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Abstract

Given µ and ν, probability measures on Rd in convex order, a Bass martingale is
arguably the most natural martingale starting with law µ and finishing with law ν.
Indeed, this martingale is obtained by stretching a reference Brownian motion so as to
meet the data µ, ν. Unless µ is a Dirac, the existence of a Bass martingale is a delicate
subject, since for instance the reference Brownian motion must be allowed to have a
non-trivial initial distribution α, not known in advance. Thus the key to obtaining the
Bass martingale, theoretically as well as practically, lies in finding α efficiently.

In [7] it has been shown that α is determined as the minimizer of the so-called Bass
functional. In the present paper we propose to minimize this functional by following its
gradient flow, or more precisely, the gradient flow of its L2-lift. In our main result we
show that this gradient flow converges in norm to a minimizer of the Bass functional,
and when d = 1 we further establish that convergence is exponentially fast. This is
to the best of our knowledge the first time that gradient flows appear naturally in the
field of martingale optimal transport.

Keywords: Martingales, gradient Flow, Bass functional, exponential convergence, Wasser-
stein space.

MSC2020: 34G20, 60H30, 49J55.

1 Introduction

1.1 Martingale optimization problem

Let µ, ν be elements of P2(Rd), the space of probability measures on Rd with finite second
moments. Assume that µ, ν are in convex order, denoted by µ ≤cx ν, and meaning that
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∫
ϕ dµ ⩽

∫
ϕ dν holds for all convex functions ϕ : Rd → R. As in [4, 5] we consider the

martingale optimization problem

MT (µ, ν) := inf
M0∼µ,M1∼ν,

Mt=M0+
∫ t
0 σs dBs

E
[ ∫ 1

0

|σt − Id|2HS dt
]
, (MBB)

where B is a d-dimensional Brownian motion and | · |HS denotes the Hilbert–Schmidt norm.
The abbreviation “MBB” stands for “Martingale Benamou–Brenier” and this designation is
motivated from the fact that (MBB) can be seen as a martingale counterpart of the classical
formulation in optimal transport by Benamou–Brenier [16], see [4, 5].

As shown in [4], the problem (MBB) admits a strong Markov martingale M̂ as the unique
optimizer, which is called the stretched Brownian motion from µ to ν in [4]. Such a process
has a neat interpretation: it is the projection of a Brownian motion onto the set of martingales
with initial and terminal marginals µ and ν respectively. In financial applications, these
marginal distributions are inferred from data, and Brownian motion serves the role of a
reference market model which one tries to perturb in order to fit the data.

1.2 Bass martingales and structure of stretched Brownian motion

Owing to the work [5] it is known that the optimality property of stretched Brownian motion
is related to a structural / geometric description. We start with the following definition:

Definition 1.1. For probability measures µ, ν we say that the pair (µ, ν) is irreducible if for
all measurable sets A,B ⊆ Rd with µ(A), ν(B) > 0 there is a martingale X = (Xt)0⩽t⩽1 with
X0 ∼ µ, X1 ∼ ν such that P(X0 ∈ A,X1 ∈ B) > 0.

We remark that in the classical theory of optimal transport one can always find couplings
(X0, X1) of (µ, ν) such that P(X0 ∈ A,X1 ∈ B) > 0, for all measurable sets A,B ⊆ Rd with
µ(A), ν(B) > 0; e.g., by letting (X0, X1) be independent. In martingale optimal transport
this property may fail. Next we recall the following concept from [8, 4, 5]:

Definition 1.2. Let B = (Bt)0⩽t⩽1 be a Brownian motion on Rd with B0 ∼ α̂, where α̂ is
an arbitrary element of P(Rd), the space of probability measures on Rd. Let v̂ : Rd → R be
convex such that ∇v̂(B1) is square-integrable. We call

M̂t := E[∇v̂(B1) |σ(Bs : s ⩽ t)] = E[∇v̂(B1) |Bt], 0 ⩽ t ⩽ 1 (1)

a Bass martingale with Bass measure α̂ joining µ = L (M̂0) with ν = L (M̂1).

The reason behind this terminology is that Bass [8] used this construction (with d = 1
and α̂ a Dirac measure) to derive a solution of the Skorokhod embedding problem. In [5,
Theorem 1.3] it is shown that under the irreducibility assumption on the pair (µ, ν) there is
a unique Bass martingale M̂ from µ to ν, i.e., satisfying M̂0 ∼ µ and M̂1 ∼ ν, namely:

Theorem 1.3. Let µ, ν ∈ P2(Rd) with µ ≤cx ν and assume that (µ, ν) is irreducible. Then
the following are equivalent for a martingale M̂ = (M̂t)0⩽t⩽1 with M̂0 ∼ µ and M̂1 ∼ ν:
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(1) M̂ is a stretched Brownian motion, i.e., the optimizer of (MBB).

(2) M̂ is a Bass martingale.

Since, for probability measures µ, ν ∈ P2(Rd) with µ ≤cx ν, a stretched Brownian motion
always exists by [4, Theorem 1.5], the above theorem states that the existence of a Bass
martingale follows from — and is in fact equivalent to — the irreducibility assumption on
the pair (µ, ν). Denoting by ∗ the convolution operator1 and by γ1 the standard Gaussian
measure on Rd, we remark that the convex function v̂ and the Bass measure α̂ from Definition
1.2 satisfy the identities (see [5])

(∇v̂ ∗ γ1)(α̂) = µ and ∇v̂(α̂ ∗ γ1) = ν. (2)

In terms of (1) this amounts to

M̂t = ∇v̂ ∗ γ1−t(Bt), 0 ⩽ t ⩽ 1,

where γs denotes the centred Gaussian with covariance matrix sId. We see that Bass mar-
tingales are truly the martingale analogues of optimal transport maps in classical transport.
They have the elegant interpretation of being a pointwise, monotone transformation of a
Brownian motion. It would be desirable to have a method for computing them, which is effi-
cient at least in principle. To the best of our knowledge this has only been done in [27, 1] for
dimension one (then extended to higher dimensions in [41], without a detailed convergence
analysis). We will propose a method which works in any dimension, based on the idea of
minimizing the so-called Bass functional by following its direction of maximal descent.

1.3 The Bass functional

In the following we denote by MCov the maximal covariance between two probability mea-
sures p1, p2 ∈ P2(Rd), defined as

MCov(p1, p2) := sup
q∈Cpl(p1,p2)

∫
⟨x1, x2⟩ q(dx1, dx2), (3)

where Cpl(µ, ν) is the set of all couplings π ∈ P(Rd ×Rd) between µ and ν, i.e., probability
measures on Rd × Rd with first marginal µ and second marginal ν. As is well known,
maximizing the covariance between p1 and p2 is equivalent to minimizing their expected
squared Wasserstein distance. We follow [7] in defining:

Definition 1.4. The Bass functional is given by

P2(Rd) ∋ α 7−→ V(α) := MCov(α ∗ γ1, ν) − MCov(α, µ). (4)

1By a minor abuse of notation we write f ∗ γ1 for the convolution of a measurable map f : Rd → Rd with
the density of the Gaussian γ1 and similarly α ∗ γ1 for the convolution of a measure α ∈ P(Rd) with the
Gaussian measure γ1.
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If µ ≤c ν we have V(α) ≥ 0 for every α ∈ P2(Rd). The main result of [7] was the
reformulation of Problem (MBB), which characterizes the Bass measure α̂ in (2) as the
optimizer of the Bass functional (4). This is the content of [7, Theorem 1.5], namely:

Theorem 1.5. Let µ, ν ∈ P2(Rd) with µ ≤cx ν. Then the value of Problem (MBB) is
MT (µ, ν) = −2P (µ, ν) +

∫
|x|2d(ν − µ) + d, where

P (µ, ν) = inf
α∈P2(Rd)

V(α). (5)

The right-hand side of (5) is attained by α̂ ∈ P2(Rd) if and only if there is a Bass martingale
from µ to ν with Bass measure α̂ ∈ P2(Rd).

