval (−∞, xn] to [xn+1,∞) during the time
interval (t, t+ ∆t). In Bachelier’s own words, this is very nicely captured by the following quote
from his thesis:

“Each price x during an element of time radiates towards its neighboring price an amount of
probability proportional to the difference of their probabilities. I say proportional because it is
necessary to account for the relation of ∆x to ∆t. The above law can, by analogy with certain
physical theories, be called the law of radiation or diffusion of probability.”

Passing formally to the continuous limit and – using today’s terminology – denoting by

Pt(x) =

∫ x

−∞
pt(z) dz (1.5)

the distribution function associated to the Gaussian density function pt(x), Bachelier thus deduces
in this intuitively convincing way the relation

∂P

∂t
=

1

2

∂p

∂x
, (1.6)

where we have normalized the relation between ∆x and ∆t to obtain the constant 1/2. By
differentiating (1.6) with respect to x one obtains the usual heat equation

∂p

∂t
=

1

2

∂2p

∂x2
(1.7)

for the density function p(t, x). Of course, the heat equation was known to Bachelier, and he
notes regarding (1.7) “C’est une équation de Fourier.”

Bachelier has thus derived, on a formal level, the Kolmogorov forward equation, also known
as Fokker-Planck-equation, for the propagation of a probability density p under Brownian motion.
The forward equation will also play an important role subsequently and we take the opportunity
to note that Bachelier’s argument can equally well be applied to the more general process with
increments dXt = σ(t,Xt) dWt to arrive at the PDE

∂

∂t
P =

1

2

∂

∂x

(
σ2p
)
,

∂

∂t
p =

1

2

∂2

∂x2

(
σ2p
)
. (1.8)

But let us still remain with the form (1.6) of the heat equation and analyze its message in
terms of “horizontal transport of probability measures”. One may ask: what is the “velocity
field”, acting on the set of probabilities on R, which moves the probability density pt(·) to the
probability density pt+dt(·)? Following Bachelier’s intuition and keeping in mind that the mass
sitting at time t on x equals pt(x), the velocity of this move at the point x has to be equal to

−1

2

∂pt
∂x (x)

pt(x)
(1.9)

which has the natural interpretation as the “speed” of the horizontal transport induced by pt(x).

We thus encounter in nuce the “score function”
p′t(x)
pt(x) = ∇pt(x)

pt(x) where the nabla notation ∇
indicates that this is a vector field which makes perfect sense in the n-dimensional case too.
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At this stage we can relate Bachelier’s work with the more recent notion of the Wasserstein
metric W2(·, ·), at least intuitively and at an infinitesimal level. One may ask: what is the
necessary kinetic energy needed to transport pt(·) to pt+dt(·)? Knowing the speed (1.9) and the
usual formula for the kinetic energy, we obtain for the Wasserstein distance between the two
infinitesimally close probabilities pt and pt+dt

W2 (pt, pt+dt)

dt
:=

1

2

(∫
R

(
p′t(x)

pt(x)

)2

dx

) 1
2

(1.10)

For a formal definition of the Wasserstein distance W2(·, ·) we refer, e.g., to [57]. While
for the finite version of the Wasserstein distance between two probability measures one has
to find an optimal transport plan, the situation is simpler – and very pleasant – in the case
of the infinitesimal transport induced by the vector field (1.9). This infinitesimal transport is
automatically optimal. Intuitively this corresponds to the geometric insight in the one-dimensional
case that the transport lines of infinitesimal length cannot cross each other. For a thorough
treatment of the geometry of absolutely continuous curves of probabilities such as (pt(·))t≥0

above we refer to the lecture notes [3].

We finish the section by returning to Bachelier’s thesis. The rapporteur of Bachelier’s
dissertation was no lesser a figure than Henri Poincaré. Apparently he was aware of the enormous
potential of the section “Rayonnement de la probabilité” in Bachelier’s thesis, when he added to
his very positive report the handwritten phrase: “On peut regretter que M. Bachelier n’ait pas
développé davantage cette partie de sa thèse.” That is: One might regret that Mr. Bachelier did
not develop further this part of his thesis. Truly prophetic words!

2 Dupire’s Formula

We now turn to a well-known and more recent topic in Mathematical Finance continuing the
early achievements of Bachelier.

Suppose that in a financial market we know the prices of “many” European options on a
given (highly liquid) stock S. What can we deduce from this data about the prices of exotic, i.e.,
path-dependent options?

This question leads to the following mathematical idealization: suppose we know the prices
of all European call options, i.e., the price C(t, x) of every call option with strike price x and
maturity t, for every 0 ≤ t ≤ T and x ∈ R+. Our task is to analyze the set of all possible (local)
martingale measures for the stock price processes which are compatible with this data. Once we
have a hand on the relevant set of martingale measures, we can price arbitrary exotic options by
taking expectations.

To make the question meaningful, it is a good idea to restrict the class of processes under
consideration, e.g., to continuous, Markovian martingales.

We make the economically meaningful assumptions that the function (t, x) 7→ C(t, x) is
sufficiently smooth, as well as strictly convex in the variable x and strictly increasing in the
variable t, to allow for the subsequent formal manipulations.

The first observation is that the knowledge of C(t, x), for 0 ≤ t ≤ T and x > 0 is tantamount
to the knowledge of the marginal probabilities (µt)0≤t≤T of the underlying stock price process
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under a martingale measure which determines the prices, via the formula

C(t, x) = Eµt [(St − x)+]. (2.1)

This observation goes back to the Breeden and Litzenberger [13].
If the measures µt are absolutely continuous with respect to Lebesgue measure with a

continuous density function pt(x) then (2.1) amounts to the relation

pt(x) = Cxx(t, x), x > 0, (2.2)

as one verifies via integration by parts.
In a very influential and highly cited paper from 1994 [18] (compare also the work of Derman

and Kani [17]) Dupire considered diffusion processes of the form

dSt
St

= σ(t, St) dWt, 0 ≤ t ≤ T, (2.3)

where the “local volatility” σ(·, ·) is modeled as a deterministic function of t and x, and Wt is
a Brownian motion adapted to its natural filtration (Ft)0≤t≤T . It turns out that there is the
beautiful and strikingly simple “Dupire’s formula” which relates σ(·, ·) to the given option prices
C(t, x), namely

σ2(t, x)

2
=

Ct(t, x)

x2Cxx(t, x)
. (2.4)

Indeed, the Fokker-Planck equation implies – at least on a formal level (cf. (1.8)) – that pt(x)
satisfies the PDE

∂

∂t
pt(x) =

∂2

∂x2

(
σ2(t, x)

2
pt(x)

)
(2.5)

Integrating in x, using (2.2), and changing the order of derivatives quickly yields (2.4).
We note that this beautiful argument is very much in line with Bachelier’s reasoning in (1.6)

and (1.7) above pertaining to the case of constant volatility σ. We note in passing that Bachelier
used instead of the wording “volatility” the more colorful term “nervousness of the market”.

