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Abstract. We provide a crystal structure on the set of ordered multiset partitions,
which recently arose in the pursuit of the Delta Conjecture. This conjecture was stated
by Haglund, Remmel and Wilson as a generalization of the Shuffle Conjecture. Various
statistics on ordered multiset partitions arise in the combinatorial analysis of the Delta
Conjecture, one of them being the minimaj statistic, which is a variant of the major
index statistic on words. Our crystal has the property that the minimaj statistic is
constant on connected components of the crystal. In particular, this yields another
proof of the Schur positivity of the graded Frobenius series of the generalization Rn,k
due to Haglund, Rhoades and Shimozono of the coinvariant algebra Rn. The crystal
structure also yields a bijective proof of the equidistributivity of the minimaj statistic
with the major index statistic on ordered multiset partitions.
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1 Introduction

The Shuffle Conjecture [6], now a theorem due to Carlsson and Mellit [3], provides
an explicit combinatorial description of the bigraded Frobenius characteristic of the Sn-
module of diagonal harmonic polynomials. Recently, Haglund, Remmel and Wilson [4]
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introduced a generalization of the Shuffle Theorem, coined the Delta Conjecture. The
Delta Conjecture involves two quasisymmetric functions Risen,k(x; q, t) and Valn,k(x; q, t),
which have combinatorial expressions in terms of labelled Dyck paths. In this paper, we
are only concerned with the specializations q = 0 or t = 0, in which case [4, Theorem
4.1] and [9, Theorem 1.3] show

Risen,k(x; 0, t) = Risen,k(x; t, 0) = Valn,k(x; 0, t) = Valn,k(x; t, 0).

It was proven in [4, Proposition 4.1] that

Valn,k(x; 0, t) = ∑
π∈OPn,k+1

tminimaj(π)xwt(π), (1.1)

where OPn,k+1 is the set of ordered multiset partitions of the multiset {1ν1 , 2ν2 , . . .}
into k + 1 nonempty blocks and ν = (ν1, ν2, . . .) ranges over all weak compositions of
n. The weak composition ν is also called the weight of π, denoted wt(π) = ν, and
xwt(ν) = xν1

1 xν2
2 · · · . In addition, minimaj(π) is the minimum value of the major index

of the set partition π over all possible ways to order the elements in each block of π.
The symmetric function Valn,k(x; 0, t) has an expansion as a sum of Schur functions with
coefficients that are polynomials in t with nonnegative integer coefficients [12, 9].

In this paper, we provide a crystal structure on the set of ordered multiset partitions
OPn,k. Crystal bases are q→ 0 shadows of representations for quantum groups Uq(g) [7,
8], though they can also be understood from a purely combinatorial perspective [11, 2].
In type A, the character of a connected crystal component with highest weight element
of highest weight λ is the Schur function sλ. Hence, having a crystal structure on a
combinatorial set (OPn,k in our case) naturally yields the Schur expansion of the associ-
ated symmetric function. Furthermore, if the statistic (minimaj in our case) is constant on
connected components, then the graded character can be computed using the crystal.

Haglund, Rhoades and Shimozono [5] introduced a generalization Rn,k for k 6 n of
the coinvariant algebra Rn, with Rn,n = Rn. Just as the combinatorics of Rn is governed
by permutations in Sn, the combinatorics of Rn,k is controlled by ordered set partitions
of {1, 2 . . . , n} with k blocks. The graded Frobenius series of Rn,k is (up to a minor twist)
equal to Valn,k(x; 0, t). It is still an open problem to find a bigraded Sn-module whose
Frobenius image is Valn,k(x; q, t). Our crystal provides another representation-theoretic
interpretation of Valn,k(x; 0, t) as a crystal character.

