THE STRONG LAW OF LARGE NUMBERS IN LOCALLY CONVEX
SUSLIN SPACES

BY WALTER SCHACHERMAYER

Abstract: G.E.F. Thomas raised the question, whether the strong
law of large numbers is valid for i.i.d. totally summable
sequences {Xn}:=1 of random variables with values in a quasi-
complete locally convex Suslin-space E. We shgw by a simple
truncation—argument that the answer is yes and - using an’'idea

of Chatterji - that for Saksspaces E the assumption of total
summability is also necessary for the strong law of large numbers
to hold. A final example shows that the assumption that E is

Suslin, is essential.

1) Denote by (Q,Z,n) an (abstract) probability space, b?- (E,T)
a vector space E with a locally convex Hausdorff topology .
Throughout this paper - aéxcept in the example1éf - we shall

assume that E is a Suslin space. The letter X denotes a
random variable defined on @ with values in E (measurable

with respect to the Borel-o-algebra of E).

2) Definition (c.f. [6],85): X is called totally summable,

if there is a closed, absolutely convex, bounded subset B of

E , such that if |

|z denotes the gauge-function of B,

IRl ) <-

If E ‘is assumed to be quasicomplete, then one may define for



A €L the Pettis-integral

J X(w) dup(w),
A

which is an element of E ([ 6 1]).

3) Let {Xn} be a sequence of independent identicaliy L

n=1
distributed (i.i.d.) E-valued random-variables and denote by Sn

the partial sums X1+“‘+Xn'

4) Lemma: Assume there is a compact, convex, metrisable subset

K of E such that X takes its values almost surely in K.

1
Then the strong law of large numbers holds, i.e.

o lim n_'1 S (w) = E(X1) h=a 8«
n->e n
Proof: K '"being metrisable, there is a sequence {fk}.‘j}:___1 in E'
which induces the T-topology on K(c.f.[ 2 ] for example). For

each of the sequences of i.i.d. realvalued, bounded random va-
riables {fk o Xn}:=1 we may apply the strong law of large

numbers, i.e. for each k € W

Iim o ) F
N>

x © Sn(w) = E(fk o X1) _ - p-a.s

Whence, as n Sn'lieS»almost surely in the convex set K,

lim n_1 Sn(m) = E (X1) H=a.S,
N>
where E(X1) denotes the €xpectation of Xqs which is an

element of K.
q.e.d.



5) Theorem: Let {X&:=1 be an i.i.d. sequence of totally
summable random variables with values in a qguasicomplete locally

convex Suslin space E. Then the strong law of large numbers

holds, i.e.

lim n_1 Sn(w)‘ = E(X1) ' ' p—a.s.
Proof: nre

Replacinc if necessary Q by Enqand u by its image under the map
ié *{Xn (m)}ﬁ>esu » we may assume without loss of generality that

;Ehe underlying probability space is a product space T(Qlizﬂ{unq)

and there is one random-variable X : @=E such that

Xn =X o P, Pp denoting the projection onto the n-th coordinate

in qu;

Let B be a closed, absolutely convex, bounded subset of E
such that

J ”X(w)HB dp (w) < =.

Fix € > O. There is 6§ > O such that A € Q, p(A) < § implies

IA”X(w)HB du (w) < e.

E being a Suslin space, every probability measure on the
Borel sets of E is tight ([4], p.122 th. 10). Applying
this to the image of p under X we can find a compact set
K, in E such that p{o : X(o) € K1} s T = Ba
By the quasicompleteness of E, the closed convex hull K of
K1LJ{O} is still compact and - using again the fact that E
is Suslin - metrisable (c.f. [4], p.106, Cor. 2).

Let Q1 = {0 € Q : X(0) € K} and 92 = Q\S; "
Let X' = X.x,1 and x2 = X.Xxq2- Note that x' o P oo

oy =
and (X" o pn}n=1 are both sequences of i.i.d. random variables

the-former satisfiing the hypothesis of the preceding lemma. Whence



Y

1 1 r % o plen” ) = E(x))
im n Py ba. m=1

n-o i=1
for ulq - allmost all (%uH:=1 in oIN
Note that [E(X) - E(x) | = [E(xD) [y s B (J°]y) s .

Of the remaining part {Xz.o pn}:=1 the following estimate

takes care:

n
. -1 2 & i '
lim sup |n° £ X° o p.(eo_ ) _ )” ) Lo
oo i=1 1( m'm=1/ "B o
. . 2
£ limsupn =& |x°o P; ((mm)m=1)”
neves i=1-
p—a.s.
< €.

The last inequality holds almost surely, as {ﬂX2 o pn”B}Z=1
is a sequence of rositive i.i.d. random variables. By the scalar
strong law of large numbers we know that their means converge
a.s. to E(”X2HB) which is less than «e.