Of course, Dupire’s formal arguments need proper regularity assumptions in order to be
justified. There are two aspects: existence and uniqueness of the martingales fitting the given
option prices C(t, x). As regards the former, the question of existence amounts to a remarkable
theorem by Kellerer [38, 39]: given a family (µt)0≤t≤T of probability distributions on R which is
increasing in convex order, there is a Markov martingale having these probabilities as marginals.
By increasing in convex order we mean that each µt has finite first moment and that µt(f) is
nondecreasing in t, for every convex function f on R. Kellerer’s theorem extends earlier work of
Strassen [55] who establish the discrete time version of the result. We also note that the convex
order condition on the marginal distributions is necessary as easily follows from Jensen’s theorem.

Kellerer’s theorem goes far beyond the simple formula (2.4) and has been further refined,
notably by Lowther in an impressive series of papers [47, 46, 48]. We shall review these results
in the subsequent sections.

However, from an application point of view, the existence question is not of primordial
relevance. After all, the function C(t, x) is an idealization of reality which has to be estimated
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from a finite set of given European option prices. In this context, it does not harm to make
strong regularity assumptions on the smoothness and convexity (in the variable x) of the function
C(t, x) which justify the above argument. Under such assumptions Dupire’s solution (2.4) does
make sense and the issue of existence is settled.

A different issue is the question of uniqueness. As we shall see below, this question is
challenging and relevant – at least from a mathematical point of view – even in very regular
settings, such as the Bachelier or the Black-Scholes model.

In order to formulate existence and uniqueness results for a process with given marginals,
one has to specify the class of processes with respect to which we want to establish existence and
uniqueness. Under proper regularity assumptions the unique solution should, of course, equal
Dupire’s solution. Dupire’s process is a martingale with continuous paths, enjoying the Markov
property. Is Dupire’s solution unique within this class? In a veritable tour de force Lowther
[47, 46] has shown that the answer is yes, provided that we replace the word Markov by the
word strong Markov and one restricts to continuous processes.

We also refer to Theorem 6.1 in [30] where a slightly different version of this theorem, credited
to Pierre, is proved. These theorems settle the question of uniqueness in a very satisfactory way.
We shall discuss Lowther’s theorem in more detail in Section 6.

To the best of our knowledge the following question remained open: is it really necessary
to add the adjective strong to the word Markov in Lowther’s uniqueness theorem? At least, if
one is willing to accept strong regularity assumptions on the function C(·, ·) and the resulting
process S as defined in (2.3) one may ask whether the Markov property alone is sufficient. We
will focus on this question in the next section.

3 An eye-opening example

The subsequent example is known since the work by Dynkin and Jushkevich in the fifties (see
[19]).

Example 3.1. There is an R+-valued, continuous, Markov martingale which fails to be strongly
Markovian.

Proof. We define the process S = (St)0≤t≤1 by starting at S0 = 1 and subsequently proceeding
in two steps. For t ∈ [0, 1

2 ] the process S is a stopped geometric Brownian motion, i.e.,

St = exp

(
Bt∧τ −

t ∧ τ
2

)
0 ≤ t ≤ 1

2
, (3.1)

where B is a standard Brownian motion and τ is the first moment when S hits the level 2.
For 1

2 ≤ t ≤ 1, we distinguish two cases. If S has been stopped, i.e., if S 1
2

= 2, the process S

simply remains constant at the level 2. If this is not the case, the process continues to follow a
geometric Brownian motion, i.e.,

St = exp

(
Bt −

t

2

)
,

1

2
≤ t ≤ 1 on the set

{
τ >

1

2

}
, (3.2)

Obviously S is a continuous martingale. The crucial feature is its Markovian nature: the
Markov property follows from the fact that, for every fixed (deterministic) time 1

2 ≤ t ≤ 1, the
probability for the geometric Brownian motion St to be equal to 2 is zero on the set {τ > 1

2}.
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Hence, for every fixed 1
2 ≤ t ≤ 1, the conditional law of (Su)t≤u≤1 is almost surely determined by

the present value St of the process.
Why does S fail to be strongly Markovian? On the set {τ > 1

2} define the stopping time ϑ as
the first instance u > 1

2 when Su equals the value 2, which happens with positive probability
during the interval

(
1
2 , 1
)
. The process S therefore, at time ϑ ∧ 1, takes the value 2 on a

non-negligible part of the set {τ > 1
2}. Of course, the random variable Sτ equals 2 on the set

{τ ≤ 1
2} too. Hence there is no strong Markovian prescription for the process S what to do after

time ϑ: without further information on the past the process S cannot decide whether it should
remain constant or continue to move on as a geometric Brownian motion.

Let us apply this example to the pricing of options of the form (ST − x)+. Fix x ≥ 2. It is
straightforward to calculate its price P x(t, z) at time t, conditionally on St = z, which is defined
via

P x(t, z) = E[(ST − x)+|St = z], ≤ t ≤ T, z ∈ R. (3.3)

Letting z = 2, we find
P x(t, z) = 0, 0 < t ≤ 1. (3.4)

On the other hand, for z 6= 2 and 1
2 ≤ t < 1, the prices P x(t, z) are given by the usual

Black-Scholes formula and therefore strictly positive. Hence, for 1
2 ≤ t < 1, the option prices

z → P x(t, z) are discontinuous at z = 2. They also fail to be increasing and convex in the
variable x which a reasonable option pricing regime should certainly satisfy. On the other hand
we note that these option prices – strange as they might be – do not violate the no arbitrage
principle as they were legitimately derived from a martingale.

The marginal probabilities of the process S have an atom at the point 2 which is rather
unpleasant. One may ask whether it is possible to construct variants of the above example which
have more regular marginals.

Here is a straightforward modification: fix an uncountable compact K in R+ with zero
Lebesgue measure. For example one may take the classical Cantor set K = {1 +

∑∞
n=1

εn
3n :

εn ∈ {0, 2}}. We can modify the construction of Example 3.1 in three steps. For 0 ≤ t ≤ 1
3 ,

let (St)0≤t≤ 1
3

be geometric Brownian motion starting at S0 = 1. For 1
3 ≤ t ≤ 2

3 , let (St) 1
3
≤t≤ 2

3

continue to be geometric Brownian motion, but stopped at the first hitting time τ of the compact
set K. For 2

3 ≤ t ≤ 1 we again distinguish between the cases {τ ≤ 2
3} and {τ > 2

3}. On the
former set the process S remains constant, i.e., St = S 2

3
. On its complement {τ > 2

3} the process

S continues to follow a geometric Brownian motion. The process S thus enjoys all the features of
Example 3.1 and, in addition, has continuous marginals. Note, however, that these marginals are
not given by densities as they are not absolutely continuous with respect to Lebesgue measure.

Turning back to the context of Example 3.1 there is another continuous Markovian martingale
with the same marginals as S, inducing reasonable option prices. In fact, there is a continuous
strong Markovian martingale with this property and which is unique in this latter class (Theorem
4.1 below).

