ON COMPACT SPACES WHICH ARE NOT ¢-SPACES

By W. SCHACHERMAYER

Abstract: A compact space K is not a c-space iff the space [0, 2] of ordinals
up to the first uncountable one, noted £, is homeomorphic to a subspace of a
quotient of K (equivalently to a quotient of a subspace of K). 8N, the Stone-

Cech—compactification of N furnishes an example of a compact space that is
not a c-space, but such that [0, £] is neither homeomorphic to a subspace nor
to a quotient of SN.

In the second part we show that on every compact space that is not a c-
space there exists a {0, 1}-valued ¢-additive Borel-measure that is not outer
regular (equivalently, not a Radon-measure), thus extending a famous example
of such a measure cn [0, 2], constructed by J. Dieudonné.

§1

Following Archangel’skii [1], we call a topological space X a c-space, if every
subset E of X that is countably closed (i.e. if {x,}.-1" C E and x is a cluster-
point of {x,}.-," then x € E) is closed.

The prototype of a space not being a c-space is [0, 2], the compact space of
ordinals up to the first uncountable one, noted €, equipped with the order-
topology, where [0, Q[ furnishes an example of a countably closed but non-
closed subset.

The following proposition shows that compact non-c-spaces are closely
related to [0, ].

ProposITION 1: For a compact Hausdorff-space K the following are equiv-
alent:
(i) K is not a c-space.
(ii) There exists a closed subspace of a quotient of K, homeomorphic to
[0, £].
(i1)" There exists a quotient of a closed subspace of K, homeomorphic to
[0, &].

Proof: The property of being a compact c-space is inherited by closed
subspaces and quotients. This is completely trivial for subspaces; for quotient
spaces (i.e. continuous images) assume that = K — K is a continuous map of
a compact c-space K onto a Hausdorff space K.

Y
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Let A, be a subset of K, and x, € A;; then 7~ '(x;) N 7 '(A,) is not empty
in K. Indeed if it were so 7 (7~ '(A,)) would be a closed subset of K, containing
A, but not containing x;.

So by assumption there exists a sequence {y},-1" in 7 '(A,) such that
7 (x1) O {¥n}n=1” # ¢. But then x;, € {7(yn)} ,=1” which shows that K] is a c-
space too.
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So clearly we have (ii) = (i) and (ii)’ = (i) because [0, 2] is not a c-space.

To show the other direction we apply an argument of [2]: suppose there
exists a set E in K such that E is countably closed but not closed and let y, €
E\E. Countable closedness of E implies that E is semicompact (i.e. every
countable open cover of E has a finite sub-cover). We define inductively a
“long sequence” {x,}.<q of points of E and {f.}.<a of continuous functions of
K, taking their values in [0, 1] and such that f, (yo) = 1.

Let xo be arbitrary in E and fo: K — [0, 1] such that fo(x0) = 0 while f5(0)
= 1. Suppose {x,},<. and {f,} <. are chosen. Then let x, be an element in E
such that f,(x,) = 1 for every y < a. (This is possible because

(o1 r<one

is a countable family of open sets. If it would cover E then already a finite
subfamily would cover E; but this is absurd, as yo € E, f,(y) = 1 Vy < a and
the f, are continuous.) Then choose f, such that f,(x,) = 0V y < a and f.(yo)
= 1. (This is possible by Tietze-Urysohn, because y, is not in the closure of

{2} ysud-
After this induction has been effected, define for a € [0, 2] the sets

Fo = Npca {2} py=ao
and
Fo = Np<a {2} p<r<e = Np<a {F} per<a-

Clearly the {F,}.<c are nonempty, compact, disjoint subsets of K and F, is
reduced to {x,} if « has a predecessor.

Define F = U,<q F,-F is closed: indeed let {Z},e; — Z be a convergent net
in K, such that Z; € F. Let, for every i be a(i) the unique index such that i €
F,(;). From the definition of the {f.}.<q it is clear that {a(i)}.csis a convergent
net in [0, ], say it converges to a certain ao € [0, 2].

This implies that for every B<ao, {Z}.er finally lies in the set Us <, <, F, =

Ug<y=ao {%,} . S0 Z = litn Z; lies in F,, by the very definition of F,.

