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Abstract. In this paper, we count acyclic and strongly connected uniform directed
labeled hypergraphs. For these combinatorial structures, we introduce a specific gen-
erating function allowing us to recover and generalize some results on the number of
directed acyclic graphs and the number of strongly connected directed graphs.

Résumé. Dans cet article, nous comptons les composantes acycliques et fortement
connexes des hypergraphes uniformes dirigés étiquetés. Pour ces structures combi-
natoires, nous introduisons une classe spécifique de fonctions génératrices qui nous
permet de retrouver et de généraliser les résultats sur le nombre de graphes dirigés
acycliques et le nombre de digraphes fortement connexes.
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1 Introduction

A directed graph or digraph consists of a finite node set V with a subset E of V × V (the
arcs) and we do not allow neither loops nor multiple arcs.

In the seventies, several researchers including Liskovets [16, 17], Robinson [26, 23],
Stanley [27] or Wright [28] studied enumerative aspects of important families of digraphs
including Directed Acyclic Graphs (DAGs) or strongly connected digraphs.

A hypergraph is a generalization of a graph in which an (hyper)edge can join any
number of nodes. Hypergraphs have been extensively studied [4, 5] as they are very
useful to model concepts and structures in various aspects of computer science (combi-
natorial optimization, algorithmic game theory, machine learning, constraint satisfaction
problem, data mining and indexing, and more).

In this paper, we deal with directed hypergraphs or simply dihypergraphs (also known
as And/Or graphs [19, 15, 9]). As far as we know, these objects have been introduced in
the Computer Science literature by Boley as a representation language [6]. For detailed
surveys on directed hypergraphs, algorithms and applications, we refer the reader to
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the papers of Gallo, Longo, Pallotino and Nguyen [9] and of Ausiello and Luigi [2].
Following the recent enumerative results on digraphs of de Panafieu and Dovgal [7],
Archer, Gessel, Graves and Liang [1], our aim in this article is to study enumerative
aspects of some families of dihypergraphs.

2 Definitions

Terminology for dihypergraphs is established in the book of Harary, Norman, and
Cartwright [13] or in the paper of Gallo, Longo, Pallottino, and Nguyen [9].

A directed (labeled) hypergraph (or simply dihypergraph) H is a pair (V , E) where
V is a non-empty finite set of nodes and E is a set of ordered pairs of non-empty subsets
of V called directed hyperedges (or hyperarcs). That means a hyperarc e is an ordered pair
(T(e), H(e)), of disjoint subsets of V such that T(e) 6= ∅, H(e) 6= ∅. T(e) is called the
tail of the hyperarc e while H(e) is its head.

A dihypergraph H = (V , E) is called b-uniform iff for any e ∈ E , |T(e)|+ |H(e)| = b
(that is all hyperarcs are built with the same number of nodes). Clearly, the 2-uniform
dihypergraph is the standard digraph. The dihypergraph (∅, ∅) is called the empty
dihypergraph.

A directed path (or path) Pst of length ` in a dihypergraph H = (V , E), is a sequence of
nodes and hyperarcs Pst =

(
v1 = s, ei1 , v2, . . . , v`, ei` , v`+1 = t

)
where:

s ∈ T(ei1), t ∈ T(ei`) and vj ∈ T(eij−1) ∩ H(eij) for j = 2..`.

Nodes s and t are respectively the origin and the destination of the path Pst and we say
that t is connected to s. The path Pst is said simple if all nodes on the path are distincts
except possibly the origin s and the destination t. A directed cycle (or simply cycle) in a
dihypergraph is a path where the origin and the destination coincide. A dihypergraph
is said acyclic iff it has no cycle.

Given a dihypergraphH = (V , E), we define the relationR on V by uR v if there is a
(directed) path from u to v inH and vice versa. It is easy to show thatR is an equivalence
relation on V . The equivalence classes are called the strongly connected components ofH. A
dihypergraph is strongly connected (or simply strong) if it has a unique strong component.

According to Robinson [26, 23] an out-component of a digraph is a strong component
which cannot be reached from any other strong component. Such a component is called
source strong component by Gessel [1] and source-like strong connected component by de
Panafieu and Dovgal [7]. A source (strong) component is called simply a source if it
contains exactly one node.

Obviously, we have the following Lemma.

Lemma 2.1. Every non-empty dihypergraph has at least a source strong component.
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On the left, a general directed hy-
pergraph with nodes {1, 2, 3, 4, 5, 6, 7}
built with 4 hyperarcs {1, 3} → {5},
{5} → {6, 7}, {7} → {3, 4} and
{1, 2} → {3, 4}. The subset of nodes
{3, 5, 7} forms a directed cycle.
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From the structure drawn above, by re-
moving the hyperarc {1, 2} → {3, 4},
we obtain a 3-uniform directed hyper-
graph. Then, by adding the hyperarcs
{6} → {1, 3}, {1} → {2, 3}, {4} →
{1, 6} and {2, 7} → 4, we get a strongly
connected 3-uniform dihypergraph.