We only give an informal, verbal description of this strong Markov process. For 0 ≤ t ≤ 1
2

let S be defined as in Example 3.1. For 1
2 ≤ t ≤ 1 we again distinguish two cases. On the set

{St 6= 2} define S to be geometric Brownian motion, but now we stop this motion when St hits
the value 2. On the other hand, on the set {St = 2} the process S starts an excursion from
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St = 2 into the geometric Brownian motion (3.2) with a certain intensity rate. We are free to
choose this rate in such a way that the mass remaining at the atom {St = 2} equals precisely
the constant mass which is prescribed by the given marginals of the process S.

We thus have indicared the construction of another continuous martingale having the same
marginals as the process S in Example 3.1. One may check that the latter construction is strongly
Markovian – as opposed to the above construction in Example 3.1 – and that the option prices
are increasing and strictly convex in the variable z as they should be. It will follow from Theorem
4.1 below that the latter martingale is the unique strong Markov solution for the given marginals.

Note that this answers the question raised at the end of the last section: In Lowther’s
uniqueness theorem, it is not sufficient to consider Markovian (but not necessarily strongly
Markovian) martingales: as we have just seen, there exist two distinct continuous Markov
martingales with the same 1-dimensional distributions.

In view of Dupiere’s formula, this leads to the next question. It seems natural to conjecture
that, provided the call prices are sufficiently regular in t and x, there should be only one
continuous Markov martingale matching these prices. Correspondingly one would ask: can one
obtain a similar example as above with absolutely continuous (or even more regular) marginals?

To the surprise of the present authors it turned out that the answer is “yes”, even when
we pass to the “most regular” situation when S is a Brownian motion, i.e., in the Bachelier
model (or the Black-Scholes model). The construction is more involved but resting on the above
developed intuition, see the accompanying paper [9].

4 Uniqueness of Dupire’s diffusion

There is a huge literature on one-dimensional processes inducing a given family of marginal
distributions (see [38, 49, 29, 30, 7, 46, 26, 20, 34, 50, 2, 6, 36] among others). In particular,
the late Marc Yor and his co-authors Hirsch, Profeta, and Roynette wrote the beautiful book
[28] on “peacocks”. This is a pun on the French acronym PCOC, for “Processus Croissant pour
l’Ordre Convexe” and a peacock is a stochastic process (Xt)t≥0 for which the family of laws
law(Xt), t ≥ 0 is increasing in the convex order. We take here the liberty to use the word peacock
also for a family of probabilities (µt)t≥0 that increases in convex order.1

To comply with this literature we find it more natural to pass from the multiplicative setting
(2.3) to the additive setting of a martingale diffusion

dXt = σ(t,Xt) dWt, 0 ≤ t ≤ T. (4.1)

Hence we consider now processes taking possibly values in all of R and switch to the notation X
instead of the “stock price” S. We note, however, that this change is only for notational reasons,
and everything below could also be done in the multiplicative setting of the previous sections.

Given a peacock (µt)t≥0 we may define option prices via

C(t, x) = Eµt [(Xt − x)+], (4.2)

where µt, t ≥ 0 denote the marginal probability measures and x ∈ R. The ‘multiplicative’ formula
(2.4) becomes in the additive setting

σ2(t, x)

2
=

Ct(t, x)

Cxx(t, x)
. (4.3)

1Fortunately, “Probabilités Croissant pour l’Ordre Convexe” still yields the same acronym.
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We can now cite Lowther’s complete solution of the uniqueness problem within the class
of continuous, strong Markov martingales. We stress (and admire) that this theorem does not
require any additional regularity assumptions [47, Theorem 1.2].

Theorem 4.1 (Lowther). Let X = (Xt)0≤t≤1 and Y = (Yt)0≤t≤1 be R-valued, continuous, strong
Markov martingales. If X and Y have the same marginal distributions they also have the same
joint distributions.

The proof of this theorem is highly technical and its presentation goes far beyond the scope of
the present paper. Instead, we formulate a “toy” version of the theorem under strong regularity
assumptions. We then analyze why the notion of strong Markovianity is key in the above theorem
and finally give some hints on the strategy of the proof of Theorem 4.1.

Here is the “toy” version of this theorem imposing strong regularity assumptions which make
life easier:

Assumption 4.2. We suppose that the process X is given by X0 = x0 and (4.1), where σ(t, x)
is sufficiently smooth to guarantee that there is a unique strong solution X. We also suppose that
XT has finite second moment and that the function C(t, x) is strictly convex in the variable x,
strictly increasing in the variable t, and satisfies standard Itô smoothness assumptions, i.e., twice
continuously differentiable in x and once continuously differentiable in t. We also assume that,
for every x ∈ R, the pricing function (t, z)→ PX,x(t, z) defined via

PX,x(t, z) = E[(XT − x)+|Xt = z], 0 ≤ t ≤ T, z ∈ R. (4.4)

also satisfies these standard Itô assumptions.

These assumptions are strong enough to guarantee that the function C(t, x) indeed satisfies
Equation (4.3).

Theorem 4.3. Let X = (Xt)0≤t≤T satisfy Assumption 4.2. Let Y = (Yt)0≤t≤T be another
continuous Markov martingale such that Xt and Yt have the same distribution, for every 0 ≤ t ≤ T .
For fixed strike price x ∈ R, let P Y,x(t, z) be the corresponding option prices defined via

P Y,x(t, z) = E[(YT − x)+|Yt = z], 0 ≤ t ≤ T, z ∈ R, (4.5)

and assume that, for every x, the functions (t, z)→ P Y,x(t, z) also satisfy the above standard
Itô smoothness assumptions. Then PX,x(t, z) = P Y,x(t, z), for all t, x, z and the processes X and
Y have the same joint distributions.

Proof. As the function (t, z)→ P Y,x(t, z) is assumed to satisfy the standard Itô conditions we
may apply Itô’s formula to obtain

dP Y,x(t, Yt) = P Y,xt (t, Yt) dt+ P Y,xz (t, Yt) dYt +
1

2
P Y,xzz (t, Yt) d〈Y 〉t, (4.6)

where 〈Y 〉t denotes the quadratic variation process of the continuous, square integrable martingale
Y (see [42, Theorem 7.6.4]). By (4.5) the process (P Y,x(t, Yt))0≤t≤1 is a martingale. The

martingale condition implies that the drift term vanishes so that the equality 1
2P

Y,x
zz (t, Yt) d〈Y 〉t =

−P Y,xt (t, Yt) dt holds true in the following sense:

1

2

∫
A
P Y,xzz (t, Yt) d〈Y 〉t = −

∫
A
P Y,xt (t, Yt) dt, (4.7)
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whenever we integrate over a predictable set A ⊆ [0, T ] × C[0, T ]. In particular, the finite
measure d〈Y 〉t on the predictable sigma-algebra of subsets of [0, T ]× C[0, T ] has to be absolutely
continuous with respect to the measure d〈X〉t = σ2(t, ωt) dt. Here we have used the assumption

that t→ C(t, z) is strictly increasing in t so that σ2(t,z)
2 = Ct(t,z)

Czz(t,z) is strictly positive. We thus
may define the function

ρ2(t, z)

2
:=

P Y,xt (t, z)

P Y,xzz (t, z)

so that d〈Y 〉t = ρ2(t, Yt) dt. We therefore must have that Y may be represented as in (4.1), with
σ replaced by ρ. This implies the relation

Ct(t, x) =
ρ2(t, x)

2
Cxx(t, x). (4.8)

Comparing with (4.3) we obtain ρ2 = σ2 which shows the identity of X and Y in distribution.

