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Abstract. An interesting question in the field of martingale optimal transport, is to deter-
mine the martingale with prescribed initial and terminal marginals which is most correlated
to Brownian motion. Under a necessary and sufficient irreducibility condition, the an-
swer to this question is given by a Bass martingale. At an intuitive level, the latter can
be imagined as an order-preserving and martingale-preserving space transformation of an
underlying Brownian motion starting with an initial law 𝛼 which is tuned to ensure the
marginal constraints.

In this article we study how to determine the aforementioned initial condition 𝛼. This is
done by a careful study of what we dub the Bass functional. In our main result we show the
equivalence between the existence of minimizers of the Bass functional and the existence
of a Bass martingale with prescribed marginals. This complements the convex duality
approach in a companion paper by the present authors together with M. Beiglböck, with
a purely variational perspective. We also establish an infinitesimal version of this result,
and furthermore prove the displacement convexity of the Bass functional along certain
generalized geodesics in the 2-Wasserstein space.
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1. Introduction

1.1. Martingale optimization problem. Let 𝜇, 𝜈 be elements of P2 (R𝑑), the space of
probability measures on R𝑑 with finite second moments. Assume that 𝜇, 𝜈 are in convex
order, denoted by 𝜇 ⪯c 𝜈, and meaning that

∫
𝜙 𝑑𝜇 ⩽

∫
𝜙 𝑑𝜈 holds for all convex functions

𝜙 : R𝑑 → R. As in [4, 5] we consider the martingale optimization problem

𝑀𝑇 (𝜇, 𝜈) B inf
𝑀0∼𝜇, 𝑀1∼𝜈,

𝑀𝑡=𝑀0+
∫ 𝑡

0 𝜎𝑠 𝑑𝐵𝑠

E
[ ∫ 1

0
|𝜎𝑡 − 𝐼𝑑 |2HS 𝑑𝑡

]
, (MBB)

where 𝐵 is Brownian motion on R𝑑 and | · |HS denotes the Hilbert–Schmidt norm. The
abbreviation “MBB” stands for “Martingale Benamou–Brenier” and this designation is
motivated from the fact that (MBB) can be seen as a martingale counterpart of the classical
formulation in optimal transport by Benamou–Brenier [13], see [4, 5]. The problem (MBB)
is equivalent to maximizing the covariance between 𝑀 and Brownian motion subject to the
marginal conditions 𝑀0 ∼ 𝜇 and 𝑀1 ∼ 𝜈, to wit

𝑃(𝜇, 𝜈) B sup
𝑀0∼𝜇, 𝑀1∼𝜈,

𝑀𝑡=𝑀0+
∫ 𝑡

0 𝜎𝑠 𝑑𝐵𝑠

E
[ ∫ 1

0
tr(𝜎𝑡 ) 𝑑𝑡

]
. (1.1)

Both problems have the same optimizer and the values are related via

𝑀𝑇 (𝜇, 𝜈) = 𝑑 +
∫

|𝑦 |2 𝑑𝜈(𝑦) −
∫

|𝑥 |2 𝑑𝜇(𝑥) − 2𝑃(𝜇, 𝜈).
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As shown in [4], the problem (MBB) admits a strong Markov martingale �̂� as a unique
optimizer, which is called the stretched Brownian motion from 𝜇 to 𝜈 in [4].

1.2. Bass martingales and structure of stretched Brownian motion. Owing to the work
[5] it is known that the optimality property of stretched Brownian motion is related to a
structural / geometric description. For its formulation we start with the following definition.

Definition 1.1. For probability measures 𝜇, 𝜈 we say that the pair (𝜇, 𝜈) is irreducible if
for all measurable sets 𝐴, 𝐵 ⊆ R𝑑 with 𝜇(𝐴), 𝜈(𝐵) > 0 there is a martingale 𝑋 = (𝑋𝑡 )0⩽𝑡⩽1
with 𝑋0 ∼ 𝜇, 𝑋1 ∼ 𝜈 such that P(𝑋0 ∈ 𝐴, 𝑋1 ∈ 𝐵) > 0.

We remark that in the classical theory of optimal transport one can always find couplings
(𝑋0, 𝑋1) of (𝜇, 𝜈) such that P(𝑋0 ∈ 𝐴, 𝑋1 ∈ 𝐵) > 0, for all measurable sets 𝐴, 𝐵 ⊆ R𝑑 with
𝜇(𝐴), 𝜈(𝐵) > 0; e.g., by letting (𝑋0, 𝑋1) be independent. In martingale optimal transport
this property may fail.

Next we recall the following concept from [6, 4, 5].

Definition 1.2. Let 𝐵 = (𝐵𝑡 )0⩽𝑡⩽1 be Brownian motion on R𝑑 with 𝐵0 ∼ �̂�, where �̂� is an
arbitrary element of P(R𝑑), the space of probability measures on R𝑑 . Let �̂� : R𝑑 → R be
convex such that ∇�̂�(𝐵1) is square-integrable. We call

�̂�𝑡 B E[∇�̂�(𝐵1) | 𝜎(𝐵𝑠 : 𝑠 ⩽ 𝑡)] = E[∇�̂�(𝐵1) | 𝐵𝑡 ], 0 ⩽ 𝑡 ⩽ 1 (1.2)
a Bass martingale with Bass measure �̂� joining 𝜇 = Law(�̂�0) with 𝜈 = Law(�̂�1).

The reason behind this terminology is that Bass [6] used this construction (with 𝑑 = 1
and �̂� a Dirac measure) in order to derive a solution of the Skorokhod embedding problem.

In [5, Theorem 1.3] it is shown that under the irreducibility assumption on the pair (𝜇, 𝜈)
there is a unique Bass martingale �̂� from 𝜇 to 𝜈, i.e., satisfying �̂�0 ∼ 𝜇 and �̂�1 ∼ 𝜈:

Theorem 1.3. Let 𝜇, 𝜈 ∈ P2 (R𝑑) with 𝜇 ⪯c 𝜈 and assume that (𝜇, 𝜈) is irreducible. Then
the following are equivalent for a martingale �̂� = (�̂�𝑡 )0⩽𝑡⩽1 with �̂�0 ∼ 𝜇 and �̂�1 ∼ 𝜈:

(1) �̂� is stretched Brownian motion, i.e., the optimizer of (MBB).
(2) �̂� is a Bass martingale.

Since, for probability measures 𝜇, 𝜈 ∈ P2 (R𝑑) with 𝜇 ⪯c 𝜈, stretched Brownian motion
always exists by [4, Theorem 1.5], the above theorem states that the existence of a Bass
martingale follows from — and is in fact equivalent to — the irreducibility assumption on
the pair (𝜇, 𝜈).

Denoting by ∗ the convolution operator and by 𝛾 the standard Gaussian measure on R𝑑 ,
we remark that the convex function �̂� and the Bass measure �̂� from Definition 1.2 satisfy
the identities

(∇�̂� ∗ 𝛾) (�̂�) = 𝜇 and ∇�̂�(�̂� ∗ 𝛾) = 𝜈. (1.3)
We formalize the fundamental relations (1.3) and their correspondence with Bass martin-
gales in Lemma 2.3 below.

Throughout we write 𝛾𝑡 for the 𝑑-dimensional centered Gaussian distribution with
covariance matrix 𝑡 𝐼𝑑 and set �̂�𝑡 B �̂� ∗ 𝛾1−𝑡 : R𝑑 → R, for 0 ⩽ 𝑡 ⩽ 1. In these terms, (1.2)
amounts to

�̂�𝑡 = ∇�̂�𝑡 (𝐵𝑡 ), 0 ⩽ 𝑡 ⩽ 1.

1.3. Main results. In the following we denote by MCov the maximal covariance between
two probability measures 𝑝1, 𝑝2 ∈ P2 (R𝑑), defined as

MCov(𝑝1, 𝑝2) B sup
𝑞∈Cpl(𝑝1 , 𝑝2 )

∫
⟨𝑥1, 𝑥2⟩ 𝑞(𝑑𝑥1, 𝑑𝑥2), (1.4)

where Cpl(𝜇, 𝜈) is the set of all couplings 𝜋 ∈ P(R𝑑×R𝑑) between 𝜇 and 𝜈, i.e., probability
measures on R𝑑 × R𝑑 with first marginal 𝜇 and second marginal 𝜈. As is well known,
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maximizing the covariance between 𝑝1 and 𝑝2 is equivalent to minimizing their expected
squared distance; see also (2.3) below.