Wilson [12] analyzed various statistics on ordered multiset partitions, including inv,
dinv, maj, and minimaj. In particular, he gave a Carlitz type bijection, which proves
equidistributivity of inv, dinv, maj on OPn,k. Rhoades [9] provided a non-bijective proof
that these statistics are also equidistributed with minimaj. Using our new crystal, we can
give a bijective proof of the equidistributivity of the minimaj statistic and the maj statistic
on ordered multiset partitions.
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This extended abstract is organized as follows. In Section 2 we define ordered mul-
tiset partitions and the minimaj and maj statistics on them. In Section 3 we provide a
bijection ϕ from ordered multiset partitions to tuples of semistandard Young tableaux
that will be used in Section 4 to define a minimaj-preserving crystal structure. We con-
clude in Section 5 by showing that the minimaj and maj statistics are equidistributed
using the same bijection ϕ. We refer the reader to [1] for further details and proofs of
our results.

2 Ordered multiset partitions and two statistics

We consider ordered multiset partitions of order n with k blocks. Given a weak composition
ν = (ν1, ν2, . . .) of n into nonnegative integer parts, which we denote ν |= n, let OPν,k
be the set of partitions of the multiset {iνi | i > 1} into k nonempty ordered blocks, such
that the elements within each block are distinct. The weak composition ν is also called
the weight wt(π) of π ∈ OPν,k. Let

OPn,k =
⋃

ν|=n

OPν,k.

The minimaj order, first defined in [4], is a particular reading order for an ordered
multiset partition π = (π1 | π2 | . . . | πk) ∈ OPn,k with blocks πi, obtained as follows.
Start by writing the last block πk in increasing order, and continue to order the remaining
blocks from right to left as follows. Assume πi+1 has been ordered and let bi+1 be the
leftmost letter of that block. If every element of πi is less than or equal to bi+1, then
write πi in the form πi = biβi where bi ∈ Z>0 and βi is an increasing sequence such
that bi < βi ≤ bi+1. (For two sequences α, β of integers, we write α < β to mean that
each element of α is less than every element of β.) Otherwise, πi can be written in the
form πi = biαiβi where bi ∈ Z>0 and αi, βi are (possibly empty) sequences of increasing
integers such that βi ≤ bi+1 < bi < αi. Continue until every block has been ordered. We
consider the last block to be in the form πk = bkαk. See Example 2.1.

A sequence or word w1w2 · · ·wn has a descent in position 1 6 i < n if wi > wi+1. Let
π ∈ OPn,k be in minimaj order. Observe that a descent is either between the largest and
smallest elements of πi or between the last element of πi and the first element of πi+1.
Suppose that π in minimaj order has descents in positions

D(π) = {d1, d1 + d2, . . . , d1 + d2 + · · ·+ d`}

for some ` ∈ [0, k− 1]. The minimaj statistic minimaj(π) of π ∈ OPn,k as given by [4] is

minimaj(π) = ∑
d∈D(π)

d =
`

∑
j=1

(`+ 1− j)dj. (2.1)
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Example 2.1. For π = (157 | 24 | 56 | 468 | 13 | 123) ∈ OP15,6, the minimaj order of π is
π = (571 | 24 | 56 | 468 | 31 | 123). With respect to the minimaj order, we have

b1 = 5, α1 = 7, β1 = 1 b2 = 2, α2 = ∅, β2 = 4 b3 = 5, α3 = 6, β3 = ∅
b4 = 4, α4 = 68, β4 = ∅ b5 = 3, α5 = ∅, β5 = 1 b6 = 1, α6 = 23, β6 = ∅.

The descents for the multiset partition π = (57.1 | 24 | 56. | 468. | 3.1 | 123) occur at
positions D(π) = {2, 7, 10, 11} and are designated with periods. Hence ` = 4, d1 = 2,
d2 = 5, d3 = 3, d4 = 1 and d5 = 4, and minimaj(π) = 2 + 7 + 10 + 11 = 30.

