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A POSITIVE-DEFINITE INNER PRODUCT FOR
VECTOR-VALUED MACDONALD POLYNOMIALS

CHARLES F. DUNKL

ABSTRACT. In a previous paper J.-G. Luque and the author (Sem.
Loth. Combin. 2011) developed the theory of nonsymmetric Mac-
donald polynomials taking values in an irreducible module of the
Hecke algebra of the symmetric group Sy. The polynomials are
parametrized by (g,t) and are simultaneous eigenfunctions of a
commuting set of Cherednik operators, which were studied by
Baker and Forrester (IMRN 1997). In the Dunkl-Luque paper
there is a construction of a pairing between (¢~',¢~!)-polynomials
and (g, t)-polynomials, and for which the Macdonald polynomials
form a biorthogonal set. The present work is a sequel with the
purpose of constructing a symmetric bilinear form for which the
Macdonald polynomials form an orthogonal basis and of determin-
ing the region of (g, t)-values for which the form is positive-definite.
Irreducible representations of the Hecke algebra are characterized
by partitions of N. The positivity region depends only on the
maximum hook-length of the Ferrers diagram of the partition.

1. INTRODUCTION

The theory of nonsymmetric Jack polynomials was generalized by
Griffeth [4] to polynomials on the complex reflection groups of type
G (n, p, N) taking values in irreducible modules of the groups. This the-
ory simplifies somewhat for the group G (1,1, N), the symmetric group
of N objects, where any irreducible module is spanned by standard
Young tableaux all of the same shape, corresponding to a partition of
N. Luque and the author [3] developed an analogous theory for vector-
valued Macdonald polynomials taking values in irreducible modules of
the Hecke algebra of a symmetric group. The structure has param-
eters (¢,t) and depends on a commuting set of Cherednik operators
whose simultaneous eigenfunctions are the aforementioned Macdonald
polynomials. The paper showed how to construct the polynomials by
means of a Yang-Baxter graph (see [5]). Also a bilinear form was
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defined which paired polynomials for the parameters (¢~%,¢1) with
those parametrized by (¢,t) and resulted in biorthogonality relations
for the Macdonald polynomials. The present paper is a sequel whose
aim is to define a symmetric bilinear form for which these polynomials
are mutually orthogonal. Some other natural conditions are imposed
on the form to force uniqueness. The form is positive-definite for a
(q,t)-region determined by the specific module.

For purposes of illustration the form is first defined for the scalar case,
and leads to expressions only slightly different from the well-known
hook-product formulas. For the trivial representation of the Hecke al-
gebra, corresponding to the one-part partition, the vector-valued poly-
nomials specialize to the scalar polynomials. Section 3 contains a short
outline of representation theory of the Hecke algebra, the Yang—Baxter
graph of vector-valued Macdonald polynomials and the process leading
to the definition of the symmetric bilinear form, followed by the char-
acterization of (g, t)-values yielding positivity of the form. The details
of the construction of the polynomials and related operators along with
the proofs of their properties are found in [3].

1.1. Notation. Let Ny := {0,1,2,3,...}. The elements of N}’ are
called compositions, and for a = (v, ..., ay) € NY let [a| == 3N a;.
Let Név’+ denote the set of partitions {)\ € Név A N> > )\N},
and let o™ denote the nonincreasing rearrangement of «; for example,
if @« =(1,2,1,4), then a™ = (4,2,1,1). There are two partial orders
on compositions used in this work: for o, 5 € N} the relation a = 3
means o # 3 and 37_ (o — ;) > 0 for 1 < j < N (the dominance
order), and a > § means || = |B] and o = T, or at = T and
a = 3. The rank function for o € N}’ is

(1.1)

ro (1) =#{j o>} +#{j:1<j<i,a;=a}, 1<i<N.

We have a = a7 if and only if r, (i) = ¢ for all 4.

The symmetric group Sy is generated by the adjacent transposi-
tions s; := (i,i+1) for 1 < i < N, where s; acts on an N-tuple
a = (ay,...,an) by a.s; = (...,ai11,a;,...), interchanging entries
#i and # (i +1). For a composition o € NJ the inversion number
is inv(a) == #{(4,j) 1 <i<j< N,y <o} If oy < a;41 then
inv (a.s;) = inv (a) — 1.

The space of polynomials is P := Kz, z9,...,2y], where K :=
Q (g, t) and g, t are transcendental or generic, that is, complex numbers
satisfying ¢ # 1 and ¢%® # 1 for a,b € Z and —N < b < N. For a €
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N
N} we write z* for the monomial [] z{. The space of homogeneous
i=1
polynomials of degree n is defined as P,, := spang {z“ : |a| = n} for
n =20,1,2,.... The group Sy acts on polynomials by permutation of
coordinates, p (x) — (ps;) (x) := p(x.s;).
The Hecke algebra Hy (t) is the associative algebra generated by
{11, Ts,...,Tn_1} subject to the relations

(1.2) (T, + 1)(T; —t) =0,
LTl =Tin Ty, 1<i<N-2,
T, =TT, 1<i<j—1<N-2
The quadratic relation implies 7, = (T, +1—t¢) € Hy (t) . For
generic t there is a linear isomorphism KSy — Hy (t) generated by
S; — TIL
For p € P and 1 <i < N define
p(z) —p(z.si)

1.3 T, = (1—-1t)x;
18 p@Ti= -2

+tp(x.s;).

