THE STRONG LAW OF LARGE NUMBERS IN LOCALLY CONVEX SUSLIN SPACES

BY WALTER SCHACHERMAYER

Abstract: G.E.F. Thomas raised the question, whether the strong law of large numbers is valid for i.i.d. totally summable sequences $\{X_n\}_{n=1}^{\infty}$ of random variables with values in a quasicomplete locally convex Suslin-space E. We show by a simple truncation-argument that the answer is yes and — using an idea of Chatterji — that for Saksspaces E the assumption of total summability is also necessary for the strong law of large numbers to hold. A final example shows that the assumption that E is Suslin, is essential.

- 1) Denote by (Ω, Σ, μ) an (abstract) probability space, by (E, τ) a vector space E with a locally convex Hausdorff topology τ . Throughout this paper except in the example 10) we shall assume that E is a Suslin space. The letter X denotes a random variable defined on Ω with values in E (measurable with respect to the Borel- σ -algebra of E).
- 2) <u>Definition</u> (c.f. [6], §5): X is called <u>totally summable</u>, if there is a closed, absolutely convex, bounded subset B of E , such that if $\|\cdot\|_{B}$ denotes the gauge-function of B,

$$\int\limits_{\Omega} \left\| X\left(\omega\right) \right\|_{B} \ d\mu\left(\omega\right) \ < \ \infty.$$

If E is assumed to be quasicomplete, then one may define for

 $A \in \Sigma$ the Pettis-integral

$$\int X(\omega) d\mu(\omega)$$
,

which is an element of E ([6]).

- 3) Let $\{X_n\}_{n=1}$ be a sequence of independent identically distributed (i.i.d.) E-valued random-variables and denote by S_n the partial sums $X_1+\ldots+X_n$.
- 4) Lemma: Assume there is a compact, convex, metrisable subset K of E such that X_1 takes its values almost surely in K. Then the strong law of large numbers holds, i.e.

$$\lim_{n\to\infty} n^{-1} S_n(\omega) = E(X_1) \qquad \mu-a.s.$$

<u>Proof:</u> K being metrisable, there is a sequence $\{f_k\}_{k=1}^{\infty}$ in E' which induces the T-topology on K(c.f.[2] for example). For each of the sequences of i.i.d. realvalued, bounded random variables $\{f_k \circ X_n\}_{n=1}^{\infty}$ we may apply the strong law of large numbers, i.e. for each $k \in \mathbb{N}$

$$\lim_{n\to\infty} n^{-1} f_k \circ S_n(\omega) = E(f_k \circ X_1) \qquad \mu-a.s$$

Whence, as $n^{-1} S_n$ lies almost surely in the convex set K,

$$\lim_{n\to\infty} n^{-1} S_n(\omega) = E(X_1) \qquad \mu-a.s$$

where $E(X_1)$ denotes the expectation of X_1 , which is an element of K.

q.e.d.

5) Theorem: Let $\{X\}_{nn=1}^{\infty}$ be an i.i.d. sequence of totally summable random variables with values in a quasicomplete locally convex Suslin space E. Then the strong law of large numbers holds, i.e.

$$\lim_{n\to\infty} n^{-1} S_n(\omega) = E(X_1)$$
 μ -a.s.

Proof:

Replacing if necessary Ω by $E^{\mathbb{N}}$ and μ by its image under the map $\omega \to \{X_n (\omega)\}_{n \in \mathbb{N}}$, we may assume without loss of generality that the underlying probability space is a product space $(\Omega^{\mathbb{N}}, E^{\mathbb{N}}, \mu^{\mathbb{N}})$ and there is one random-variable $X: \Omega \to E$ such that $X_n = X \circ p_n$, p_n denoting the projection onto the n-th coordinate in $\Omega^{\mathbb{N}}$.

Let B be a closed, absolutely convex, bounded subset of E such that

$$\int \|X(\omega)\|_{B} d\mu(\omega) < \infty.$$

Fix $\epsilon > 0$. There is $\delta > 0$ such that $A \subseteq \Omega$, $\mu(A) < \delta$ implies $\int_{A} \|X(\omega)\|_{B} \ d\mu(\omega) \le \epsilon.$

E being a Suslin space, every probability measure on the Borel sets of E is tight ([4], p.122 th. 10). Applying this to the image of μ under X we can find a compact set K_1 in E such that $\mu\{\omega: X(\omega) \in K_1\} > 1 - \delta$. By the quasicompleteness of E, the closed convex hull K of $K_1 \cup \{0\}$ is still compact and - using again the fact that E is Suslin - metrisable (c.f. [4], p.106, Cor. 2).