To define the major index of π ∈ OPn,k, we consider the word w obtained by ordering
each block πi in decreasing order, called the major index order [12]. The last element in
the block πj is assigned the index j, and the remaining elements in πj are assigned the
index j− 1, for j = 1, . . . , k. Writing the indices from left to right creates a word v. Then

maj(π) = ∑
j : wj>wj+1

vj. (2.2)

Example 2.2. Continuing Example 2.1, note that the major index order of π = (157 | 24 |
56 | 468 | 13 | 123) ∈ OP15,6 is π = (751 | 42 | 65 | 864 | 31 | 321). Writing the word v
underneath w (omitting v0 = 0), we obtain

w = 751 | 42 | 65 | 864 | 31 | 321
v = 001 | 12 | 23 | 334 | 45 | 556,

so that maj(π) = 0 + 0 + 1 + 2 + 3 + 3 + 4 + 4 + 5 + 5 = 27.

Note that throughout this section, we could have also restricted ourselves to ordered
multiset partitions with letters in {1, 2, . . . , r} instead of Z>0. That is, let ν = (ν1, . . . , νr)

be a weak composition of n and let OP (r)
ν,k be the set of partitions of the multiset {iνi |

1 6 i 6 r} into k nonempty ordered blocks, such that the elements within each block are
distinct. Let

OP (r)
n,k =

⋃
ν|=n

OP (r)
ν,k.

This restriction will be important when we discuss the crystal structure on ordered mul-
tiset partitions.

3 Bijection with tuples of semistandard Young tableaux

In this section, we describe a bijection from ordered multiset partitions to tuples of
semistandard Young tableaux that allows us to impose a crystal structure on the set of
ordered multiset partitions in Section 4.
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Recall that a semistandard Young tableau T is a filling of a (skew) Young diagram (also
called the shape of T) with positive integers that weakly increase across rows and strictly
increase down columns. The weight of T is the tuple wt(T) = (a1, a2, . . .), where ai
records the number of letters i in T. The set of semistandard Young tableaux of shape λ,
where λ is a (skew) partition, is denoted by SSYT(λ). If we want to restrict the entries
in the semistandard Young tableau from Z>0 to a finite alphabet {1, 2, . . . , r}, we denote
the set by SSYT(r)(λ).

To state our bijection, we need the following notation. For fixed positive integers
n and k, assume D = {d1, d1 + d2, . . . , d1 + d2 + · · · + d`} ⊆ {1, 2, . . . , n − 1} and I =
{i1, i1 + i2, . . . , i1 + i2 + · · ·+ i`} ⊆ {1, 2, . . . , k − 1} are sets of ` distinct elements each.
Define d`+1 := n− (d1 + · · ·+ d`) and i`+1 := k− (i1 + · · ·+ i`).

Proposition 3.1. For fixed positive integers n and k and sets D and I as above, let

M(D, I) = {π ∈ OPn,k | D(π) = D, and the descents occur in πi for i ∈ I}.

Then the following map is a weight-preserving bijection:

ϕ : M(D, I)→ SSYT(1c1)× · · · × SSYT(1c`)× SSYT(γ)

π 7→ T1 × · · · × T` × T`+1
(3.1)

where

(i) γ = (1d1−i1 , i1, . . . , i`+1) is of skew ribbon shape and cj = d`+2−j − i`+2−j for 1 6 j 6 `.

(ii) The skew ribbon tableau T`+1 of shape γ is constructed as follows:

• The entries in the first column of T`+1 beneath the first box are the first d1 − i1
elements of π in increasing order from top to bottom, excluding any bj in that range.

• The remaining rows d1 − i1 + j of T`+1 for 1 6 j 6 `+ 1 are filled with
bi1+···+ij−1+1, bi1+···+ij−1+2, . . . , bi1+···+ij .

(iii) The column tableau Tj for 1 6 j 6 ` of shape 1cj is filled with the elements of π from
the positions d1 + d2 + · · ·+ d`−j+1 + 1 through and including position d1 + d2 + · · ·+
d`−j+2, but excluding any bi in that range.

