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INTRODUCTION

In this note we present a survey of results on uniform measures, based on

the theory of Saks spaces and the dual concept - that of CoSaks spaces. The

main result is that in the space of uniform measures, weak compactness is

equivalent to compactness with respect to a natural strong topology. In the two
exﬁreme cases Qhere the uniform space is uniformly discrete resp.

IWHere it is compact this theorem reduces to two familiar facts, namely

Schur's Lemma oﬁ compactness in £7, respectively the fact that on the dual

of a Banach-space E, the G(E',E)—compact sets coincide with those sets which
érelcompact for T (E',E), the topology of uniform‘convergence on the compact

sets of E, and in fact our proofs use essentlally the fact that the general case mw&x
regarded as a combination of these two extreme cases. The theory of unlform measures
has been developed mainly bei FEDOROVA [16] BEREZANSKII [3], DEAIBES [11], AZzaMm [2],
FROLIK [19] and PACHL [34] and the main result on compactness is due to PACHL whose

proof is compllcated and technical. In the topnlogical case analogous results were'

obtained by BERRUYER and IVOL [ 4], BUCHWALTER [61, DUDLEY [14], LEGER and
SOURY [29], ROME [38] and WHEELER [42]. Here the compactness result was obtained
by ROME and WHEELER using partition of unity techniques. In the uniform case

no such technique is available. "Using our approach, a proof based on a glldlng
hump technlque which reduces the result to Schur's Lemma presents itself very
naturally. Here the notion of "uniform Llpschltz-tlghtness" is of central
importance. It replaces the classical notion of uniform tightness for topological
measu*e theory. The proof glven is considerably simpler and more natural than

that of PACHL.

We have taken the opportunity of presenting a sketch of a systematic
development of the theory of uniform measures from the point of view of CoSaks
spaces which we believe to be the natural and correct framework.

The gencral line of attack in this paver is to do the analysis in nmetric

spaces and then lift to yniform spaces usina formal manipulations with projective
and inductive limits. For this reason we have been unable to res1st the temptation
of show1ng in the first two sectlons how the basic concepts of Lipschitz functions
and uniform measures arise naturally from categorical considerations and how this
serves to simplify and illuminate them. Readers with a distaste for category theory
can skip these two sections after" familiarising themselves with the notation

introduced there. . . .
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'The idea for writing.this paper came from a very stimulating talk on
the work of the Prague uniform space group given by Z. FROLIK in Linz, Summer
1978. A crucial role is played by the concept of a "compactology" which was
introduced by WAELBROECK and systematically studid by BUCHWALTER and his

coworkers.



§1. LIPSCHITZ SPACES

We begin with a brief exposition of results on Lipschitz functions. They are
essentially due to ARENS and EELLS (who showed that every metric space can be
isometrically embedded into a Banach space) resp. de LEEUW (who instigated the
theory of Banach spaces of Lipschitz functions)..In the following we shall
combine these two treatments by showing that the construction of ARENS and
EELLS can be made in a categorical fashion and that then many of the results
of de LEEUW (and in particular, those that we shall fequire) follow from very

general considerations.

We consider the category My whose objects are metric spaces (X,d) with
base point %, and radius <1 (i.e. sup{d(x,%) : x€X} < 1). The morphisms
£ = ‘x,xo) - (Y,yo) ate contractions which féspect the base point. If f is a
Lips;hitz mapping between metric spaces,Lip(f) denotes the Lipschitz constant

of £ (i.e. Sup{d1(f(x),f(y)')/(d(x,y).x,ye X, x # )}

BAN; denotes the category of real Banach spaces with linear contractions as mor-

phisms. There is a natural forgetful functor

O: BAN7T = Mo
where if E is an object of BAN4, ()E is the unit ball of 'E with O as base
point.
Now it follows from Freyd's adjoint functor theorem (see, e.g. MAC LANE [301)
that O has a left adjoint which we shall denote by ABAN1.‘This means that if
(X,x0) is an object of Mg, there is a Banach space ABAN1(X) and a contraction

from (X,xg) into ABAN (X) with the following universal property:
1 ,

if f : (X,x0) = E (E a Banach space) is a Lipschitz function
with Lip(f) < 1 and f(xo) = O, then there is a unique linear
contraction_f': ABAN (X) = E so that the following diagram

1

commutes:

F

F .
Agpy, () —— 3
1 £

ABAN1(X) is called tbe free Banach space over X. One can deduce from the

above universal property that the mapping from X into AB (X) is isometric so
1

AN
that we can (and do) regard X as a subs ace of (X). For if x,x' are points
p AN,

in X with x # x', then the function




£f:y—=dly,x) - d(x,xo)

’ ~
is Lipschitz with f(xo) = O, Lip(f) < 1. The extension f 6f f is an element of
' with E < 1. also
ABAN1(X) with |If] |
£ (x'-x) = £(x') - £(x) = A(x',x) - d(x,%0) - d(x,%) + d(x,%o)
= d(x',x)

and so Ix'-x}] 2 d(x',x).
Now if X is an object of Mg we construct a Banach space Lipg (X) as follows:
the elements of Lipg(X) are Lipschitz functions from X into R with the property

that f(x¢) = O. The norm is the Lipschitz norm

E(x)-f(y) |

|fNL°: sup { a7 71

X, yeEX, X #y }

e U —

(i.e. "fHL = Lip(f) - which is in this case a norm).
o .

If we apply the above universal propefty to the Banach space R as target we

see that Lipg(X) is naturally isometrii to ABAN1(X)', the dual of ABAN1(X)’ -
the isomorphism being the mapping f - £ (the extension of f to ABAN1(X))'

For the mapping is a linear isomorphism. On the other hand, it is norm decreasing
since the extension does not increase the Lipschitz constant. Conversely

its inverse - the restriction operator - is trivially norm-decreasinc.

With this hindsight it is then €asy to see how to construct A

BAN

(X) without
1
having recourse to the Freyd theorem. We can embed X in Lipo(X)' in the usual

manner and the above consideration shows that this embedding is isometric. Then

ABAN (X) has the closed linear span of X in Lip(X)' as a model.
1 .