Throughout the rest of this paper, a dihypergraph is a b-uniform directed hyper-
graph. Similarly a hyperarc with b nodes is called simply a hyperarc. Graphs, digraphs
or dihypergraphs are labeled.

3 Hypergraphic genenerating functions

We introduce a new type of generating function called hypergraphic generating function
defined as follow. The variables x and y are reserved to mark nodes and hyperarcs.

Definition 3.1. The hypergraphic generating function (or simply HGF) for the sequence
( fn(y))n≥0 is defined by

F(x, y) :=
∞

∑
n=0

fn(y)
(1 + y)(

n
b)

xn

n!
, (3.1)

where b ≥ 2.
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Our hypergraphic generating function is a generalization of the graphic generating
function (GGF) introduced by Read [22] and Robinson [23]. In particular, the special gen-
erating function of Robinson [23] corresponds to the case b = 2 and y = 1 and the graph-
ical generating function corresponds to the case b = 2. Graphic generating functions are
very useful as shown by the results of Bender, Richmond, Robinson, and Wormald [3],
of Gessel [10], of Gessel and Sagan [12], and very recently of Archer, Gessel, Graves, and
Liang [1] and de Panafieu and Dovgal [7].

For convenience, given a family of dihypergraphs F enumerated by the sequence
( fn(y))n≥0, the exponential generating function (EGF) will be denoted by

f (x, y) :=
∞

∑
n=0

fn(y)
xn

n!
, (3.2)

and its HGF by (3.1). As some additionnal variables may be added for specific pa-
rameters, we often use multivariate generating functions (see Flajolet and Sedgewick [8,
Definition III.4] for multi-index convention).

Definition 3.2. The exponential multivariate generating function of a family F will be
denoted by

f (x, y, u) = ∑
n,p

fn,p(y)up xn

n!
,

and the corresponding multivariate hypergraphic generating function is

F(x, y, u) = ∑
n,p

fn,p(y)

(1 + y)(
n
b)

up xn

n!
,

where u the variable for some source component. Throughout this paper, the quantities
f (x, y, 1) and F(x, y, 1) coincide with f (x, y) and F(x, y) respectively.

We observe that the HGF is obtained by dividing the coefficient of n! xn in the EGF
by (1 + y)(

n
b). This linear operation is named by Robinson [23] as ∆ for the case b = 2

and y = 1. We can use similar notation to convert an EGF to a HGF of family of
dihypergraphs F .

Definition 3.3. Let F be a family of dihypergraphs with EGF f and HGF F. We define
∆y,b as the linear operator on generating functions which transform f into F :

F(x, y) = ∆y,b ( f (x, y)) . (3.3)

Let us remark that the operator ∆y,b acts only w.r.t. the variable x. As an example
of using ∆y,b, consider all sets of empty dihypergraphs (dihypergraph that contains no
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hyperarc). The EGF of such graphs is ∑n≥0 xn/n! and then the associated HGF is

θb(x, y) := ∆y,b

(
∑
n≥0

xn

n!

)
,

=
∞

∑
n≥0

1

(1 + y)(
n
b)

xn

n!
.

(3.4)

Observe that de Panafieu and Dovgal [7] used the exponential Hadamard product to convert
an EGF to a graphic generating function when working on digraphs. Such operation is
simply defined below.

Definition 3.4. The exponential Hadamard product of f (x) = ∑n≥0 fn
xn

n! and g(x) =

∑n≥0 gn
xn

n! is the exponential generating functions of the sequence ( fngn)n≥0. It is de-
noted f (x)� g(x) and we have

f (x)� g(x) = ∑
n≥0

fngn
xn

n!
.

Then, given a family of dihypergraphs F with EGF f and HGF F, the linear operator
∆y,b and the exponential Hadamard product are linked by the equation

F(x, y) = θb(x, y)� f (x, y) = ∆y,b ( f (x, y)) ,

where θb(x, y) is the HGF defined by (3.4).
Now, we introduce the arrow product which already appears in [23, 25, 11]. The

definition of the arrow product of two families of digraphs A and B viewed as symbolic
methods is defined explicitly in [7]. Such definition is extended here to dihypergraphs.

Definition 3.5. The arrow product C of two families of dihypergraphs A and B is the
family that consists in pairs (A, B) with A ∈ A and B ∈ B relabeled so that objects A
and B have disjoint labels and where an arbitrary number of hyperarcs have their tails
belonging to A while their heads belong to B.