The above theorem provides a sufficient set of regularity assumptions to substantiate the
statement in Dupire’s paper [18]: “...we can recover, up to technical regularity assumptions, a
unique diffusion process”.

Of course, one could do some massaging of the above argument to somewhat weaken the very
strong Assumptions 4.2 which we have imposed. But there is a long and thorny road, going far
beyond simple cosmetic changes, to arrive at Lowther’s Theorem 4.1.

In Theorem 4.3 the strong regularity assumptions implied in particular the strong Markov
property of the process X. We stress once more that, in the setting of Lowther’s theorem 4.1,
the strong Markov property is the key assumption.

Passing to Lowther’s notation and looking at (4.4), a crucial step in the above argument is
to start from a convex, increasing, and Lipschitz-one function g(z), such as g(z) = (z − x)+, to
its conditional expectations

f(t, z) = E[g(YT )|Yt = z], 0 ≤ t ≤ T, z ∈ R. (4.9)

In order to start a chain of arguments one has to verify that f(t, z) is a “nice” function. When
looking at Example 3.1 and its variants we have seen that in this case, for g(z) = (z − x)+, this
is not at all the case. Its conditional expectation f(t, z) lacked each of the following desired
properties: continuity, monotonicity and convexity in x.

Contrary to this lamentable breakdown of regularity, we shall verify in Corollary 5.3 that
the strong Markov property guarantees that the following three properties are inherited from
g(·) to each f(t, ·): convexity, monotonicity, and 1-Lipschitz continuity (which serves as a
more quantitative version of continuity). This preservation of regularity is a decisive feature of
Lowther’s proof.

5 Coupling strong Markov processes

What is the salient property which distinguishes the strong Markov property from the Markov
property in our context? While the former condition allows for Lowther’s uniqueness theorem
to holde true, in Example 3.1 we have seen that there may be different continuous Markov
martingales inducing the same marginals. The following well-known concept is the key to
understanding the difference.
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Definition 5.1. For probability measures π1 and π2 on R, we say that π2 dominates π1 of first
order if, for every a ∈ R, we have π2[a,∞[≥ π1[a,∞[.

We shall show in the next proposition that the strong Markov property of a continuous
martingale implies that the transition probabilities (πs,tx )x∈R

πs,tx [A] = P[Xt ∈ A|Xs = x], (5.1)

where s < t and A is a Borel set in R, are increasing of first order in the variable x, for every
s < t.

We follow Hobson who applied a well-known technique, namely the “joys of coupling” (to
quote his paper [33]) in the present context.

Proposition 5.2. Let X = (Xt)0≤t≤T be a continuous strong Markov process with transition
probabilities πs,tx [·]. Then, for 0 ≤ s ≤ t ≤ T , and for x < y the probability πs,ty dominates πs,tx of
first order.

Proof. Fix s, t and x < y as above and let (Xx
u)s≤u≤t and (Xy

u)s≤u≤t be independent copies of
the process X, starting at Xx

s = x and Xy
s = y, both defined on the same filtered probability

base. Define the stopping time τ as the first moment u when the process Xx
u equals the process

Xy
u , if this happens for some u ∈ [s, t]; otherwise we let τ =∞.

Define the process X̃x by

X̃x
u =

{
Xx
u for s ≤ u ≤ τ,

Xy
u for τ < u ≤ t.

We clearly have
X̃x
t ≤ X

y
t , for all 0 ≤ t ≤ T. (5.2)

Indeed, if τ =∞, the paths of (Xx
u)s≤u≤t = (X̃x

u)s≤u≤t and (Xy
u)s≤u≤t never touch, so that we

even have a strict inequality by continuity of the processes. If τ < ∞, then X̃x and Xy have
“joined” at time τ , and follow the same trajectory. Hence X̃x

u = Xy
u , for τ ≤ u ≤ t.

Inequality 5.2 implies that the law of Xy
t dominates the law of X̃x

t in first order.

Corollary 5.3. Let X = (Xt)0≤t≤T be a continuous strong Markov process with marginal laws µt
and transition probabilities πs,tx [·]. Let 0 ≤ s ≤ t ≤ T and z 7→ g(z) be a measurable µt-integrable
function, and define the conditional expectation similarly as in (4.9)

f(s, x) = E[g(Xt)|Xs = x], x ∈ R. (5.3)

Then the following assertions hold true.
(i) If z 7→ g(z) is increasing, then so is x 7→ f(s, x), for every 0 ≤ s ≤ t ≤ T .

If, in addition, we assume that X is a martingale, we also have the following two assertions.
(ii) If z 7→ g(z) is 1-Lipschitz , then so is x 7→ f(s, x), for every 0 ≤ s ≤ t ≤ T .
(iii) If z 7→ g(z) is convex, then so is x 7→ f(s, x), for every 0 ≤ s ≤ t ≤ T .

Proof. Assertion (i): this is just a reformulation of Proposition 5.2.
Assertion (ii): If g is 1-Lipschitz, then g(x) + x is increasing. As X is a martingale we have

E[Xt|Xs = x] = x. By (i) f(s, x) + x is increasing. By the same token f(s, x)− x is decreasing
which readily shows that x→ f(s, x) is Lipschitz.
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Assertion (iii): We follow the proof of [33, Theorem 3.1]. For convex g and x < y < z we
have to show that

(z − x)f(s, y) ≤ (z − y)f(s, x) + (y − x)f(s, z). (5.4)

Fix x < y < z and choose three independent copies Xx, Xy, Xz of the process X, starting at
time s from the initial values x, y, and z. To simplify notation we denote the resulting triple of
processes (Xx, Xy, Xz) by (X,Y, Z). We define coupling times similarly as above. Let τx be the
first moment u > s when X(u) = Y (u); similarly τ z is defined as the first moment when Y and
Z meet. Finally, let τ = τx ∧ τ z ∧ t. This time we leave the processes unchanged; rather we shall
argue on the three disjoint (up to null sets) sets {τ = τx}, {τ = τ z}, and {τ = t}.

We start with the latter on which we have Xt < Yt < Zt. By the convexity of g we have

(Zt −Xt)g(Yt) ≤ (Zt − Yt)g(Xt) + (Yt −Xt)g(Zt). (5.5)

so that
E [(Zt −Xt)g(Yt)− ((Zt − Yt)g(Xt) + (Yt −Xt)g(Zt)) ; τ = t] ≤ 0. (5.6)

On {τ = τx} we have Xt = Yt so that the last term in inequality (5.5) vanishes. Also the
first and the middle term are equal so that (5.5) holds true (with equality) on the set {τ = τx}.
In particular,

E [(Zt −Xt)g(Yt)− ((Zt − Yt)g(Xt) + (Yt −Xt)g(Zt)) ; τ = τx] ≤ 0. (5.7)

The same reasoning applies to {τ = τ z}.