More generally, we can define in the obvious way a Banach space Lipg(X;F) for

each Banach space F. As above it follows from the universal property that

L(A (X),F) and Lipo (X;F) are naturally isometric for any Banach space. This implies
' BAN1

the result that Lip, (X;F) is a dual space if F is (cf. de LEEUW [28], JOHNSON [26]).
Now we reduce the case of metric space without base poinf to the above by the
following trick. First we consider metric épaces with diameter <2 (of course. every
metric space is uniformiy equivalent to such a space). Then we add a basé point

Xo and extend the metric by defining d(xq,x) = 1 G(EX). We denote this object

of Mp by . Then if f : X - R is Lipschitz with constant K the extension of f

’”~

to X obtained by putting f(xg) = O is Lipschitz with constant K if and only if

Ifl < K on X. Hence if Lip (X) denotes the Banach space of Lipschitz functions

f : X - IR with the norm

I lL : f - max{sup{lf(xﬂzxe:X}.A Lip (f)}



then Lip(X) and Lipo (X) are isometric. Similarly, if F is a Banach space,

~ ) .
Lip(X;F) (obvious definition) and Lipe (X;F) are isometric. Hence we obtain
from the above that each metric space X with diameter <2 can be embedded iso-

metrically and functoérially in a Banach space AB (X) so that each Lipschitz
. 1 .

AN
function f : X = F (F a Banach space) with Lip(f) < 1 and lfﬂw <1i.e.

P
IfllL <'1 has a unique extension to a linear contraction f : ABAN (X) - F.
1

Then we have naturalisometries L(AB (X);F) = Lip(X;F).
1

AN



§2 éREE TOPOLOGICAL VECTOR SPACES:

Before constructing the space of uniform measures by duality in the next
section, we show here how its existence is ensured by the Freyd adjoint functor
since it is the solution of a universal problem, that of linearisation of
bounded uniformly continuous funétions (a fact which has been observed by

several authors).

Again once one is assured of the existence of such -a solution, it follows easily
how one can construct it by duality; One sees thus how this construction fits
into a general scheme of linearisation which has attracted some attention
recently (see DOSTAL [ 13], JOHN R4 ], PTAK [35], RAIKOV [37], TOMASEK [41]

and references there) and which include the construction of spaces of distri-

butions, analytic functionals and various spaces of measures.

Consider the following categories:

al) CREG - the completely regular spaces;

a2) UNIF - uniform spaces;

bl) LCS - locally convex spaces;

b2) WLCS - locally convex spaces with the weak topology;

b3) SS - Saks spaces (see COOPER [9] or §3 below);

b4) W -Waelbroeck spaces (see BUCHWALTER [5] or CIGLER [ 81

Then there are natural forgetful functofs from each of the categories in

the b) list into the categories in the a) list (in the case of b3) and b4)

we restrict to the unit ball before forgetting the linear-structure) Each

of these functors has (once more by Freyd's theorem) a left ad301nt We denote

them by

ALCS' AAWLCS' ASS' l\w (for the functors on CREG)

5 A
resp. ALCS AWLCS SS Aw (for the functors on UNIF).

A hat on the functor symbol (e. g. ALCS) will denote the composition of A with
the corresponding completion functor (in the b) list). For each of these
A-functors, there are natural mappings X = A(X). It follows from the universal

Property that this mapping is an isomporphic embeddihg onto a closed subspace

. U U
for th s
e functors ALCS’ ASS' AWLCS',AW’ ALCS' ASS as we shall now prove

We begin with the topological case. The mapping is in each case injective

since the bounded continuous functions separate the points of X. Hence we can




regard X as a ( settheoretical) subspace of ALCS(X) etc.

We now show that if A is closed in X then & = g/)X there A is closed in
is i - i i dding.
ALCS(X). From this it follows that X ALCS(X) 1s a topological embedding

Since X is completely regular, there is a family Ms;cb(x) so that A = /f\)f—1(0),
' : : feM
~ ~ . .
Then A = /“)f‘1(o) is the required set.
feMm
To show that X is closed in ALCS(X) we first note the following consequences

of the universal property:

1) X is linearly independent in A (X) (for if {x4,...,xn} is a finite se-

LCS
quences of distinct elements of X, there is a continuous f : X - IR with
f(x4) =1, f(xi) =0 (i =2,...,n). Then Elis an element of ALCS(X)' with

£(x1)

]

1, E]Xi) =0 (i =2,...,n) qg.e.d.

2) ALCS(X) is the span of X. For by the uniqueness part of the universal property,
the span L(X) is dense in ALCS(X). On the other hand, the extension I of
the natural injection I : X - L(X) (L(X) with the topology induced from .
ALCS(X)) 1s a continuous 1linear mapping from ALCS(X) ogto L(X) which is the
identity when restricted to the dense subspace L(X). Hence it is the

identity on g ®) 18w LK) = A g (X

We now show X i i . - X

e now show is closed in ALCS X). The injection X ALCS X) (X the closure
of X in ALCS(X)) satisfies the universal property for X and so we have -
ALCS(X) ALCS(X). But we have seen that X is a basis for ALCS(X) and of

course, X is also a basis. This implies X = X

Almost exactly the same proof shows that X is embedded as a closed subspace of
AWLCS(X) and A (X). On the other hand, X is embedded as a topologlcal
subspace of- Aw(x), which will be closed only if X is compact.
We now consider the A functors. Here the proofs that X - ALCS(X) is an
injection and that X is a basis for ALC (X) are exactly as above. We now show
that the mapping is a uniform isomorphism. For this it suffices to show that if
a uniformly bounded family {fa}aéiA from X into R is uniformly equicontinuous
for the original structure on X then it is uniformly equicontinuous for the
Structure induced from AECS(X)' But {fa} induces in a natural way a mapping

£z X* wQHHaGA

w ' .
from X into £ (A) and the mapping is uniformly continuous if and only if



r ]

{fa}a A is uniformly equicontinuous. Hence if this is the case, f lifts
to a contlnuous linear mapping f from A (X) into 2 (A) and so the family
{f } of ies components is equlcontlnuous on AY LCs (X). Hence the restrictions

to X are unlformly equicontinuous g.e.d.