We stress that the above result pertains only to Bass martingales with a Bass measure
having a finite second moment. This is the natural setting in the present article, since our
aim will be to minimize the functional V .

1.4 Main Results

Per Theorem 1.5, it is highly desirable to find the minimizer of the Bass functional. Indeed,
doing so will provide us with the Bass measure and hence with the Bass martingale between µ
and ν. Moreover, one would like to have a fast minimization method for the Bass functional.
One idea would be to perform the gradient descent of the Bass functional in the sense of
Wasserstein spaces. This seems challenging to the authors, since not much is known about
the convexity of the Bass functional in the Wasserstein geometry for d arbitrary (see however
[7, Theorem 1.7]). For this reason we take a detour. We fix a probability space supporting
independent random variables

X ∼ µ and Γ ∼ γ1,

which we fix throughout. We define the sigma-algebras G := σ(X) and H := σ(X,Γ), with
their associated L2-spaces of Rd-valued random variables, respect. L2(H;Rd) and L2(G;Rd).

Definition 1.6. The lifted Bass functional is given by

L2(G;Rd) ∋ Z 7→ V (Z) := sup
Y ∈L2(H;Rd),

Y∼ν

E[(Z + Γ) · Y − Z ·X]. (6)

As we show in Lemma 2.1 below, minimizing V or V lead to the same problem, and in
fact if Z∗ minimizes V then L (Z∗) is a Bass measure. Furthermore, we shall show that V is
convex in the conventional sense, Fréchet differentiable, and admits the explicit L2-gradient,

DZV = ∇v ∗ γ1(Z) −X,

where ∇v is the Brenier map2 from L (Z)∗γ1 to ν. We can hence define the L2-Bass gradient
flow as follows:

2The Brenier map from an absolutely continuous measure ρ, to η, is the unique almost-sure gradient of a
convex function v satisfying the push-forward constraint (∇v)(ρ) = η, while v is called the Brenier potential.
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Definition 1.7. An absolutely continuous curve {Zt}t∈R+ ⊂ L2(G;Rd) is called an L2-Bass
gradient flow (started at Z0) if the curve satisfies for a.e. t ∈ R+ the equality

dZt

dt
= −[∇vt ∗ γ1(Z) −X],

where ∇vt is the Brenier map from L (Zt) ∗ γ1 to ν.

Invoking the classical theory of gradient flows of convex functionals in Hilbert spaces,
one could hope to obtain the existence and uniqueness of the Bass gradient flow, as well as
the weak-L2 convergence of the flow to a minimizer of V . However the story is not that
simple, since there is in general no reason for V to attain its minimum at a square integrable
random variable. Moreover weak-L2 convergence of the Bass flow is not strong enough to
derive convergence of L (Zt) in a meaningful sense, and the abstract theory would not give
us convergence rates. For these reasons we need to make further assumptions and argue
in a self-contained fashion. Under technical assumptions, defined in Section 3.1 below,3 we
obtain our first main result:

Theorem 1.8. Under Assumption (A), for any r.v. Z0 ∈ L2(G;Rd), the L2-Bass gradient
flow (Zt)t≥0 exists, is unique, and it converges in L2-norm to Z⋆ ∈ L∞(G;Rd), where the
latter is the unique minimizer of V with bary(Z⋆) = bary(Z0). Further, if Z0 is bounded,
then the entire curve (Zt)t≥0 is uniformly bounded.

This result shows in particular that passing to the L2-gradient flow, instead of a 2-
Wasserstein gradient flow, is a successful general strategy. We also remark that in Definition
1.7 only a single Brenier map has to be computed (i.e., in a numerical implementation, one
only needs to approximate a single Brenier map per iteration). By contrast, the analogue in
the 2-Wasserstein geometry would require two such maps and hence be unnecessarily ineffi-
cient, except of course for dimension one (where there is no distinction between L2-gradient
flows and 2-Wasserstein gradient flows).

In our second main result, we sharpen the above by obtaining exponential convergence
in the one-dimensional case:

Theorem 1.9. Let d = 1. In the setting of Theorem 1.8, assume additionally that Z0 ∈
L∞(G;Rd), and that ν has convex support and admits a density which is bounded away from
zero and infinity on its support. Then we have for some κ > 0:

∥Zt − Z⋆∥L2 ≤ ∥Z0 − Z⋆∥L2 · exp{−κt}, (7)

V (Zt) − inf V ≤ [V (Z0) − inf V ] · exp{−κt}. (8)

3In short: the pair (µ, ν) is irreducible, the convex hull of the support of ν, denoted by C, is compact,
and the convex hull of the support of µ is compactly contained in the interior of C. Incidentally, these are
the only sufficient conditions known to date which guarantee the existence of a Bass measure with finite
second moment.
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For context: The only precursor of Theorem 1.9 that we know of is given in [1], for
discrete time iterations and under similarly strong assumptions on d, µ, ν.

In order to obtain the above result a careful study of the Hessian of V must be carried
out, which we deem of independent interest. A corollary of this analysis is the proof that
V is strongly convex when we restrict it to random variables which are uniformly bounded.
We find it remarkable that the exponential convergence is obtained without making use of
functional inequalities or semigroup operator calculus, as is normally the case for Wasser-
stein gradient flows. We conjecture the validity of Theorem 1.9 also in higher dimensions.
We leave the latter, as well as the practical implementation of the Bass gradient flow, as
an interesting research topic, the exponential convergence result suggesting a fast computa-
tional method. We finally stress that the irreducibility assumption, made in Section 3.1 and
underpinning our two main results, is not actually essential: owing to [52], one can always
partition the original problem into irreducible parts.

1.5 Related literature

Optimal transport as a field in mathematics goes back to Monge [48] and Kantorovich [44],
who established its modern formulation. The seminal results of Benamou, Brenier, and
McCann [19, 20, 16, 46, 47] form the basis of the modern theory, with striking applications
in a variety of different areas, see the monographs [55, 56, 2, 51].

We are interested in transport problems where the transport plan satisfies an additional
martingale constraint. This additional requirement arises naturally in finance (e.g. [11]), but
is also of independent mathematical interest. For example there are notable consequences
for the study of martingale inequalities (e.g. [17, 38, 50]) and the Skorokhod embedding
problem (e.g. [10, 43, 14]). Early articles on this topic of martingale optimal transport include
[39, 11, 53, 32, 30, 23]. The study of irreducibility of a pair of marginals (µ, ν) was initiated
by Beiglböck and Juillet [13] in dimension one, and extended in the works [33, 29, 49] to
multiple dimensions, and beyond the martingale condition [25, 26] by Ciosmak.