The following lemmas extend on dihypergraphs some results on symbolic methods
of EGFs (cf. Flajolet and Sedgewick [8]) and symbolic methods of GGFs as introduced
by de Panafieu and Dovgal [7].

Lemma 3.6. Given two families F and G of dihypergraphs with HGFs F(x, y) and G(x, y), the
HGF of the disjoint union F + G is

F(x, y) + G(x, y),

where x and y mark respectively nodes and hyperarcs.
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Lemma 3.7. Given a family of dihypergraphs F with HGF F, if a variable u marks the number
of some family of source components in the HGF F(x, y, u) the HGF for the elements of F
which have a distinguished subset of source components is F(x, y, u + 1) where x and y mark
respectively nodes and hyperarcs.

The proofs of Lemmas 3.6 and 3.7 are elementary by means of symbolic methods on
EGFs and Definition 3.3 and Definition 3.5.

As an example of using the parameter u for a family of dihypergraphs F , we may
use u to mark the number of sources in the HGF F(x, y, u). Then, F(x, y, 1) is the HGF
of the whole family F without distinguishing if a node is a source or not and F(x, y, 0)
is the HGF of dihypergraphs in F without any source.

Remark 3.8. The substitution of u by u + 1 means that items are marked or left un-
marked. Conversely, replacing u with u− 1 corresponds to an inclusion-exclusion prin-
ciple.

Lemma 3.9. Let F(x, y) and G(x, y) be the HGFs of two families of dihypergraphs F and G. The
HGF of the arrow product (cf. Definition 3.5) of the families F and G is equal to F(x, y) G(x, y).

Proof. Let ( fn(y)) and (gn(y)) be the associated sequences of the two families F and G.
Then, the sequence associated to the HGFs F(x, y)G(x, y) is

cn(y) = (1 + y)(
n
b)n![xn]

(
∑
k≥0

fk(y)

(1 + y)(
k
b)

xk

k!

)(
∑
`≥0

g`(y)

(1 + y)(
`
b)

x`

`!

)
,

=
n

∑
k=0

(
n
k

)
(1 + y)(

n
b)−(

k
b)−(

n−k
b ) fk(y)gn−k(y).

There is a direct combinatorial explanation for the exponent (n
b)− (k

b)− (n−k
b ). Con-

sider two dihypergraphs F and G of sizes k and n − k, and their arrow product H (of
size n). F and G are combined and relabeled. Any of the (n

b) possible sets of nodes
can become a hyperarc from the arrow product, except the (k

b) sets that contain only
nodes from F, and the (n−k

b ) sets that contain only nodes from G. We can also use the
Vandermonde’s identity for any nonnegative integers b, m, n:(

m + n
b

)
=

b

∑
k=0

(
m
k

)(
n

b− k

)
,

to show that (
n
b

)
−
(

k
b

)
−
(

n− k
b

)
= ∑

i+j=b,i,j>0

(
k
i

)(
n− k

j

)
.
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Lemma 3.10. The total number of hyperarcs on n nodes is equal to

(2b − 2)
(

n
b

)
, for b ≥ 2.

Proof. The number of hyperarcs with exactly k tails (0 < k < b) and b− k heads is equal
to (

n
k

)(
n− k
b− k

)
.

Summing over k, we have

b−1

∑
k=1

(
n
k

)(
n− k
b− k

)
= (2b − 2)

(
n
b

)
.

Lemma 3.11. The EGF of all dihypergraphs h(x, y) is

h(x, y) =
∞

∑
n≥0

(1 + y)(2
b−2)(n

b)
xn

n!
. (3.5)

The HGF of all dihypergraphs H(x, y) is

H(x, y) =
∞

∑
n≥0

(1 + y)(2
b−3)(n

b)
xn

n!
. (3.6)

Proof. The proof is obvious from the definition of the HGFs and by Lemma 3.10.

4 Acyclic or strong dihypergraphs

In this Section, we give exact enumerations of acyclic or strongly dihypergraphs. Our
results extend those in [27, 23, 12, 24, 7] on enumeration of these families in digraphs to
dihypergraphs. We notice also that a different approach has been given by Ostroff [20]
to count strong digraphs

Let us recall that Robinson [23, Corollary 1] showed that the counting sequence αn(y)
of acyclic digraphs on n nodes satisfies

∞

∑
n=0

αn(y)
(1 + y)(

n
2)

xn

n!
=

(
∞

∑
n=0

(−1)n

(1 + y)(
n
2)

xn

n!

)−1

.

Theorem 4.1 generalizes this identity for dihypergraphs. Let us define the HGF of the
sequence ((−1)n)n≥0 denoted φ(x, y). We have

φ(x, y) :=
∞

∑
n=0

(−x)n

n! (1 + y)(
n
b)

. (4.1)
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Theorem 4.1. Let an(y) = ∑
(n

b)
q=0 an,qyq be the counting sequence of acyclic dihypergraphs where

an,q denotes the number of acyclic dihypergraphs with n nodes and q hyperarcs, and A(x, y) =

∑∞
n=0

an(y)xn

n!(1+y)(
n
b)

be its associated HGF. A(x, y) satisfies

A(x, y) = φ(x, y)−1, (4.2)

where φ is defined by (4.1).