It can be shown straightforwardly that these operators satisfy the defin-
ing relations of Hy (¢). Also ps; = p (symmetry in (z;, z;41)) if and
only if pT; = tp (because pT; — tp = tf:Tx:ll (p—psi)), and pT; = —p
if and only if p(x) = (tz; — x;11) po (z) where pg € P and pys; = po.
Also x;T; = x;q and 1T; = t.

2. SCALAR NONSYMMETRIC MACDONALD POLYNOMIALS

For f € P define shift, Cherednik and Dunkl operators by (see [1],
and also [3])
fw (.Z’) = f (quvxlax% s ,ZL’N_l) )
(2.1) f& =t TAT - T wTy Ty - T,

fDy = (f = &) fan, D= L fTDT:

Note that & = %Ti&HTi. It is a nontrivial result that D; maps P, to
P.—_1. The operators &; commute with each other and there is a basis of
simultaneous eigenfunctions, the nonsymmetric Macdonald polynomi-
als M,, labeled by o € N} with >-leading term ¢%t°z® with «, 8 € Ny
such that

(2.2) M, (z) = ¢*t"2% + ) Aag (¢, 1) 2"

ar>f

Mo&i = ¢tV O My, 1 < i < N;
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where the coefficients A,p (g,t) are rational functions of (¢,t) whose
denominators are of the form (1 — q“tb). The spectral vector is (, (i) =
gtV —ra(i) 1 < § < N. There is a simple relation between M, and
M,.,, when o; < a1 and p = Gy (i + 1) /¢, (i) = g igral)—rali+l),
namely

1-1
(23) Ma,-ri = Masi - —Mom
L—p

(]_—p)g « (1_p) Q.87
and (.5, = Co-Si- If o = a1 then
(2.5) M, T, =tM,.

The other step needed to construct any M, starting from 1 is the
affine step

(26) Maq;. = TN (Maw) s
ad = (ag,as3,...,an,a1 + 1),
Co@ = (Ca(Q)a"'vCa(N)vqga(l))'

Formulas (2.3) and (2.6) can be interpreted as edges of a Yang—
Baxter graph for generating the polynomials (see [5, Sec. 9]). This

graph has the root (O, [tN*"L]il , 1) and nodes (a, (y, M,). There are
steps (o, Co, Mo) 2 (.84, (o855, Mys,) for aipq > oy given by

1—1

. ~Ma,
1—C(i+1) /¢ (4)

and affine steps (av, Ca, My) — (a®, Caw, Mag) (given by (2.6)).

There is a short proof using Macdonald polynomials that Dy maps
Pn to Py_1: when ay = 0 then o, (N) =N, (, (N) =1 and M, &y =
M,, thus M,Dy = 0; if ay > 1 then the raising (affine) formula is
M, (z) = enMpw (x) where = (an — 1,01, a9, ...,an_1), thus

Ma(l_gN):<1_Ca(N))Maa

which is divisible by z .

Our logical outline is to first state a number of hypotheses to be
satisfied by the inner product, then deduce consequences leading to a
formula which is used as a definition. To finish one has to show that
the hypotheses are satisfied. The presentation is fairly sketchy for the
scalar case which is mostly intended as illustration. The material for
vector-valued Macdonald polynomials is more detailed.

Masi = Maﬂ +
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The hypotheses (B 1) for the symmetric bilinear form (-, -) on P,
with w* .= Ty!, - Ty 'wTy_y - - - Ty, are (for f,g € P):

(2.7) (1,1) =1,

(2.8) (fTig) = (f,9T;), L<i <N,
(2.9) (fén.9) = (f, 9€n),

(2.10) (fDn,g) = (1 — q) {f, zn (qw"w)).

From the definition of w* = Ty, - T & it follows that

(211) <f7 gw*> = <f7 nggil o 'T171£1> = <fglng]§£1 o 'T171>
= (faTr"Tyly,9) = (fw,g).

(It is a trivial exercise to show (fT; ', g) = (f, gT; *).) Here w* is taken
as a symbolic name without claiming that it is the adjoint. Since it is
possible that there is a subspace N of P such that (f,h) = 0 for all
f € Pand h € N, the adjoint of an operator is only defined modulo V.
It follows from (2.8), (2.9) and & = 1T;&1T; that (f&,g) = (f, 9&)
for all f,g € P and all ¢. This implies the mutual orthogonality of
{Ma ca e NY } because the spectral vector (, determines . Implicitly
t € R since the eigenvalues of T; are ¢t,—1. If degf # degg then
(f,9) = 0 because the Macdonald polynomials form a homogeneous
basis. For convenience denote (f, f) = || f||* (no claim is being made
about positivity).

Definition 1. For z € K let

(2.12) u(z) =

Note that u (z71) = u (2).