Definition 1.4. We introduce the Bass functional

P2 (R𝑑) ∋ 𝛼 ↦−→ V(𝛼) B MCov(𝛼 ∗ 𝛾, 𝜈) − MCov(𝛼, 𝜇). (1.5)

In our first main result we derive a novel formulation of problem (1.1), which character-
izes the Bass measure �̂� in (1.3) as the optimizer of the Bass functional (1.5).

Theorem 1.5. Let 𝜇, 𝜈 ∈ P2 (R𝑑) with 𝜇 ⪯c 𝜈. Then

𝑃(𝜇, 𝜈) = inf
𝛼∈P2 (R𝑑 )

V(𝛼). (1.6)

The right-hand side of (1.6) is attained by �̂� ∈ P2 (R𝑑) if and only if there is a Bass
martingale from 𝜇 to 𝜈 with Bass measure �̂� ∈ P2 (R𝑑).

The proof of Theorem 1.5 is given in Section 3. In Section 4 we will show the following
infinitesimal version of Theorem 1.5, which constitutes our second main result:

Theorem 1.6. Let (𝑀𝑡 )0⩽𝑡⩽1 be an R𝑑-valued martingale bounded in 𝐿2, which is given
by the stochastic integral

𝑀𝑡 = 𝑀0 +
∫ 𝑡

0
𝜎𝑠 𝑑𝐵𝑠 , 0 ⩽ 𝑡 ⩽ 1,

where (𝜎𝑡 )0⩽𝑡⩽1 is a progressively measurable process. Denote by 𝜇𝑡 the law of 𝑀𝑡 . For
Lebesgue-a.e. 0 ⩽ 𝑡 ⩽ 1 we have, for each 𝛼 ∈ P2 (R𝑑), the inequality

E
[
tr(𝜎𝑡 )

]
⩽ lim inf

ℎ→0
1
ℎ

(
MCov(𝛼 ∗ 𝛾ℎ, 𝜇𝑡+ℎ) − MCov(𝛼, 𝜇𝑡 )

)
. (1.7)

We note that, for a Bass martingale (�̂�𝑡 )0⩽𝑡⩽1 of the form

𝑑�̂�𝑡 = �̂�𝑡 (�̂�𝑡 ) 𝑑𝐵𝑡 ,

with associated Bass measure �̂� ∈ P2 (R𝑑) and diffusion function �̂�𝑡 : R𝑑 → R𝑑×𝑑 , we
have, for Lebesgue-a.e. 0 ⩽ 𝑡 ⩽ 1, the equality

E
[
tr
(
�̂�𝑡 (�̂�𝑡 )

) ]
=

𝑑

𝑑𝑡
MCov(�̂� ∗ 𝛾𝑡 , �̂�𝑡 ),

where �̂�𝑡 = Law(�̂�𝑡 ). This exhibits the sharpness of (1.7) and shows that Theorem 1.6 is
an infinitesimal analogue of Theorem 1.5.

In our final main result we discuss convexity properties of the Bass functional𝛼 ↦→ V(𝛼)
defined in (1.5).

Theorem 1.7. We have the following results:

(1) If 𝑑 = 1, then V is displacement convex, i.e., convex along the geodesics given by
McCann interpolations [37].

(2) If 𝑑 ⩾ 1, then V is displacement convex along generalized geodesics with base 𝜇.

The proof of this result, together with a discussion on the various forms of convexity
stated therein (see e.g. [2, 43, 37]), and a treatment of the strict convexity of V, are deferred
to Section 5. We merely stress here that the Bass functional fails to be convex, and can even
be concave, if we consider convex combinations of measures in the usual linear sense.
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1.4. Related literature. Optimal transport as a field in mathematics goes back to Monge
[38] and Kantorovich [33], who established its modern formulation. The seminal results of
Benamou, Brenier, and McCann [15, 16, 13, 35, 36] form the basis of the modern theory,
with striking applications in a variety of different areas, see the monographs [43, 44, 1, 41].

We are interested in transport problems where the transport plan satisfies an additional
martingale constraint. This additional requirement arises naturally in finance (e.g. [8]),
but is of independent mathematical interest. For example there are notable consequences
for the study of martingale inequalities (e.g. [14, 29, 40]) and the Skorokhod embedding
problem (e.g. [7, 32, 12]). Early articles on this topic of martingale optimal transport
include [30, 8, 42, 23, 21, 17]. The study of irreducibility of a pair of marginals (𝜇, 𝜈)
was initiated by Beiglböck and Juillet [11] in dimension one and extended in the works
[24, 20, 39] to multiple dimensions.

Continuous-time martingale optimal transport problems have received much attention in
the recent years; see e.g. [9, 19, 26, 28, 25, 18, 27]. In this paper we concern ourselves with
the specific structure given by the martingale Benamou–Brenier problem, introduced in [4]
in probabilistic language and in [31] in PDE language, and subsequently studied through
the point of view of duality theory in [5]. In the context of market impact in finance, the
same kind of problem appeared independently in a work by Loeper [34].

It was also shown in [4] that the optimizer �̂� of the problem (MBB) is the process whose
evolution follows the movement of Brownian motion as closely as possible with respect to
an adapted Wasserstein distance (see e.g. [3, 22]) subject to the given marginal constraints.
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2. Preliminaries

In this short section we give a more detailed review of some of the main results in [5],
which will be useful for the coming discussions and proofs.

2.1. Dual viewpoint. As established in [5, Theorem 1.4], the problem (1.1) admits a dual
formulation with a particularly appealing structure:

Theorem 2.1. Let 𝜇, 𝜈 ∈ P2 (R𝑑) with 𝜇 ⪯c 𝜈. The value 𝑃(𝜇, 𝜈) of the problem (1.1) is
equal to

𝐷 (𝜇, 𝜈) B inf
𝜓∈𝐿1 (𝜈) ,
𝜓 convex

( ∫
𝜓 𝑑𝜈 −

∫
(𝜓∗ ∗ 𝛾)∗ 𝑑𝜇

)
(2.1)

and is attained by a convex function �̂� if and only if (𝜇, 𝜈) is irreducible. In this case, the
(unique) optimizer to (MBB), (1.1) is given by the Bass martingale with associated convex
function �̂� = �̂�∗ and Bass measure �̂� = ∇(�̂�∗ ∗ 𝛾)∗ (𝜇).
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Note that the symbol ∗ used as a superscript denotes the convex conjugate of a function.
We also remark that attainment of 𝐷 (𝜇, 𝜈) has to be understood in a “relaxed” sense, since
the optimizer �̂� is not necessarily 𝜈-integrable; see [5, Proposition 4.2].

2.2. Static martingale optimal transport. We fix 𝜇, 𝜈 ∈ P2 (R𝑑) with 𝜇 ⪯c 𝜈 and
consider a static / discrete-time version of the continuous-time martingale optimization
problem (1.1), to wit

�̃�(𝜇, 𝜈) B sup
𝜋∈MT(𝜇,𝜈)

∫
MCov(𝜋𝑥 , 𝛾) 𝜇(𝑑𝑥). (2.2)

The collection of martingale transports MT(𝜇, 𝜈) consists of those couplings 𝜋 ∈ Cpl(𝜇, 𝜈)
that satisfy bary(𝜋𝑥) B

∫
𝑦 𝜋𝑥 (𝑑𝑦) = 𝑥, for 𝜇-a.e. 𝑥 ∈ R𝑑 . Here, the family of probability

measures {𝜋𝑥}𝑥∈R𝑑 ⊆ P2 (R𝑑) is obtained by disintegrating the coupling 𝜋 with respect to
its first marginal 𝜇, i.e., 𝜋(𝑑𝑥, 𝑑𝑦) = 𝜋𝑥 (𝑑𝑦) 𝜇(𝑑𝑥).