Proof. Let u be the variable marking the number of sources in the EGF or HGF of all
acyclic dihypergraphs A(x, y, u). By the Lemma 3.7, the HGF for the dihypergraphs
where each source node is either marked, or left unmarked by the variable u is A(x, y, u+
1). Next, the EGF of a set of isolated nodes is exp(ux) (dihypergraph without any hy-
perarc) and so the associated HGF is ∆y,b (exp(ux)). We observe that an acyclic dihyper-
graph with some marked sources can be viewed as an arrow product of a set of nodes
(the marked sources) with an acyclic dihypergraph. This decomposition implies

A(x, y, u + 1) = ∆y,b (exp(ux)) × A(x, y) .

Substituting u by −1 leads to A(x, y, 0) = 1 (the only acycic dihypergraph without a
source is the empty dihypergraph). Since ∆y,b (exp(ux)) = φ(x, y) where φ is given
by (4.1), we get the result.

Remark 4.2. A similar proof can be obtained using first the inclusion-exclusion principle
to get a0(y) = 1 and for n ≥ 1

an(y) =
n

∑
k=1

(−1)k−1
(

n
k

)
(1 + y)(

n
b)−(

k
b)−(

n−k
b )an−k(y) , (4.3)

which can be rewritten as
n

∑
k=0

(−1)n−k
(

n
k

)
(1 + y)(

n
b)−(

k
b)−(

n−k
b )ak = δn0, (4.4)

where δn0 is Kronecker’s symbol, and then by checking that A(x, y)φ(x, y) = 1. In terms
of n, an explicit expression of an(y) can be obtained from the identity A(x, y)φ(x, y) = 1:

an(y) = ∑
j≥0

(−1)j ∑
n1+···+nj=n

(
n

n1, . . . , nj

)
(1 + y)(

n
b)−∑

j
i=1 (

ni
b )

Theorem 4.3. Let S be the set of all strongly connected dihypergraphs, if s is the associated EGF,
then the HGF of all dihypergraphs defined by (3.6) and the EGF s(x, y) verify

H(x, y) =
(
∆y,b (exp (−s(x, y)))

)−1 . (4.5)
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Proof. Let u be a variable marking the number of strongly connected components which
are source components (see Lemma 2.1) in the EGF or in the HGF H(x, y, u) of all dihy-
pergraphs. By the Lemma 3.7, the HGF for the dihypergraphs where each source strong
component is either marked, or left unmarked by the variable u is H(x, y, u + 1). Next,
the EGF of the set of strongly connected components is exp(u s(x, y)) and so the asso-
ciated HGF is ∆y,b (exp(u s(x, y))). We observe that a dihypergraph with some marked
source components can be viewed as an arrow product of a set of strong dihypergraphs
(the marked source components) with a dihypergraph. This decomposition implies

H(x, y, u + 1) = ∆y,b (exp(u s(x, y)))× H(x, y) .

Then replacing u with −1 gives the result since H(x, y, 0) = 1 (the only dihypergraph
without a source component is the empty dihypergraph).

Remark 4.4. Notice also that Theorem 4.3 leads to a recursive relation satisfied by (sn(y))
where sn(y) = n![xn]s(x, y) with s(x, y) is the EGF of all strongly connected dihyper-
graphs. Following the same techniques using by Robinson in [23, Section 4.], we can
easily show that s0(y) = 1 and

sn(y) = λn(y) +
n−1

∑
t=1

(
n− 1

t

)
sn−t(y)λt(y) ,

with

λn(y) = (1 + y)(2
b−2)(n

b) −
n−1

∑
t=1

(
n
t

)
(1 + y)(2

b−2)(t
b)λn−1(y) .

5 Conclusion

Our paper deals with directed uniform hypergraphs by introducing a specific type of
generating functions to obtain generating functions of acyclic and strong dihypergraphs.
We think that many families of dihypergraphs can be enumerated using the same meth-
ods. More generally, what is the most general model of graph-like objects where DAGs
and strongly connected components can be defined and counted using the same tech-
niques?

In future works, it would be interesting to compute the asymptotic number of these
combinatorial structures (as in [3] for dense digraphs and in [21] for sparse random
digraphs) and to study the appearance of strongly connected components (as in [14,
18]) during some random dihypergraphs processes. For example, when enriching the
structures by adding hyperarc one by one, how many hyperarcs are needed to have
asymptotically almost surely structures containing complex strong components?
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