Proposition 1. Suppose (BF1) holds, a; < a1 and

p= qai+1—aitw(i)—m(i+l)‘

Then
1Mo, |* = w (p) | Mall*
Proof. From equation (2.3) we infer (M T}, My.,) = |[Ma.,||> (by hy-
pothesis (M., M,.s,) = 0), and by equation (2.4) we have
(MoT}; Mas;) = (Ma, Ma.s,T)
= 2D g = uo) Ml D

(1-p)
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Definition 2. For a € N} let
(2.13) & (a) = H u (qaj—aitra(i)—m(j)) )

1<i<j<N,a;<aj
Proposition 2. Suppose (BF1) holds and o € NY. Then ||My+|> =
€ (@) || Mall*.
Proof. Arguing by induction on inv («) it suffices to show that «; <
a1 implies &€ (@) /& (a.s;) = u (g —igra()=ralHD)  The factors
corresponding to pairs (l,j) with [,j # 4,7+ 1 are the same in the
products, and the pairs with just one of 7,7 + 1 are interchanged in
€ (a), & (a.s;). There is only one factor in € («) that is not in £ (a.s;),
namely u (qo‘i“*o‘it“(i)*“(”l)) coming from (7,7 + 1). Thus
€ (@) [|Mal* = € (a.53) [ Maus, |I* - O
Lemma 1. Suppose o € NYY. Then MoeDn = (1 — qCy (1)) Myw.
Proof. By definition we have
MysDy = (1/2N) Mas (1 — &N)

= (1/zn) (1 = Cag (N)) Mag = (1 — q¢a (1)) Mow.
Remark 1. It is incompatible with (2.7), (2.8) and (2.9) to require either
(fDn,g) = ¢(f, zng) with some constant ¢, or (xn f, xng) = (f, g). Let
f = M,e and g = Mpw with |a| = |5]; then (f,zng) = (Moo, Mss)
while

{(/Dn,g) = (1 = q¢a (1)) (Mow, Maw) = (1 — ¢¢a (1)) (Mo, Mgww®).
If  # B then (f,znxg) = 0 but in general (M,, Mgww*) # 0; for
example o = (1,0,0,0) and 5 = (0,1,0,0). For the second part let f =
M,w so that (znf,zng) = (Mas, Msse), while (f, g) = (M, Msgww*).
Proposition 3. Suppose (BF1) holds and o € NY. Then ||Mao|”> =
gl g, |
—q (0% .

Proof. Let g € P with degg = |a|. Then by the previous lemma
(MagDn, g) = (1 = qla (1)) (Maw, g) = (1 = qCa (1)) (Ma, gw’).
Specialize to gw* = M, to obtain
(Moo Dy, My (w*) 1) = (1 — qCo (1)) (M, M,).
By (2.10) we have
(MaoDy, My, (w) ™) = (1 = q) (Moo, zy (M, (w*) ™! w*w))
(1 - q) <Ma<1>> MOAIJ)-
This completes the proof. O
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Next we use (BF1) to derive a formula for ||My]|* for any A € N
Suppose A, > 1 and A\; =0 for ¢ > m. Let
a= (A, ;A A-1,0,...0, M),
B=0m =LA, Amet, 0,2,
so that &« = f®, and v = T = (A1,.. ., A1, Am — 1,0,...). Then
IMAP = € (@) IMlP, IMal® = SR IMg]* and |27 =

£ (B) | Ms|*. The rank vectors for o, 5 are (...,m+1,..., N, m) and
(m,1,2,...,m —1,m+1...) respectively. Then

(2.14)
N A Am+N—m+1
_ Am pi—m _N—m(l_qm)(l_qmt )
el = 11wy = G = e

Cﬁ (1) — qufltN*m’
m—1

£ (B) _ H u (q)\i—)\m—i—ltm—i)
=1

and

1— PtV & ()
l—qg £(B)

(The product & (a) telescopes. If m = N then & (o) = 1.) This is

the key ingredient for an inductive argument. Denote the transpose of

(the Ferrers diagram) \ € Név’+ by X, so that arm (\;4,j) = A\; — j and

leg (\;4,7) = \; — 7, and define the hook product

(215) hq7t (/\, Z) = H (1 _ anrm(i,j)tleg(i,j)> '
(3,)eX

2 2
IMA]]” = [

The changes in the hook product going from A to v come from the
hooks at {(i,A,) : 1 <i<m—1} and {(m,j) : 1 <j < Ay}. Thus

h t ()\ Z) m—1 1— zq/\i—)\mtm—i B
2.16 Dt \ ) T
210 hqs (7; 2) 11 1 — 2 Hmgm—i1 (1-z¢7"),

Am—1

— gt m—J
because [] —=24
=1

1—zgrm—i—1

(1 —2) =1— z2¢™ ! by telescoping (this tele-

scoping property is unique to the scalar case and the norm formulas
for the vector-valued case look quite different). Furthermore

Am—1

m—1
hgt (Nit2) het (7;2) _ f-m H u (qui_’\mtm_i) 1— th)\ .
Byt (7;t2) hgt (s 2) P 1 — zqrm
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Set z = ¢ to obtain

e =

1— g ) Ryt (Astq) hye (7;q)
L—tq* ) ho (vitq) byt (X5 )
and

(2.17)