By [4, Theorem 2.2] the value �̃�(𝜇, 𝜈) of (2.2) is finite and equals 𝑃(𝜇, 𝜈), as defined in
(1.1). Furthermore, there exists a unique optimizer �̂� ∈ MT(𝜇, 𝜈) of (2.2) and if (�̂�𝑡 )0⩽𝑡⩽1
is the stretched Brownian motion from 𝜇 to 𝜈, then the law of (�̂�0, �̂�1) equals �̂�.

As already alluded to, maximizing the maximal covariance is equivalent to minimizing
the squared quadratic Wasserstein distance, modulo adding constants. More precisely, in
the present setting we have the relation

inf
𝜋∈MT(𝜇,𝜈)

∫
W2

2 (𝜋𝑥 , 𝛾) 𝜇(𝑑𝑥) = 𝑑 +
∫

|𝑦 |2 𝑑𝜈(𝑦) − 2�̃�(𝜇, 𝜈),

where the quadratic Wasserstein distance W2 ( · , · ) between two probability measures
𝑝1, 𝑝2 ∈ P2 (R𝑑) is defined as

W2 (𝑝1, 𝑝2) B

√︄
inf

𝑞∈Cpl(𝑝1 , 𝑝2 )

∫
|𝑥1 − 𝑥2 |2 𝑞(𝑑𝑥1, 𝑑𝑥2). (2.3)

In these terms, the value of (MBB) can be expressed as

𝑀𝑇 (𝜇, 𝜈) = inf
𝜋∈MT(𝜇,𝜈)

∫
W2

2 (𝜋𝑥 , 𝛾) 𝜇(𝑑𝑥) −
∫

|𝑥 |2 𝑑𝜇(𝑥).

2.3. Structure of optimizers. From [5, Theorem 6.6] we recall the following character-
ization of the dual optimizer �̂� of (2.1) and of the primal optimizer �̂� ∈ MT(𝜇, 𝜈) of
(2.2).

Lemma 2.2. Let 𝜇, 𝜈 ∈ P2 (R𝑑) with 𝜇 ⪯c 𝜈. Suppose that a Bass martingale (�̂�𝑡 )0⩽𝑡⩽1
from 𝜇 to 𝜈 with Bass measure �̂� ∈ P(R𝑑) and associated convex function �̂� exists. Then
the Legendre transform �̂�∗ is equal to the dual optimizer �̂� of (2.1) and Law(�̂�0, �̂�1) is
equal to the primal optimizer �̂� of (2.2). Furthermore, we have �̂� = ∇�̂�(𝜇), where

∇�̂�(𝑥) = (∇�̂� ∗ 𝛾)−1 (𝑥) = ∇(�̂� ∗ 𝛾)∗ (𝑥), (2.4)

for 𝜇-a.e. 𝑥 ∈ R𝑑 , and

�̂�𝑥 = Law(�̂�1 | �̂�0 = 𝑥) = ∇�̂�(𝛾∇ �̂� (𝑥 ) ), (2.5)

where 𝛾∇ �̂� (𝑥 ) denotes the 𝑑-dimensional Gaussian distribution with barycenter ∇�̂�(𝑥) and
covariance matrix 𝐼𝑑 .
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We set �̂� B �̂� ∗ 𝛾, so that ∇�̂�(�̂�) = 𝜇. Recalling (1.3), we summarize the relationships
between the optimizers in the following diagram:

�̂� ∗ 𝛾 𝜈

�̂� 𝜇

∇�̂�

∇ �̂�

∇�̂�

∗ �̂�·

∇ �̂�

Finally, we prove the equivalence between the identities (1.3) and the existence of a Bass
martingale from 𝜇 to 𝜈.

Lemma 2.3. Let 𝜇, 𝜈 ∈ P2 (R𝑑) with 𝜇 ⪯c 𝜈. There is a Bass martingale �̂� with Bass
measure �̂� ∈ P(R𝑑) from 𝜇 = Law(�̂�0) to 𝜈 = Law(�̂�1) if and only if there is a convex
function �̂� : R𝑑 → R satisfying the identities

(∇�̂� ∗ 𝛾) (�̂�) = 𝜇 and ∇�̂�(�̂� ∗ 𝛾) = 𝜈. (2.6)

Moreover, the Bass martingale �̂� can be expressed as

�̂�𝑡 = ∇�̂�𝑡 (𝐵𝑡 ), 0 ⩽ 𝑡 ⩽ 1. (2.7)

Proof. Let �̂� be a Bass martingale in the sense of Definition 1.2. We first prove (2.7). Let
𝐴 ⊆ R𝑑 be a Borel set. We have to show that

E
[
∇�̂�(𝐵1) 1{𝐵𝑡 ∈𝐴}

]
= E

[
(∇�̂� ∗ 𝛾1−𝑡 ) (𝐵𝑡 ) 1{𝐵𝑡 ∈𝐴}

]
. (2.8)

Denote by 𝜑𝑡 (𝑥, 𝑦) the Gaussian kernel, for 𝑡 ∈ (0, 1] and 𝑥, 𝑦 ∈ R𝑑 . Then the left-hand
side of (2.8) can be expressed as∫

�̂�(𝑑𝑥0)
∫
𝐴

𝜑𝑡 (𝑥0, 𝑑𝑥𝑡 )
∫

∇�̂�(𝑥1) 𝜑1−𝑡 (𝑥𝑡 , 𝑑𝑥1),

while the right-hand side is equal to∫
�̂�(𝑑𝑥0)

∫
𝐴

(∇�̂� ∗ 𝛾1−𝑡 ) (𝑥𝑡 ) 𝜑𝑡 (𝑥0, 𝑑𝑥𝑡 ).

Now we see that (2.8) follows from∫
∇�̂�(𝑥1) 𝜑1−𝑡 (𝑥𝑡 , 𝑑𝑥1) =

∫
∇�̂�(𝑥1) 𝛾1−𝑡

𝑥𝑡
(𝑑𝑥1) = (∇�̂� ∗ 𝛾1−𝑡 ) (𝑥𝑡 ),

where 𝛾1−𝑡
𝑥𝑡

denotes the 𝑑-dimensional Gaussian distribution with barycenter 𝑥𝑡 and covari-
ance matrix (1 − 𝑡)𝐼𝑑 . This completes the proof of (2.7).

In particular, at times 𝑡 = 0 and 𝑡 = 1 we obtain from (2.7) that �̂�0 = (∇�̂� ∗ 𝛾) (𝐵0) and
�̂�1 = ∇�̂�(𝐵1), respectively. If �̂� is a Bass martingale from 𝜇 = Law(�̂�0) to 𝜈 = Law(�̂�1),
this readily gives (2.6)

Conversely, suppose that 𝜇, 𝜈, �̂�, �̂� satisfy the identities (2.6). Let (𝐵𝑡 )0⩽𝑡⩽1 be Brownian
motion on R𝑑 with Law(𝐵0) = �̂�. We then define a process (�̂�𝑡 )0⩽𝑡⩽1 by (1.2). In light
of the previous argument, �̂� is characterized by (2.7). Since by assumption the identities
(2.6) are satisfied, we see that Law(�̂�0) = 𝜇 and Law(�̂�1) = 𝜈. Thus �̂� is indeed a Bass
martingale from 𝜇 to 𝜈. □
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3. A variational characterization of Bass measures

Throughout this section we fix 𝜇, 𝜈 ∈ P2 (R𝑑) with 𝜇 ⪯c 𝜈 and provide the proof of Theorem
1.5. This is done in several steps.

Lemma 3.1. We have the weak duality

𝑃(𝜇, 𝜈) ⩽ inf
𝛼∈P2 (R𝑑 )

V(𝛼). (3.1)

Proof. Let 𝛼 ∈ P2 (R𝑑) be arbitrary. By Brenier’s theorem [43, Theorem 2.12] there is
a convex function 𝑣 such that ∇𝑣(𝛼 ∗ 𝛾) = 𝜈. Hence from the Kantorovich duality [44,
Theorem 5.10] it follows that

MCov(𝛼 ∗ 𝛾, 𝜈) =
∫

𝑣 𝑑 (𝛼 ∗ 𝛾) +
∫

𝑣∗ 𝑑𝜈 =

∫
(𝑣 ∗ 𝛾) 𝑑𝛼 +

∫
𝑣∗ 𝑑𝜈.