E [(Zt −Xt)g(Yt)− ((Zt − Yt)g(Xt) + (Yt −Xt)g(Zt)) ; τ = τ z] ≤ 0. (5.8)

Summing over these three sets we obtain

E [(Zt −Xt)g(Yt)− ((Zt − Yt)g(Xt) + (Yt −Xt)g(Zt))] ≤ 0. (5.9)

Finally we use independence and the martingality of X,Y , and Z to obtain

(z − x)E[g(Yt)|Ys = y] ≤ (z − y)E[g(XT |Xs = x] + (y − x)E[g(Zt)|Zs = z], (5.10)

which is tantamount to (5.4).

We can reformulate the message of Corollary 5.3 (ii) in the spirit of Bachelier by considering
the Wasserstein cost W1(πs,tx [·], πs,ty [·]) of the horizontal transport of the conditional probability
measures πs,tx [·] to πs,ty [·].

Recall that, for probabilities µ, ν on the real line the Wasserstein-1 distance is given by

W1(µ, ν) := inf
π∈cpl(µ,ν)

∫
|x− y| dπ(x, y),

where cpl(µ, ν) denotes the set of all probabilities on R2 having µ, ν as marginal measures, see
e.g. [57] for an extensive overview of the field of optimal transport.

Definition 5.4. Let π be a probability on R2 and write µ for its projection onto the first
coordinate and (πx)x for the respective disintegration so that π =

∫
R πxdµ(x). Then π is called a

Lipschitz-kernel if for all x, y in a set X with µ(X) = 1

W1(πx, πy) ≤ |x− y|. (5.11)
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We call π a martingale coupling if
∫
y dπx(y) = x, µ-a.s. It is then straight-forward to see

that for a martingale coupling π the following are equivalent:

(i) π is a Lipschitz-kernel.

(ii) for all x, y in a set X with µ(X) = 1 we have W1(πx, πy) = |x− y|.

(iii) for all x, y in a set X with µ(X) = 1, x ≤ y the measure πx is dominated in first order by
πy.

Definition 5.5. Let X be an R-valued Markovian process. Then X has the Markov Lipschitz
property if for all s ≤ t, the law of (Xs, Xt) is a Lipschitz kernel.

To give yet another characterisation of Lipschitz-Markov processes, recall that a process
X is Markov if and only if for all s ≤ t and every bounded measurable function f there is a
measurable function g such that

E[f(Xs)|Fs] = g(Xt).

A process X is Lipschitz-Markov if and only if for all s ≤ t and every 1-Lipschitz function f
there is a 1-Lipschitz function g such that

E[f(Xs)|Fs] = g(Xt).

This is a straightforward consequence of the Kantorovich-Rubinstein theorem that provides a
dual characterization of the Wasserstein-1 distance through 1-Lipschitz functions.

We now can resume the crucial role of the strong Markov property

Corollary 5.6. Let M be a continuous Markov martingale. Then M is Lipschitz-Markov if and
only if it is strong Markov.

Proof. By Proposition 5.2 / Corollary 5.3 every strong Markov-martingale is Lipschitz Markov.
That a Lipschitz Markov martingale is strongly Markov is proved in the same way as one
establishes the strong Markov property for Feller processes. See e.g. [45, Theorem 1.68].

To the best of our knowledge, Lipschitz kernels play a crucial role in all known proofs of
Kellerer’s theorem. The decisive property is the following:

Proposition 5.7. Consider the space of P(D[0, 1]) of probability measures on the Skorokhod space
equipped with the convergence of finite dimensional distributions. Then the set of Lipschitz-Markov
martingales is closed.

In contrast, the set of Markov-martingales is not closed. See e.g. [7] for the (simple) proof of
Proposition 5.7.

6 Continuity of the martingale solution

An important question in the present context is the following: under which conditions on a
peacock (µt)0≤t≤1, as defined in Section 4 above, is there a strong Markov martingale with
continuous trajectories having the given marginals. We only focus on the one-dimensional case
and mention that the corresponding question for higher dimensions remains wide open. The
one-dimensional case, however, is fully understood by now, again by the definitive work of
Lowther [46, Theorem 1.3]:
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Theorem 6.1 (Lowther). Let (µt)t≥0 be a peacock and assume that t 7→ µt is weakly continuous
and that each µt has convex support. Then there exists a unique strongly continuous Markov
martingale X such that such that Xt ∼ µt, t ≥ 0.

We do not show Lowther’s theorem in full generality, but again we want to isolate a sufficient
set of assumptions that allows us to present a (comparably simple) self-contained proof of the
continuity theorem.

Remark 6.2. A key ingredient of the proof is that for probabilities µ, ν in convex order there
exists a continuous martingale (Xt)0≤t≤1, X0 ∼ µ, X1 ∼ ν which is strongly Markovian (and
hence Lipschitz Markov). For instance we can take X to be a stretched Brownian motion, that
is, a solution to a continuous time martingale transport problem, see [5]. Another possibility
would be to apply an appropriate deterministic time change to Root’s solution [53] (see [16] for
the case of a non-trivial starting distribution) of the Skorokhod embedding problem. We note that
the martingale transport approach is also applicable to measures µ, ν defined on Rd, d > 1. This
could be interesting in view of a possible multi-dimensional extension of Lowther’s theorem but
this is not within the scope of the present article.

Assumption 6.3. Let (µt)0≤t≤1 be a one-dimensional peacock centered at zero, with densities
pt(x) and finite second moments m2

2(µt) =
∫∞
−∞ x

2 dµt(x) =
∫∞
−∞ x

2pt(x) dx such that the function

t→ m2
2(µt) is continuous.

We assume that there is a – bounded or unbounded – open interval I ⊆ R supporting each µt
such that, for each compact subset K ⊆ I, the Lebesgue densities pt(x) of µt are bounded away
from zero, uniformly in x ∈ K and t ∈ [0, 1].

It will be convenient to suppose (w.l.g. via a deterministic time change) that t→ m2
2(µt) is

affine. More precisely we may assume that m2
2(µt+h)−m2

2(µt) = h so that for all martingales M
with law(Mt) = µt and law(Mt+h) = µt+h

E
[
(Mt+h −Mt)

2
]

= h. (6.1)

Theorem 6.4. Under the above assumptions there is a continuous strong Markov martingale
M = (Mt)0≤t≤1 with given marginals (µt)0≤t≤1.

There is an obvious and well-known strategy for the proof. We want to obtain the desired
martingale M as a limit of approximations which fit the peacock (µt)0≤t≤1 on finitely many
points of time. As in [30] it is convenient to do so along the ordered set S of finite partitions
S = {s0, . . . , sn} of [0, 1], where 0 = s0 < · · · < sn = 1.

For each S ∈ S we choose a continuous strong Markov martingale MS having the given
marginals at each time si ∈ S, the existence of MS is a direct consequence of Remark 6.2.

Identifying the martingales MS with their induced measures on the path space C[0, 1] this
family of measures is tight, if considered on Skorohod space D[0, 1], equipped with the topology
of convergence of finite dimensional distributions. Hence we can find a cluster point M in the set
P(D[0, 1]) of probability measures on D[0, 1], see e.g. [7] for the straightforward argument. By
refining the filter S we may suppose that M is a limit point.