DAL _ (L1 (150
16,1 1—¢ L—ghn
hae (N @) hae (410) o (L= @) (1= g7 ™)
ha (7 @) hat (X 1q) (1= g*nt) (1 = gmth=m)
— N-2m+1 (1 — qutN—erl) hat (A q) het (7:t9)
1—gq hat (71 @) ha (A tq)
7 Define the generalized ¢,t factorial for A € Név’+ by (z;¢,t), =

N
(zt'7%q),, , where (z;q), :== [T (1 —2¢"").
=1

s

1

]

Theorem 1. Suppose (BF1) holds and X € N, Then

o Pat (A q) (qtNil;q)A
hat (Nigt) (1 —q)
N

k(A =D (N—=2i+1)\.

=1

(2.18) IMA* = ¢*

Proof. The formula gives the trivial result |[1]|* = 1, where My = 1.
One needs only check

(@™ hat), (""" q),
(@ q.t),  (@N ™)y, =1—gmthm
and k(A\) —k(y) =N —2m+ 1. O

Note that k(\) = ZZU:V{QJ (N = Ant1-i) (N —2i+1) > 0. We now
use formula (2.18), together with (M, Mz) = 0 for o # § and || M, || =
E () |My+ |, as definition of the form. It is straightforward to
check properties (2.7), (2.8) and (2.9). For (2.10) we need to show
| Maol* = %ﬂ‘;l) |M,|” (detailed argument in Section 3) and the
formula (fDy,g) = (1 — ¢q) (f, zn (gw*w)). It suffices to prove this for
f =M, and gw* = My with |y| = |8|+1; indeed (M, Dy, Ms (w*)~") =
(M, Dyw™', Mg) and (M,,xxMgw) = (M, Mge). If v = ad for
some « then both terms vanish for @ # [, otherwise the equation



INNER PRODUCT FOR VECTOR-VALUED MACDONALD POLYNOMIALS 9
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tegion of positivity

F1GURE 1. Logarithmic coordinates, N = 4

[Mas|® = == |[M,[|* holds. Tf yy = 0 then M,Dy = 0 and
(M, Mge) =0 (since vy # ).

The last of our concerns here is to determine the (q,t) region of
positivity of (-,-). Inspection of the norm formula shows that there
is an even number of factors of the form 1 — ¢** where @ > 1 and
0 < b < N. There are two possibilities: either each such factor is
positive or each is negative. Always assume ¢,t > 0 and ¢ # 1. If
each is positive then 0 < ¢ < 1 and ¢%® < ¢t*. If 0 < ¢t < 1 then
qt®* < g < 1,orift > 1 then qt* < ¢tV < 1, that is ¢ < t~V. If each
factor is negative then ¢ > 1: if ¢ > 1 then ¢®t* > ¢ > 1, orif 0 <t <1
then ¢%® > qt® > ¢t > 1, that is, ¢ > t=V.

Proposition 4. The inner product (-,-) is positive-definite, that is,
(M,, M,) > 0 for all a € NY provided q,t > 0, and ¢ < min (1,t‘N)
or ¢ > max (1,t7).

Figure 1 is an illustration of the positivity region with N = 4 using
logarithmic coordinates.
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3. VECTOR-VALUED MACDONALD POLYNOMIALS.

These are polynomials whose values lie in an irreducible Hy (t)-
module. The generating relations for the Hecke algebra Hy (t) are
stated in (1.2). For the purpose of constructing a positive symmetric
bilinear form we make the restriction ¢ > 0. Also throughout ¢,t # 0, 1.

3.1. Representations of the Hecke algebra. The irreducible mod-
ules of Hy (t) correspond to partitions of N and are constructed in
terms of Young tableaux (see [2]).

Let 7 be a partition of N, that is, 7 € Név’+ and |7| = N. Thus
T = (11, 72,...) and often the trailing zero entries are dropped when
writing 7. The length of 7is £ (7) = max {i : 7, > 0}. There is a Ferrers
diagram of shape 7 (given the same label), with boxes at points (i, j)
with 1 <4 < /(1) and 1 < j < 7;. A tableau of shape 7 is a filling of
the boxes with numbers, and a reverse standard Young tableau (RSYT)
is a filling with the numbers {1,2,..., N} so that the entries decrease
in each row and each column. Denote the set of RSYT’s of shape 7 by
Y (7) and let V, = spang {S: S € Y ()} with orthogonal basis Y (7)
(recall K = Q(gq,t)). Set n, := dimV, = #Y (7). The formula for the
dimension is a hook-length product. For 1 <i < N and S € Y (1) the
entry i is at coordinates (row (7, S),col (¢, 5)) and the content of the
entry is ¢ (,.5) := col(i,S) — row (,5). Each S € Y (1) is uniquely
determined by its content vector [c (i, S)]~,. For example let 7 = (4, 3)
and S = ;1 2 ;‘) 9 - Then the content vector is [1,3,0,—1,2,1,0].
There is a representation of Hy (t) on V;, also denoted by 7 (slight
abuse of notation). The description will be given in terms of the actions
of {T;} on the basis elements.