Since 𝑣 ∗ 𝛾 is convex, applying once more the Kantorovich duality yields

MCov(𝛼 ∗ 𝛾, 𝜈) =
∫

𝑣∗ 𝑑𝜈 −
∫

(𝑣 ∗ 𝛾)∗ 𝑑𝜇 +
∫

(𝑣 ∗ 𝛾) 𝑑𝛼 +
∫

(𝑣 ∗ 𝛾)∗ 𝑑𝜇

⩾

∫
𝑣∗ 𝑑𝜈 −

∫
(𝑣 ∗ 𝛾)∗ 𝑑𝜇 + MCov(𝛼, 𝜇).

Finally, from Theorem 2.1 we deduce that

MCov(𝛼 ∗ 𝛾, 𝜈) ⩾ inf
𝜓 convex

( ∫
𝜓 𝑑𝜈 −

∫
(𝜓∗ ∗ 𝛾)∗ 𝑑𝜇

)
+ MCov(𝛼, 𝜇)

= 𝑃(𝜇, 𝜈) + MCov(𝛼, 𝜇),
which gives the inequality (3.1). We remark that it is immaterial whether in (2.1) we
optimize over convex functions 𝜓 which are elements of 𝐿1 (𝜈) or which are just 𝜇-a.s.
finite, see [5, Section 4]. □

Lemma 3.2. Suppose that there exists a Bass martingale from 𝜇 to 𝜈 with Bass measure
�̂� ∈ P2 (R𝑑). Then the right-hand side of (3.1) is attained by �̂� and is equal to

V(�̂�) =
∫

MCov(�̂�𝑥 , 𝛾) 𝜇(𝑑𝑥), (3.2)

where �̂� ∈ MT(𝜇, 𝜈) is the optimizer of (2.2).

Proof. By assumption there exists a Bass martingale from 𝜇 to 𝜈, with Bass measure
�̂� ∈ P2 (R𝑑) and associated convex function �̂� satisfying (recall Lemma 2.3) the identities
(2.6). According to Lemma 2.2, we have that �̂� = ∇�̂�(𝜇) and

�̂�𝑥 = ∇�̂�(𝛾∇ �̂� (𝑥 ) ),
for 𝜇-a.e. 𝑥 ∈ R𝑑 . Applying Brenier’s theorem, we deduce that∫

MCov(�̂�𝑥 , 𝛾) 𝜇(𝑑𝑥) =
∫ ∫ 〈

∇�̂�
(
∇�̂�(𝑥) + 𝑧

)
, 𝑧
〉
𝛾(𝑑𝑧) 𝜇(𝑑𝑥)

=

∫ ∫ (〈
∇�̂�

(
∇�̂�(𝑥) + 𝑧

)
,∇�̂�(𝑥) + 𝑧

〉
−
〈
∇�̂�

(
∇�̂�(𝑥) + 𝑧

)
,∇�̂�(𝑥)

〉)
𝛾(𝑑𝑧) 𝜇(𝑑𝑥)

=

∫ ∫ (
⟨∇�̂�(𝑎 + 𝑧), 𝑎 + 𝑧⟩ − ⟨∇�̂�(𝑎 + 𝑧), 𝑎⟩

)
𝛾(𝑑𝑧) �̂�(𝑑𝑎)

=

∫
⟨∇�̂�, Id⟩ 𝑑 (�̂� ∗ 𝛾) −

∫
⟨(∇�̂� ∗ 𝛾), Id⟩ 𝑑�̂�

= MCov(�̂� ∗ 𝛾, 𝜈) − MCov(�̂�, 𝜇) = V(�̂�),
which shows (3.2). Together with the weak duality (3.1) of Lemma 3.1 above, and recalling
from Subsection 2.2 that the right-hand side of (3.2) is equal to �̃�(𝜇, 𝜈) = 𝑃(𝜇, 𝜈), we
conclude the assertion of Lemma 3.2. □
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Lemma 3.3. We have the duality result

𝑃(𝜇, 𝜈) = inf
𝛼∈P2 (R𝑑 )

V(𝛼). (3.3)

Proof. For 𝜀 > 0 we define 𝜇𝜀 B 𝜇 ∗ 𝛾𝜀 and 𝜈𝜀 B 𝜈 ∗ 𝛾2𝜀 . Then 𝜇𝜀 ⪯c 𝜈𝜀 and the pair
(𝜇𝜀 , 𝜈𝜀) is irreducible. Hence by Theorem 1.3 there is a Bass martingale from 𝜇𝜀 to 𝜈𝜀 ,
so that by Lemma 3.2 we have

sup
𝜋∈MT(𝜇𝜀 ,𝜈𝜀 )

∫
MCov(𝜋𝑥 , 𝛾) 𝜇𝜀 (𝑑𝑥) = inf

𝛼∈P2 (R𝑑 )

(
MCov(𝛼 ∗ 𝛾, 𝜈𝜀) − MCov(𝛼, 𝜇𝜀)

)
.

(3.4)
By weak optimal transport arguments (see [10, Theorem 2.3]) we know

lim sup
𝜀→0

sup
𝜋∈MT(𝜇𝜀 ,𝜈𝜀 )

∫
MCov(𝜋𝑥 , 𝛾) 𝜇𝜀 (𝑑𝑥) ⩽ sup

𝜋∈MT(𝜇,𝜈)

∫
MCov(𝜋𝑥 , 𝛾) 𝜇(𝑑𝑥).

Therefore, if we can show that the right-hand side of (3.4) converges to the right-hand side
of (3.3), we will obtain the inequality

𝑃(𝜇, 𝜈) ⩾ inf
𝛼∈P2 (R𝑑 )

V(𝛼) = inf
𝛼∈P2 (R𝑑 )

(
MCov(𝛼 ∗ 𝛾, 𝜈) − MCov(𝛼, 𝜇)

)
,

which, together with the weak duality of Lemma 3.1, establishes (3.3). But this follows
easily from

|MCov(𝛼, 𝜇𝜀) − MCov(𝛼, 𝜇) | ⩽ 𝑐1𝜀 + 1
2 |W

2
2 (𝛼, 𝜇

𝜀) −W2
2 (𝛼, 𝜇) | ⩽ 𝑐2 (𝜀 + 𝜀2)

and a similar estimate for |MCov(𝛼 ∗ 𝛾, 𝜈𝜀) − MCov(𝛼 ∗ 𝛾, 𝜈) |. □

Lemma 3.4. Suppose that the right-hand side of (3.3) is attained by �̂� ∈ P2 (R𝑑). Then
there exists a Bass martingale from 𝜇 to 𝜈 with Bass measure �̂�.

Proof. By Brenier’s theorem there is a convex function �̂� such that∇�̂�(�̂�∗𝛾) = 𝜈. According
to Lemma 2.3, for the existence of a Bass martingale from 𝜇 to 𝜈, it remains to show the
first equality in (2.6), i.e.,

(∇�̂� ∗ 𝛾) (�̂�) = 𝜇. (3.5)
Let �̂� and 𝑋 be random variables with laws �̂� and 𝜇, respectively, such that

MCov(�̂�, 𝜇) = E
[
⟨�̂� , 𝑋⟩

]
. (3.6)

Denote by 𝑞(𝑑𝑧, 𝑑𝑥) the law of the coupling (�̂� , 𝑋). Let w : R𝑑 × R𝑑 → R𝑑 be a smooth
function with compact support and define probability measures (𝛼𝑢)𝑢∈R ⊆ P2 (R𝑑) by∫

𝑓 𝑑𝛼𝑢 B

∫ ∫
𝑓
(
𝑧 + 𝑢w(𝑧, 𝑥)

)
𝑞(𝑑𝑧, 𝑑𝑥), 𝑓 ∈ 𝐶𝑏 (R𝑑). (3.7)

We claim that

lim inf
𝑢→0

1
𝑢

(
MCov(𝛼𝑢, 𝜇) − MCov(�̂�, 𝜇)

)
⩾ E

[〈
w(�̂� , 𝑋), 𝑋

〉]
(3.8)

and

lim
𝑢→0

1
𝑢

(
MCov(𝛼𝑢 ∗ 𝛾, 𝜈) − MCov(�̂� ∗ 𝛾, 𝜈)

)
= E

[〈
w(�̂� , 𝑋), (∇�̂� ∗ 𝛾) (�̂�)

〉]
. (3.9)

Using the optimality of �̂� ∈ P2 (R𝑑) for the right-hand side of (3.3) and admitting the two
claims (3.8), (3.9), we deduce that

0 ⩽ lim inf
𝑢→0

1
𝑢

((
MCov(𝛼𝑢 ∗ 𝛾, 𝜈) − MCov(�̂� ∗ 𝛾, 𝜈)

)
−
(
MCov(𝛼𝑢, 𝜇) − MCov(�̂�, 𝜇)

))
⩽ E

[〈
w(�̂� , 𝑋), (∇�̂� ∗ 𝛾) (�̂�) − 𝑋

〉]
.

