Almost Compactness and Decomposability of Integral Operators

by

Walter Schachermayer, Linz and Lutz Weiss, Kaiserslautern

Abstract: Let $(X,\mu),(Y,\nu)$ be finite measure spaces and $1 < q \le \infty$, $1 \le p \le q$. An integral operator $Int(k): L^q(\nu) + L^p(\mu)$ becomes compact, if we cut away a suitably chosen subset of X of arbitrarily small measure. As a consequence we prove that Int(k) may be written as the sum of a Carleman operator and an orderbounded integral operator, where the orderbounded part may be chosen to be compact and of arbitrarily small norm.

1. Introduction: (X,X,μ) and (Y,Y,ν) will denote finite measure spaces. For $1 \le p,q \le \infty$ we call an operator $T:L^q(\nu) + L^p(\mu)$ integral, if there is a measurable kernel-function k(x,y) on $X \times Y$ such that for $g \in L^q(\nu)$

$$Tg(x) = \int_{Y} k(x,y) g(y) dv(y)$$
 μ -a.e.

The integrand is required to be Lebesgue-integrable for μ -a.e. $x \in X(c.f. [7] \text{ or } [9])$. In this case we write T = Int(k).

There are two wellbehaved subclasses of integral operators: Int(k) is called <u>Carleman</u> if, for μ -a.e. $x \in X$, $k(x,\cdot) \in L^r(v)$ where $r^{-1} + q^{-1} = 1$. The operator Int(k) is called <u>orderbounded</u> if it transforms orderbounded sets

into orderbounded sets or equivalently if |k| also defines an integral operator from $L^{\underline{\sigma}}(\nu)$ to $L^p(\mu)$. In this case we call Int(|k|) the modulus or absolute value of Int(k).

Let us specify the following notation: If $g \in L^{\infty}(\mu)$ we denote by P_g the multiplication operator f + f.g on $L^p(\mu)$. If $g = \chi_A$ is a characteristic function we write P_A for P_{χ_A} .

2.Preliminaries: In this section we recall known result for later reference.

2.1. Theorem(Nikishin, [11], th. 4): Let $0 \le q \le \infty$ and $T: L^q(\nu) \to L^0(\mu)$ be a positive, continuous operator. For $\epsilon > 0$ there is an $A \subseteq X$, $\mu(X \setminus A) < \epsilon$ and such that $P_A \circ T$ takes its values in $L^q(\mu)$.

2.2. Theorem: (Maurey, [10], prop. 9): Let $0 and <math>T: L^q(\nu) + L^p(\mu)$ be a positive, continuous operator. For $r^{-1} = p^{-1} - q^{-1}$ there is a strictly positive function $g \in L^\infty(\mu)$ such that $g^{-1} \in L^r(\mu)$ and $P_g \circ T$ takes its values in $L^q(\mu)$.

We also need a technical result, which follows easily from ([9], th. 4.7. and th. 5.12).

2.3. Lemma: Let $1 \le q \le \infty$, $1 \le p < \infty$ and $k(x,y) \ge 0$ be such that Int(k) defines an operator from $L^q(v)$ to $L^p(\mu)$. Let $k_n(x,y) \ge 0$ be such that $k = \sum_{n=1}^{\infty} k_n$.

(a) $\sum_{n=1}^{\infty} Int(k_n)$ converges unconditionally to Int(k) in the strong operator topology of $B(L^q(v), L^p(\mu))$.

(b) If $1 < q \le \infty$ and Int(k) is compact then the above sum converges unconditionally in the norm of $B(L^q(\nu), L^p(\mu))$.

3. Almost compactness of positive integral operators:

3.1. Theorem: Let $1 < q \le \infty$ and $k(x,y) \ge 0$ be such that Int(k) defines an operator from $L^q(v)$ to $L^q(u)$. Given $r < \infty$ we may find $g \in L^\infty(\mu)$ such that $g^{-1} \in L^r(\mu)$ and $P_q \circ Int(k) : L^q(v) \to L^q(\mu)$ is compact.