Continuous-time martingale optimal transport problems have received much attention in
the recent years; see e.g. [12, 28, 35, 37, 34, 24, 36]. In this paper we concern ourselves with
the specific structure given by the martingale Benamou–Brenier problem, introduced in [4]
in probabilistic language and in [40] in PDE language, and subsequently studied through
the point of view of duality theory in [5]. In the context of market impact in finance, the
same kind of problem appeared independently in a work by Loeper [45]. It was also shown
in [4] that the optimizer M̂ of the problem (MBB) is the process whose evolution follows the
movement of Brownian motion as closely as possible with respect to an adapted Wasserstein
distance (see e.g. [3, 31]) subject to the given marginal constraints.

The connection between the martingale Benamou–Brenier problem and Bass martingales
was revealed in [4, 5]. If d = 1 then an algorithm for obtaining a Bass martingale with
given marginals was proposed by Conze and Henry-Labordere in [27]. This algorithm was
subsequently studied in detail in [1], and its multidimensional form has been proposed in
[41]. Recently, objects akin to Bass martingales have been proposed in [54], [18], and [6, 15].
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2 Regularity of the lifted Bass functional

Throughout this paper, let µ, ν ∈ P2(Rd). We recall from (4) the associated Bass functional
V : P2(Rd) → R given by

V(α) := MCov(α ∗ γ1, ν) − MCov(α, µ). (9)

Assuming that µ and ν are in convex order (µ ≤cx ν), this functional takes its values in
[0,∞).

In a first step, we will identify V with a convex, Fréchet differentiable functional V on
a Hilbert space. To this end, we fix a probability space (Ω,F ,P) with a random variable
X ∼ µ and an independent random variable Γ ∼ γ1 where γ1 is here the d-dimensional
standard Gaussian. Define the sigma-algebras

G := σ(X) and H := σ(X,Γ).

We define V : L2(G;Rd) → R by

V (Z) := sup
Y ∈L2(H;Rd),

Y∼ν

E[(Z + Γ) · Y − Z ·X] (10)

Lemma 2.1. Let Z ∈ L2(G;Rd). The functional V given in (10) enjoys the following
properties:

(i) V is Fréchet differentiable with derivative DZV = ∇v ∗ γ1(Z) −X ∈ L2(G;Rd) where
v is the Brenier potential from L (Z + B) to ν.

(ii) If the law of (X,Z) is monotone,4 then V (Z) = V(L (Z)), else V (Z) ≥ V(L (Z)).

(iii) V is convex and weakly lower semicontinuous.

(iv) If V admits an optimizer in P2(Rd), then for every m ∈ Rd there is a unique Z⋆ ∈
L2(G;Rd) with E[Z⋆] = m, V (Z⋆) = minα∈P2(Rd) V(α), and (X,Z⋆) monotone.

Proof. (i): Let (Zt)t∈[0,1] be a continuous curve in L2(G;Rd). Since L (Zt + Γ) ∈ P2(Rd) is
absolutely continuous w.r.t. the Lebesgue measure, there is by Brenier’s theorem a convex
function vt : Rd → R with ∇vt(Zt + Γ) ∼ ν. In particular, the coupling

πt := L (Zt + Γ,∇vt(Zt + Γ))

is optimal for MCov(βt, ν) where βt := L (Zt + Γ) = L (Zt) ∗ γ1. Therefore, we deduce from
stability of optimal transport maps (see, for example, [56, Theorem 5.20]) and uniqueness
of the optimizer to the optimization problem MCov(βt, ν), that πt → π0 in distribution
for t → 0. At the same time, it is straightforward to see that βt → β0 in total variation.

4Two Rd-valued random variables X and Z with finite second moment are coupled monotonically if
E[X · Z] = MCov(L (X),L (Z)).
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Therefore all requirements of [42, Lemma A.2] are met and we obtain that ∇vt → ∇v0 in
β0-probability. We want to use the above to show that ∇vt(Zt + Γ) → ∇v0(Z0 + Γ) in
probability. To this end, fix ε > 0 and note that

P (|∇vt(Zt + Γ) −∇v0(Z0 + Γ)| ≥ 3ε)

≤ P (|∇vt(Zt + Γ) −∇v0(Zt + Γ)| ≥ ε)︸ ︷︷ ︸
=:A(t)

+P (|∇v0(Zt + Γ) −∇v0(Z0 + Γ)| ≥ 2ε)︸ ︷︷ ︸
=:B(t)

.

To deal with the first term of the right-hand side, observe that

A(t) ≤ P (|∇vt(Z0 + Γ) −∇v0(Z0 + Γ)| ≥ ε) + TV(βt, β0),

where both terms of the right-hand side vanish be our previous arguments. In order to
handle the second term, we use that π̂t := L (Zt + Γ,∇v0(Zt + Γ)) is an optimal coupling
with marginals βt and νt := (∇v0)(β

t). Since βt → β0 in total variation, the same holds true
for the convergence of νt → ν0 = ν. As before, using stability of optimal transport maps, we
find that π̂t → π̂0 = π0 in distribution. Hence, we can assume w.l.o.g. that there is Ẑt ∼ β0

with
|Zt + Γ − Ẑt| + |∇v0(Zt + Γ) −∇v0(Ẑt))| → 0 (11)

in probability. Consequently,

B(t) ≤ P
(
|∇v0(Zt + Γ) −∇v0(Ẑt)| ≥ ε

)
+ P

(
|∇v0(Ẑt) −∇v0(Z0 + Γ)| ≥ ε

)
.

Here, letting t → 0, the first term vanishes on the right-hand side vanishes by (11) while
the second term vanishes due to [42, Lemma A.1]. We have shown that A(t) + B(t) → 0
as t → 0, which yields the claim that ∇vt(Zt + Γ) → ∇v0(Z0 + Γ) in probability. Since the
family (∥∇vt(Zt + Γ)∥2L2)t∈[0,1] is uniformly integrable as ∇vt(Zt + Γ) ∼ ν, we have shown
that

∇vt(Zt + Γ) → ∇v0(Z0 + Γ) in L2(H;Rd). (12)

Next, let Z1 ∈ L2(G;Rd) and consider in the particular curve (Zt)t∈[0,1] with

Zt := (1 − t)Z + tZ1 for t ∈ [0, 1].

As π0 maximizes MCov(β0, ν) we get the upper bound

V (Zt) − V (Z0) = E [(Zt + Γ) · ∇vt(Zt + Γ) − (Z0 + Γ) · ∇v0(Z0 + Γ) − (Zt − Z0) ·X]

≤ E [(Zt + Γ) · ∇vt(Zt + Γ) − (Z0 + Γ) · ∇vt(Zt + Γ) − (Zt − Z0) ·X]

= tE [(Z1 − Z0) · ∇vt(Zt + Γ) − (Z1 − Z0) ·X]

= tE [(Z1 − Z0) · ((∇vt ∗ γ1)(Zt) −X)] ,

where the right-hand side used independence of Zt and Γ for the last equality. Similarly, we
obtain the lower bound

V (Zt) − V (Z0) ≥ tE [(Z1 − Z0) · (∇v0(Z0 + Γ) −X)]

= tE [(Z1 − Z0) · ((∇v0 ∗ γ1)(Z0) −X)] . (13)
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Combining these two inequalities, dividing by t and then sending t to zero yields

lim
t→0

1

t
(V (Zt) − V (Z0)) = E [(Z1 − Z0) · ((∇v0 ∗ γ1)(Z0) −X)] ,

where we invoked (12) for the upper bound. We have shown that V is Gateaux differentiable
with derivative DZV = ∇v0 ∗ γ1(Z) − X ∈ L2(G;Rd). Furthermore, since as consequence
of (12) the map Z 7→ DZV : L2(G;Rd) → L2(G;Rd) is continuous, we conclude that V is
Fréchet differentiable.