Exactly the same proof shows that X is uniformly isomorphic to a closed sub-

U .
AWLCS(X)' X Aw(X) are not

1somorphlsms 51nceA LCS(X) induces the weak uniformity on X (i.e that defined

space of A ( ). On the other hand the mapplngs X -

. U .
by the uniformly continuous IR-valued functions on X) and AW(X) induces the
precompact uniformity. 7
In particular, we can regard a completely regular space X as a subspace of

ALCS(X)’ AWLCS(X)' ASS(X)' AW(X).

Note that the closure of X.in these spaées is
0X (the c-repletion - cf. BUCHWALTER [5]1;
UX (the realcompletion or real compactification - cf. e.g. BUCHWALTER [ 571 ;
cX (the topological completion c.f. ENGELKING [15] ;

BX (the Stone-Cech compactification c.f. ENGELKING [15];

respectively

For readers who are unhappy at the use of Freyd's theorem we sketch briefly
how these adjoints can be constructed directly. To be concrete, we construct
ALCS' If X is a completely regular space, we consider A(X), 'the freg vector
space over X (i.e. the set of formal linear combinations of elements of X)

and give it one of the following two (equivalent) structures:

a) the finest locally convex structure so that X - A(X) is continuous;
b) the projective structure induced by all mapping
: A(X) ~ E

where f is the canonical extension of a continuous f : X+E (E a lbcally
_convex space). ‘

The equivalence of these two structures is ensured by the fact that both

'by their very definitions, have the requlred universal property and this

uniquely determines the topology of ALCS

Now there exists a duality theary (for example, the duality between locally
convex spaces and spaces with convex compactologies - see BUCHWALTER [s ]

for each of the categories in the b) list and it follows once again from the



universal properties that we have:

AALCS(X)‘ = C(X)
AWLCS(X) = CéX)
(X)' = C (X)
Ss i
Aw(x) = C (X)
AU [ | e
ALCS(x) = U(X)
AU ) _
.Cs(x) = U(x)
’\U L s
S = @ x)

N = P

where C(X) (resp. U(X)) denotes the space oflcontinuous (resp. uniformly
continuous) real valued functions and a superscript b means "bounded".

From this it easy to deduce the (more usual) definitions of the A-spaces

as the duals of spaces of (uniformly) continuous functions with suitable
structure. In particular it is now clear how we.must define the space Rgs(x)
of uniform measures on a uniform space X by duality and this is what we shall

do in the next section.
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§3 COSAKS SPACES

In this section we recall some definitions and constructions from COOPER {9]
A Saks space is a triple (E,Hi 1,T) where (E,I 1) is a normed space and T is a
locally convex topology on E so that (.E, the unit ball,is T—olosed and bounded.
The Saks spaces form a category when we define morphisms from (E,| §,1) into

(F,/ U4,T1) to be linear norm contractions T so that T(;E is T-T4 continuous.

‘The category of Saks spaces is complete and cocomplete i.e. possesses products, sums,

subspaces and quotients. If (E}H I,T) is a Saks space, we define a new locally
convex topology, the mixed tqpology Y (|| ﬂ}T) (or Y for short) on E to be the finest

locelly convex topolgy on E which agrees with T on OE. Then (E,|.1,y) is also

a Saks-space and we call it the fine Saks space  associated with (E 0.0 ,1).

A Saks—space (E,i.ll,T) is called fine if T=YWU.l,7T). Note that every Saks
space is isomorphic to the fine Saks-space associated to it, whence in every
isomorphism-class of Saks spaces there is exactly one fine Saks-space. Also

a linear map T:(E,D.U,f) - (F,H.U1,11) is‘a Saks-morphism iff it is a norm-con-
traction and y(§.4,1) - y(l.l4,T4)-continuous.

A Saks-space (E,}.},T) is complete if OE is T-complete or equivalently if (E,Y)

is a complete locally convex space.

We define the dual space E# of a Saks-space (E,l.{,T) to be (E,Y)',-which is a
Banach-space with respect to the dual norm |.§J' of E. In fact we have an additional
structure on E%, namely the bornology B of T-equicontinuous sets and these sets

are relatlvely compact with respect to o(EY E). B, the bornology of y(}.k,T)-equi-
continuous sets is what we shall call the {.l-saturation of B, namely those balls

C in E; such that for every ¢ > O there is BeBwith C _ B + ¢ OE'.

Now if (E,I.ﬂ,y) is a complete fine Saks space then byGrothendleck's'completeness
theorem,c.f. SCHAEFER [40] , we can recover (E,[.J,y) from (E+,H A Bo(E" +E)) as
the set of linear functionals on E; such that the restriction to every member of
B is U(EY ,E) contlnuous, equipped with the norm dual to /. §' and the topology of
uniform convergence on. B We define the topology G on E' to be the finest locally
convex topology that agrees with o(Ey,E) on the members of 31 Then E = (E',3)'.

This motivates the

Definition: A quadruple (F,|.], B,c) is called a CoSaks space if (E B.1) is a
Banach-space, B is a bornology of |.|-bounded sets that is |.f-saturated (i.e.

if CcF is ~a ball such that yv¢ >0 C<B + eOE for some Be B, then c:eB) and g
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is a locally convex Hausdorff-topology for which (*E is closed and for which
the members of é are relatively compact in E and which is the finest locally convex

- topology whose traces on the members of B c01nc1de with the traces of o

T 2 (Er" u BIO) == (F B '1181,01)

is a CoSaks morphism if it is a linear norm-contraction, a bornological morphism

with respect to B and 81 and § - 01 continuous:

It is clear from the above discussion that the definition is chosen so that the

follow1ng pr09051tion holds.

Proposition: The category of complete fine Saks spaces is dual to the category of

CoSaks spaces.

Remark: The reader will perhaps have been irritated by the lack of symmetry in the
definitions of Saks and CoSaks spaces. The reason for this lies in the fact that,

in order to conform with the notation of [ 9], we have been forced to distinguish

between a Saks space and its associated fine space althrough they are indistinguishable

from the categorial point of view whereas in the definition of CoSaks spaces we have

singled out one particular member of each 1somorphism class

We also note the following simple result:
Lemma: ~E is o-bounded,and so 0§ is coarserthan the J.|-topology on E.