Proof: Let us start with the easy case $q = \infty$: It is an old result, dating back to Dunford's paper [4] in 1936, that a σ^* -continuous $T:L^\infty(\nu) + L^\infty(\mu)$ is integral iff for $\varepsilon > 0$ there is $A \subseteq X$, $\mu(X \setminus A) < \varepsilon$ and such that $P_A \circ T$ is compact (see also [5] and [12]). So find a partition $(A_n)_{n=1}^\infty$ of X such that $P_A \circ Int(k)$ is compact and, given $r < \infty$, find a nullsequence $(\alpha_n)_{n=1}^\infty$ of strictly positive scalars such $g = \sum_{n=1}^\infty \alpha_n^{-1} \times A_n \in L^r(M)$. It is easy to check that $P_g \circ Int(k)$ is compact.

Now assume that $1 < q < \infty$:~Given $r < \infty$ find $1 such that <math>r^{-1} \ge p^{-1} - q^{-1}$. The operator Int(k) is a compact operator from $L^{\mathbf{q}}(\nu)$ to $L^{\mathbf{p}}(\mu)$ (c.f. [1] or [9], th. 5.4.; compare also [3]). Let $k_n = k \cdot \chi_{\{n-1 \le k < n\}}$ and deduce from 1.3.b that $\sum_{n=1}^{\infty} Int(k_n)$ converges to Int(k) unconditionally in the norm of $B(L^{\mathbf{q}}(\nu), L^{\mathbf{p}}(\mu))$. So we may find a sequence $0 = n_0 < n_1 < \dots < n_m < \dots$ such that for $m \ge 2$

$$\lim_{n=n}^{n_m-1} \sum_{m=n=1}^{m-1} ||nt(k_n)||_{B(L^{\underline{q}},L^{\underline{p}})} < 2^{-m}.$$

Let
$$\overline{k}_m = m \sum_{n=1}^{m-1} k_n.$$
 and
$$\overline{k} = \sum_{m=1}^{\infty} \overline{k}_m.$$

Clearly $\overline{k} \geq k$ but $\operatorname{Int}(\overline{k}) = \sum_{m=1}^{\infty} \operatorname{Int}(\overline{k}_m)$ is still a continuous (even compact, but we shall not need this) operator from $L^q(\nu)$ to $L^p(\mu)$. We may apply Maurey's factorisation theorem (1.2 above) to find $g \in L^\infty(\mu)$ such that $g^{-1} \in L^r(\mu)$ and such that $P_{q^0}\operatorname{Int}(\overline{k})$ takes its values in $L^q(\nu)$. From 1.3.a)

$$P_{g} \circ Int(\overline{k}) = \sum_{m=1}^{\infty} m \left(\sum_{n=1}^{n-1} Int(g.k_n) \right),$$

the sum converging unconditionally in the strong operator topology of $B(L^{\bf q}(\nu),L^{\bf q}(\mu))$. This implies that the sum

$$P_{g} \circ Int(k) = \sum_{m=1}^{\infty} \cdot (\sum_{n=n}^{n-1} Int(g.k_n))$$

converges in the norm of $B(L^{\underline{q}}(\nu), L^{\underline{q}}(\mu))$. As each of the summands is clearly compact the operator $P_g \circ \text{Int}(k) : L^{\underline{q}}(\nu) \to L^{\underline{q}}(\mu) \quad \text{is compact.}$

3.2. Remark: The theorem does not hold for $\alpha=1$: Let $T:L^1(\nu) \to L^1[0,1]$ be a positive surjective operator, where (Y,ν) is a purley atomic measure space (i.e. $L^1(\nu)$ is isometric to 1^1). Then T is integral but for every positive $g \in L^\infty(\mu)$, which does not vanish identically, the operator P_q Int(k) is not compact.

However, we have the following result by duality:

3.3.Corollary: Let $1 \le p < \infty$ and $k(y,x) \ge 0$ such that Int(k) defines an operator from $L^p(\mu)$ to $L^p(\nu)$. Given

 $r<\infty$ we may find $g\in L^\infty(\mu)$ such that $g^{-1}\in L^r(\mu)$, and Int(k)_0P_g: $L^p(\mu)\to L^p(\nu)$ is compact.

4.Almost compactness of general integral operators:

4.1. Theorem: Let $1 < q \le \infty$ and $1 \le p \le q$ and let $Int(k) : L^q(\nu) \to L^p(\mu) \text{ be an integral operator. For } \epsilon > 0$ there is $A \subseteq X$ with $\mu(X \setminus A) < \epsilon$ such that both $P_A^\circ Int(k)$ and its modulus $P_A^\circ Int(|k|)$ are compact operators from $L^q(\nu)$ to $L^q(\mu)$.