(ii): If L (X,Z) is monotone, then E[X · Z] = MCov(µ, α) where α := L (Z). Thus,

V (Z) = sup
Y ∈L2(H;Rd),

Y∼ν

E [(Z + Γ) · Y ] − MCov(µ, α)

= MCov(ν, α ∗ γ1) − MCov(µ, α) = V(α),

proving the claim.
(iii): We have seen in (13) that V (Z1) ≥ V (Z0) + DZ0V (Z1 − Z0) for every Z0, Z1 ∈

L2(G;Rd). It readily follows that V is convex. Thus, V : L2(G;Rd) → R is continuous and
convex, which implies by [9, Theorem 9.1] that V is also lower semicontinuous.

(iv): If V admits an optimizer in P2(Rd), then by [7, Theorem 1.5] there is a Bass
martingale from µ to ν with Bass measure α⋆ ∈ P2(Rd), where α⋆ is a minimizer of V . By
[5, Theorem 1.4], α⋆ is the push-forward of µ via a Brenier map ∇u. Defining Z⋆ = ∇u(X)
we see that V (Z⋆) = V(α⋆), and by construction (X,Z⋆) is monotone. Since V is translation
invariant, we can set the mean of Z⋆ to be any real number, without affecting its optimality
or the monotonicity of (X,Z⋆).

Remark 2.2. It is somewhat remarkable that despite V being not W2-differentiable (MCov(·, µ)
may fail to be differentiable), by passing on to the Hilbert space setting, we obtain a Fréchet
differentiable functional V . The reason for this is that while there may be multiple optimal
couplings from µ to α := L (Z) for Z ∈ L2(G;Rd), by selecting the pair (X,Z) we have
already fixed (in the Hilbert space setting) the coupling and thereby avoid this issue.

Lemma 2.3. Let (Zt)t≥0 be an absolutely continuous curve in L2(G;Rd) with derivative
d
dt
Zt = −DZtV . Then t 7→ E[Zt] is a constant.

Proof. We have DZtV = ∇vt ∗ γ1(Zt)−X where ∇vt is the Brenier map from L (Zt + Γ) to
ν. Hence

E[∇vt ∗ γ1(Zt)] = E[E[∇vt(Zt + Γ)|G]] = E[∇vt(Zt + Γ)] = bary(ν).

Since also bary(ν) = bary(µ) = E[X], we conclude that d
dt
E[Zt] = 0 for almost every t.
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3 The Gradient flow

3.1 Existence and strong convergence

To show L2-convergence of the gradient flow, we will impose further assumptions on the
marginals (µ, ν). Throughout this section we denote by

Cρ := co(supp ρ),

the convex hull of the support of a measure ρ ∈ P(Rd). Since the set Cν features prominently
in the subsequent parts of our work, we will simply write

C := Cν .

Without loss of generality we assume that dim(C) = d, otherwise restricting to the affine
space spanned by C to achieve this. We also write

I := int(C),

for the interior of C, which is thus a nonempty open subset of Rd. If µ ≤cx ν then Cµ ⊂ C
and bary(ν) = bary(µ). Hence we may assume w.l.o.g. that bary(ν) = bary(µ) = 0 ∈ I and
write P0

2 (R2) for the subset of P2(R2) consisting of centred measures.
Subsequently we will work with the following assumptions:

Assumption (A): We have µ ≤cx ν and

(A1) the pair (µ, ν) is irreducible;

(A2) ν is compactly supported, i.e. C is compact;

(A3) supp(µ) ⊆ I, i.e. Cµ is compactly contained in I.

To stress the importance of this assumption, we recall the following fact. If we only
assume (A1) and (A2), i.e., the pair (µ, ν) is irreducible and ν is in addition compactly
supported, the Bass functional may fail to admit a minimizer in P2(Rd) and minimizing
sequences (αn)n∈N may even fail to be tight (see [5, Example 6.7]). On the other hand,
assuming (A3) in addition to (A1) and (A2), this drawback cannot happen anymore, as
shown in the subsequent lemma. For reasons of presentation we present these results already
here while the proofs rely on some technicalities, which are shown in the subsequent section,
and are therefore deferred to Subsection 3.3.

Lemma 3.1. Under Assumption (A) the functional V admits a minimizer in L2 and V a
minimizer in P2(Rd). Furthermore, any minimizer of V is bounded.

As we have existence of a minimizer to the Bass functional under Assumption (A), the
classical theory of gradient flows in Hilbert spaces provides us with the next result.
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Lemma 3.2. Let Z0 ∈ L2(G;Rd). Under Assumption (A) there exists a curve (Zt)t≥0 in
L2(G;Rd) starting in Z0 such that

d

dt
Zt = −DZtV for a.e. t > 0, and

d+

dt
Zt = −DZtV for t > 0. (14)

Further, there exists a minimizer Z⋆ ∈ L2(G;Rd) of V such that limt→∞ Zt = Z⋆ weakly in
L2 and limt→∞ V (Zt) = V (Z⋆).

We have already seen in Lemma 3.2 that, under Assumption (A), for any initial datum
Z0 ∈ L2(G;Rd) the L2-gradient flow (Zt)t≥0 of V exists and converges weakly to a minimizer
of V , which exists by Lemma 3.1. But even beyond that, Assumption (A) is sufficiently
strong to ensure strong convergence of the gradient flow. We now state the main result of
this section.

Theorem 3.3. Under Assumption (A), let (Zt)t≥0 be an L2-gradient flow of V . Then (Zt)t≥0

converges strongly to the unique minimizer Z⋆ of V with E[Z⋆] = E[Z0].

For the purpose of Proposition 3.4, which is key in showing Theorem 3.3, we need to pass
to a pathwise absolutely continuous version of the gradient flow:

Fix a representative Z̃0 of Z0 and, for fixed ω, consider the curve Z̃ = (Z̃t)t≥0 with

Z̃t := Z̃0 −
∫ t

0

DZsV ds, (15)

which is P-almost surely well-defined since |DZsV | is uniformly bounded. Consequently, Z̃t

is a representative of Zt with absolutely continuous paths having pathwise the derivative

dZ̃t

dt
= −DZtV = −DZ̃t

V. (16)

Proposition 3.4. Under Assumption (A) let (Zt)t≥0 be an L2-gradient flow of V and (Z̃t)t≥0

the representative given in (15). Then there is M > 0 such that the random time τ := inf{t >
0 : |Z̃t| ≤ M} is a.s. finite and satisfies almost surely

(i) t 7→ |Z̃t| is strictly decreasing for t ∈ [0, τ);

(ii) |Z̃t| ≤ M for all t ≥ τ .

In particular, (|Zt|2)t≥0 is uniformly integrable.