. @ .
Proof: If there exists a G-bounde@ sequence {xn}n_1 in NE then it is easy to

see that for some increasing subsequence {nk}:—l the sequence {k—'x }:_1 is not

&
O-bounded either. But as {k“x }:_1 is .| -precompact ang is therefore contained
k s

~
in some closed ball B of saturated bornology B this contradicts the assumptlon that

4 induces a compact topology on every closed BEEB

In the following Prop051tlon we examine further the relatlon between the bornologies

of T-equicontinuous sets and Y—equicontlnuous sets.

Proposition: Let (E, .1, T) be a complete Saks- -space, vy =vy[l. ﬂ T] the assoc1ated
mixed topology. Let (E,|.|, B 0) be the dual CoSaks space and denote by B the

bornology of T-equicontinuous sets in Es

Then for a subset H of E the following are equivalent:
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Y P
1S g-equicontinuous;

(i) H

(ii) H is a-eqUicontindous on every member of B}

(iii) H is | .} -bounded andhélequicontinuous on every member of B;
(iv) H is relatively y-compact;

(iv)' H is relatively countably Y-compact;

(iv)'' H is y-precompact; ’

(v) H is l.ll-bounded and relatively T-compact;

(v)' H is’ﬂ Il -bounded and relatively countably T compact,.

(v)*? H-is:n l -bounded and T-precompact-

Proof: (i) <= (ii) follows from the definition of & and (iv) <=> (iv)' <=>
<=> (iv)'' <= (vi S (v)' = (v ! ffom the fact that (E,Y) is completé,
Y-bounded sets arernrm—bounded‘and that, on bounded subsets of E,Y coincides
‘with T. 4 ' }
(ii) = (iii) We only have to show that H is |. !—bounded and this follows from

the uniform boundedness theoremsume B covers E .

(i;l)-=> (v)'' Fix a c-compact B €B. If we consider H as a subset of C(B), the
Banach space of continuous functions on B, then by Ascoli's theorem H is

relatively compact in C(B) Since this holds for each B(EB)H is T-precompact.

.

(iv) => (ii) If we now fix a 5—compact B € B, then H is relatlvely compact in

' C(B) whence equicontinuous. on B again by Ascoli's theorem
. Let us 1llustrate the situation:
Examples:

1) Let (Q,Z,u) be a finite measure—space.'(Lm(p),ﬂ Il ,u Iy is a complete Saks-
‘ space and Y is the Mackey-topology with respect to the duality of L (y) and
L w.

The dual fine CoSaks space (E,]|. i, B,o) is the Banach—space (L’(u) i. H ) equipped
with the bornology of relatlvely g (L‘,L )-compact balls and & is the topology
of uniform convergence on the |{.]I o bounded and |I.|| ;-compact subsets of Lm(u)
Finally -the bornology of T-equlcontlnuous sets consists of the |.|f —bounded balls
in L7 (p) . '




©2) If E = F' is a dual Banach-space, then (E,0.0,0(F',F)) is a complete Saks-
space and Y(l.1,0(F',F)) is the topology of compact convergence. Whence the
dual CoSaks space is the. Banach-space (F,l.l) with the bornology of l.l-rela-
" tively compact balls end 0 is just the norm topology on F.

3) If S is a locally compact paracompact space, then (Cb(S)pM.ﬂm,B) is a complete
fine Saks-space. The dual CoSaks space consists of the Banach-space MR(S) of
Radon-measures on S equiped with thebofnoloqrof'bounded, uniformly tight . i
balls and ¢ is the topology of uniform convergence on the [.1 _Pbounded

equicontlnuous subsets of C (s).

In this paper we will, in contrast to the last example, consider spaces of
measures as Saks-spaces, defined as the dual’of the space of bounded uniformly

continuous functions with>avsuitable CoSaks structure.

More;neciselyiet X be a uniform space.. (Ub(x),l Im) denotes ﬁhe Banach-space

(even algebra) of real-valued bounded, uniformly continuous functions on X. We
consider the family H of all absolutely convex, uniformly bounded unlformly equi-
continuous (abbreviated ueb) subsets of Ub(x). If D denotes the famlly of uniformly

continuous pseudometrics on X then a bounded absolutely convex set H is in H if and
only if H is pointwise dominated by some d € ¥ (in this the sense that for some K > o,

I£(x) - £(y)| < Kd(x,y) (x,y € X, £ € H)
Note that this means thet H factorises over. the approbriate metric space Xd and
forms a bounded subset of Lip(xd) there. Then (Ub(X),N "m,H,a) is a CoSaks space
where ¢ is the finest locally convex topology that agrees én H with
that of pointwise.convergence on X.

For historical-reasons,_this»tépology is denoted by Bw'(c.f. ROME [38], WHEELER [42] )

Now we define the space M (Xi of uniform measures on X to be the duai of this
CoSaks space (so that it can also be regarded as the dual of the locally convex
space (UP(x), B, ).

fine
By the above M (X) has a natural/éaks space structure (M (x),ﬂ H;Y) where I | is the
dual norm to that of Ub(x) and Y is the topology of unlform convergence on the sets
of H.- )
By the Gelfand Naimark theorem we can embedd X (topologlcally) in a compact space
X (the Samuel compactification of X) so that Ub(x) and C(X) are naturally 1sometr1c

by eéxtension). Then every uniform measure can regarded . as a Radon measure |j on x
and this identification is isometric i.e..the norm of u in M (X) is just the variation

norm of u.
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§4 APPROXIMATION OF UNIFORMLY CONTINUOUS FUNCTIONS

BY LIPSCHITZ FUNCTIONS

In this section (X,d) is a metric space which we assume for convenience to
have diameter <2. (Ub(x) A0 ) is the Banach space of bounded, uniformly

continuous functions on X. It contains the space Lip(X) of course. If c:teR+

we put

Y

L x: = {£el®c0 : I£I <1 and Lip £ < a}
in particular L4 (X) = O Lip (X). ’

Lemma: Let Y be a subset of X, g a functlon from Y into [- 1 1] with Lip(q) <
Then there is an extension of g to a function g : x- [-1,1] with

Lip § £ a. Hence the restriction operator maps O Lip(X) onto O Lip(Y).