Definition 3. The representation T of Hy (t) is defined by the action
of the generators specified as follows: for 1 <i < N and S € Y (1),
(1) if row (i,S) =row (i + 1, S) (implying col (i, S) = col (i + 1, 5)+
1L andc(i,S)—c(i+1,5) = 1) then
St (1) =
(2) if col (i,5) =col (i + 1,5) (zmplymgrow (i,5) =row (i + 1,5)+
1L and c(i,S) —c(i+1,5) = —1) then
St(T) = =5;

(3) if row (i,S) < row (i + 1,5) and col (i, S) > col (i + 1,5) then
c(i,S) —c(i+1,8) > 2; the tableau S obtained from S by
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exchanging i and i + 1, is an element of Y (1) and
t—1
1 — ¢e(i+1,8)—c(i,9)
(4) if ¢(i,8) —c(i+1,9) < =2, thus row (i,S) > row (i + 1, 5)
and col (i,5) < col (i + 1,5), then withb = ¢ (i,S)—c (i + 1, 5),
t (tb+1 _ 1) (tbfl _ 1)
(t — 1) t—1

ST(T;) =59 +

S7(T,) =

The formulas in (4) are consequences of those in (3) by interchang-
ing S and S and applying the relations (7 (T;) + I) (7 (T;) — tI) = 0
(where I denotes the identity operator on V). There is a partial order
on Y (1) related to the inversion number, namely

(3.1) v (S)i=#{(i,j):1<i<j<N,c(,8) >c(jS)+2},

so inv (S®) = inv (S) — 1 in (3) above. The inv-maximal element Sy of
Y (7) has the numbers N, N —1,...,1 entered column-by-column, and
the inv-minimal element Sy of ) (7) has the numbers NN —1,...,1
entered row-by-row. The set ) (1) can be given the structure of a
Yang-Baxter graph, with root Sy, sink S; with arrows labeled by 7T;
joining S to S™ as in (3). Some properties can be proved by induction

on the inversion number. Recall u (z) = % =u(z71).

Definition 4. The bilinear symmetric form (-,-)o on V, is defined to
be the linear extension of

(3.2) (8,8 = b5, H u (eGS0
1<J
C(j,S)—C(i,S)ZQ

Proposition 5. Suppose f,g € V.. Then (f7(T;),9)0 = (f, 97 (T3))o
for'1 < i < N. Ifc(i,S) —c(i+1,5) > 2 for some i,S then
<S(i)7 S(z‘)> (tc(z ,S8)—c(i+1,5) ) <S S>

Proof. 1f row (i,5) = row (i + 1,.5) or col (i, S) = col (i + 1,.5) then
(ST(T;),S)0 =1t(S,S)o = (5,57 (T}))o
(ST(Ti), S)o = —(5,5)0 = (5,57 (Ti))o

respectively. If ¢(i,5) — c(i + 1 ) >2and b=c(i+1,5) —c(i9)
then (S, S0} /(S,S)o = u (1~ ) in the product the only difference
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is the term (i,7 + 1), appearing in (S@, S@)y). Then
t—1
1—1tb

(ST(T2), 5D)g = (SO, 8D + ——(SW, §)g = (5D, 5D,

. (ot —1) (1 -1 tt—=1),
(597 (7). 5 - @ z(l) Vs )0+ tﬁfl)w ), )
t (tb+1 _ 1) (tb_l _ 1)
= g (S, )0 =u (t°) (S, S)o,
thus (S7(T;),SD)g = (SU7(T;),S). These statements imply that
(fT(L3) . 9)0 = (f. g7 (T}))o for f,g € V. U

Furthermore if ¢ > 0 then (S,S)y > 0; each term is of the form
(t—tm)(1—tm+1)
(1—tm)?
depending on 0 < ¢t < 1 or t > 1 respectively (the limit as ¢ — 1 is

m 21 > 0). Denote (f, f)o = || f]|§ for f € V.

m2
There is a commutative set of Jucys—Murphy elements in Hy (t)

which are diagonalized with respect to the basis Y (7).

with m > 2; either all parts are positive or all are negative

Definition 5. Set ¢n =1 and ¢; := %TigzﬁiHTi for1<i<N.

Proposition 6. Suppose 1 < i < N and S € Y (7). Then St (¢;) =
@S g,

Proof. Arguing inductively suppose that ST (¢i.) = t°0+198 for all
S € Y (7); this is trivially true for i = N—1since ¢ (N, S) = 0 and ¢y =
1. Ifrow (i, S) = row (i + 1,.S) then S7 (¢;) = 157 (1) 7 (¢iz1) 7 (T3) =
LS and ¢ (i,5) = c¢(i+1,8) + 1. If col (4, 5) = col (i + 1, 9)
then S7(¢;) = 187 (T3) 7 (¢i1) 7 (L) = 119G and ¢(i,S) =
c(i+1,5)—1 (since ST (T;) = —S). Suppose ¢ (i,5)—c(i+1,5) > 2.
Then the matrices T, ® of 7 (T;), 7 (¢i41) respectively with respect to
the basis [S, 5] are

_ 1=t 1 4e(i+1,9) 0

1—

T = [ (1=pt)(t=p) p(1=t) ] , &= { 0 e ] )
(1-p) 1-p

i+1,9)—c(i,S

hs)

N

). A simple calculation shows

1 tc(i,S) 0
¥T<DT = |: O tc(i—i—l,S)

where p = t

0

3.2. Polynomials and operators. Let P, := P ® V,. The equation
deg (f) = nmeans f € P,®V,. The action of Hy () and the operators
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are defined as follows: with p e P,.S € Y (7) and 1 <i < N,
(3.3)
(p(z) @) Ty = (1—1t)wip
(3.4
(3.