The proofs of Theorem 3.3 and Proposition 3.4 need some preparations and will be given
at the end of this section.
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3.2 Geometric auxiliary results

As it turns out, under Assumption (A) and assuming that the starting variable Z0 is in
L∞(G;Rd), one can show that the L2-Bass gradient flow is confined to a bounded subset of
Rd, which eventually allows us to establish its convergence in the norm of L2. Therefore, we
need to control the gradient of V , which we do by analysing properties of the Brenier map
∇v : Rd → Rd that pushes a measure β ∈ P2(Rd) with β ≪ λ to ν. To this end, we consider
the support function ℓ : Rd → R of C given by

ℓ(a) := max{y · a : y ∈ C}. (17)

We define the slice Sa,δ of C consisting of points in C that are at most δ > 0 away from the
supporting hyperplane with normal direction a, that is,

Sa,δ := {y ∈ C : y · a > ℓ(a) − δ}. (18)

Clearly, ℓ is Lipschitz continuous on the (d− 1)-sphere Sd−1. For the next lemma, we recall
that we have assumed (w.l.o.g.) that C spans Rd.

Lemma 3.5. Let δ > 0 and r ≥ 0. Under Assumption (A), we have

(i) there is ε = ε(δ, C) > 0 such that for all a, b ∈ Sd−1

|a− b| ≤ ε =⇒ Sa,δ/2 ⊆ Sb,δ; (19)

(ii) for a ∈ Sd−1 the set {y ∈ C : ∃y′ ∈ Sa,δ with |y − y′| ≤ r} is contained in Sa,δ+r;

(iii) the ν-measure of each δ-slice is uniformly bounded away from zero, i.e.,

η(δ) := inf{ν(Sa,δ) : a ∈ Sd−1} > 0;

(iv) we have
∆ := inf{ℓ(a) − x · a : a ∈ Sd−1, x ∈ Cµ} > 0, (20)

so that, for 0 < δ < ∆ the sets Cµ and Sa,δ are disjoint, for all a ∈ Sd−1.

Proof. Ad (i), let a, b ∈ Sd−1 and ε := δ
4L

where L := max{|y| : y ∈ C}. We claim that then
(19) holds. Indeed, if |a− b| ≤ ε and y ∈ Sa,δ/2 we have

y · b ≥ y · a− L|b− a| > ℓ(a) − δ

2
− L|b− a| ≥ ℓ(b) − δ

2
− 2L|b− a| ≥ ℓ(b) − δ.

Ad (ii), let a ∈ Sd−1, y ∈ C and y′ ∈ Sa,δ with |y − y′| ≤ r. We merely observe that

y · a ≥ y′ · a− r > ℓ(y′) − δ − r.

Ad (iii), first observe that ν(Sa,δ) > 0 for all a ∈ Sd−1, since C is the smallest closed convex
set containing the support of ν and C \ Sa,δ is a closed convex subset of C. We proceed by

12



contradiction, that means, we assume by compactness that there is a sequence (an)n∈N in
Sd−1 converging to a with ν(San,δ) → 0. By (i) we have that whenever |an − a| ≤ ε we have
Sa,δ/2 ⊆ San,δ which means that

lim inf
n→∞

ν(San,δ) ≥ ν(Sa,δ/2) > 0,

yielding a contradiction, hence, η(δ) > 0.
Ad (iv), assume that ∆ = 0 which means by compactness that there is a ∈ Sd−1 and

x ∈ Cµ with ℓ(a)−x·a = 0. Consequently, x is a support point of C with normal vector a and
thus, by [9, Corollary 7.6], x is in the boundary of C which contradicts that x ∈ Cµ ⊆ I.

Before continuing we would like to recall that as ν is compactly supported under As-
sumption (A), hence the Brenier map from any absolutely continuous β ∈ P1(Rd) to ν
exists. Thus we can work in this section with probability measures having only finite first
moments.

Lemma 3.6. Let Λ ⊆ P1(Rd) be a tight family consisting of measures equivalent to the
Lebesgue measure and write ∇vβ for the Brenier map from β ∈ Λ to ν. Under Assumption
(A), for δ > 0, there is a constant M = M(ν,Λ, δ) > 0 such that

z ∈ Rd, |z| ≥ M =⇒ ∀β ∈ Λ,∇vβ(z) ∈ S z
|z| ,δ

.

Proof. Using Lemma 3.5 (iii) and tightness of Λ, there exists a radius r > 0 such that

inf
β∈Λ

β(B(r)) > 1 − η(δ/2), (21)

where B(r) := {y ∈ Rd : |y| ≤ r} is the centred ball with radius r.
Fix β ∈ Λ and z ∈ Rd with |z| ≥ sup{|y| : y ∈ C} =: L, and write a := z

|z| ∈ Sd−1. We

proceed to show that if x := ∇vβ(z) /∈ Sa,δ then |z| ≤ M := 2(r + L)2/δ. It follows from
(∇vβ)(β) = ν that

β({z̃ ∈ Rd : ∇vβ(z̃) /∈ Sa,δ/2}) = 1 − ν(Sa,δ/2) ≤ 1 − η(δ/2),

whence, by (21) there exists z′ ∈ B(r) with x′ := ∇vβ(z′) ∈ Sa,δ/2. We have

|z′ − x| ≤ r + L, (22)

|z − x| ≥ a · (z − x) = |z| − x · a ≥ |z| − ℓ(a) + δ > 0, (23)

where we used in (23) that |z| ≥ L ≥ ℓ(a) and x /∈ Sa,δ. By cyclical monotonicity we must
have

|x− z|2 + |x′ − z′|2 ≤ |x′ − z|2 + |x− z′|2,

implying that

(|z| − ℓ(a) + δ)2 ≤ |z|2 − 2z · (x′) + |x′|2 + (L + r)2

= |z|2 − 2|z|a · x′ + |x′|2 + (L + r)2

≤ |z|2 − 2|z|(ℓ(a) − δ/2) + |x′|2 + (L + r)2,

13



where the first equality comes from (22) and (23) and the last is due to x′ ∈ Sa,δ/2. Rear-
ranging the terms leads to

|z|δ + δ2 ≤ L2 + (L + r)2,

from where we readily derive the claim.

Lemma 3.7. Under the assumptions of Lemma 3.6, there is a (possibly larger) constant
M = M(ν,Λ, δ) > 0 such that

z ∈ Rd, |z| ≥ M =⇒ ∀β ∈ Λ,∇vβ ∗ γ1(z) ∈ S z
|z| ,δ

. (24)

Proof. By Lemma 3.6 there is M̃ > 0 such that

z ∈ Rd, |z| ≥ M̃ =⇒ ∀β ∈ Λ,∇vβ(z) ∈ S z
|z| ,δ/4

. (25)

Further, by Lemma 3.5 (i) there is ε > 0 such that for all a, b ∈ Sd−1

|a− b| ≤ ε =⇒ Sa,δ/4 ⊆ Sb,δ/2. (26)

Next, we choose r sufficiently large such that γ1(B(r)c) ≤ δ/(4L) and set

M := max

(
M̃,

2r

ε
+ r

)
.

It remains to show that M has the property described in (24). Fix z ∈ Rd with |z| ≥ M and
β ∈ Λ, and write x := ∇vβ ∗ γ1(z). We have

x = γ1(B(r))

∫
B(r)

∇vβ(z − y)
γ1(dy)

γ1(B(r))︸ ︷︷ ︸
=:x1

+γ1(B(r)c)

∫
y∈B(r)c

∇vβ(z − y)
γ1(dy

γ1(B(r)c)︸ ︷︷ ︸
=:x2

.