Proof: For ye Y define the function fy on X

fy(x):= g(y)-ad(x,y)
and let f(x) - —1\-sup{fy(x) : yEY}.

Proposition: Let H be a ueb subset of Ub(x). Then for each € > O there is an

n €N so that
H < nL4 (X) + EOUb(X).

i..e._ in the. languége of §3, H is in the saturation of {no Lip(x)} in Ub(x).
Proof: We may and do suppose H < OUb(X). Supposé thét o<ex<1

and choose § > O so that d(x,y) < § implies that

lf(x) - £(y)| < € for each fEH. Let {x } be a max1ma1 famlly of points

a€A

in X so that d(xa,xB) 2 §.e for o # B. If feH, let g be the restriction of f to
- ‘ lg(x_) - g(x,) | ' '
x B <2 61,

= - . Th Li < i
{xa} | gn 1p(.g) < 2/8 since d(xa'xg)
Indeed if d_(xa,xB') 2 § then the inequality is implied by Ig(xa) -vg(xB)I <

while if _d(},(a'xB) _<<S we_ have lg(xa) —.g('xB)I < € and d(xa,xB) 2 e.6.

By the preceding Lemma, there is an extension §' of g to X v;'ith Lipscl'_xitz
constant <2.8-1. Then Ilév - fllm < 3e. Indeed, for x&€X there is, by the maximality
of. {xa},an xab so that d(xao,x) < €.§. Then | _ |
1) - £(x)] < 1G(x) - G(x_ )| + IF(x_) - £(x_)
. 9 ) 9 Qo g Qo Qo ‘
+ [£(x_) - f(x)
o |

<€.6.2677 + 0 + ¢

3e
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neN generate the ueb compactology of Ub(x)

in the sense of the saturation-introduced in §3.

Corollary: Let Y be the topology on M (X)of uniform convergence on the ueb
sets. Then the restriction of Y to OMu(X) coincides with the tdpology of

uniform convergerice on L4(X) and is therefpre induced by a norm on Mu(x) s
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§5 UNIFORM MEASURES ON METRIC SPACES

In this section we show that if X is a complete metrid space:then tﬁe uni form
measures on X are just the Radon (or tight) measures . We begin with the remark -
that if X is a uniform space and we regard M (X) as a subspace of M(X) (cf. §3)

then M (X) inherits the order structure of M(X) In fact, M (X) is a band in M(X)
as the next result shows Note that since the topology of Mu(x) is not nicely relatec
to the order structure (it is not locally solid) this result is not as _

evident as one might expect and in fact the corresponding result for "free uniform
mea§uresf (cf. PACHL [33] ) is false. The result is well-known but we are

unable to indicate the original reference. Our proof is essentially that of

DEAIBES [11] (but we correct an error in his proof):

Propositionv: Let ueM(ﬁ). Then

. ' . -
, ueMu(?c) iff p ,u e‘Mu(-X).

Proof: We begin with the remafk tl';at it '\)éM()‘z) then t;) show that \)éM (X) it
sufficés to show that for every net (f ) . such that {f } is a ueb set and
(f ) tends to zero‘pointwise, l&m v(fa) = 0. Furthermore, by considering (f )
and (f ) one sees that it suffices to suppose that fa 2.0. Hence consider such
a net (f ) with O < fa < 1/2 so that fa -~ O pointwise. We show that if ue;Mu(x)

thenu(f)-o

Since LP(X)
wh

C(X) we have the formula

sup{u(g) : geub(X), 0<g<1}. o

For € > O choose gelfb(X) with 0 € g <1 and
£ . .
p (1) = u(g)-e.
Note that this implies that
o+, ‘ + -
u (1-g) < eand p (f) - |u(f)]l <¢
for 0 < f < g.

Now consider the family (faA g). By assumption p(faz\ g) > 0. We have the
estimate fa S (faz\ g) + (1-g) (consider the cases g < 1/2 g 2 1/2). Hence
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+ + PR, e
H (fa) Sy (fa/\ g) + u (1-9)
S}U“dAg” + £ +€,

‘ +
which is less than 3e for large 0. Thus U (fa) - 0 g.e.d.

We now show that if X is a cémplete metric space then the uniform measures -
on X coincide with the Radon measures. This result is well known but again we have
been unable to trace ﬁhe original source Again our proof is essentially that
of DEAIBES but we reproduce it since we encounter here in a natural way the

concept of "Lipschitz-tightness" which will be essential in the sequel.

First some notation: if K< X and a€IR+ v L will be the set of fsub(x),

C!,K
with #£ll <1, Lip(f) < a and £ = 0 on K. Also if K < X, N > 0 then B(K,N) =

= {y € X : d(y,K) € n}.
Definition:

a) A measure UE& M(X) is called i.ipschitz—tight (or L-tight for short) if

lim sup{lu(f.)l; f€L, K} =0
- KEK(X) ' !

where K(X) denotes the family of compact subsets of X directed by

inclusion.

b) a subset HES M()\E) is called uniformly Lipschitz~tight if the above limit

holds uniformly in yu&€H.

- v '. B
Proposition: For u€ M(X) the following are equivalent:
1) u+€ Mu_(X) i
D'wu, eMu(X);
2) W is L-tight;

2)! u+, u- are L-tight; _ ‘

'3)° u is tight i.e. for each € > O there is a KEK(X) so that if
fe OUb(.X) and £ = O on K then ll-l(f)rl < E.

3)° u+ and u_ are tight.

Proof:

1)' => 2)': The family {L K€K(X)} is ueb and tends to zero pointwise when

LK’ | |
K tends to X. Hence,by the definition of a uniform measure,if

ute M. (X) then u* is L-tight.




[
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2)! => 3)': Note that if U+EM(§5 is L-tight then for any aél‘R+,
1im {suplyt)| : £€L } = 0.
K€ K(X)

since-L
(s] o, K

Then ,if € >.O, the L-tightness of |yl implies that for each n€N,

is contained in a multiple of L, K) .
- . ’

there is a Kn€K(X) so that

4
I (X \B(Kn,1/n)) < €/20

v

where \é(K.n) := _B—TK-T{)— X (K€ x,n > 0).