Note that in item (ii), the rows of γ are assumed to be numbered from bottom to
top and are filled starting with row d1 − i1 + 1 and ending with row d1 − i1 + `+ 1 at
the top. Also observe that since the entries of π are mapped bijectively to the entries of
T1× T2× · · · × T`+1, the map ϕ preserves the total weight wt(π) = (p1, p2, . . .) 7→ wt(T),
where pi is the number of entries i in π for i ∈ Z>0, so it can be restricted to a bijection

ϕ : M(D, I)(r) → SSYT(r)(1c1)× · · · × SSYT(r)(1c`)× SSYT(r)(γ),

where M(D, I)(r) = M(D, I) ∩OP (r)
n,k.

The next example illustrates the map ϕ.
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Example 3.2. The ordered multiset partition π = (124 | 45. | 3 | 46.1 | 23.1 | 1 | 25) ∈
OP15,7 in minimaj order has the following data: ` = 3, (d1, d2, d3, d4) = (5, 3, 3, 4) and
(i1, i2, i3, i4) = (2, 2, 1, 2). Then

π = (124 | 45. | 3 | 46.1 | 23.1 | 1 | 25) 7→ 1
5
× 1

3
× 6 × 1 2

2
3 4

1 4
2
4
5

.

Outline of the proof of Proposition 3.1. We explain how the map works for ` = 0. In this
case, π has no descents and the map ϕ takes π to the semistandard tableau T = T1 of
hook shape γ = (1n−k, k) where the first row consists of the numbers b1, . . . , bk, and the
remainder of the first column is filled by the sequences β1, β2, . . . , βk−1, αk in that order.

To reverse this map, suppose T is a hook shape tableau with entries b1, . . . , bk in
its first row and b1, t1, . . . , tn−k in its first column. The inverse ϕ−1 maps T to the set
partition π whose first block is π1 = b1β1 where β1 = t1, . . . , tm1 such that t1 < · · · <
tm1 ≤ b2. Continue in this way for each block πi and set the last block to πk = bkαk
where αk = tmk−1+1, . . . , tn−k, so that π is an ordered multiset partition with no descents.

In the general case for ` > 1, we describe how ϕ is reversed. The leftmost entry
of each block of π = ϕ−1(T) is recovered from the entries of the skew ribbon tableau
T`+1 (excluding the bottom d1 − i1 entries in the first column of γ), read from left to
right. Now, the remaining entries in the (` + 1)-tuple of tableaux T1 × · · · × T`+1 are
arranged in columns, and the last entry in each column is a member of αj of some block
πj = bjβ jαj. The set I specifies that the bottommost entry in T`+1−j belongs to the block
πi1+···+ij , and that entry is the position where a descent occurs in that block. Finally,
since there are no more descent positions in π, there is a unique way to split up the
remaining entries in T`+1−j by filling the blocks of π from left to right, to complete the
reconstruction of the ordered multiset partition π = (π1 | π2 | · · · | πk).

For a partition λ, the Schur function sλ(x) is defined as

sλ(x) = ∑
T∈SSYT(λ)

xwt(T). (3.2)

Similarly for m > 1, the m-th elementary symmetric function em(x) is given by

em(x) = ∑
16j1<j2<···<jm

xj1 xj2 · · · xjm .

As an immediate consequence of Proposition 3.1, we have the following symmetric func-
tion identity.
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Corollary 3.3. Assume D ⊆ {1, 2, . . . , n− 1} and I ⊆ {1, 2, . . . , k− 1} are sets of ` distinct
elements each and let M(D, I), γ and cj for 1 6 j 6 ` be as in Proposition 3.1. Then

∑
π∈M(D,I)

xwt(π) = sγ(x)
`

∏
j=1

ecj(x).