When |y| ≤ r then b = z
|z| and a = z−y

|z−y| satisfy

|a− b| ≤
∣∣∣∣ z|z| − z

|z − y|

∣∣∣∣ +
r

|z − y|
≤ ||z − y| − |z||

|z − y|
+

r

M − r
≤ 2r

M − r
≤ ε.

Therefore, (25) and (26) yield that in this case ∇vβ(z − y) ∈ Sb,δ/2, hence, also x1 ∈ Sb,δ/2

as the latter is a convex set. On the other hand, we have

|x2|γ1(B(r)c) ≤ Lγ1(B(r)c) ≤ δ

4
.

We claim that x ∈ Sb,δ. Indeed,

x · b ≥ γ1(B(r))(x1 · b) −
δ

4
≥ (γ1(B(r))x1 + γ1(B(r)c)x2) · b

>

(
1 − δ

4L

)(
ℓ(b) − δ

2

)
− δ

4
≥ ℓ(b) − 3δ

4
− δℓ(b)

4L
≥ ℓ(b) − δ,

where we used that ℓ(b) ≤ L and x1 ∈ Sb,δ/2. This concludes the proof.
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Lemma 3.8. Under the assumptions of Lemma 3.6, let M > 0 satisfy (24). Then we have

x ∈ Cµ, z ∈ Rd, |z| ≥ M =⇒ ∀β ∈ Λ, z · (∇vβ ∗ γ1(z) − x) ≥ |z|(∆ − δ), (27)

where ∆ is given as in (20).

Proof. Let x ∈ Cµ, β ∈ Λ and z ∈ Rd with |z| ≥ M , and write a = z
|z| .

z · (∇vβ ∗ γ1(z) − x) = |z|a · (∇vβ ∗ γ1(z) − x)

≥ |z| (a · ∇vβ ∗ γ1(z) − ℓ(a) + ∆)

≥ |z|(∆ − δ),

where we use Lemma 3.5 (iv) for the first inequality and Lemma 3.7 for the second.

3.3 Postponed proofs

Proof of Lemma 3.1. We have established in Item (ii) of Lemma 2.1 that V (Z) ≥ V(L (Z))
for all Z ∈ L2(G;Rd) with equality if and only if the law of (X,Z) is monotone. Hence, Z
minimizes V if and only if L (X,Z) is monotone and L (Z) is a Bass measure.

Since ν is compactly supported and (µ, ν) is irreducible, there exists by [5, Theorem 1.4]
a convex function v : Rd → R, u := v ∗ γ1 such that α := (∇u∗)(µ) is the Bass measure of
the Bass martingale joining µ and ν. Using Lemma 3.5 (iv), we pick δ > 0 such that δ < ∆.
Then we have Cµ ∩ Sa,δ = ∅ for all a ∈ Sd−1. By Lemma 3.7 there is M > 0 such that

{z ∈ Rd : |z| ≥ M} ⊆
⋃

a∈Sd−1

{z ∈ Rd : ∇u(z) ∈ Sa,δ}.

We find that {z ∈ Rd : ∇u(z) ∈ Cµ} ⊆ {z ∈ Rd : |z| < M}, from where we conclude that
α is supported on {z ∈ Rd : |z| ≤ M} and α ∈ P2(Rd). Hence, Z = ∇u∗(X) ∈ L2(G;Rd)
minimizes V .

Proof of Lemma 3.2. The existence of the gradient flow satisfying (14) follows by [21, Theo-
rems 3.1]. The weak convergence to Z⋆, a minimizer of V , is a consequence of [22, Theorem
4]. To check that V (Zt) → V (Z⋆), we will use that ∥d+

dt
Zt∥L2 → 0, where the latter property

is due to [21, Theorem 3.7], and argue by contradiction. Indeed, if (tn)n∈N is an increasing,
non-negative sequence with tn → ∞ and a > 0 exist such that V (Ztn) ≥ a+V (Z⋆), then by
convexity

−a ≥ V (Z⋆) − V (Ztn) ≥ DZtn
V · (Z⋆ − Ztn) = −d+

dt
Ztn · (Z⋆ − Ztn) → 0,

for n → ∞, as (Zt)t≥0 is L2-bounded. This contradicts a > 0.

Proof of Proposition 3.4. Due to Lemma 3.5 (iv) we can pick δ > 0 such that δ < ∆.
We know by Lemma 3.2 that the gradient flow is weakly convergent to a minimizer of V .
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Therefore, supt≥0 E[|Zt|2] < ∞ and Λ := {L (Zt) ∗ γ1 : t ≥ 0} is tight. Let M > 0 be the
constant provided by Lemma 3.8, then we have by (27) that

|Z̃t| ≥ M =⇒ Z̃t · (∇vt ∗ γ1(Z̃t) −X) ≥ |Z̃t|(∆ − δ),

where ∇vt : Rd → Rd denotes the Brenier map from L (Zt) ∗ γ1 to ν. Recall that by Lemma
2.1 we have DZ̃t

V = ∇vt ∗ γ1(Z̃t)−X. By (16) we have on a P-full set Ω̃, for almost every t

|Z̃t| ≥ M =⇒ 1

2

d

dt
|Z̃t|2 = −Z̃t ·

(
∇vt ∗ γ1(Z̃t) −X

)
≤ −|Z̃t|(∆ − δ) < 0,

where we used for the last inequality that ∆ − δ > 0. Hence, on {t ≥ 0 : t < τ} the curve
t 7→ |Z̃t| is strictly decreasing on Ω̃. By the same argument, τ must be finite. On the other
hand, let τ1 be a random time with τ1 ≥ τ and |Z̃τ1| > M on {τ1 > τ}, then we have on
{τ1 > τ} ∩ Ω̃

0 < |Z̃τ1 |2 − |Z̃τ |2 < −(τ1 − τ)(∆ − δ)M,

which yields that {τ1 > τ} is disjoint with Ω̃. Consequently, we have shown that |Z̃t| ≤ M
for all t ≥ τ on Ω̃, which completes the proof.

Proof of Theorem 3.3. By Proposition 3.4 we have that (|Zt|2)t≥0 is uniformly integrable. In
turn, the family {L (Zt) : t ≥ 0} is W2-precompact which enables us to find an increasing,
non-negative sequence (tn)n∈N with tn → ∞ such that L (Ztn) → α in W2. Using Lemma
2.1 (ii) and Lemma 3.2 we have

V(L (Z⋆)) = V (Z⋆) = lim
n→∞

V (Ztn) ≥ lim
n→∞

V(L (Ztn)) = V(α).

Since Z⋆ is the unique minimizer of V with mean E[Z0] this shows that L (Z⋆) = α. It
follows immediately that

lim
t→∞

E[|Zt|2] = E[|Z⋆|2],

which, together with weak convergence of (Zt)t≥0, yields L2-norm convergence to Z⋆.

4 The one-dimensional case

Throughout this section, we assume that d = 1.

4.1 Second-order analysis

In this part we assume that d = 1, although we will still often use vector and matrix notation
to make this part consistent with the other ones. Throughout this section, Φ1 denotes the
standard Gaussian cumulative distribution function and ϕ1 := Φ′

1 its density.