Let $\Omega^1=\{\omega\in\Omega: X(\omega)\in K\}$ and $\Omega^2=\Omega\setminus\Omega^1$. Let $X^1=X\cdot \chi_{\Omega^1}$ and $X^2=X\cdot \chi_{\Omega^2}$. Note that $\{X^1\circ p_n\}_{n=1}^\infty$ and $\{X^2\circ p_n\}_{n=1}^\infty$ are both sequences of i.i.d. random variables the former satisfiing the hypothesis of the preceding lemma. Whence

$$\lim_{n\to\infty} n^{-1} \sum_{i=1}^{n} x^{1} \circ p_{i}((\omega_{m})_{m=1}^{\infty}) = E(x^{1})$$

for $\mu^{\mathbb{I}\mathbb{N}}$ - allmost all $(\omega_{\mathbb{I}\mathbb{N}})_{\mathfrak{M}=1}^{\infty}$ in $\Omega^{\mathbb{I}\mathbb{N}}$.

Note that $\|E(X) - E(X^1)\|_B = \|E(X^2)\|_B \le E(\|X^2\|_B) \le \varepsilon$. Of the remaining part $\{X^2 \circ p_n\}_{n=1}^{\infty}$ the following estimate takes care:

$$\lim_{n\to\infty} \sup_{\mathbf{i}=1}^{n-1} \sum_{i=1}^{n} x^{2} \circ p_{i}((\omega_{m})_{m=1}^{\infty}) \|_{B}$$

$$\leq \lim_{n\to\infty} \sup_{\mathbf{i}=1}^{n-1} \sum_{i=1}^{n} \|x^{2} \circ p_{i}((\omega_{m})_{m=1})\|$$

$$\leq \varepsilon.$$

The last inequality holds almost surely, as $\{\|x^2 \circ p_n\|_B\}_{n=1}^{\infty}$ is a sequence of positive i.i.d. random variables. By the scalar strong law of large numbers we know that their means converge a.s. to $E(\|x^2\|_B)$ which is less than ϵ . Noting that

we see that for each $\varepsilon > 0$ the sequence $\{n^{-1} \le n\}_{n=1}^{\infty}$ may almost surely be written as a sum of a sequence, τ -converging to a value which is ε -close to E(X) in the $\|\cdot\|_B$ - gauge and a sequence with the lim sup of the $\|\cdot\|_B$ - gauge bounded by ε . Letting $\varepsilon = k^{-1}$, $k = 1, 2, \ldots$, one concludes that on a set of measure 1

$$\lim_{n\to\infty} n^{-1} \sum_{i=1}^{n} X \circ p_{i} \left((\omega_{m})_{m=1}^{\infty} \right) = \lim_{n\to\infty} n^{-1} S_{n} \left((\omega_{m})_{m=1}^{\infty} \right) = E(X).$$
q.e.d.

6) If on a locally convex space E there is one closed bounded absolutely convex set such that its scalar multiples form a fundamental system for the bounded sets in E, E is called

a Saks space. For definitions and notations we refer to [2].

The following result was proved by Chatterji for the case of

Banach-valued Pettis-integrable functions.([1])

His argument carries over to the following more general case,

establishing a converse to proposition 5 for the case of Saks-space.

7) Proposition: Let $(E, \|\cdot\|, \tau)$ be a Saks-space and $\{X_n\}_{n=1}^{\infty}$ an i.i.d. sequence of τ -measurable E-valued random variables. If

$$\lim_{n\to\infty} n^{-1} S_n(\omega)$$

converges almost surely with respect to the mixed topology $\gamma(\|\cdot\|,\tau)$, then

$$\int\limits_{\Omega} \|x_1\| \ d\mu < \infty,$$

i.e., X_1 is totally summable.

<u>Proof:</u> If $\{n^{-1} S_n(\omega)\}_{n=1}^{\infty}$ γ -converges, it is γ -bounded and therefore norm-bounded ([2]). As

$$n^{-1} x_n = n^{-1} (S_n - S_{n-1})$$

= $n^{-1} S_n - (1-1/n) \cdot (n-1)^{-1} S_{n-1}$

we infer that $\left\{ \begin{array}{l} n^{-1} \; X_n(\omega) \end{array} \right\}_{n=1}^{\infty}$ is almost surely bounded. Hence there is M > O such that

$$\mu\{\omega : \lim \sup \|n^{-1} X_n(\omega)\| \le M\} > 0.$$

By Kolmogoroff's O-1-law the probability of the above event is actually 1.

The Borel-Cantelli-lemma implies that

$$\sum_{n=1}^{\infty} \mu\{\|X_n\| \le n.M\} < \infty.$$

As the sequence $\{x_n\}_{n=1}^{\infty}$ is identically distributed

$$\sum_{n=1}^{\infty} \mu\{\|X_1\| \le n.M\} < \infty$$

or equivalently

$$\int_{\Omega} \|X_{1}(\omega)\| d\mu(\omega) < \infty.$$

q.e.d.