Since w was arbitrary, it follows that the random variable (∇�̂� ∗ 𝛾) (�̂�) has the same law as
𝑋 , which readily gives (3.5).
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We now turn to the proof of the claim (3.8). By the definition of 𝛼𝑢 in (3.7), the random
variable 𝑍𝑢 B �̂� + 𝑢w(�̂� , 𝑋) has law 𝛼𝑢. Consequently,

MCov(𝛼𝑢, 𝜇) ⩾ E
[
⟨𝑍𝑢, 𝑋⟩

]
. (3.10)

Combining (3.6) and (3.10) yields (3.8).
It remains to show the claim (3.9). By analogy with the proof of (3.8), we obtain the

inequality “⩾” in (3.9). For the reverse inequality, we note that by the Kantorovich duality
we have

MCov(𝛼𝑢 ∗ 𝛾, 𝜈) = inf
𝑣 convex

( ∫
𝑣 𝑑 (𝛼𝑢 ∗ 𝛾) −

∫
𝑣∗ 𝑑𝜈

)
⩽

∫
�̂� 𝑑 (𝛼𝑢 ∗ 𝛾) −

∫
�̂�∗ 𝑑𝜈

=

∫
(�̂� ∗ 𝛾) 𝑑𝛼𝑢 −

∫
�̂�∗ 𝑑𝜈

and
MCov(�̂� ∗ 𝛾, 𝜈) =

∫
�̂� 𝑑 (𝛼 ∗ 𝛾) +

∫
�̂�∗ 𝑑𝜈 =

∫
(�̂� ∗ 𝛾) 𝑑�̂� +

∫
�̂�∗ 𝑑𝜈.

Therefore

MCov(𝛼𝑢 ∗ 𝛾, 𝜈) − MCov(�̂� ∗ 𝛾, 𝜈) ⩽
∫

(�̂� ∗ 𝛾) 𝑑𝛼𝑢 −
∫

(�̂� ∗ 𝛾) 𝑑�̂�

= E
[
(�̂� ∗ 𝛾)

(
�̂� + 𝑢w(�̂� , 𝑋)

)
− (�̂� ∗ 𝛾) (�̂�)

]
Using the convexity of the function �̂� ∗ 𝛾, we deduce that

1
𝑢

(
MCov(𝛼𝑢 ∗ 𝛾, 𝜈) − MCov(�̂� ∗ 𝛾, 𝜈)

)
⩽ E

[〈
w(�̂� , 𝑋), (∇�̂� ∗ 𝛾)

(
�̂� + 𝑢w(�̂� , 𝑋)

)〉]
.

Now observe that the expectation on the right-hand side of the above inequality is equal to
the expectation of the random variable

𝑌𝑢 B
〈
w(�̂� , 𝑋) ,∇�̂�(�̂� + Γ) exp

(
𝑢
〈
Γ,w(�̂� , 𝑋)

〉
− 𝑢2

2 |w(�̂� , 𝑋) |2
)〉
,

where Γ is a standard Gaussian random vector on R𝑑 , independent of �̂� as well as of 𝑋 .
Clearly by continuity

lim
𝑢→0

𝑌𝑢 =
〈
w(�̂� , 𝑋),∇�̂�(�̂� + Γ)

〉
, P-a.s.

As w is smooth with compact support, for 𝛿 > 0 we can find constants 𝑐1, 𝑐2 such that

∀𝑢 ∈ [−𝛿, 𝛿] : |𝑌𝑢 | ⩽ 𝑐1 |∇�̂�(�̂� + Γ) | e𝑐2 |Γ | .

By the Cauchy–Schwarz inequality and since ∇�̂�(�̂� ∗ 𝛾) = 𝜈 ∈ P2 (R𝑑), we have the bound

E
[
|∇�̂�(�̂� + Γ) | e |Γ |

]
⩽

√︄∫
|𝑦 |2 𝑑𝜈(𝑦)

√︃
E
[
e2 |Γ | ] < +∞.

Therefore we can apply the dominated convergence theorem and conclude that

lim sup
𝑢→0

1
𝑢

(
MCov(𝛼𝑢 ∗ 𝛾, 𝜈) − MCov(�̂� ∗ 𝛾, 𝜈)

)
⩽ E

[〈
w(�̂� , 𝑋), (∇�̂� ∗ 𝛾) (�̂�)

〉]
,

which completes the proof of the claim (3.9). □

Proof of Theorem 1.5. The assertion of the theorem follows from Lemmas 3.2 – 3.4. □

The reader has certainly noticed that the proof of Lemma 3.2 was given in an analytic
style while the proof of Lemma 3.4 was given in a more probabilistic language. In the
remainder of this section we give an alternative probabilistic proof of Lemma 3.2 and sketch
how to translate the proof of Lemma 3.4 into a more analytic language.

The following probabilistic proof of Lemma 3.2 does not require the duality results
developed in [5], but only relies on the definition of Bass martingales.
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Probabilistic proof of Lemma 3.2. By assumption there exists a Bass martingale from 𝜇

to 𝜈, with Bass measure �̂� ∈ P2 (R𝑑) and associated convex function �̂� satisfying (recall
Lemma 2.3) the identities (2.6). Let 𝛼 ∈ P2 (R𝑑) be arbitrary. We have to show that

V(�̂�) =MCov(�̂� ∗ 𝛾, 𝜈) − MCov(�̂�, 𝜇) ⩽
⩽MCov(𝛼 ∗ 𝛾, 𝜈) − MCov(𝛼, 𝜇) = V(𝛼). (3.11)

Take a random variable �̂� with law �̂� and define

𝑋 B (∇�̂� ∗ 𝛾) (�̂�). (3.12)

By Brenier’s theorem the coupling (�̂� , 𝑋) is optimal and according to (2.6) the random
variable 𝑋 has law 𝜇. Now choose a random variable 𝑍 with law 𝛼 such that the coupling
(𝑍, 𝑋) is optimal with respect to the maximal covariance (equivalently, with respect to the
quadratic Wasserstein distance). Clearly

MCov(𝛼, 𝜇) − MCov(�̂�, 𝜇) = E
[
⟨𝑍 − �̂� , 𝑋⟩

]
. (3.13)

Take a standard Gaussian random vector Γ on R𝑑 , independent of 𝑍 as well as of �̂� . The
random variables �̂� + Γ and

𝑌 B ∇�̂�(�̂� + Γ) (3.14)
have laws �̂� ∗ 𝛾 and 𝜈, respectively. As by Brenier’s theorem the coupling (�̂� + Γ, 𝑌 ) is
optimal, we have

MCov(�̂� ∗ 𝛾, 𝜈) = E
[
⟨�̂� + Γ, 𝑌⟩

]
. (3.15)

Since the random variable 𝑍 +Γ has law 𝛼 ∗𝛾 we conclude that (𝑍 +Γ, 𝑌 ) is some coupling
between 𝛼 ∗ 𝛾 and 𝜈, i.e.,

MCov(𝛼 ∗ 𝛾, 𝜈) ⩾ E
[
⟨𝑍 + Γ, 𝑌⟩

]
. (3.16)

From (3.13) – (3.16) we obtain the inequality

MCov(𝛼 ∗ 𝛾, 𝜈) − MCov(�̂� ∗ 𝛾, 𝜈) − MCov(𝛼, 𝜇) + MCov(�̂�, 𝜇) ⩾ E
[
⟨𝑍 − �̂� , 𝑌 − 𝑋⟩

]
.