Lemma 4.1. Let ∆Z ∈ L1(G;Rd), Z be G-measurable. Then we have for γ1-a.e. ζ

E[∆Z|Z + Γ = ζ] =
E[ϕ1(ζ − Z)∆Z]

E[ϕ1(ζ − Z)]
. (28)
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Proof. Using independence of G and Γ, we compute for measurable, bounded h : R → R that

E[∆Zh(Z + Γ)] = E [∆ZE[h(Z + Γ)|G]] = E
[
∆Z

∫
h(ζ)ϕ1(ζ − Z) dζ

]
=

∫ (
E[∆Zϕ1(ζ − Z)]

E[ϕ1(ζ − Z)]

)
h(ζ)E[ϕ1(ζ − Z)] dζ

= E
[∫ (

E[∆Zϕ1(ζ − Z)]

E[ϕ1(ζ − Z)]

)
h(ζ)ϕ1(ζ − Z) dζ

]
= E

[(
E[∆Zϕ1(ζ − Z)]

E[ϕ1(ζ − Z)]

) ∣∣∣
ζ=Z+Γ

h(Z + Γ)

]
.

From this equality and uniqueness of conditional expectations, we readily derive (28).

To proceed with our second-order analysis of V , we require additional regularity of ν.

Assumptions (A’): The pair (µ, ν) satisfies Assumption (A), and in addition

(A4) ν is absolutely continuous with λ- ess infx∈I
dν
dλ

(x) > 0;

(A5) the density of ν satisfies λ- ess supx∈R
dν
dλ

(x) < ∞.

Using this assumption, we can compute the derivative of DZV along continuously differ-
entiable curves. Throughout we denote by Hv the second derivative (Hessian) of v.

Proposition 4.2. Under Assumption (A’), let (Zt)t≥0 be a continuously differentiable curve
in L2(G;Rd) with derivative Gt. Then t 7→ DZtV is continuously differentiable with

d

dt
(DZtV ) = E [Hvt(Zt + Γ) (Gt − E[Gt|Zt + Γ]) |G] , (29)

where ∇vt : R → R is the Brenier map from L (Zt + Γ) to ν.

Proof. As we are currently working with d = 1, the Brenier map is explicitly given by
∇vt = Qν ◦ Ft where Qν is the quantile function of ν and Ft is the cdf of Zt. It follows from
(A4) that Qν is almost surely differentiable on (0, 1). Consequently, d

dx
∇vt(x) and d

dt
∇vt(x)

exist for λ-a.e. x ∈ R. We compute the space and time derivatives of ∇vt, and obtain λ-a.s.

Hvt =
d

dx
(Qν ◦ Ft) =

( d

dx
Qν

)
◦ Ft

( d

dx
Ft

)
=

( d

dx
Qν

)
◦ Ft E[ϕ1(· − Zt)], (30)

as well as (γ1-a.s.)

d

dt
(∇vt) =

( d

dx
Qν

)
◦ Ft

( d

dt
Ft

)
= −

( d

dx
Qν

)
◦ Ft E[ϕ1(· − Zt)Gt]

= −Hvt E[Gt|Zt + Γ = ·],
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where the last equality follows by Lemma 4.1. As dν
dx

is λ-essentially bounded away from
zero on I by some constant c > 0, we have that

λ- ess sup
x∈R

|Hvt(x)| ≤ 1

c
< ∞ and λ- ess sup

x∈R

∣∣∣ d
dt
∇vt(x)

∣∣∣ ≤ 1

c
∥Gt∥L2 < ∞.

Recall the form of DZtV proved in Lemma 2.1. Thanks to the bounds, we can exchange
integration with differentiation and get

d

dt
(DZtV ) = E

[
d

dt
(∇vt(Zt + Γ))

∣∣∣G] = E
[( d

dt
∇vt

)
(Zt + Γ) + Hvt(Zt + Γ)Gt

∣∣∣G]
= E

[
Hvt(Zt + Γ)

(
Gt − E[Gt|Zt + Γ]

)∣∣G] .
Note that the maps t 7→ Hvt(Zt +Γ) and t 7→ ( d

dt
∇vt)(Zt +Γ) are L2-continuous, from where

we conclude that t 7→ DZtV is continuously differentiable.

Lemma 4.3. Under Assumption (A’), let (Zt)t∈[0,1] be a curve in L2(G;Rd) with Zt =
Z0 + t∆Z where ∆Z := Z1 − Z0. Then we have

d2

dt2
V (Zt) = E [(∆Z − E[∆Z|Zt + Γ])Hvt(Zt + Γ) (∆Z − E[∆Z|Zt + Γ])] , (31)

where ∇vt is the Brenier map from L (Zt + Γ) to ν.

Proof. We have shown in Proposition 4.2 that t 7→ DZtV is continuously differentiable.
Therefore, the second derivative of t 7→ V (Zt) can be represented as

d2

dt2
V (Zt) =

d

dt
E [∆ZDZtV ] = E

[
∆Z

d

dt
DZtV

]
= E [∆ZHvt(Zt + Γ) (∆Z − E[∆Z|Zt + Γ])] ,

where we used (29) and the tower property for the last equality. Further, since

E [E [∆Z|Zt + Γ]Hvt(Zt + Γ) (∆Z − E [∆Z|Zt + Γ])] = 0,

we conclude with (31).

4.2 Contraction property of conditional expectation

The final ingredient in the proof of exponential convergence of the gradient flow of the lifted
Bass functional is the following contraction property of the conditional expectation.

Lemma 4.4. Let ∆Z ∈ L2(G;R) with E[∆Z] = 0 and R > 0. Then there is ε = ε(R) ∈ (0, 1)
such that, for every Z ∈ L2(G;R) with ∥Z∥ ≤ R we have

∥E[∆Z|Z + Γ]∥2L2 ≤ (1 − ε)∥∆Z∥2L2 .

18



Proof. As preparation we introduce the quantities, for ζ ∈ R,

g(ζ) := min
(y,z)∈R×R, |y|,|z|≤R

ϕ1(ζ − y)

ϕ1(ζ − z)

Note that g is continuous and g ∈ (0, 1). Therefore, we can set

ε := min
z∈R, |z|≤R

E[g(z + Γ)],

and by the previous observations we see that ε > 0. Furthermore, since E[∆Z] = 0 we get
by Lemma 4.1

E[∆Z|Z + Γ = ζ] =
E[ϕ1(ζ − Z)∆Z]

E[ϕ1(ζ − Z)]
= E

[
∆Z

(
ϕ1(ζ − Z)

E[ϕ1(ζ − Z)]
− g(ζ)

)]
.

Since ϕ1(ζ−Z)
E[ϕ1(ζ−Z)]

≥ g(ζ) and g(ζ) < 1, we have that

h(Z) :=

(
ϕ1(ζ − Z)

E[ϕ1(ζ − Z)]
− g(ζ)

)
1

1 − g(ζ)
,

is a probability density. Therefore by Jensen’s inequality we get

E[∆Z|Z + Γ = ζ]2 = (1 − g(ζ))2 E[∆Zh(Z)]2

≤ (1 − g(ζ))2 E[∆Z2h(Z)]

= (1 − g(ζ))E
[
∆Z2

(
ϕ1(ζ − Z)

E[ϕ1(ζ − Z)]
− g(ζ)

)]
≤ (1 − g(ζ))E

[
∆Z2|Z + Γ = ζ

]
.

