THE CLASS OF BANACH SPACES, WHICH DO NOT HAVE COAS A SPREADING MODEL, IS NOT L2-HEREDITARY

by -

Walter Schachermayer (LINZ)

1. INTRODUCTION: In [4] the problem was raised wether the fact, that a Banach space E does not have c_0 as a spreading model, implies that $L^2([0,1]; E)$ has the same property. It was conjectured that the answer is no, as the property of not having c_0 as a spreading model is somewhat dual to the Banach-Saks property (see [2]) and for this latter property J. Bourgain has constructed a counter-example ([3]).

The present author has constructed independently of J. Bourgain another space E with the Banach-Saks property and $L^2(E)$ failing it ([6]) and it turns out that the dual E' gives a counterexample to the problem raised in the title.

2. THE EXAMPLE: Let $\gamma = \{n_1, n_2, \dots, n_k\}$ an increasing finite sequence of natural numbers. Write $n_i = 2^{u_i} + v_i$ where this expression is unique, if we require that $0 \le v_i < 2^{u_i}$. As in [6] we associate to every n_i the real number $t(n_i) = v_i/2^{u_i} \in [0,1[$ and call γ admissible if (1) $k \le n_1$

(2) For every $0 \le j < 2^{u_1+1}$ there is only one i such that $t(n_i) \in [j/2^{u_1+1}, (j+1)/2^{u_1+1}[$.

For an admissible $x = (n_1, \dots, n_k)$ and $x \in \mathbb{R}^{(1N)}$, the space of finite sequence, we define

$$\|\mathbf{x}\|_{\gamma} = \sum_{i=1}^{k} |\mathbf{x}_{n_i}|.$$

For our purposes it will this time be convenient, not to use interpolation but to follow Baernstein's original definition ([1]): For $x \in \mathbb{R}^{(\mathbb{N})}$ define

$$\|\mathbf{x}\|_{\mathbf{E}} = \sup \{ (\sum_{\ell=1}^{\infty} \|\mathbf{x}\|_{\gamma_{\ell}}^{2})^{1/2} \}$$

where the sup is taken over all increasing sequences $\{\gamma_{\ell}\}_{\ell=1}^{\infty}$ of admissible sets (i.e. the last member of $\gamma_{
ho}$ is smaller than the first member of $\gamma_{\ell+1}$).

Let $(E, \| \|_{E})$ be the completion of $\mathbb{R}^{(\mathbb{N})}$ with respect to this norm. In an analogous way as in [6] one shows that E has the Banach-Saks property.

PROPOSITION 1:

E' does not have co as a spreading model.

PROOF: As E does not have ℓ^1 as spreading model ([2]), no quotient of E'has c_0 as spreading model ([5]), hence in particular E' does not have c_0 as spreading model.

To show that $L^2(E')$ does have c_0 as spreading model we need a trivial probabilistic lemma, whose proof is left to the reader.

LEMMA: Let $k \in \mathbb{N}$ and $\epsilon > 0$; there is $N(k, \epsilon)$ such that for $M > N(k, \epsilon)$ and for independent random variables X_1, \ldots, X_k taking their values in $\{1, \ldots, M\}$ in a uniformly distributed way, we have

$$P\left\{\begin{array}{cccc} \omega & \text{: there is} & 1 \leq i < j \leq k & \text{with} \\ & X_{\mathbf{i}}(\omega) & = X_{\mathbf{j}}(\omega) \end{array}\right\} < \epsilon$$

PROPOSITION 2: $L^{2}_{(0,1)}$ (E) has constriction isometrically as spreading model.

PROOF: Similarly as in [6] we let $\{f_u\}_{u=1}^{\infty}$ be an independent sequence in $L^2(E')$ such that f_u takes the value e_2u_{+v} with probability 2^{-u} (for v=0,.., 2^{u} -1). This time the e_2u_{+v} are unit-vectors in E'.

Clearly
$$\|f_u\|_{L^2(E')} = 1$$
 and for every sequence $u_1 < u_2 < \dots < u_k$ and $\varepsilon_i = \pm 1$

Hence the following claim will prove the proposition.

CLAIM: For every $k \in IN$

$$\lim_{\mathbf{u} \to \infty} \sup \left\{ \begin{array}{cccc} k & & + \\ \parallel \Sigma & \epsilon_{\mathbf{i}} & \mathbf{f}_{\mathbf{u}_{\mathbf{i}}} \parallel : & \mathbf{u} \leq \mathbf{u}_{\mathbf{1}} < \cdots < \mathbf{u}_{\mathbf{k}} \\ & & \vdots & & \\ & & & \epsilon_{\mathbf{i}} = \pm 1 \end{array} \right\} = 1$$

To prove the claim fix k and $\epsilon > 0$ and let u be such that $2^{u} > \max{(k, N(k, \epsilon))}$, where the $N(k, \epsilon)$ is defined in the preceding lemma. Now fix $u \le u_1 < u_2 < \dots < u_k$ and a sequence of signs $\epsilon_1, \dots, \epsilon_k$.

To apply the above lemma let x_1, \dots, x_k be the random variables with values in $\{1, \dots, 2^{u_1+1}\}$ defined by

$$x_{i}(\omega) = m$$
 if $f_{u_{i}}(\omega) = e_{2}u_{i+v}$ and
$$t(2^{u_{i}}+v) = v/2^{u_{i}} \in [(m-1)/2^{u_{1}+1}, m/2^{u_{1}+1}]$$

It follows form the above lemma and the definition of admissible sets γ that there is a subset A \subseteq [0,1] of measure greater than 1 - ε such that for $\omega \in A$ the set $\gamma_{\omega} = \{n_1, \dots, n_k\}$ corresponding to the indices of the unit vectors $\{f_u, (\omega), \dots, f_u, (\omega)\}$ is admissible. Hence for $\omega \in A$ we have

Integrating we obtain

$$\leq 1 + k^2 \epsilon$$
.

This proves the claim and therefore proposition 2.

REFERENCES

- [1] A. BAERNSTEIN, On reflexivity and summability; Studia Math. 42 (1972), 91-94.
- [2] B. BEAUZAMY, Banach Saks properties and spreading models;
 Math. Scand. 44 (1979), 357-384.
- [3] <u>S. GUERRE</u>, La propriété de Banach-Saks ne passe pas de E à L²(E); Séminaire sur la géometrie des espaces de Banach, Ecole Polytechnique.
- [4] <u>S. GUERRE, J-Th. LAPRESTÉ</u>, Quelques propriétés des modèls étalés sur les espaces de Banach, Ann. Inst. H. Poincare, XVI, n⁰4, 1980, p. 339-347.
- [5] J-Th. LAPRESTÉ, Sur une propriété des suites asymptotiquement inconditionelles, Séminaire sur la géometrie des espaces de Banach, Ecole Polytechnique, 1978/79, exposé XXX.
- [6] W. SCHACHERMAYER, The Banach-Saks property is not L^2 -hereditary, to appear in the Israel Journal.