Indeed there is a function in Ln X which is 1 outside of B (Kn,1/n)
[

(when extended to §) . For we can take the function

f: x - n.d(Kn,X)al

2 (o] .
Then if K := ﬂ B(Kn,1/n), K is compact in X (see the Lemma below
n=1
which is well known but which we prove for completeness) and satisfies

required condition.

3)' => 1)': evident since the pointwise convergence of a ueb net implies compact

convergence.

The equivaience of 1) and 1)' was proved in the previous Propositibn,that of
3) and 3)" is evident as is the implication 2)' => 2). 2) implies 1) is

a Corollary of the result of §4.

Lemma: Let (Kn) be a sequence in K(X). Then,with the notation of the above

[ee]
proof, ﬂ\é(Kn,l/n) < X
n=1

s S ©
Proof: (cf. ENGELKING fi5] , Th. 3.8.2.): Let S’ceﬂﬁ(xn,l/n). B (kn, 1/n)
i n=1
can be covered by finitely many balls of radius 2/n. Hence for each n€N,

there is an xn€ X with xf';\if(xn,z/n) . The function

“fp: x = d(xn,x)N 1
v v
can be continued to X and Un:= fa'([0,3/n[) is an open neighbourhood of ¥ in X
whose trace in X has diameter at most 6/n. Let V be the filter of closed neigh-

bourhoods of X in X. as V is finally contained in every Un, the family {v nx}vev
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forms a filter of closed subsets of X whose diameters tend to zero. By the

completeness of (X, d), (/\ (VAX) # ¢ and this latter set is of course exactly
vel
the point X. ~ Hence X€ X.

Note that condition 3) above implies that p cefines a functional
on Ub(x) which is continuous on the unit ball with respect to the topology
of compact convergence. As Ub(X) is a dense subspace of (C (x) B), the
space of bounded - contlnuous functlons with the strict topology, by the Stone-
WeierstraB theorem (cf. COOPER [9], p.84) u extends to a unique continuous
functional on (Cb(XY,B) i.e. to a Radon -measure on the associated topological
space. Hence the terminology "tight" is in agreement with the-usage'of topelogical

measure theory.
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§6 THE COMPACTNESS THEOREM FOR METRIC SPACES

We are now ready to prove the main result on compactness in M (X) for the

case where X is a complete metric space. The introduction of the concept of
uniform Lipsehitz tightness allows us to give a much shorter and more intuitive
proof than the original one of PACHL. Of _course, we use SCHUR's Lemma (i.e. the_
special case of a discrete space) in our proof. '

Theorem (metric case): Let H be a subset of Mu(x) (X a complete metric space).

Then the following are equivalent:

1) H is relatively O(Mu,Ub)—compact;
1)’VH is relatively ceuntably O(Mu,Ub)—compact;
2) H is relatively y-compact;

3) H is bounded and uniformly Lipschitz-tight.

Remark: Note that 2) is equivalent to all the conditions which are listed 'in the
proposition of chapter 3. _
Thus the following conditions (for example) are all equivalent to those of the
above list:
® H is Bm-equicontinuous _ N
® H is equicontinuous on every ueb -set (with respect to the pointwise
topology)

e H is || . I-bounded and equicontinuous on Lj (X).

In particular, Bco is the Mackey topology for the duallty (U (%), M (X))
We also remark that, contrary to the result of the previous paragraph, uniform
L-tightness may not be replaced: by uniform tightness (obvious definition):

for if we take X = IR with its usual metric and

bn = 6 4'6n+_

then {pn} is uniformly Lipschitz tight but not unlformly tight.
. Also the sequence {vnun} of measures shows that the boundedness condition.

in 3) is indispensable.

Proof: 2) => 1) and‘l) => 1)' are evident.
1)' => 3): If 1)' holds, then H is bounded and so we can suppose that
- IiQ<OMu(X)..If H is not L—tighﬁ we shall show how to construct
n > 0, a sequence (un) in H, a sequence (Kn) of compact sets

in X so that



e

B(Kn,n)ﬂB(Km,n) = ¢ (n # m)

and a sequence (fn) in Ln_‘1 (X) so that supp(fn)< B(Kn,n) and

lun(fn) | 2 n. Once this is done, we complete the proof as follows:
. oo )

for any sequence (An) in \. £, the unit ball of £ , ZAnfn is in T

Ln_.l (X) . Hence

T : (\n) -~ Ilnfn
is a CoSaks morphism from £ in Ub(x) (we regard £ as Ub(IN), IN with

the discrete metric). Then the transposed operator
T : M (X) - 21
u

. (oo -
sends H into a relatively countably o(£%',£ )-compact set and so,
by Schur's Lemma, into a relatively norm compact set in £'. But this

contradicts the fact that |T'un(en)| 2 N, en dending the n-th unitvector
“in “ A
We now show how to construct the above sequences inductively. By -

assumption there is an n (0 < n £ 1) so that for every compact set K there

. ; >

is an fKE Ll,K and U €H with IpK(fK)l 2 4n
» .

Define fK by

o if lfK(x)I < 2n
. :' 3 % S
£ X — fK 2n if fK(X) 2> 2n
. < -
fK+2n if fK(x) < -2n

Th f € i ' > i
en f Ll,B(K,Zn) is such thaF IuK(fK)I 2 2n. We can now proceed with
the constructfon. First we find a g4€ L4 (X) and H1€H with |uq(gq) | 2 2n
‘ w & M"”""‘%
Since pq is a Radon measure on X we can find a compact set K4 so that

lual (X\K4) < 1. Hence

£1 2 x = [94(x) A (1-n71d(x,K1)) T v [-14n=1d (x,Kq) ]

'is a member of Ln_1 (x) whose support is contained in B(K4,n) and is
such that |uq(f4)| 27 |

(Bn:= B(Kq1/ ... Kn_1,2N)) and Un€ H

At the n-the step let gnel
1,Bn

be such that |un(gn)| = 2n

Choose a compact Kn< X\Bp 'so that
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lunl (X\Bn UKn)) < n
Note that d(Kn,Km) 2'2n fo; m < n.
Again define 7 ‘
fn : x = [gn(x) A (1-n~1d (x,Kn))] v[-1+nf’d(x.1<ﬁ)]

Then this is a member of Ln_1(x) whose support is contained in B (Kn,N)
and which is such that |lun(fn)! = n.
This completes the induction step and so the proof of 1) =5-3).