We fix such a limiting process M which by Proposition 5.7 is a Lipschitz Markov martingale.
These arguments again are standard by now and, e.g., well presented in the papers [30, 7]. A
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priori the martingale M has càdlàg trajectories. Our present task is to show the continuity of
the trajectories of the limiting process M under the above assumptions.

We first give a general criterion for the continuity of a limiting martingale M which is
somewhat reminiscent of the classical Kolmogorov continuity criterion [51, Theorem 1.8].

Proposition 6.5. Let (M i)i∈I be a net of R-valued continuous strong Markov martingales
M i = (M i)0≤t≤1 and M its limit in the set of probabilities on Skorohod space P(D[0, 1]) with
respect to convergence in finite dimensional distribution. Suppose that there are constants C1 > 0
and β > 0 such that, for every 0 ≤ t0 < t0 + h ≤ 1 and every i ∈ I

‖(M i
t )t0≤t≤t0+h‖BMO1 := sup

τ
{‖E[|M i

t0+h −M i
τ | | Fτ ]‖∞} ≤ C1h

β. (6.2)

Then the martingale M has continuous trajectories.

In (6.2) τ runs through the [t0, t0 + h]-valued stopping times with respect to the natural
filtration of (M i

t )t0≤t≤t0+h. As M i is strong Markov, condition (6.2) is tantamount to the

requirement that the first moments m1(πi,τ,t0+h
x ) =

∫∞
−∞ |y − x| dπ

i,τ,t0+h
x (y) of the transition

probabilities πi,τ,t0+h
x from M i

τ = x to M i
t0+h satisfy

m1(πi,τ,t0+h
x ) =

∫ ∞
−∞
|y − x| dπi,τ,t0+h

x (y) ≤ C1h
β, (6.3)

for µiτ -almost all x ∈ R, where µiτ denotes the law of M i
τ .

An important feature of the BMO norms for continuous martingales is that, by the John-
Nirenberg inequality, all BMOq norms are equivalent, for 1 ≤ q < ∞ (see, e.g. [37, Corollary
2.1]). Applying this fact to the present context, inequality (6.2) is equivalent to the existence of
a constant Cq > 0 (for some or, equivalently, for all 1 ≤ q <∞) such that

‖(M i
t )t0≤t≤t0+h‖BMOq := sup

τ

{∥∥∥E[|M i
t0+h −M i

τ |q | Fτ ]
1
q

∥∥∥
∞

}
≤ Cqhβ. (6.4)

Proof of Proposition 6.5. Suppose that M fails to be continuous and let us work towards a
contradiction to (6.4) when q > 1

β . Assume M has jumps of size bigger than 3a > 0 with
probability bigger than κ > 0, i.e.

P ({∃t ∈ [0, 1] : |Mt −Mt−| ≥ 3a}) > κ.

As M has càdlàg paths, there is h0 > 0 such that for all 0 < h ≤ h0

P
({
∃k ∈ N : |M(kh)∧1 −M((k−1)h)∧1| ≥ 2a

})
> κ.

By the pigeon hole principle, we can find for each 0 < h ≤ h0 a time t0 ∈ [0, 1] with

P
({
|M(t0+h)∧1 −Mt0 | ≥ 2a

})
> hκ. (6.5)

In view of the convergence in finite dimensional distributions of (M i)i∈I to M , we find for each
0 < h ≤ h0 a time t0 ∈ [0, 1] (w.l.g. t0 + h ≤ 1) and an index i ∈ I with

P
({
|M i

t0+h −M i
t0 | ≥ a

})
≥ hκ. (6.6)
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Fixing such an index i ∈ I, it follows that there is a set A ⊆ R of positive measure with respect
to the law of M i

t0 such that, for all x ∈ A,

P
({
|M i

t0+h −M i
t0 | ≥ a |M

i
t0 = x

})
≥ hκ. (6.7)

For x ∈ A we therefore have

mq(π
i,t0,t0+h
x ) =

(∫ ∞
−∞
|y − x|q dπi,t0,t0+h

x (y)

) 1
q

≥ a(hκ)
1
q . (6.8)

As q > 1
β we can choose 0 < h ≤ h0 sufficiently small, with a(κh)

1
q > Cqh

β, and arrive at the
desired contradiction to (6.4)

Cqh
β ≥ ‖(M i

t )t0≤t≤t0+h‖BMOq ≥ mq(π
i,t0,t0+h
x ) ≥ a(hκ)

1
q > Cqh

β.

Turning back to the above defined family (MS)S∈S of martingales we shall establish an

inequality of the type (6.3) for the transition probabilities πS,t0,t0+h
x , using the fact that the

functions x 7→ πS,t0,t0+h
x are Lipschitz-Markov.

Lemma 6.6. Let (µt)0≤t≤1 be a peacock satisfying Assumption 6.3. Fix a compact set K ⊆ I.
For all h > 0 sufficiently small and x ∈ K, there is a constant D > 0 such that for all S ∈ S and
0 ≤ t0 ≤ t0 + h ≤ 1, with t0, t0 + h ∈ S, the first moments of the transition measures πS,t0,t0+h

x

can be estimated by

m1

(
πS,t0,t0+h
x

)
:= EP

[∣∣MS
t0+h −MS

t0

∣∣ ∣∣∣∣MS
t0 = x

]
=

∫ ∞
−∞
|y − x| dπS,t0,t0+h

x (y) ≤ Dh
1
4 , (6.9)

where P denotes the law of the martingale MS.

Proof. We first suppose that I = R. By (6.1) and Jensen’s inequality we have

EP[|MS
t0+h −MS

t0 |] ≤ h
1
2 .

We may rewrite this inequality in the form

EP[|MS
t0+h −MS

t0 |] = EP[EP[|MS
t0+h −MS

t0 |
∣∣MS

t0 ]] =

∫ ∞
−∞

m1

(
πS,t0,t0+h
x

)
dµt0(x)

=

∫ ∞
−∞

F (x) dµt0(x) ≤ h
1
2 , (6.10)

where, alleviating the notation from πS,t0,t0+h
x to πx, and

F (x) =

∫ ∞
−∞
|x− y| dπx(y).

Claim: The function x 7→ F (x) satisfies the estimate

|F (x)− F (x+ k)| ≤ 2k, x ∈ R, k > 0. (6.11)
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Indeed,

|F (x+ k)− F (x)| =
∣∣∣∣∫ ∞
−∞
|y − (x+ k)| dπx+k(y)−

∫ ∞
−∞
|y − x|πx(y)

∣∣∣∣
≤ k +

∣∣∣∣∫ ∞
−∞
|y − (x+ k)| dπx(y)−

∫ ∞
−∞
|y − x| dπx(y)

∣∣∣∣ ≤ 2k

proving the claim. In the first inequality we have used the fact that π is a Lipschitz Markov
kernel.

Choose a compact interval [a, b] such that K ⊆ [a + 1, b − 1] and denote by l > 0 a lower
bound for the density function pt0 of µt0 on [a, b].