4 Crystal on ordered multiset partitions

4.1 Crystal structure

Denote the set of words of length n over the alphabet {1, 2, . . . , r} byW (r)
n . The setW (r)

n

can be endowed with an slr-crystal structure as follows. The weight wt(w) of w ∈ W (r)
n

is the tuple (a1, . . . , ar), where ai is the number of letters i in w. The Kashiwara raising
and lowering operators

ei, fi : W (r)
n →W (r)

n ∪ {0} for 1 6 i < r

are defined as follows. Associate to each letter i in w a closed parenthesis “)” and to
each letter i + 1 in w an open parenthesis “(”. Then ei changes the i + 1 associated to the
leftmost unmatched “(” to an i; if there is no such letter, ei(w) = 0. Similarly, fi changes
the i associated to the rightmost unmatched “)” to an i + 1; if there is no such letter,
fi(w) = 0.

For λ a (skew) partition, the slr-crystal action on SSYT(r)(λ) is induced by the crystal
on W (r)

|λ| , where |λ| is the number of boxes in λ, by considering the row-reading word

row(T) of T ∈ SSYT(r)(λ), which is the word obtained from T by reading the rows from
bottom to top, left to right. In the same spirit, an slr-crystal structure can be imposed on

SSYT(r)(1c1 , . . . , 1c` , γ) := SSYT(r)(1c1)× · · · × SSYT(r)(1c`)× SSYT(r)(γ)

by concatenating the reading words of the tableaux in the tuple. This yields crystal
operators

ei, fi : SSYT(r)(1c1 , . . . , 1c` , γ)→ SSYT(r)(1c1 , . . . , 1c` , γ) ∪ {0}.

Via the bijection ϕ of Proposition 3.1, this also imposes crystal operators on ordered
multiset partitions

ẽi, f̃i : OP (r)
n,k → OP

(r)
n,k ∪ {0}

as ẽi = ϕ−1 ◦ ei ◦ ϕ and f̃i = ϕ−1 ◦ fi ◦ ϕ.
An example of a crystal structure on OP (r)

n,k is given in Figure 1.
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(32 | 23)

(1 | 123)

(31 | 12)(23 | 12)

(31 | 13)

(2 | 123)

(312 | 2)

(12 | 23)

(23 | 13) (3 | 123)(123 | 3)

(231 | 1) (21 | 12)

(31 | 23)

(21 | 13)

1

2 22 1

2

2

1

2

1

1

1

Figure 1: The crystal structure on OP (3)
4,2 . The minimaj of the connected components

are 2, 0, 1, 1 from left to right.

Theorem 4.1. The operators ẽi, f̃i, and wt impose an slr-crystal structure on OP (r)
n,k. In addition,

ẽi and f̃i preserve the minimaj statistic.

Proof. By construction, the operators ẽi, f̃i, and wt impose an slr-crystal structure since ϕ

is a weight-preserving bijection. The Kashiwara operators ẽi and f̃i preserve the minimaj

statistic, since by Proposition 3.1, the bijection ϕ restricts to M(D, I)(r) which fixes the
descents of the ordered multiset partitions in minimaj order.

As shown in [1], the crystal operators ẽi, f̃i can also be explicitly described on OPn,k.

4.2 Schur expansion

The character of a crystal B is defined as chB = ∑b∈B xwt(b). Denote by B(λ) the sl∞-
crystal on SSYT(λ) defined above. This is a connected highest weight crystal with
highest weight λ, and the character chB(λ) = sλ(x) is the Schur function defined in
Equation (3.2). Similarly, denoting by B(r)(λ) the slr-crystal on SSYT(r)(λ), its character
is the Schur polynomial chB(r)(λ) = sλ(x1, . . . , xr). Let us define

Val
(r)
n,k(x; 0, t) = ∑

π∈OP (r)
n,k+1

tminimaj(π)xwt(π),

which satisfies Valn,k(x; 0, t) = Val
(r)
n,k(x; 0, t) for r > n, where Valn,k(x; 0, t) is as in (1.1).

As a consequence of Theorem 4.1, we now obtain the Schur expansion of Val(r)n,k(x; 0, t).
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Corollary 4.2. We have

Val
(r)
n,k−1(x; 0, t) = ∑

π∈OP (r)
n,k

ẽi(π)=0 ∀ 16i<r

tminimaj(π)swt(π).