3) => 2): By the remark following the theorem; it suffices to show that H is
equicontinuous on L4 (X). If (f.) . is a net in L4 (X) tending point- -

aoel

wise to f€ L4 (X), then (gl—f) is a net in 2L4(X) which tends to

ael
zero uniformly on compact sets. Thus for each K&K(X) and € > O there

is agp so that for a 2 ao

{fa-f}éz.L + €. OUb(x),

1,K
whence, by the [.l -boundedness of H, u(fa) - u(f) uniformly
in peH. ‘

Using the above proof, we also get:

Corollary: Let (un) be a weak Cauchy sequence in Mu(x)' Then (yn) is Y -Cauchy

and so Y-convergent.

co ‘
Proof: If {un}n=1 is not relatively yYy-compact, then one constructs as above n > 0,

. (o] s ©
a sequence {fk Ty, & L _,(X) with disjoint support and a subsequence {1} such
: n : . ) Dk k=1
that :
£f)| >n.
lun ( k)I 21N
k - :
‘Defining again an operator T from £ to Ub(X) by
4 -
T : Ay) = Z £y
- k=1

we obtain a CoSaks-morphism. The transposed operator
T' : M (X) - £1
u -
sends {y_ } to a weak Cauchy-sequence and |7'y (ek)l > n where e denotes
" _
" o

k=1
: © L
the k -th unit-vector in £ . Again this is contradictary to Schur's lemma, since



w
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for a relatively [.lk-compact set K in A!

lim sup{| {ey,x )| : x€K)} =
Ko )

Corollary: Let T be a iinear mapping from Ub(x) into a weakly compactly generated

(1n particular, separable or reflexive) Fréchet space F. Then T is B -con-

tinuous if and only if it has a B —closed graph.

Remark: In partlcular, if T is continuous for any 1ocally convex Hausdorff

topology on F which is coarser than the orlglnal topology (e g. a weak

topology defined by a total subset of F' ). then T is continuous.

Proof of the Corollary: Note that we now know that (Ub(x),Bm)‘is a Mackey sapce

whose dual is weakly sequentially complete. The result now follows from a

closed graph theorem of KALTON. and MARQUINA (see e.g. COOPER [9] ; P. 60).

Despite the remark after the statement of the theoren we do have equ1valence

of tightness and unlform tightness for positive measures.

Progosition: If H - Mu(x), then the conditions of the theorem are equivalent

to .
4) H is bounded and uniformly tight.

Proof: 4) implies 3) is evident (even without the positivity assumption).

3) implies 4): since LI,K contains a function which is 1 on X\B (K, 1), )

3) implies that for € > O there is a K€ K(X) so that Ji(\B(K,1)) < e/2 for

WS H (X the Samuel compactification of X and ﬁ the Radon heasure on X correspon-
ding to p). ] '
Similarly for n€&IN there J:.S a Kn€ K(X) so that

v v. V¥
HGN\B(Kn,1/n)) < g/2n

for y€H since L <€ nL .
H gl Ty ol

Putting K := f)é(K 1 ) we obtaln a compact subset- of X so that
- ‘ n

H(X\K) = 1(X\K) < ¢ (uEH).
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§7 LIFTING TO UNIFORM SPACES

Let X be a uniform space. As in §3 we denote by D the family of all uniformly conti-
nuous pseudometries on X which are bounded by 2. Then we have the natural

iy

representation . {
% = 1in{X, : a€D}

. A '
where, for d D, Qd represents the associated complete metric space and X is the
scompletion of X. . : More generally, if D4 is a subset of D
wﬁich is closed under pointwise suprema and generates .the uniformity of X,

L . N . A o 5o
then once again {Xd : deDq} forms a projective system and X is its projective

L&

limit.
As noted above the bornology of ueb sets in Ub(x)_consists of those balls

which factor through Ub(xd) for some d €D and form a Lipschitz bounded set there
The set B of those balls which factor in this way o&er some Ub(Xd) (aeD,) is,
in general, a proper subfamily of the ueb sets but they are linked in the sense
that the ueb bornology is exactly the || Il ,-saturation g’of B (the proof of -this

assertion is an easy adaptation of the arguments of §4).

If Dp denotes the family of all unlformly continuous precompact pseudometrics
in D then, for 4 EU ‘d is compact. The projective limit X = llm{X : dED }

is compact and X embeds homenmorphlcally (as a topological space) into X.

It is eas1ly checked that X is just the Samuel-compactification of X i.e.

the'spectrum of the Banach—élgebra Ub(X).

Now if X, 01 are as above we can obtaln projective and inductive representatlons

-of M (X) and Ub(x) as follows: )
{Ub(X ) - Ub(X : d £ dy, 4,441 € Dl}.
forms an inductive system of CoSaks spaces while
{Mu(xd1) =M (X)) : d<dq, 4,d1€D,}
forms a projective system of Saks-spaces.

It Ub(X ) is considered as subspace of Ub(X), the bornologies of Lipschitz- boun;
bounded sets in Ub(x ) (or equivalently of ueb-sets in Ub(xd)), as d ranges
through ‘D generate the bornology of wueb-sets ipn Ub(X) (in the sense of

I.ll-saturation). Thus lt is clear that
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Ub(X)

Lim{(" (x,) ¢ d€D,)

l_i'm{Ub(Xd) : dE D}

the injective limit being taken in. the category of CoSaks spaces and

1im{M (X)) : A€ D}

M (X)
u

1im{M (X)) : €D }
this time the projective limit in the category of Saks spaces,

We remark that if we.form lim(ub(x ) dGED ), we again get the Banach space
(Ub(x),l M ) while the bornohxynow consists of the relatlvely - -compact

balls in Ub(x)

Using this formalist it is now easy to lift results of 3§5,§6

to uniform spaces simply by observing that the'appropriate>statements hold in
every compbnent of the projective limit. We gather together the most important

results,

Proposition: Let X be a uniform space. A functional p€ (Ub(X),H Il ) is a

member of M (X) iff its image on every x (3€7, or equivalently d€ D) is

d
. a uniform measure, i.e. a Radon-measure by the results of §6.