Noting that

we See that for each € > 0 the sequence {n—} Sn}:—1 may

almost surely be written as a sum of a sequence, T-converging

to a value which is e-close to E(X) ' in the |. g ~ gauge

and a sequence with the lim sup of the ”'”B - gauje bounded
by €. Letting ¢ = k—1, k =1,2,..., one concludes that on a

set of measure 1

_ n
lim n E
N i=

6) If on a locally convex space ,E there is one closed bounded
absolutely convex set such that its scalar multiples form a

fundamental system for the bounded sets in E, E is called



a Saks space. For definitions and notations we refer to [ 2 1J.
The following result was proved by Chatterji for the case of

Banach-valued Pettis—integfable functions.([ 1 ])

His argument carries over to the following more general case,

establishing a converse to proposition 5 for the case of Saks-space.

L4

@

|,T) be a Saks-space and {Xn}n=1

| -

an i.i.d. sequence of t-measurable E-valued random variables.' If

7) Proposition: Let (E,

1im n ' s (o) )
n+e n '

converges almost surely with respect to the mixed tonoloagy

14

v ( ,T), then

f "X1" dp < =,
Q

i.e.; XW is totally summabie.

Proof: If {n_1 Sn(m)}:=1 y-converges, it is y-bounded and

therefore norm-bounded ([ 2 ]). As o

=n"'s_- (~/m).m-17 s,

we infer that ( n—1 Xn(m) }:_1 is almost surely bounded. Hence

there is M > O such- that

p{o : lim sup Iln-1 Xn(w)H < M} >0.



By Kolmogoroff's O-1-law the probability of the above event is
actually- 1.
The Borel-Cantelli-lemma implies that

<o

L u{"xnn S n.M < =,
n=1

As the sequence {X }.

n’ n=1 is identically distributed

5 u{”X1” £ n.M} < =
n=1 ‘

or equivalently

1%y )] du(e) < =,
Q

g.e.d.

8) Corollary: Let F be a separahle Banach space and let
E=F'" with 1 =o0(F', F). (Then E is quasicomplete and Suslin.)

If (Xn)n21 is a sequence of i.i,d. Pettis summable random

S converges almost

variables with values in (E,t) and 5

S|

surely in (E, 1) the Xn are totally sumﬁable, i.e.

[nfae <+ =,

Proof: By the theorem of Banach-Steinhaus {% Sn(m)} is bounded
almost surely, hence converges a.s. with respect to y([2]p.9,

proposition 1-10).

9) In particular we can construct the following example:
Example: Of a case where E is Suslin, quasi complete, but where
for Pettis summable i.i.d. random variables the strong law of

large numbers fails:



It suffices to take E = 12, 1 the weak topology, @ = [0,1]7,

product Lebesgue measure, and Xn(m) = X(on) where

VY
X: [0,1] - l2 is Pettis integrable but not Bochner integrable

; : o 3 2 3
(e.g. if [0,1] = n§1. A with IAnl = ¢/n“X(t) = n e, forteana,

(e ) being the canonical basis of 12). L

n'n21

-

10) Example: We now give an example of a locally convex space E
that fails to be Suslin and an i.i.d. sequence {Xn):=1 of

Borel-measurable, uniformly bounded pettis-integrable E-valued

random variables such that
lim n_1 Sn'(m)
N3

does not exist almost surely.

Denote by [O,o1] (resp. [O,m1f) the compact (resp. locally
compact) space of ordinals 'less than or equal to (resp. less than)
©qs ' the first uncountable one. Let C([O,m1]) be the Banach
space of continuoﬁs functions on [O,m1] and (M([O,Q1]),o*)
the dual space, the Radon-measures on [O,m1], equipped with the

weak*—topology.



_8_

nq)' where

Let (9,Z,u) = ([o,m1[m, Borel ([0,01[)N ;v
v denotes the o-additive Borel measure on [O}m1[ that
gives measure 1 or O t§ each Borel set in [O,o1[,
~according to whether it contains an uncountable closed set or
not. (This famous example; due to J. Diéndonné , may bé found
in [3] for example). Let 6 : [O,0,[ = M([O,m}])‘ denote the
Difac transform; i.e., the map associating to each T

o -

a € [O,m1[ the Dirac measure 6+ Define a sequence‘ {Xn}n=1

-

of i.i.d. M([O,m1l)—valued Borel-measurable (w.r. to the
o*—topology) random variables on Q by putting Xn = 6 0 P,
P, denoting the projection onto the n-th coordinate of
[O,o1[lqi | |

It is easily seen that a ZFmeasurable subset of Q has
measure 1 iff it contains a set of the form an for some
uncountable closed subset F of [0,91[.

But as it is evidently absurd that for some closed
uncountable F of [O,m1[ we have, that for each sequence

{an}n=1 in F rthe limit

converges in the weak-#-topology of M[O,m1], we arrive at a
contradiction, showing that the strong law of large numbers

does not hold for {X }m_
, n’ n=1
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