®S+p(r.s;) @ ST(T),

p(z) —p(r.s)
Ti — Tiy1
wi="T1Ty--Tn_1,

w —w
o B W

(3. Go=t""T - T 'wTy_y - T,

)
)
() @ S)w :=p(qrN,T1,...,2ny_1) ® ST (W),
)
(3.7)

1
DN = (1 - gN) /iL‘N, Dz = ¥T1DZ+1TZ
By the braid relations we have

Tijw =T TinTiTiTiyo - Ty
=T, - LT TiTi - Thoy = TG,

for 1 <17 < N —1. It follows that T, ;w = wT; acting on P,.
The operators {§;} mutually commute and the simultaneous polyno-
mial eigenfunctions are the vector-valued (nonsymmetric) Macdonald
polynomials. The factor ¢tV in ¢ appears to differ from the scalar
case, but if 7 = (IV), the trivial representation, then St (7;) = tS (the
unique RSYT of shape (N)) and St (w) = t¥~1S, and thus & coin-
cides with (2.1). The operator ; acting on constants coincides with
I @7 (i)
108 &=t"VoSr (Tt - Ty '\ Ty - Ty 1Ty - T)

=+ NgSr (Ty - Ty Tn_1 - Ty)
=1® 57 (¢) =t (12 9).

For each o € N and S € ) (7) there is an {&;} eigenfunction

(38)  Mus () =n(a,8)2*® ST (Ra)+ Y 2”@ Baps (1),

ar>f

where 7 (o, S) = ¢ with a,b € Ny, Ry, € Hy (t), Baps(q,t) €
V.. Furthermore R, is an analog of r, (see [3, p. 9]); if @ € N)"" then
R, =1, and if a; < ;41 then R, s, = R,T; (there is a definition of R,
below). Furthermore

(39) ]\40(’55z <aS( ) ,S) 1 < Z < N

Ca,s (1) = qath(Ta(z),S)'
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These polynomials are produced with the Yang-Baxter graph. The
typical node (labeled by (a,.S)) is

(05 S Ca S Raa Ma,S)

and the root is < , So, [tc(z 50) } I,1® So>.
There are steps:
o if a; < ;11 there is a step labeled s;
(@, S, Ca,5, Ray Mos) — (@.8i,9, Casy,5 Rasis Masy,s)
t—1
Ca,s (i +1) [Cays (i) —
Ros, = RoT;, n(a.s;, S) =n(a,5)

(note that (22| @ SR,) Ti = a2, @ ST (RaT;) + -+ );

(31()) Ma.si,S = Ma,STi +

Ma )
{ Maus

o if vy = a1, J = 14 (4) (thusy+1 =71, (i+1), and RC,TZ =
TjR,; see [3, Lemma 2.14]) and ¢ (5, S) —c(j + 1,.5) > 2 there
is a step

(Oé, Sv Ca,Sa Rou Ma,S) — (047 SU)? (Ca,S) -Siy Ra; Ma7s(j)) 5
t—1
3.11 M, ;) = My sT; + : : Mas,
31 o = Mot T D s -1
Rt = IS g (a, SU) =1 (a, S) 5
s (0 (o, 5%) = (e 8)

For these formulas to be valid it is required that the denominators
Cas (i +1) [Cas (i) — 1 # 0, that is, got—igerali+D)S)—clra(@S) £ 1,
From the bound |c(j,S5) — ¢ (5, 5)| < 71 + £ (1) — 2 we obtain the nec-
essary condition ¢?® # 1 for a > 0 and |b] < 71 + £(7) — 2. These
conditions are satisfied in the region of positivity described in Propo-
sition 11.

The other possibilities for the action of T'; are:

o if a; > a;qq set p = (o5 (1) /s (i + 1) then

(L—tp)(t—p)
A—pp st

.ifai:OéH-l andj:ra(i)7 C(],S)—C(j—{—l,S)SQ, p =
1¢(3:9)=c(G+1,5) then
1—tp)(t— 1t
(1—1tp) ( : p) M, g + PA=D)
(1—p) (1-p)

o if oy = a1 and j = 7, (i), row (4,5) = row (5 +1,5) then
Ma,STi = tMoc,S;

(3.12) M, sT; =

(3.13) M, sT; =
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o if ; = 41 and j = 1, (i),col(5,5) = col(j+1,S5) then
Ma,STi = _Ma,S’ .
The degree-raising operation, namely, the affine step, takes a to
ad = (ag,as,...,ay,a; + 1):

(O-/v Sa Coc,Sa Rom Ma,S) — (OZCI), Sa gocq),Sy Ra@a Ma@,S) )
(314) Maq),s =IN (MQ,S’UJ) s
ad® = (az,as3,...,ay,a1 + 1),

Cat,s = (Ca,s(2) -+, Cas (V) ,qlas (1)) .