. Theorem (uniform case): If X is a uniform space, H a subset of Mu(x) then

the following are equivalent:

1) H is relatlvely o(M Ub) -compact;

1)' H is relatively countably o(M Ub) -compact;

2) H is relatively y-compact;

3) ° the image of H in every M (X ), d€D is relatively y-compact;

3)'" H is |l.ll-bounded and its image in every M (2 ),<ﬂ€D is relatlvely
y-compact; , ,

4) H is bounded and its image in every Mu(i(\d), d€p is uniformly
L-tight; _

4)' H is bounded and its image.in every Mu(Qd)’ dep, . ie uniformly

" L-tight;

Proof: A subset H in a projective limit of Saks-spaces is Y-compact (respectively
weakly compact) iff it is ll.|l -bounded and all its projections into the component

spéces_ere Y-compact (respectively weakly compact). c.f. COOPER 9 ' ,pp.10,16.
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From this remark and the corresponding theorem for the metric case the theorem

is easily deduced.

Corollagz Let X be a uniform space. Every CKM (X), Ub(x)) Cauchy-sequence
(un) converges in the y-topology. '

A
Proof: For every ded the image of {un} sweaklyCauchy in M (X,), whence
Y-convergent in M (X ) by the result for the metrlc case. So {un} =i is

Y—convergent in M (X).

Exactly as in the metric case one also derives the two following results for

the uniform case.

Proposition: Let X be a uniform space and T be a linear mapping from

Ub(x) into a weakly compactly generated Fréchet space. Then T is B -con-

tinuous iff it has a Bw-closed graph.

v .\ ‘ , ; , )

"Proposition: A subset HiLMu(X) is relatively Y-compact iff it is [.]l-bounded
and its image in every M:(Xé) (A€D or, equivalently, d€D4) is uniformly
tight. o

Following PACHL [34] + we now indicate briefly how the concept of uniform

measure embraces many important classes of measures:

I. Separable measures:

If X is a completely regular space, we can regard it as a uniformspace with

“the fine unlformlty i.e. the finest uniformity compatible w1th its topology.

Then Ub(x) C (X) and the correspondlng CoSaks structure on C (X) is that
-of the bounded, equicontinuous subsets of C (X). As mentioned in the intro-
duction. the corresponding topology on Cb(X) has been studied by WHEELER
andvthe corresponding space of measures by various euthors from various

points of view.

II.g-additive abstract measures:

Now let (Q,Z) be a measure space.i.e.‘z is a g-algebra on Q. In addition,
we assume that L separates fhe points of Q. For each countable partition
A= (An) of Q by sets of I, we define a pseudometric dA by pﬁtéing

1 if x,y do not belong to the same An

d
A(x,y) O otherwise
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The associated metric épace is just N with the diécrete metric. We can
regard  as a uniform space with the structure induced by these pseudo-
metrics (such uniform spaées have been studied by HAGER under the name
"measurable uniform spaces" in [20] ). Then([b(ﬂ) is the space B(f)

of bounded measurable functions on @ (for every bounded measurable function

can be uniformly approximated by countably (even finitely) valued functions).

From the equation M (Q) = S 1lim M (. ) we see that an element of M (Q) is a
u K u dA _ : u
bounded set function on I with the property that for each measurable
(e} [o ]
partition (2n) u([} Apn) = X (Ap) i.e. it @&s a 0o-additive measure.

n=1 n=1

III.Cylindrical measures:

Let E,F be vector spaces in duality. We denote by J(F) the‘family of

finite dimensional subspaces of F. They form an inductive system (ordered
by inclusion) and so by duality we get a projective system of finite dimen-
sional.spaces (which we can regard as quotients of E) whose projective
limit is F. We can then give E a uniform structure as a subset of this
projective limit (i.e. this is just a complicated way of talking about the

O(E,F)-uniformity on E). The corresponding space of uniform measures is denotec

by MCYL(E) - the space of cylindrical measures on E. Now the above complicatior

begin to pay off because we can write

-_ . o .
Moy (E) = S 1im{M (E/G") : GEJ(F)}

and so an element of MCYL(E) can be regarded as a projective limit of Radon
measures (in the category of Saks spaces) on finite dimensional quotients

of E and this is the normal definition of a cylindrical measure.
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§8 VECTOR-VALUED MEASURES AND ORLICZ-PETTIS TYPE THEOREMS

In this section we indicate briefly how the classical Orlicz-Pettis theofem
can be interpreted as the statement that the dual (Ub(Q,Bw) of a spéce of

» measures is a Mackey space.
As in example II of §7 let I be a O-algebra of subsets of @ and let
m: £ - E

be a weakly o-additive set-function from I to a locally convex space E. By the
Dieudonné-Grothendieck-theorem (c.f. DIESTEL-UHL [12], th. I.3.3), m has

bounded range and so we may, if E is quasicomplete, define the integration

operator ;
T:Ub(Q)-E
m .
Tm 3 (XA)'* m(A)
where Tm is a continuous operator from (ub(Q),Bw) into (E,g(E.E')). As (ub(ﬂ),sm) is

a Mackey space Tm is continuous with respect to the original topology of E.

oo o]
CIf {An}n=1 decreases to ¢ in I, then {XAn}n—l is a ueb -set tending pointwise
. o) e =
to zero, whence {T(xA )}n—l tends to zero in the original topology of E..Thus we
n =
have proved the Orlicz-Pettis-theorem:

"A weakly 0-additive measure on a O-algebra is strongly o-additive".

Now assume E is a weakly compactly generated Fréchet-space,F is an E-total
subset of E' and '

m: X —>E
is a 0(E,F) countably additive measure. Again byvDieudonné-Grothendieck m has

bounded range and we may define an integration operator
T Ub(Q) - E
m

T - m(A)

m ' Xa
where by the closed-graph theorem proved in §7,Tm is B_-continuous, which

implies as above that m is strongly oO-additive.
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