Therefore, in order to establish the inequality (3.11), it remains to show that

E
[
⟨𝑍 − �̂� , 𝑌 − 𝑋⟩

]
= 0. (3.17)

For that purpose, we condition 𝑌 − 𝑋 on the random variables 𝑍 as well as �̂� , so that by
(3.12) and (3.14) we obtain

E[𝑌 − 𝑋 | 𝑍, �̂�] = 0,
which implies (3.17). □

We finally give an alternative heuristic argument for Lemma 3.4, which is based on
differentiating the maximal covariance along a continuity equation.

Alternative heuristic proof of Lemma 3.4. Suppose that the right-hand side of (3.3) is at-
tained by �̂� ∈ P2 (R𝑑). We want to show that there exists a Bass martingale from 𝜇 to 𝜈

with Bass measure �̂�. The idea is to perturb �̂� along a continuity equation

𝜕𝑡𝛼𝑡 + div(v𝑡𝛼𝑡 ) = 0, 𝑡 ∈ (−ℎ, ℎ),
with ℎ > 0, 𝛼0 B �̂�, and where v𝑡 is a velocity field. Observe that

𝜕𝑡 |𝑡=0 V(𝛼𝑡 ) = 𝜕𝑡 |𝑡=0

(
MCov(𝛼𝑡 ∗ 𝛾, 𝜈) − MCov(𝛼𝑡 , 𝜇)

)
= 𝜕𝑡 |𝑡=0

∫
�̂� 𝑑 (𝛼𝑡 ∗ 𝛾) − 𝜕𝑡 |𝑡=0

∫
�̂� 𝑑𝛼𝑡 ,

where ∇�̂�(�̂� ∗ 𝛾) = 𝜈 is optimal and likewise ∇�̂�(�̂�) = 𝜇 is optimal. By the continuity
equation we obtain

𝜕𝑡 |𝑡=0

∫
�̂� 𝑑𝛼𝑡 =

∫
⟨∇�̂�, v0⟩ 𝑑�̂�.



THE BASS FUNCTIONAL OF MARTINGALE TRANSPORT 11

With similar computations we have

𝜕𝑡 |𝑡=0

∫
�̂� 𝑑 (𝛼𝑡 ∗ 𝛾) =

∫
⟨∇�̂� ∗ 𝛾, v0⟩ 𝑑�̂�.

As v0 was arbitrary and �̂� was optimal, we conclude that

0 =

∫ 〈
∇�̂� ∗ 𝛾 − ∇�̂�, v0

〉
𝑑�̂�,

so that ∇�̂�, the optimal map from �̂� to 𝜇, is �̂�-a.s. equal to ∇�̂� ∗ 𝛾, where ∇�̂� is the optimal
map from �̂� ∗ 𝛾 to 𝜈. Recalling (2.6) and Lemma 2.3, this is precisely the structure of the
Bass martingale. □

4. An infinitesimal version of Theorem 1.5

We provide the proof of Theorem 1.6, an infinitesimal version of Theorem 1.5.

Proof of Theorem 1.6. For a partition Π = {𝑡0, 𝑡1, . . . , 𝑡𝑛} of the interval [0, 1] with

0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 1

we denote by ΣΠ the collection of all progressively measurable and 𝐿2-bounded processes
(𝜎Π

𝑡 )0⩽𝑡⩽1 such that the stochastic integral

𝑀Π
𝑡 B 𝑀0 +

∫ 𝑡

0
𝜎Π
𝑠 𝑑𝐵𝑠 , 0 ⩽ 𝑡 ⩽ 1

defines an 𝐿2-bounded martingale with Law(𝑀Π
𝑡𝑘
) = 𝜇𝑡𝑘 , for 𝑘 = 0, . . . , 𝑛. We define

𝑚Π ( [𝑡𝑘−1, 𝑡𝑘]) B sup
𝜎Π∈ΣΠ

E
[ ∫ 𝑡𝑘

𝑡𝑘−1

tr(𝜎Π
𝑠 ) 𝑑𝑠

]
. (4.1)

By [4], we know that the optimizer of

𝑚Π ( [0, 1]) = sup
𝜎Π∈ΣΠ

E
[ ∫ 1

0
tr(𝜎Π

𝑠 ) 𝑑𝑠
]

is given, on each interval [𝑡𝑘−1, 𝑡𝑘], by the stretched Brownian motion from 𝜇𝑡𝑘−1 to 𝜇𝑡𝑘 .
By Theorem 1.5 we have

𝑚Π ( [𝑡𝑘−1, 𝑡𝑘]) = inf
𝛼∈P2 (R𝑑 )

(
MCov(𝛼 ∗ 𝛾𝑡𝑘−𝑡𝑘−1 , 𝜇𝑡𝑘 ) − MCov(𝛼, 𝜇𝑡𝑘−1 )

)
. (4.2)

For 𝑡𝑘 ∈ Π and a refinement Π1 of Π we have

𝑚Π ( [0, 𝑡𝑘]) ⩾ 𝑚Π1 ( [0, 𝑡𝑘]),

as the process (𝜎Π1
𝑡 )0⩽𝑡⩽1 has to satisfy more requirements than the process (𝜎Π

𝑡 )0⩽𝑡⩽1. We
therefore may pass to a limit 𝑚 B lim𝑚Π along the net of finite partitions Π of the interval
[0, 1], which extends to a finite measure on [0, 1], still denoted by 𝑚. Clearly the measure
𝑚 is absolutely continuous with respect to Lebesgue measure on [0, 1] and we denote the
corresponding density by 𝑔(𝑡), for 0 ⩽ 𝑡 ⩽ 1. We claim that, for 0 ⩽ 𝑟 ⩽ 𝑢 ⩽ 1, we have

E
[ ∫ 𝑢

𝑟

tr(𝜎𝑠) 𝑑𝑠
]
⩽ 𝑚( [𝑟, 𝑢]). (4.3)

Indeed, otherwise we could find a partition Π with 𝑟, 𝑢 ∈ Π, such that

E
[ ∫ 𝑢

𝑟

tr(𝜎Π
𝑠 ) 𝑑𝑠

]
> 𝑚Π ( [𝑟, 𝑢]),

which yields a contradiction to the definition of 𝑚Π ( · ) in (4.1). Since (4.3) holds for all
intervals [𝑟, 𝑢] ⊆ [0, 1], we deduce that

E
[
tr(𝜎𝑡 )

]
⩽ 𝑔(𝑡), (4.4)
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for Lebesgue-a.e. 0 ⩽ 𝑡 ⩽ 1. From (4.2) we conclude, for Lebesgue-a.e. 0 ⩽ 𝑡 ⩽ 1 and for
each 𝛼 ∈ P2 (R𝑑), the inequality

𝑔(𝑡) ⩽ lim inf
ℎ→0

1
ℎ

(
MCov(𝛼 ∗ 𝛾ℎ, 𝜇𝑡+ℎ) − MCov(𝛼, 𝜇𝑡 )

)
.

Together with (4.4), this finishes the proof of (1.7). □

Again we provide a more analytic argument for Theorem 1.6, at least on a formal level.

Alternative heuristic proof of Theorem 1.6. We will use the Kantorovich duality and the
Fokker–Planck equations to get a hold of 𝑑

𝑑ℎ
MCov(𝛼 ∗ 𝛾ℎ, 𝜇𝑡+ℎ). By a change of variables

we then get an equivalent expression which, when minimized, gives the left-hand side of
(1.7). We suppose here that 𝑀 is a strong solution of the stochastic differential equation
𝑑𝑀𝑢 = 𝜎𝑢 (𝑀𝑢) 𝑑𝐵𝑢, with 𝜎 as benevolent as needed, so that in particular 𝜇𝑢 admits a
density for each 𝑢.

We set 𝜌ℎ B 𝛼 ∗ 𝛾ℎ, Σ B 𝜎𝜎′, and notice that for fixed 𝑡 we have

𝜕ℎ𝜌ℎ (𝑥) = 1
2Δ𝜌ℎ (𝑥), 𝜌0 = 𝛼;

𝜕ℎ𝜇𝑡+ℎ (𝑥) = 1
2

∑︁
𝑖,𝑘

𝜕2
𝑖𝑘

(
Σ𝑖𝑘𝜇𝑡+ℎ (𝑥)

)
.