Example 4.3. The crystal OP (3)
4,2 , displayed in Figure 1, has four highest weight elements

with weights (2, 1, 1), (2, 1, 1), (2, 1, 1), (2, 2) from left to right. Hence, we obtain the
Schur expansion

Val
(3)
4,1 (x; 0, t) = (1 + t + t2) s(2,1,1)(x) + t s(2,2)(x).

5 Equidistributivity of the minimaj and maj statistics

In this section, we describe a bijection ψ : OPn,k → OPn,k in Theorem 5.8 with the
property that minimaj(π) = maj(ψ(π)) for π ∈ OPn,k. This proves the link between
minimaj and maj that was missing in [12]. We can interpret ψ as a crystal isomorphism,
where OPn,k on the left is the minimaj crystal of Section 4 and OPn,k on the right is
viewed as a crystal of k columns with elements written in major index order.

The bijection ψ (see Theorem 5.8) is the composition of ϕ of Proposition 3.1 with a
certain shift operator L (see Definition 5.2). When applying ϕ to π ∈ OPn,k, we obtain the
tuple T• = T1 × · · · × T`+1. We would like to view each column in the tuple of tableaux
as a block of a new ordered multiset partition. However, note that some columns could
be empty, namely if cj = d`+2−j − i`+2−j in Proposition 3.1 is zero for some 1 6 j 6 `.
For this reason, let us introduce the set of weak ordered multiset partitionsWOPn,k, where
we relax the condition that all blocks need to be nonempty sets.

Define read(T•) as the weak ordered multiset partition whose blocks are obtained
from T• by reading the columns from the left to the right and from the bottom to the
top. Note that given π = (π1|π2| · · · |πk) ∈ OPn,k in minimaj order, read(ϕ(π)) is a
weak ordered multiset partition in major index order. The map read is invertible.

Example 5.1. For π = (1 | 56. | 4. | 37.12 | 2.1 | 1 | 34) ∈ OP13,7, in minimaj order, we
have minimaj(π) = 22 and

T• = ϕ(π) = 1
4
× 1

2
× 7 ×∅× 1 3

2
3
4

1 5
6

.

Then π′ = read(T•) = (4.1 | 2.1 | 7. | ∅ | 6.1 | 5.4.3.2.1 | 3).
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Definition 5.2. We define the left shift operation L on π′ ∈ I = {read(ϕ(π)) | π ∈ OPn,k}
as follows. Suppose π′ has m > 0 blocks π′pm , . . . , π′p1

that are either empty or have a
descent at the end, and 1 6 pm < · · · < p2 < p1 < k. Set L(π′) = L(m)(π′), where L(i)

for 0 6 i 6 m are defined as follows:

1. Set L(0)(π′) = π′.

2. Suppose L(i−1)(π′) for 1 6 i 6 m is defined. By induction, the pi-th block of
L(i−1)(π′) is π′pi

. Let Si be the sequence of elements starting immediately to the
right of block π′pi

in L(i−1)(π′) up to and including the pi-th descent after the block
π′pi

. Let L(i)(π′) be the weak ordered multiset partition obtained by moving each
element in Si one block to its left.

Example 5.3. Continuing Example 5.1, we have π′ = (4.1 | 2.1 | 7. | ∅ | 6.1 | 5.4.3.2.1 | 3),
in major index order. We have m = 2 with p2 = 3 < 4 = p1, S1 = 61543, S2 = 6154 and

L(1)(π′) = (4.1 | 2.1 | 7. | 6.1 | 5.4.3. | 2.1 | 3),

L(π′) = L(2)(π′) = (4.1 | 2.1 | 7.6.1 | 5.4. | 3. | 2.1 | 3).

Note that maj(π′) = 28, maj(L(1)(π′)) = 25, and maj(L(π′)) = 22 = minimaj(π).