The inversion number inv () of a € N} is the length of the shortest
product g = s;,8;, « - - 8;,, such that a.g = a™. From this and the Yang—
Baxter graph we deduce that the series of steps s;,, Si,, -, S;,, leads
from M, g to M,+ s and R T;, 15, - - T;,, = Ro+ = 1.

Definition 6. Suppose a € NY. Then Ry = (T;,T;,---T,,)"" where
.8, 8iy 8, = at and m = inv ().

There may be different products a.s;, s, - - - 5;; = a of length inv («)
but they all give the same value of R, by the braid relations. It is shown
in [3, p. 10, Eq. (2.15)] that Royw = tN "¢, Rae with m = r, (1).

3.3. The bilinear symmetric form. We will define a symmetric bi-
linear form (-,-) on P, satisfying certain postulates, using the same
logical outline as in Section 2; first we derive consequences from these,
then state the definition and show that the desired properties apply.

The hypotheses (BF2) for the symmetric bilinear form (-, -) on P,
with w* = Ty, - - T{'wTy_,--- Ty, are (for f,g € P;, S,9 €
Y(r), 1<i<N):

(3.15a) (1® 5,105 = (5,5,
(3.15D) (fTi,g) = (f.9T%),
(3.15¢) (fév,9) = (f,9én),
(3.15d) (/Dn.g) = (L= q) {f, 2y (gww)).

Properties (3.15b) and (3.15¢) imply (f&,q9) = (f,¢&) for each ¢
and thus the M, ¢’s are mutually orthogonal. As in the scalar case
(fw,g) = (f, gw*). As before denote (f, f) = || f||>. First we will show
that these hypotheses determine the form uniquely when ¢, # 0,1
without recourse to the Macdonald polynomials. We use the commuta-
tion relationships (z;41f) T = x; (fT;) + (t — 1) xi1 f and (x; /) T; =
z; (fT;) for f € P, and j 7é i,i+ 1 (a simple direct computation).
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Proposition 7. Suppose (BF2) holds. Then for 1 < i < j < N
and q,t # 0,1 there are operators A, ;, B; j,on P, preserving degree of
homogeneity such that A;; and B, ; are invertible and for f,g € P;

(fDi,g) = Z<f’ 2 (9Aij)),
(f,ig) = Z<ij>ng',j>'

Proof. Suppose ¢ = N. Then Ay y = (1 —q) w*w and By y = A]_V}N
by (3.15d). Arguing by induction suppose the statement is true for
k+1<i< N. Then for any f,g € P-

1 1
(fDy,g9) = Z<kaDk+1Tk,9> = ¥<kaDk+1,ng>

N
1
=2 > {fTr,z; (9T kArsr))
Jj=k+1

= > (0T A1) T,

j=k+1
Hence
{Zri1 (9T Ar1041)} The = 21 (9T kA1 51 T'x)
+ (t = 1) 2pp1 (9T k Aps1,h41) 5
{2 (gTkA+15)} T = 25 (9T k Apy1,;Tx) -
Thus set Ak,k = %TkAk.t,_Lk_;_lTk, Ak,k+1 = %TkAk—&-l,k—i-l and Ak‘,j =
%TkAHLka for 7 > k+ 1. Next

N

(f. 7 (9Awk) = (fDrrg) — Y (f.75 (9Ary)).

j=k+1

Replace g by gA,;i and use the inductive hypothesis to get

N
(f.2k9) = (fDi.gAp k) + Y (/D 9Brm),
m=k+1
Bim = — Z Ak Ak jBjms Bry = Al

j=k+1

This completes the induction. O
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Corollary 1. The symmetric bilinear form is uniquely determined by
the hypotheses (BF2). If deg (f) < deg(g) then (f,g) = 0.

Proof. 1f deg(g) = n > 1 then g can be expressed as a sum g =
Zﬁil x;g; with deg (g;) = n — 1 for ¢ such that g; # 0. This shows that
if f=1® S5 and deg(g) > 1 then (f, g) = 0 because fD; = 0 for all 1.
Arguing inductively suppose the stated orthogonality property holds
for all A with deg(h) < k and let deg (f) = k + 1,deg(g) > k. Then
(f,xi9) = ij:i(ij,gBm) = 0 because deg (fD;) = k < deg (9B, ;).
Thus the orthogonality property holds for k 4+ 1. The form is uniquely
defined for Py ® V, and a similar inductive argument shows that (f, g)
is uniquely determined when deg (f) = deg(g) > 0. O

However the result does not prove existence. A closer look at the
formulas shows that (1 — q)|a| (z°® S, 1° ®S') is a Laurent polynomial
in ¢,t (a sum of ¢*t® with a,b € Z) for any o, 3 € N}, S, 5" € Y (7).