By the Kantorovich duality we have

MCov(𝜌ℎ, 𝜇𝑡+ℎ) = inf
𝜙 convex

∫
𝜙 𝑑𝜌ℎ +

∫
𝜙∗ 𝑑𝜇𝑡+ℎ

=

∫
𝜙
𝜇𝑡+ℎ
𝜌ℎ 𝑑𝜌ℎ +

∫
𝜙
𝜌ℎ
𝜇𝑡+ℎ 𝑑𝜇𝑡+ℎ,

where we denote by 𝜙
𝑞
𝑝 ( · ) the convex function, which is unique up to a constant, such that

∇𝜙𝑞𝑝 (𝑝) = 𝑞. Using this, or more directly [44, Theorem 23.9], we have
𝑑

𝑑ℎ
MCov(𝜌ℎ, 𝜇𝑡+ℎ) =

∫
𝜙
𝜇𝑡+ℎ
𝜌ℎ 𝜕ℎ𝜌ℎ 𝑑𝜆 +

∫
𝜙
𝜌ℎ
𝜇𝑡+ℎ 𝜕ℎ𝜇𝑡+ℎ 𝑑𝜆

=

∫
𝜙
𝜇𝑡+ℎ
𝜌ℎ

1
2Δ𝜌ℎ 𝑑𝜆 +

∫
𝜙
𝜌ℎ
𝜇𝑡+ℎ

1
2

∑︁
𝑖,𝑘

𝜕2
𝑖𝑘 (Σ𝑖𝑘𝜇𝑡+ℎ) 𝑑𝜆

= 1
2

∫ ∑︁
𝑖,𝑘

𝜕2
𝑖,𝑘 (𝜙

𝜇𝑡+ℎ
𝜌ℎ ) 𝐼𝑖𝑘 𝑑𝜌ℎ + 1

2

∫ ∑︁
𝑖,𝑘

𝜕2
𝑖,𝑘 (𝜙

𝜌ℎ
𝜇𝑡+ℎ ) Σ𝑖𝑘 𝑑𝜇𝑡+ℎ

= 1
2

∫
tr
(
𝐷2 (𝜙𝜇𝑡+ℎ

𝜌ℎ )
)
𝜌ℎ 𝑑𝜆 + 1

2

∫
tr
(
𝐷2 (𝜙𝜌ℎ𝜇𝑡+ℎ )Σ

)
𝜇𝑡+ℎ 𝑑𝜆,

where we denote by 𝐷 and 𝐷2 the Jacobian and Hessian matrix, respectively. During this
proof we will use the convention that if 𝑥 ↦→ 𝑎(𝑥) ∈ R𝑑 is an invertible vector-valued
function, then 𝑎−1 (𝑥) denotes the inverse function, whereas if 𝑥 ↦→ 𝐴(𝑥) ∈ R𝑑×𝑑 is a
matrix-valued function, then [𝐴(𝑥)]−1 denotes the matrix inverse of 𝐴(𝑥). Now observe
that

𝐷2 (𝜙𝜇𝑡+ℎ
𝜌ℎ ) (𝑥) = 𝐷 (∇𝜙𝜇𝑡+ℎ

𝜌ℎ ) (𝑥) = 𝐷
(
(∇𝜙𝜌ℎ𝜇𝑡+ℎ )

−1) (𝑥) = [𝐷∇𝜙𝜌ℎ𝜇𝑡+ℎ ◦ ∇𝜙
𝜇𝑡+ℎ
𝜌ℎ (𝑥)]−1,

so that ∫
tr
(
𝐷2 (𝜙𝜇𝑡+ℎ

𝜌ℎ ) (𝑥)
)
𝜌ℎ 𝑑𝜆 =

∫
tr
(
[𝐷∇𝜙𝜌ℎ𝜇𝑡+ℎ ◦ ∇𝜙

𝜇𝑡+ℎ
𝜌ℎ (𝑥)]−1) 𝜌ℎ 𝑑𝜆

=

∫
tr
(
[𝐷2𝜙

𝜌ℎ
𝜇𝑡+ℎ (𝑦)]

−1) 𝜇𝑡+ℎ 𝑑𝜆.
Altogether we have

𝑑

𝑑ℎ
MCov(𝜌ℎ, 𝜇𝑡+ℎ) = 1

2

∫ (
tr
(
[𝐷2𝜙

𝜌ℎ
𝜇𝑡+ℎ ]

−1) + tr
(
𝐷2 (𝜙𝜌ℎ𝜇𝑡+ℎ )Σ

) )
𝜇𝑡+ℎ 𝑑𝜆.
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Define now the functional on invertible, positive-semidefinite symmetric matrices
𝐴 ↦→ 𝐽 (𝐴) B tr(𝐴−1) + tr(𝐴Σ).

We remark that 𝐽 (𝐴) ⩾ 2tr(Σ1/2), since this is equivalent to the trivial statement

|𝐴−1/2 − 𝐴1/2Σ1/2 |HS ⩾ 0.
Hence in fact the minimum of 𝐽 ( · ) is attained at 𝐴 = Σ−1/2. We conclude that

𝑑

𝑑ℎ

���
ℎ=0

MCov(𝜌ℎ, 𝜇𝑡+ℎ) ⩾
∫

tr
(
𝜎𝑡 (𝑦)

)
𝜇𝑡 (𝑑𝑦) = E

[
tr
(
𝜎𝑡 (𝑀𝑡 )

) ]
,

which completes the proof of Theorem 1.6. □

5. Displacement convexity of the Bass functional

We observe that the Bass functional 𝛼 ↦→ V(𝛼) provides a novel example of a convex
functional with respect to the almost-Riemannian structure of the quadratic Wasserstein
space P2. As mentioned in [43, Open Problem 5.17], there are only few known examples of
so-called displacement convex functionals (see [43, Definition 5.10], [2, Definition 9.1.1],
[37]), and it is desirable to find new ones.

We shall state two versions of this result. The first one, Proposition 5.1, pertains to the
case 𝑑 = 1, while the second one, Proposition 5.2, holds for general 𝑑 ∈ N. We also note
that, contrary to the rest of this paper, we do not assume that 𝜇 ⪯c 𝜈.

Proposition 5.1. Suppose 𝑑 = 1. Let 𝜇, 𝜈 ∈ P2 (R). The Bass functional
P2 (R) ∋ 𝛼 ↦−→ V(𝛼) = MCov(𝛼 ∗ 𝛾, 𝜈) − MCov(𝛼, 𝜇) (5.1)

is displacement convex. Moreover, if a geodesic (𝛼𝑢)0⩽𝑢⩽1 in P2 (R) is such that 𝛼1 is not a
translate of 𝛼0 and if 𝜈 is not a Dirac measure, the function 𝑢 ↦→ V(𝛼𝑢) is strictly convex.

Proof. We start by noting that the Bass functionalV( · ) of (5.1) can equivalently be defined
in terms of the quadratic Wasserstein distance W2 ( · , · ) of (2.3) rather than in terms of the
maximal covariance MCov( · , · ) of (1.4). Indeed, we have the identity

V(𝛼) = MCov(𝛼 ∗ 𝛾, 𝜈) − MCov(𝛼, 𝜇) = 1
2W

2
2 (𝛼, 𝜇) − 1

2W
2
2 (𝛼 ∗ 𝛾, 𝜈) + const,

where the constant

const = 𝑑
2 + 1

2

∫
|𝑦 |2 𝑑𝜈(𝑦) − 1

2

∫
|𝑥 |2 𝑑𝜇(𝑥)

does not depend on 𝛼. Therefore showing the (strict) displacement convexity of the
Bass functional V( · ) is equivalent to showing the (strict) displacement convexity of the
functional

U(𝛼) BW2
2 (𝛼, 𝜇) −W2

2 (𝛼 ∗ 𝛾, 𝜈). (5.2)

Fix 𝜇, 𝜈 ∈ P2 (R) and let (𝛼𝑢)0⩽𝑢⩽1 be a geodesic in the quadratic Wasserstein space
P2 (R). Using the hypothesis 𝑑 = 1 we can choose mutually comonotone random variables
𝑍0, 𝑍1 and 𝑋 with laws 𝛼0, 𝛼1 and 𝜇, respectively. As (𝛼𝑢)0⩽𝑢⩽1 is a geodesic, the random
variable 𝑍𝑢 B (1 − 𝑢)𝑍0 + 𝑢𝑍1 has law 𝛼𝑢, for 0 ⩽ 𝑢 ⩽ 1. Also note that each 𝑍𝑢 is
comonotone with 𝑋 . Let 𝑢0, 𝑢 ∈ [0, 1]. As regards the first Wasserstein distance in (5.2),
a straightforward calculation yields