Proposition 5.4. The left shift operation L : I → OPn,k is well defined.

Definition 5.5. We define the right shift operation R on µ ∈ OPn,k in major index order
as follows. Suppose µ has m > 0 blocks µq1 , . . . , µqm that have a descent at the end and
q1 < q2 < · · · < qm. Set R(µ) = R(m)(µ), where R(i) for 0 6 i 6 m are defined as follows:

1. Set R(0)(µ) = µ.

2. Suppose R(i−1)(µ) for 1 6 i 6 m is defined. Let Ui be the sequence of qi elements
to the left of, and including, the last element in the qi-th block of R(i−1)(µ). Let
R(i)(µ) be the weak ordered multiset partition obtained by moving each element in
Ui one block to its right. Note that all blocks to the right of the (qi + 1)-th block
are the same in µ and R(i)(µ).

Example 5.6. Continuing Example 5.3, let µ = L(π′) = (4.1 | 2.1 | 7.6.1 | 5.4. | 3. | 2.1 | 3).
We have m = 2 with q1 = 4 < 5 = q2, U1 = 6154, U2 = 61543 and

R(1)(µ) = (4.1 | 2.1 | 7. | 6.1 | 5.4.3. | 2.1 | 3),

R(µ) = R(2)(µ) = (4.1 | 2.1 | 7. | ∅ | 6.1 | 5.4.3.2.1 | 3),

which is the same as π′ in Example 5.3.
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Proposition 5.7. The right shift operation R is well defined and is the inverse of L.

We extend the definition of the major index in a natural way to the set WOPn,k: the
last element in a nonempty block π′j is assigned the index j, and the remaining elements
in π′j are assigned the index j− 1, for j = 1, . . . , k where π′j 6= ∅.

Theorem 5.8. Let ψ : OPn,k → OPn,k be the map defined by

ψ(π) = L(read(ϕ(π))) for π ∈ OPn,k in minimaj order.

Then ψ is a bijection that maps ordered multiset partitions in minimaj order to ordered multiset
partitions in major index order. Furthermore, minimaj(π) = maj(ψ(π)).

Proof outline. The map ψ is a bijection since each of the maps ϕ, read, and L is invertible,
so it remains to show that minimaj(π) = maj(ψ(π)) for π ∈ OPn,k in minimaj order.

In the simple case that π′ = read(ϕ(π)) has no empty blocks and no descents at the
end of any block, then L(π′) = π′, so that π′ = ψ(π). Then

maj(π′) =
`

∑
j=1

(`+ 1− j)(dj − ij − 1) + `+
`

∑
j=1

(`+ ηj − j), (5.1)

where dj, ij, ηj = i1 + · · ·+ ij are defined in Proposition 3.1 for π. Comparing with (2.1),

maj(π′) = minimaj(π)−
(
`+ 1

2

)
−

`

∑
j=1

(`+ 1− j)ij +

(
`+ 1

2

)
+

`

∑
j=1

ηj = minimaj(π),

proving the claim.
In the general case that π′ = read(ϕ(π)) has a descent at the end of block π′p (respec-

tively if π′p = ∅), this will contribute an extra p to the major index in (5.1) (respectively
p − 1). Hence, with the notation of Definition 5.2, we have maj(π′) = minimaj(π) +

∑m
i=1 pi − e, where e is the number of empty blocks in π′. Since ψ(π) = L(π′), then

noting that we have for 1 6 i 6 m

maj(L(i)(π′)) =

{
maj(L(i−1)(π′))− pi + 1, if π′pi

= ∅,
maj(L(i−1)(π′))− pi, if π′pi

has a descent at the end of its block,

the claim follows.