Proof: Write $k = k_1 - k_2 + ik_3 - ik_4$, where $k_j \ge 0$. Each Int(k_j) defines a positive continuous operator from $L^q(\nu)$ to $L^0(\mu)$. By Nikishin's theorem (2.1 above) we may find $B_j \subseteq X$, $\mu(X \setminus B_j) < \varepsilon/8$ such that $P_{B_j} \circ Int(k_j)$ is a positive continuous operator from $L^q(\nu)$ to $L^q(\mu)$. It is an easy consequence of theorem 3.1 that we may find $A_j \subseteq B_j$, $\mu(X \setminus A_j) < \varepsilon/4$, such that $P_{A_j} \circ Int(k_j)$ is compact from $L^q(\nu)$ to $L^q(\nu)$ to $L^q(\nu)$. For $A = \int_{j=1}^{q} A_j$, the operator $P_A \circ Int(k)$ satisfies the requirements.

4.2 Remark: In the situation of theorem 4.1. it is not possible to find a big set B on the left hand side (i.e. from Y) so that $\mathrm{Int}(k) \circ P_B$ is compact. For example let k be the kernel on $[0,1] \times [0,1]$, $k(x,y) = 2^{n/2} \cdot r_n(y)$ if $x \in [2^{-n}, 2^{-(n-1)}]$, where r_n denote the n'th Rademacher function. Then $\mathrm{Int}(k) : L^2[0,1] \stackrel{\perp}{\to} L^2[0,1]$ is such an example.

Theorem 4.1. is a strengthening of the known result of "twosided cutting off", which seems to be due to Korotkov [8].

- 4.3. Remark: What happens in the case p > q? If $Int(k): L^q(\nu) + L^p(\mu)$ is given, then for q > 1 the above theorem applies and provides a compact operator $P_A \circ Int(k)$ from $L^q(\nu)$ to $L^q(\mu)$. One would like to have the operator compact from $L^q(\nu)$ to $L^p(\mu)$ but this is only possible for few pairs of indices as is shown in the following proposition:
- 4.4. Proposition: a) Let $1 < q < \infty$ and $p = \infty$; for every continuous operator $T: L^q(\nu) \to L^\infty(\mu)$ and $\epsilon > 0$ there is an $A \subseteq X$ with $\mu(X \setminus A) < \epsilon$ such that $P_{A^D}T: L^q(\nu) \to L^\infty(\mu)$ is compact.
- b) On the other hand, for $1 \le q and for <math>q = 1$, $p = \infty$ there are integral operators $Int(k) : L^{\underline{q}}(\nu) \to L^{\underline{p}}(\mu) \quad \text{such that for every } A \subseteq X, \ \mu(A) > 0$ the operator $P_A^{\delta}T : L^{\underline{q}}(\nu) \to L^{\underline{p}}(\mu)$ is not compact.
- <u>Proof:</u> a) This result was known to A. Grothendieck [6]. Let us phrase it in the terminology of [13]: $L^q(v)$ is Asplund for $1 < q < \infty$ hence T (ball($L^q(v)$) is equimeasurable, which is just what we have to prove.
- b) For q=1 and $1 \le p \le \infty$ let T be a positive surjective operator from 1^1 (represented as $L^1(\nu)$ over a finite measure space (Y,ν)) onto $L^p_{[0,1]}$ (resp. onto the subspace $C_{[0,1]}$ of $L^\infty_{[0,1]}$, if $p=\infty$).
- If $1 < q < p < \infty$ then there are operators of potential type from $L_{[0,1]}^q$ to $L_{[0,1]}^p$ that are not compact (c.f.[8], p. 147 ff.). It is clear, that an operator of potential type may not be made compact by restricting to a subset of positive measure.

5. Decomposition of integral operators:

5.1. Theorem: Let $1 < g \le \infty$, $1 \le p \le q$ and Int(k): $L^q(\nu) \to L^p(\mu)$ an integral operator. Given $\epsilon > 0$ we may write k as $k^C + k^O$ where $Int(k^C)$ is a Carleman operator from $L^q(\nu)$ to $L^p(\mu)$ and $Int(k^O)$ as well as its modulus $Int(|k^O|)$ are compact operators from $L^q(\nu)$ to $L^q(\mu)$ of norm less than ϵ .