W2
2 (𝛼𝑢, 𝜇) −W2

2 (𝛼𝑢0 , 𝜇) = (5.3)

= E[|𝑍𝑢 − 𝑋 |2] − E[|𝑍𝑢0 − 𝑋 |2] (5.4)

= E[|𝑍𝑢 − 𝑍𝑢0 |2] − 2E[⟨𝑍𝑢 − 𝑍𝑢0 , 𝑋 − 𝑍𝑢0⟩] (5.5)

= (𝑢 − 𝑢0)2E[|𝑍1 − 𝑍0 |2] − 2(𝑢 − 𝑢0)E[⟨𝑍1 − 𝑍0, 𝑋 − 𝑍𝑢0⟩] . (5.6)
Passing to the second Wasserstein distance in (5.2), we take a standard Gaussian random
variable Γ on R, independent of 𝑍0 as well as of 𝑍1. Next we choose a random variable
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𝑌𝑢0 such that (𝑍𝑢0 + Γ, 𝑌𝑢0 ) is an optimal coupling of (𝛼𝑢0 ∗ 𝛾, 𝜈). As (𝑍𝑢 ∗ Γ, 𝑌𝑢0 ) is a
(typically sub-optimal) coupling of (𝛼𝑢 ∗ 𝛾, 𝜈), we obtain the inequality

W2
2 (𝛼𝑢 ∗ 𝛾, 𝜈) −W2

2 (𝛼𝑢0 ∗ 𝛾, 𝜈) ⩽ (5.7)

⩽ E[|𝑍𝑢 + Γ − 𝑌𝑢0 |2] − E[|𝑍𝑢0 + Γ − 𝑌𝑢0 |2] (5.8)

= E[|𝑍𝑢 − 𝑍𝑢0 |2] − 2E[⟨𝑍𝑢 − 𝑍𝑢0 , 𝑌𝑢0 − (𝑍𝑢0 + Γ)⟩] (5.9)

= (𝑢 − 𝑢0)2E[|𝑍1 − 𝑍0 |2] − 2(𝑢 − 𝑢0)E[⟨𝑍1 − 𝑍0, 𝑌𝑢0 − (𝑍𝑢0 + Γ)⟩] . (5.10)

Combining (5.3) – (5.10), we deduce that

U(𝛼𝑢) − U(𝛼𝑢0 ) = (5.11)

=

(
W2

2 (𝛼𝑢, 𝜇) −W2
2 (𝛼𝑢 ∗ 𝛾, 𝜈)

)
−
(
W2

2 (𝛼𝑢0 , 𝜇) −W2
2 (𝛼𝑢0 ∗ 𝛾, 𝜈)

)
⩾ (5.12)

⩾ 2(𝑢 − 𝑢0)E[⟨𝑍1 − 𝑍0, 𝑌𝑢0 − 𝑋 − Γ⟩] (5.13)
= 2(𝑢 − 𝑢0)E[⟨𝑍1 − 𝑍0, 𝑌𝑢0 − 𝑋⟩], (5.14)

where the last equation follows from conditioning on 𝑍0, 𝑍1. The expression in (5.14)
defines a linear function in 𝑢, which lies below and touches the function

𝑢 ↦−→U(𝛼𝑢) − U(𝛼𝑢0 ) =

=

(
W2

2 (𝛼𝑢, 𝜇) −W2
2 (𝛼𝑢 ∗ 𝛾, 𝜈)

)
−
(
W2

2 (𝛼𝑢0 , 𝜇) −W2
2 (𝛼𝑢0 ∗ 𝛾, 𝜈)

)
at the point 𝑢 = 𝑢0. This readily implies the convexity of the function

𝑢 ↦−→ U(𝛼𝑢) = W2
2 (𝛼𝑢, 𝜇) −W2

2 (𝛼𝑢 ∗ 𝛾, 𝜈).

It remains to show the strict convexity assertion of Proposition 5.1. If 𝛼1 is not a
translate of 𝛼0, then 𝛼𝑢 is not a translate of 𝛼𝑢0 either, provided that 𝑢 ≠ 𝑢0. As 𝑍𝑢0 + Γ

is comonotone with 𝑌𝑢0 and 𝑌𝑢0 is assumed to be non-constant, we may find 𝑦0 ∈ R and
𝑧0 ∈ R such that P[𝑌𝑢0 < 𝑦0] ∈ (0, 1) and

{𝑍𝑢0 + Γ < 𝑧0} = {𝑌𝑢0 < 𝑦0}.
If 𝑍𝑢 + Γ were also comonotone with 𝑌𝑢0 , we could find 𝑧 ∈ R such that

{𝑍𝑢0 + Γ < 𝑧0} = {𝑌𝑢0 < 𝑦0} = {𝑍𝑢 + Γ < 𝑧},
where we have used that the law of 𝑍𝑢 + Γ is continuous. Conditioning on Γ = 𝜁 this
implies that, for Lebesgue-a.e. 𝜁 ∈ R,

{𝑍𝑢0 < 𝑧0 − 𝜁 } = {𝑍𝑢 < 𝑧 − 𝜁 },
so that 𝑍𝑢0 and 𝑍𝑢 are translates. This gives the desired contradiction, showing that there
is a strict inequality in (5.7), (5.8) (thus also in (5.12), (5.13)), which implies the strict
convexity assertion of Proposition 5.1. □

We now pass to the case of general 𝑑 ∈ N. In Proposition 5.2 below we formulate a
convexity property of the Bass functional V( · ) pertaining to the notion of generalized
geodesics as analyzed in [2, Definition 9.2.2]. Recall that (𝛼𝑢)0⩽𝑢⩽1 is a generalized
geodesic with base 𝜇, joining 𝛼0 to 𝛼1, if there are random variables 𝑍0, 𝑍1 and 𝑋 with
laws 𝛼0, 𝛼1 and 𝜇, respectively, such that (𝑍0, 𝑋) and (𝑍1, 𝑋) are optimal couplings and
such that the random variable 𝑍𝑢 B 𝑢𝑍1 + (1 − 𝑢)𝑍0 has law 𝛼𝑢, for 0 ⩽ 𝑢 ⩽ 1.

Proposition 5.2. Let 𝜇, 𝜈 ∈ P2 (R𝑑). The Bass functional

P2 (R𝑑) ∋ 𝛼 ↦−→ V(𝛼) = MCov(𝛼 ∗ 𝛾, 𝜈) − MCov(𝛼, 𝜇)
is convex along generalized geodesics (𝛼𝑢)0⩽𝑢⩽1 in P2 (R𝑑) with base 𝜇.

We do not know whether the above assertion is also true along (non generalized)
geodesics (𝛼𝑢)0⩽𝑢⩽1 in P2 (R𝑑), when 𝑑 > 1.
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Proof of Proposition 5.2. We follow the lines of the proof of Proposition 5.1 and consider
again the functional

U(𝛼) = W2
2 (𝛼, 𝜇) −W2

2 (𝛼 ∗ 𝛾, 𝜈)
as in (5.2). Let (𝛼𝑢)0⩽𝑢⩽1 be a generalized geodesic with base 𝜇, joining 𝛼0 to 𝛼1. Take
𝑍0, 𝑍1, 𝑍𝑢, 𝑋 as above such that (𝑍0, 𝑋) and (𝑍1, 𝑋) are optimal couplings and by definition
𝑍𝑢 ∼ 𝛼𝑢. Note that (𝑍𝑢, 𝑋) is an optimal coupling of (𝛼𝑢, 𝜇) by [2, Lemma 9.2.1], for
0 ⩽ 𝑢 ⩽ 1. The equalities (5.3) – (5.6) and the inequality in (5.7) – (5.10) then carry over
verbatim and we again arrive at (5.12) – (5.14), which shows the convexity of the function
[0, 1] ∋ 𝑢 ↦→ U(𝛼𝑢). □
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