Acknowledgements

Our work on this project began at the workshop Algebraic Combinatorixx 2 at the Banff
International Research Station (BIRS) in May 2017. “Team Schilling,” as our group of



12 Benkart, Colmenarejo, Harris, Orellana, Panova, Schilling, Yip

authors is known, would like to extend thanks to the organizers of ACxx2, to BIRS for
hosting this workshop, and to the Mathematical Sciences Research Institute (MSRI) for
sponsoring a follow-up meeting of some of the group members at MSRI in July 2017 sup-
ported by the National Science Foundation under Grant No. DMS–1440140. We would
like to thank Meesue Yoo for early collaboration and Jim Haglund, Brendon Rhoades
and Andrew Wilson for fruitful discussions. This work benefited from computations
and experimentations in Sage [10].

References

[1] G. Benkart, L. Colmenarejo, P.E. Harris, R. Orellana, G. Panova, A. Schilling, and M. Yip. “A
minimaj-preserving crystal on ordered multiset partitions”. Adv. in Appl. Math. 95 (2018),
pp. 96–115. DOI: 10.1016/j.aam.2017.11.006.

[2] D. Bump and A. Schilling. Crystal bases. Representations and combinatorics. World Scien-
tific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, pp. xii+279.

[3] E. Carlsson and A. Mellit. “A proof of the shuffle conjecture”. J. Amer. Math. Soc. 31.3 (2018),
pp. 661–697. DOI: 10.1090/jams/893.

[4] J. Haglund, J.B. Remmel, and A.T. Wilson. “The Delta Conjecture”. Trans. Amer. Math. Soc.
370.6 (2018), pp. 4029–4057. DOI: 10.1090/tran/7096.

[5] J. Haglund, B. Rhoades, and M. Shimozono. “Ordered set partitions, generalized coinvari-
ant algebras, and the Delta conjecture”. Adv. Math. 329 (2018), pp. 851–915. URL.

[6] J. Haglund, M. Haiman, N. Loehr, J.B. Remmel, and A.P. Ulyanov. “A combinatorial for-
mula for the character of the diagonal coinvariants”. Duke Math. J. 126.2 (2005), pp. 195–
232. DOI: 10.1215/S0012-7094-04-12621-1.

[7] M. Kashiwara. “Crystalizing the q-analogue of universal enveloping algebras”. Comm.
Math. Phys. 133.2 (1990), pp. 249–260. DOI: 10.1007/BF02097367.

[8] M. Kashiwara. “On crystal bases of the Q-analogue of universal enveloping algebras”. Duke
Math. J. 63.2 (1991), pp. 465–516. DOI: 10.1215/S0012-7094-91-06321-0.

[9] B. Rhoades. “Ordered set partition statistics and the Delta Conjecture”. J. Combin. Theory
Ser. A 154 (2018), pp. 172–217. DOI: 10.1016/j.jcta.2017.08.017.

[10] Sage Mathematics Software (Version 8.0). http://www.sagemath.org. The Sage Developers.
2017.

[11] J.R. Stembridge. “A local characterization of simply-laced crystals”. Trans. Amer. Math. Soc.
355.12 (2003), pp. 4807–4823. DOI: 10.1090/S0002-9947-03-03042-3.

[12] A.T. Wilson. “An extension of MacMahon’s equidistribution theorem to ordered multiset
partitions”. Electron. J. Combin. 23.1 (2016), Paper 1.5, 21 pp. URL.

https://doi.org/10.1016/j.aam.2017.11.006
https://doi.org/10.1090/jams/893
https://doi.org/10.1090/tran/7096
https://doi.org/10.1016/j.aim.2018.01.028
https://doi.org/10.1215/S0012-7094-04-12621-1
https://doi.org/10.1007/BF02097367
https://doi.org/10.1215/S0012-7094-91-06321-0
https://doi.org/10.1016/j.jcta.2017.08.017
http://www.sagemath.org
https://doi.org/10.1090/S0002-9947-03-03042-3
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p5

	Introduction
	Ordered multiset partitions and two statistics
	Bijection with tuples of semistandard Young tableaux
	Crystal on ordered multiset partitions
	Crystal structure
	Schur expansion

	Equidistributivity of the minimaj and maj statistics