<u>Proof:</u> We start with the the trivial case $g=\infty$ and $1 \le p \le \infty$. Every Int(k): $L^{\infty}(\nu) \to L^{p}(\mu)$ is automatically Carleman, hence we may choose $k^{C}=k$ and $k^{O}=0$.

Let now $1 < q < \infty$, $1 \le p \le q$. By th. 4.1. we may find a partition $(A_i)_{i=1}^{\infty}$ of X such that for

 $k_i(x,y) = \chi_{A_i}(x).k(x,y)$ the operator $Int(|k_i|)$ is compact from $L^q(v)$ to $L^q(u)$. By lemma 2.3. we may find numbers n_i such that

$$\begin{split} & \| \text{Int}(|\mathbf{k_i}|) - \text{Int}(|\mathbf{k_i}| \cdot \mathbf{x}_{\{|\mathbf{k_i}| \leq \mathbf{n_i}\}} \| < \epsilon/2^{\mathbf{i}}. \end{split}$$
 Let $\mathbf{k_i^C} = \mathbf{k_i} \cdot \mathbf{x}_{\{|\mathbf{k_i}| \leq \mathbf{n_i}\}}$ and $\mathbf{k_i^O} = \mathbf{k_i} - \mathbf{k_i^C}$ and define
$$\mathbf{k^C} = \mathbf{i}_{\tilde{\Sigma}} \mathbf{k_i^C} \quad \text{and} \quad \mathbf{k^O} = \mathbf{i}_{\tilde{\Sigma}} \mathbf{k_i^O}. \end{split}$$

It is now easy to verify the asserted properties of k^{C} and k^{O} .

5.2. Remark: We do not know whether for arbitrary $1 \le p,q \le \infty$ an integral operator $\operatorname{Int}(k): L^q(\nu) + L^p(\mu)$ may be decomposed into a Carleman and an orderbounded part. We know that this is possible in some cases not covered by 5.1. For p=q=1 for example, this is trivially possible as every continuous operator $T:L^1(\nu)+L^1(\mu)$ is orderbounded. However, we do not have the full strength of 5.1. in this case: The operator from remark 3.2. may not be decomposed in such a way as to make the orderbounded part compact or arbitrarily small in norm.

REFERENCES

- [1]: <u>T.Ando</u>: On compactness of integral operators, Indag. Math. 24 (1962), 235-239.
- [2]: <u>J. Diestel</u>, <u>J.J. Uhl</u>: Vector measures, Mathematical Surveys of the A.M.S. 15, Providence 1977.
- [3]: P.G. Dodds: Compact kernel operators on Banach function spaces, preprint.
- [4]: N. Dunford: Integration and linear operations, T.A.M.S. 40 (1936), p. 474-494.
- [5]: N.E. Gretsky, J.J. Uhl: Carleman and Korotkov operators on Banach spaces, preprint.
- [6]: A. Grothendieck: Produits Tensoriels Topologiques,
 Memoirs of the A.M.S. 16 (1955).
- [7]: P.R. Halmos, V. Sunder: Bounded Integral Operators on L² Spaces, Erg. d. Math. 96, Springer 1978.
- [8]: V. Korotkov: On some properties of partially integral operators, Dokl. Ak. Nauk SSR, Tom 217, 1974, No. 4. Translated in Soviet Math. Dokl., Vol. 15, 1974, No. 4, p. 1114-1117.
- [9]: M.A. Krasnoselskii et al.: Integral Operators in spaces of summable functions, Nordhoff Publ., 1976.
- [10]: <u>B. Maurey</u>: Theorèmes de factorisation pour les operateurs linéaires à valeurs dans L^p, Asterisque 11, Paris 1974.
- [11]: E.M. Nikishin: Pesonance theorems and superlinear operators, Uspehi Mat. Nauk 25, 125-191 (1970), (Russian Math. Surveys 25, 125-197 (1970)).
- [12]: W. Schachermayer: Integral Operators on L^p Spaces,
 Preprint.
- [13]: C. Stegall: The Radon-Nikodym property in conjugate

 Banach spaces II, to appear in T.A.M.S.