We want to estimate F (x0), for x0 ∈ K, and start by showing the rough estimate F (x0) ≤ 2.
Using (6.11) we otherwise have

∫ x0+1
x0

F (x) dx ≥ 1 and we arrive at the following contradiction
to (6.10) for small enough h

1 ≤
∫ x0+1

x0

F (x) dx ≤ 1

l

∫ x0+1

x0

F (x) dpt0(x)dx ≤ 1

l
h

1
2 .

If F (x0) ≤ 2 we may argue similarly, using again (6.11) and elementary geometry, to obtain,
for x0 ∈ K,

1

8
(F (x0))2 ≤

∫ x0+1

x0

F (x) dx ≤ 1

l

∫ x0+1

x0

F (x) dµt0(x) ≤ 1

l
h

1
2 ,

yielding the desired estimate for h sufficiently small

sup
x∈K

m1(πx) = sup
x∈K

F (x) ≤ Dh
1
4 ,

where the constant D > 0 only depends on the compact set K, but not on h.
Finally we have to come back to our assumption I = R which allowed us to imbed the

compact set K into the interval [a, b] ⊆ I such that K ⊆ [a + 1, b − 1]. If I is only one- or
two-sided bounded we have to reason slightly more carefully, as we can imbed the compact set K
only into an interval [a, b] ⊆ I such that [a+ ε, b− ε] contains K. But no difficulties arise from
replacing 1 by ε and it is straightforward to adapt the above argument also to this situation.

Under the assumptions of Lemma 6.6, Tschebyscheff’s inequality and (6.9) allow us to control
the difference between medians and means, since for fixed 0 < δ < 1

4

πS,t0,t0+h
x

(
y : |y − x| ≥ hδ

)
≤ Dh

1
4
−δ

for h > 0 sufficiently small, x ∈ K and feasible S ∈ S. Hence, we have in the setting of Lemma
6.6 that ∣∣∣median(πS,t0,t0+h

x )−mean(πS,t0,t0+h
x )

∣∣∣ ≤ hδ. (6.12)

Lemma 6.7. Let 0 < δ < 1
4 . Under the assumptions of the Lemma 6.6 the same conclusion as

in (6.9) holds true for every [t0, t0 + h]-valued stopping time τ (by possibly changing the constant
D to a different C) for x ∈ K

m1

(
πS,τ,t0+h
x

)
:= EP

[∣∣MS
t0+h −MS

τ

∣∣ ∣∣∣∣MS
τ = x

]
=

∫ ∞
−∞
|y − x| dπS,τ,t0+h

x (y) ≤ Chδ. (6.13)
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Proof. By Corollary 5.6 we have that x 7→ πS,t0,t is Lipschitz Markov for all s ∈ [t0, t0 +h]. From
this, we can deduce the continuity of the map

(x, t) 7→
∫ ∞
−∞
|z − y| dπS,t,t0+h(z).

Therefore, it suffices to show (6.13) for deterministic τ ≡ t ∈ [t0, t0 +h] due to the strong Markov
property. To this end, let K̃ be a compact interval in I, containing the compact set K in its
interior and fix the constant D from Lemma 6.6, applied to K̃.

To do so, find x ∈ I such that y equals the median of the measure πS,t0,tx , that is

πS,t0,tx (]−∞, y[) ≤ 1

2
≤ πS,t0,tx (]−∞, y]).

Since x 7→ πS,t0,tx is Lipschitz Markov by Corollary 5.6, such an x exists. We may use x to obtain
the following estimate

EP

[∣∣MS
t0+h − y

∣∣ ∣∣∣∣MS
τ = y

]
≤ EP

[(
MS
t0+h − y

)
+

∣∣∣∣MS
τ ≥ y,MS

t0 = x

]
+ EP

[(
MS
t0+h − y

)
−

∣∣∣∣MS
τ ≤ y,MS

t0 = x

]
≤ 2EP

[∣∣∣MS,t0,t0+h − y
∣∣∣ ∣∣∣∣MS

t0 = x

]
≤ 2EP

[∣∣∣MS,t0,t0+h − x
∣∣∣ ∣∣∣∣MS

t0 = x

]
+ 2|x− y|. (6.14)

Here, we used the first item of Corollary 5.3 for the first inequality and y being the median of
πS,t0,τx for the second. Note that for h sufficiently small we have by (6.12) that x ∈ K̃. Applying
the estimates (6.9) and (6.12) to (6.14) we find

EP

[∣∣MS
t0+h − y

∣∣ ∣∣∣∣MS
τ = y

]
≤ 2Dh

1
4 + 2hδ ≤ (2D + 2)hδ,

which concludes the proof.

Proof of Theorem 6.4. We have to combine Proposition 6.5 and Lemma 6.7 with a stopping
argument. To this end, let (Kn := [an, bn])n∈N be an increasing sequence of compact intervals
exhausting the interval I =]a, b[, where a, b ∈ [−∞,∞]. We let K1 = ∅. Define the stopping
times τS,n as the first moment when the continuous martingale MS leaves Kn, write MS,n for
the stopped process, and denote the differences MS,n+1 −MS,n by ∆MS,n.

For the processes ∆MS,n the assumptions of Proposition 6.5 still hold true as a consequence
of Lemma 6.7 and the strong Markov property of MS . Consider the process

M̃S
t := (∆MS,n

t )n∈N, t ∈ [0, 1],

taking values in RN. Moreover, let

mS := inf
{
k ∈ N :

∣∣∣∆MS,k
∣∣∣
∞

= 0
}
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be the smallest integer such that the entire trajectory of (MS
t (ω))0≤t≤1 is contained in KmS . We

know already that for every n ∈ N, MS,n (and therefore ∆MS,n) allows for f.d.d. convergent
subnets along S where the limits have by Proposition 6.5 continuous versions. We want to argue
that similarly the pair (M̃S ,mS)S∈S taking values in C[0, 1]N × N admits a convergent subnet,
too. For this reason, it is sufficient to show the following.

Claim: For every ε > 0 there is n ∈ N such that, for every S ∈ S,

sup
S∈S

P
(
mS > n

)
< ε. (6.15)

Indeed, for each n ∈ N (sufficiently large), there are maximal positive numbers αn, βn with
αn + βn ≤ 1 such that the probability measure

αnδan + βnδbn + (1− αn − βn)δmean(µ1)−αnan−βnbn
1−αn−βn

is dominated by µ1 in convex order. Since µ1 puts no mass to the boundary of I, there is for
each ε > 0 an index N ∈ N such that αn + βn < ε for all n ≥ N . The law of MS,n is dominated
in the convex order by µ1. By maximality of αn and βn we find uniformly for all S ∈ S

P
(
mS > n

)
= P

(
τS,n <∞

)
= P

(
MS,n ∈ {an, bn}

)
≤ αn + βn < ε,

which yields the claim (6.15).
By passing to a subnet, still denoted by S, we thus obtain that (M̃S ,mS)S∈S admits a limit

(M̃,m) w.r.t. convergence of finite dimensional distributions, where

M̃t = (∆Mn
t )n∈N, t ∈ [0, 1],

and (∆MS,n
t )S∈S has ∆Mn

t as its f.d.d. limit. Due to Proposition 6.5 we may choose a version of
M̃ taking values in C[0, 1]N. Consider the following process

M̂t :=

m∑
n=1

∆Mn
t , t ∈ [0, 1],

which has continuous trajectories as m is integer-valued finite. Note that f.d.d. convergence of
M̃S to M̃ yields f.d.d. convergence of

MS =

mS∑
n=1

∆MS,n →
m∑
n=1

∆Mn = M̂.