Now it is clear how to construct the spaces as in (ii) and (ii)": For (ii) define
on K the equivalence relation #: x Z y < Ja € [0, 2] such that x € F, and y
el

From the definition of the F, and f, one immediately sees that the quotient
K/% is Hausdorff. Clearly the image of F in K/ is closed and it is easily
verified that is is homeomorphic to [0, £].

To show (i) = (ii)’ let F' be the closed subspace of K and define on F' again
the equivalence relation %; then F/% again is homeomorphic to [0, £2].

This completes the proof of Proposition 1.

Example: BN, the Stone-Cech-compactification of N
(a) BN is not a c-space. Indeed {0, 1} ¥ is separable, so it is a continuous image
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of BN. Also {0, 1}* contains a copy of [0, 2] (take a collection {f.}.<q as in the
proof of Proposition 1 to define such an embedding).
(b) BN does not have a quotient isomorphic to [0, ]. Indeed every continuous
image of BN is separable, while [0, 2] is not.
(c) BN does not contain a copy of [0, 2]; in fact it does not even contain a copy
of [0, w], w being the first infinite ordinal (i.e. a non-trivial convergent
sequence).
Indeed suppose {x,},-1" to be a convergent sequence (to xo say) in BN such
that x. # x. if n + m. In functional-analytic language this may be stated as
follows. The Dirac-measures §(.,;, which define simply additive measures on
the o- algebra P(N) of all subsets of N, converge to 8., on every member of
P(N). Whence by the Vitali-Hahn-Saks-theorem, in its form for simply additive
measures (see for example [3]: Theorem 1.4.8), {§(x,)} =1™ would be uniformly
strongly additive, which is evidently absurd. q. e. d.

Hence it is really necessary in the above proposition to speak about “sub-
spaces of quotients” (resp. “quotients of subspaces”), to get a characterization
of compact non-c-spaces.

§ 2
Our last result in this paper is to show that on a compact non-c-space K one
may always construct a {C, 1}-valued ¢-additive Borel-measure which is not
outer regular, in a similar fashion as J. Dieudonné did on [0, 2] (See, for
example [5], exercise 52.10).
Although the result is, of course, related to the above characterization of
compact non-c-spaces, the proof is completely independent of it.

ProposITION 2: Let K be a compact Hausdorff-space which is not a c-
space. Then there is a o-additive, {0, 1} -valued Borel-measure p. on K which
is not a Radon-measure.

Proof: Let E be countably closed but not closed in K and let x, € E\E. Let
4/ be an ultra-filter of closed sets in E (in its induced topology), that converges
to xo. Note again that the countable closedness of E implies that E is
semicompact, i.e. every countable open cover of I has a finite subcover. So .«
has the countable intersection property (i.e. if {4,}.-1” € & then N,-1®A, +

?).

Let F be any closed subset of K. Then .«/ lies finally in F or in its complement
F. Indeed suppose FN A # ¢ and F N A # ¢ for every A € ./, then {FnNn
A} seq is a filter of closed subsets of E strictly finer than <.

Clearly also for every open set G and for every set of the form U—;" Nj=,™ "’
H,; where H,; are either open or closed subsets of K, we have the same
property that ./ finally lies in it or in its complement. Note that the family of
the latter sets forms an algebra. Define p on the sets B of this algebra by

u(B) = 1if A lies finally in B
w(B) = 0 if not.
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Clearly p is additive and if B, is a decreasing sequence in this algebra such
that u(B,) = 1 for every n, then there are A, € & such that A, C B,; as Na=1"
An # ¢ we get N,—)” B, # ¢, which readily shows the o-additivity of u. By the
Carathéodory-procedure p has a ¢-additive extension to the Borel-algebra %
of K, which clearly is 0-1-valued too and will also be denoted p.

But.p is not a Radon-measure: indeed u({xo}) = 0 while for every open
neighborhood U of xo we have u(U) = 1; so p is not outer regular.

The last proposition shows that every compact Radon-space (i.e. where
every o-additive finite Borel-measure is a Radon-measure) is a c-space. Con-
versely it was shown by the author [6], that every Eberlein-compact, satisfying
a mild cardinality restriction, is a Radon-space, a fact which also follows from
the independent work of G. Edgar [4].

But the problem to characterize topologically the class of (compact) Radon-
spaces seems very hard, as is also indicated by the recent example of M. Wage
[7], showing that this class is not stable under forming finite products.
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