Hence, taking expectations leads to

∥E[∆Z|Z + Γ]∥2L2 ≤ E
[
(1 − g(Z + Γ))E[∆Z2|Z + Γ]

]
= E

[
(1 − g(Z + Γ))∆Z2

]
= E

[
∆Z2E[1 − g(Z + Γ)|G]

]
≤ E

[
∆Z2

(
1 − min

z∈R, |z|≤R
E[g(z + Γ)]

)]
= (1 − ε)E[∆Z2],

which concludes the proof.

4.3 Exponential convergence

We consider the setting and notation of Section 4.1, wherein d = 1. As in that part, we use
here vector and matrix notation nevertheless.
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Lemma 4.5. Let ν ≪ λ satisfy dν
dλ

> 0 on I, R > 0 and Z ∈ L2(G;R) with |Z| ≤ R. Denote
by ∇vZ the Brenier map from L (Z + Γ) to ν. Then we have for λ-a.e. ζ

HvZ(x) ≥
infζ∈R, |ζ|≤R ϕ1(x− ζ)

∥ dν
dλ
∥L∞(λ)

. (32)

Proof. Write F for the cdf of L (Z + Γ). Under our assumption on ν the quantile function
Qν of ν is almost everywhere differentiable on (0, 1) and we have by (30) that for λ-a.e. x

HvZ(x) =
( d

dx
Qν

)
◦ F (x) E[ϕ1(x− Z)].

As consequence of dν
dλ

> 0 on I we have λ-a.s. ( d
dx
Qν) ◦ F ≥ 1

dν
dλ

≥ 1
∥ dν
dλ

∥L∞(λ)
. Further, since

|Z| ≤ R we get E[ϕ1(x− Z)] ≥ infζ∈R, |ζ|≤R ϕ1(x− ζ), we obtain (32).

Lemma 4.6. Under Assumption (A’) there is for every R > 0 an ε = ε(R) > 0 such that for
all Zi ∈ L2(G;R), i = 0, 1 with ess sup |Zi| ≤ K, the curve (Zt)t∈[0,1] with Zt := (1−t)Z1+tZ0

satisfies
d2

dt2
V (Zt) ≥ ε∥Z1 − Z0 − E[Z1 − Z0|Zt + Γ]∥2L2 . (33)

Proof. We have shown in Lemma 4.3 that, after denoting ∆Z := Z1 − Z0,

d2

dt2
V (Zt) = E[Hvt(Zt + Γ) (∆Z − E[∆Z|Zt + Γ])2],

where ∇vt is the Brenier map from L (Zt+Γ) to ν. Using the lower bound derived in Lemma
4.5 we have

d2

dt2
V (Zt) ≥ E

[
gR(Zt + Γ) (∆Z − E[∆Z|Zt + Γ])2

]
= E

[
gR ∗ γ1(Zt) (∆Z − E[∆Z|Zt + Γ])2

]
, (34)

where for x ∈ R
gR(x) :=

infζ∈R, |ζ|≤R ϕ1(x− ζ)

∥ dν
dλ
∥L∞(λ)

.

Observe that gR is continuous and strictly positive everywhere. Hence, gR ∗ γ1 is also con-
tinuous and strictly positive everywhere. It follows that for ε := inf |ζ|≤R gR ∗ γ1(ζ) > 0, so
(33) is readily derived from (34).

Lemma 4.7. Let R > 0. Under Assumption (A’) there is ε > 0 such that for all Zi ∈
L2(G;R), i = 0, 1 with |Zi| ≤ R we have

V (Z1) − V (Z0) − ⟨DZ0V, Z1 − Z0⟩L2 ≥ ε∥Z1 − Z0∥2L2 . (35)
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Proof. Set ∆Z := Z1 − Z0 and consider the curve (Zt)t∈[0,1] with Zt := Z0 + t∆Z. Since V
is continuously differentiable by Lemma 2.1 we have

V (Z1) − V (Z0) =

∫ 1

0

⟨DZtV,∆Z⟩L2 dt.

Hence, it suffices to prove the inequality

⟨DZtV −DZ0V,∆Z⟩L2 ≥ 2εt∥∆Z∥2L2 .

By Lemma 4.6 there is ε(R) > 0 such that

d

dt
⟨DZtV,∆Z⟩L2 =

d2

dt2
V (Zt) ≥ ε(R)∥∆Z − E[∆Z|Zt + Γ]∥2L2 .

Finally, by Lemma 4.4 there is ε′ > 0 such that

∥∆Z − E[∆Z|Zt + Γ]∥2L2 = ∥∆Z∥2L2 − ∥E[∆Z|Zt + Γ]∥2L2 ≥ ε′∥∆Z∥2L2 ,

where the first equality is due to the tower property. Therefore, (35) holds for 2ε := ε(R)ε′,
which completes the proof.

Proof of Theorem 1.9 . Per Proposition 3.4 the whole flow (Zt)t≥0 takes values in B∞(M) :=
{Z ∈ L2(G;R) : ess sup |Z| ≤ M} for some M > 0. Denote by Z∗ the L2-limit of (Zt)t≥0

which is a minimizer of V . Hence, throughout this proof we may assume that all random
variables are uniformly bounded by M . By Lemma 4.7, we can find ε such that V is (2ε)-
strongly convex restricted to B∞(M). Using (35) we obtain for Z ∈ B∞(M) that

V (Z∗) − V (Z) ≥ inf
Z′
⟨DZV, Z

′ − Z⟩L2 + ε∥Z ′ − Z∥2L2 ,

from where we derive

V (Z) − V (Z⋆) ≤ 1

4ε
∥DZV ∥2L2 . (36)

On the other hand, adding (35) (where we let (Z0, Z1) = (Z,Z⋆)) to (35) (where we let
(Z1, Z0) = (Z,Z⋆)) yields

⟨DZV, Z − Z⋆⟩L2 ≥ 2ε∥Z − Z⋆∥2L2 . (37)

From (36) and continuous differentiability of (Zt)t≥0 with d
dt
Zt = −DZtV we get

d

dt

(
V (Zt) − V (Z⋆)

)
= −∥DZtV ∥2L2 ≤ −4ε

(
V (Zt) − V (Z⋆)

)
,

while (37) yields

d

dt
∥Zt − Z∗∥2L2 = −2⟨Zt − Z∗, DZtV ⟩L2 ≤ −4ε∥Zt − Z∗∥2L2 .

We conclude by Gronwall’s inequality.
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2015. Calculus of variations, PDEs, and modeling.

[52] W. Schachermayer and B. Tschiderer. The decomposition of stretched brownian motion
into bass martingales. arXiv:2406.10656, 2024.

[53] X. Tan and N. Touzi. Optimal transportation under controlled stochastic dynamics.
Ann. Probab., 41(5):3201–3240, 2013.

[54] B. Tschiderer. q-bass martingales. arXiv:2402.05669, 2024.

[55] C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathe-
matics. American Mathematical Society, Providence, RI, 2003.

[56] C. Villani. Optimal Transport. Old and New, volume 338 of Grundlehren der mathema-
tischen Wissenschaften. Springer, 2009.

25


	Introduction
	Martingale optimization problem
	Bass martingales and structure of stretched Brownian motion
	The Bass functional
	Main Results
	Related literature

	Regularity of the lifted Bass functional
	The Gradient flow
	Existence and strong convergence
	Geometric auxiliary results
	Postponed proofs

	The one-dimensional case
	Second-order analysis
	Contraction property of conditional expectation
	Exponential convergence