We conclude that M̂ and M coincide in law, and thus the Lipschitz Markov martingale M has a
version with continuous paths.

7 Overview of related results in the literature

In the last sections we have focused on specific aspects of the theory of mimicking processes. In
this final section we provide an overview of related results in the literature and give some context
for theorems discussed above.
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An early influential result is the work of Strassen [55] who established that there exists
a submartingale with marginals µ1, . . . , µN if and only these measures are increasing in the
increasing convex order induced by increasing convex functions. He also proved that there
exists a martingale with values in Rd and marginals µ1, . . . , µN if and only if these measures
are increasing in convex order. In [38, 39], Kellerer managed to extend Strassen’s result on the
existence of submartingales to an arbitrary family of marginals. As an important particular
case, this yields the existence of a mimicking martingale if the marginals increase in convex
order. Over time a number of authors have given new approaches to Kellerer’s theorem see
[29, 30, 47, 46, 48, 7, 11]. As discussed extensively above the work Lowther adds substantial new
developments. He characterizes when the Markov martingale can be chosen to be continuous,
as well as adding a clear-cut uniqueness part to Kellerer’s original result, complementing the
formal uniqueness result of Dupire [18]. We also recall from above, that the question whether the
natural extension of Kellerer’s result to higher dimension holds true remains completely open.

Given a continuum of marginals which increase in convex order (and maybe satisfies additional
technical conditions), different authors have provided specific constructions of (not necessarily
Markovian) martingales that match these marginals. A main motivation stems from the calibra-
tion problem in mathematical finance. An additional goal has often been to give constructions
that optimize particular functionals given the martingale and marginal constraints since this
yields robust bounds on option prices. Madan and Yor [49] and K’́allblad, Tan, and Touzi [36]
establish a time continuous version of the Azema-Yor embedding. Hobson [31] established a
continuous time version of the martingale coupling constructed in [32]. Henry-Labordere, Tan,
and Touzi [27] as well as Bŕ’uckerhoff, Huesmann, and Juillet [14] provide continuous time
versions of the shadow coupling (originally introduced in [8]). Richard, Tan, and Touzi [52] give a
continuous time version of the Root solution to the Skorokhod embedding problem. In a slightly
different but related direction, Boubel and Juillet [12] consider a continuum of marginals on
the real line that do not satisfy an order condition and construct a canonical Markov-process
matching these marginals. We also refer to the book [28] of Hirsch, Profeta, Roynette, and Yor
that collects a variety of related constructions.

The problem of finding martingales with given marginals has received specific attention in
the case where these marginals equal the ones of Brownian motion. Hamza-Klebaner [26] posed
the challenge of constructing martingales with Brownian marginals that differ from Brownian
motion, so called fake Brownian motions. Non-continuous solutions can be found in Madan-Yor
[49], Hamza-Klebaner [26], Hobson [34], and Fan-Hamza-Klebaner [20] whereas continuous (but
non-Markovian) fake Brownian motions were constructed by Oleszkiewicz [50], Albin [2], Baker-
Donati-Yor [6] and Hobson [31]. As already noted, the accompanying article [10] establishes that
there exists a Markovian martingale with continuous paths that has Brownian marginals.

A somewhat different direction arises if one starts with marginals that do not merely satisfy
a structural condition (specifically, monotonicity in convex order) but rather assumes that a set
of marginals is generated from an Ito-diffusion

dXt = σt dBt + µt dt (7.1)

and one seeks a Markovian diffusion

dX̂t = σ̂t(Xt) dBt + µt(Xt) dt
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that mimicks the evolution of X in the sense that Xt ∼ X̂t for each t ≥ 0. The process X̂ is
then considered to be the Markovian projection of X. This line of research goes back essentially
to the work of Krylov [41] and Gý’ongy [25]. Of course, also the work of Dupire [18] can
be seen as a formal contribution to this line of research. A rigorous justification of Dupire’s
formula under rather general assumption is obtained by Klebaner [40]. A very general theorem
on mimicking aspects of Ito processes is given by Brunick and Shreve [15]. Recently, Lacker,
Shkolnikov, and Zhang [44] show that the results of [25, 15] can be established directly from
the superposition principle of Trevisan [56] (or Figalli [21] in the case where (7.1) has bounded
coefficients). (Notably, the main focus of the work [44] is a mimicking result that shows that
conditional time marginals of an Ito-process can be matched by a solution of a conditional
McKean-Vlasov SDE with Markovian coefficients.)

In the mathematical finance community, Markovian (local vol) models are often considered
to exhibit dynamics that are not particularly realistic. There has been significant interest to
combine the convenience that the local vol model offers in terms of calibration with more realistic
dynamics that are exhibited by other classes of financial models. That is, given a Markovian
model dX̂t = σ̂t(X̂t) dSt that represents marked data, one would like to “reconstruct” a more
realistic model dXt = σt dBt and thus to “invert” the Markovian projection. A concrete way
to perform this inversion is the stochastic local volatility model see the work of Guyon and
Henry-Labordere [22, 23, 24]. However, it is remarkably delicate to establish existence and
uniqueness results for the resulting SDEs. Partial solutions where given by Jourdain and Zhou
[35] and by Lacker Shkolnikov and Zhang in [43]. The problem is also discussed by Acciaio and
Guyon [1] who consider it an important open problem to establish existence of the stochastic
local volatility model under fairly general assumptions.

References

[1] B. Acciaio and J. Guyon. Short communication: inversion of convex ordering: local volatility
does not maximize the price of VIX futures. SIAM J. Financial Math., 11(1):1–13, 2020.

[2] J. Albin. A continuous non-Brownian motion martingale with Brownian motion marginal
distributions. Statist. Probab. Lett., 78(6):682–686, 2008.

[3] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space
of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel,
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[5] J. Backhoff-Veraguas, M. Beiglböck, M. Huesmann, and S. Källblad. Martingale Benamou-
Brenier: a probabilistic perspective. Ann. Probab., 48(5):2258–2289, 2020.

[6] D. Baker, C. Donati-Martin, and M. Yor. A sequence of albin type continuous martingales
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[10] M. Beiglböck, G. Pammer, and W. Schachermayer. From bachelier to modern finance. ArXiv
e-prints, 2021.

[11] M. Beiglboeck and N. Juillet. Shadow couplings. Trans. Amer. Math. Soc., to appear, 2021.

[12] C. Boubel and N. Juillet. The markov-quantile process attached to a family of marginals.
ArXiv e-prints, 2018.

[13] D. T. Breeden and R. H. Litzenberger. Prices of state-contingent claims implicit in option
prices. The Journal of Business, 51(4):621–51, 1978.
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