8) Corollary: Let F be a separable Banach space and let E = F' with $\tau = \sigma(F', F)$. (Then E is quasicomplete and Suslin.) If $(X_n)_{n\geq 1}$ is a sequence of i.i.d. Pettis summable random variables with values in (E,τ) and $\frac{1}{n}S_n$ converges almost surely in (E,τ) the X_n are totally summable, i.e. $\int \| n \| d\mu < + \infty.$

Proof: By the theorem of Banach-Steinhaus $\{\frac{1}{n} S_n(\omega)\}$ is bounded almost surely, hence converges a.s. with respect to $\gamma([2],p.9,p.9)$ proposition 1-10).

9) In particular we can construct the following example:

Example: Of a case where E is Suslin, quasi complete, but where
for Pettis summable i.i.d. random variables the strong law of
large numbers fails:

It suffices to take $E=1^2$, τ the weak topology, $\Omega=[0,1]^{\mathbb{N}}$, μ product Lebesgue measure, and $X_n(\omega)=X(\omega_n)$ where $X:[0,1]+1^2$ is Pettis integrable but not Bochner integrable (e.g. if $[0,1]=\sum\limits_{n=1}^{\infty}A_n$ with $|A_n|=c/n^2X(t)=n$ en for $t\in A_n$, $(e_n)_{n\geq 1}$ being the canonical basis of 1^2).

10) Example: We now give an example of a locally convex space E that fails to be Suslin and an i.i.d. sequence $\{X_n\}_{n=1}^{\infty}$ of Borel-measurable, uniformly bounded Pettis-integrable E-valued random variables such that

$$\lim_{n\to\infty} n^{-1} S_n(\omega)$$

does not exist almost surely.

Denote by $[0,\omega_1]$ (resp. $[0,\omega_1^{[]})$ the compact (resp. locally compact) space of ordinals less than or equal to (resp. less than) ω_1 , the first uncountable one. Let $C([0,\omega_1])$ be the Banach space of continuous functions on $[0,\omega_1]$ and $(M([0,\omega_1]),\sigma^*)$ the dual space, the Radon-measures on $[0,\omega_1]$, equipped with the weak*-topology.

Let $(\Omega, \Sigma, \mu) = ([0, \omega_1[^{\mathbb{N}}, \text{Borel} ([0, \omega_1[)^{\mathbb{N}}, \nu^{\mathbb{N}}), \text{ where } \nu$ denotes the σ -additive Borel measure on $[0, \omega_1[$ that gives measure 1 or 0 to each Borel set in $[0, \omega_1[$, according to whether it contains an uncountable closed set or not. (This famous example, due to J. Diendonné, may be found in [3] for example). Let $\delta:[0,\omega_1[\to M([0,\omega_1])]$ denote the Dirac transform, i.e., the map associating to each $\alpha \in [0,\omega_1[$ the Dirac measure δ_α . Define a sequence $\{X_n\}_{n=1}^\infty$ of i.i.d. $M([0,\omega_1])$ -valued Borel-measurable (w.r. to the σ^* -topology) random variables on Ω by putting $X_n = \delta$ o P_n , P_n denoting the projection onto the n-th coordinate of $[0,\omega_1[^{\mathbb{N}}]]$.

It is easily seen that a Σ -measurable subset of Ω has measure 1 iff it contains a set of the form $F^{\mathbb{N}}$ for some uncountable closed subset F of $[0,\omega_1[$.

But as it is evidently absurd that for some closed uncountable F of $[0,\omega_1[$ we have, that for each sequence $\{\alpha_n\}_{n=1}^\infty$ in F the limit

$$\lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} \delta_{\alpha_{i}}$$

converges in the weak-*-topology of M[0, ω_1], we arrive at a contradiction, showing that the strong law of large numbers does not hold for $\{X_n\}_{n=1}^{\infty}$.

[1]

S.D. Chatterji: Vector - valued martingales and their applications, Prob. in Banach Spaces, Oberwolfach 1975, Lecture Notes in Mathematics Nr. 526, p.33-51, Springer Verlag 1976.

[2]

J.B. Cooper: Saks spaces and Applications to Functional Analysis,
North-Holland Mathematics Studies, vol. 28, (1978)
Amsterdam.

[3]

P.R. Halmos: Measure Theory, (1950), Van Nostrand, Princeton.

[4]

L.Schwartz: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, (1973), Oxford University Press, Bombay.

[5]

G.E.F. Thomas: Totally summable Functions with Values in

Locally Convex Spaces, appeared in Springer Lecture

Notes 541, p. 117-131.

[6]

G.E.F. Thomas: Integration of functions with values in locally convex Suslin spaces, T.A.M.S. 212 (1975), p. 61-81.