Recall u (z) := %

Lemma 2. Suppose (BF2) holds and suppose («, S) satisfies a;; < viyq.
Then with p = (a5 (0 + 1) /(a5 (1) we have

1Mo, sl” = (p) | Mas|’
Proof. From (3.10) and (3.12) we have

1—1t
Ma,STi - _T a,S + Ma.si,S7
1—tp) (t — 1—t
10)( D) p) Ma,S MMQ.SZ',S‘
(1-p) (1-0p)
Take the inner product of the first equation with M, s, ¢ and use

(M5, My s, s) =0, then take the inner product of the second equation
with M, s and again use (M, g, M, s, 5) = 0 to obtain

Ma.si,STi - (

<Ma,STz’> Ma.si,S> = ”Ma.si,SHQ )
(L—tp)(t—p)
T

The hypothesis (M, sTi, Mos,s) = (Mas, Mas; sT;) completes the
proof. U

2
I

<Ma,57 Ma.si,STi> =

Lemma 3. Suppose (BF2) holds and suppose (a, S) satisfies c; = i1,
j=ra(i), c(4,8) —c(j+1,5) > 2. Then with

p="Cas(i+1)/Cos (i) = teUTEN=GS)
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we have
S|
M, 50" = u(p) [|Mas| = H”S—H!JO | Mas|*
0

Proof. Using the same argument as in the previous lemma on formulas
(3.11) and (3.13), one shows ||M,, g0 H2 = u(p) |[M,.s|*. Proposition 5
asserted that u (p) = “S(j)}|§/ I1S|2 . O

Definition 7. For a € N)Y, S € Y (1) let
(316) E (Oé, S) = H U (qaj*O‘itc(“l(j)ys)*C(Ta(i),S)) ]

1<i<j<N
o <o

There are inv (a) terms in & (o, 5).
Lemma 4. Suppose o« € NIY, S € Y (7). Then
Moa,sDy = (1 = qCa,s (1)) Ma,sw.

Proof. By definition we have
Mus sDn = (1/2n) Mas,s (I —En) = (1/2n) (1 = Can,s (N)) Mas,s
= (1 = qCa,s (1)) My sw. O
The following is proved exactly like Propositions 2 and 3.
Proposition 8. Suppose (BF2) holds and o € NYY, S € Y (). Then
1Mo slI* = € (@, S) | Ma,sll*,
ar+1pc(ra(1),5)

1—

1—g¢q

|Mos1° = IMas]-

The intention here is to find the explicit formula for || M, g||* implied
by (BF2) and then prove that, as a definition, it satisfies (BF2). We
use the same inductive scheme as in Section 2.

Suppose (BF2) holds and A € N, S € Y (7) and Ay, > 0 = Apss.
Then set
(317) a = (Al,...,Am_l,O,...O,)\m),

ra=(1,....om—1m+1,...,N,;m),
ﬁ = ()\m—1,)\1,...,)\,—,1_170,...),
rg=(m,1,....m—1m+1,...,N),

Y= (Al,...,Am,l,)\m—l,O,...):ﬂ+.
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Thus | Mys|” = € (o, ) | Ma,s|® and [ Mgs||” = € (8,9)" || My

by Proposition 8 we have |M,gs|*> = MHMﬁ»SH Also

a. (SN 1sN 2 Sm) = A and [.(s182 S 1) = ~ thus R, =
Tt Ty, and Rg = T, ---T7'. The leading term of Mgy is
n(B,9) 2" @ St (Rg), so the leading term of M, is n(5,9)27 ® S

(and 7 (v, 8) =1 (8,9)).
Apply w to Mg s. Then we have

(3.18)
oy ((2°) w) ST (Raw) = ¢ 2> @ St (T, - T ) Ty -+ T—1)

= q,31x04 & ST (Tm o 'TNfl) )

and

(3.19) STt(Th - Tn-1)=ST(To---Tn-1) (Ty-1---Tin) Ra)
= tNT"ST (P Ra) = VT 5T (R,

Thus

(3.20) n(a,S) = gty (5,5)

(A 8) =n(a,8) =g Ve (v,5).

Compute
N
(3.21) H w (S —eiS)Y
=m+1
~1
B S — Hu A )\m—i—ltczS) c(mS))
i=1
The argument also shows that 7 (A, S) = ¢ W29 where

SN =33V N — 1) and X5 (A, S) = S8 A (N —i+ (4, 5)).
Recall k(\) = Z,fil(N—%Jrl))\i for A € NJ'™.

Theorem 2. Suppose (BF2) holds, \ € NY'" and S € Y (1). Then
1My * = OS5 (1 =)™ H (qt"“%;q

(qtetS)=c(5)- ;Q)A =y (qtc(l’s)’c(j’“gm;q)x_x
< 11 |

1<i<j<N (th(Z S)—c(j4,9) - q)

J

Ai—Aj
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Proof. Denote the (7, j)-product by IT,. Suppose A,, > 0 = A1 and
Y=,y A1, A — 1,0, .. .).with «, 5 as in (3.17). Then

(3.22)
mt (1 — in—Aerltc(i,S)—c(m,S))?
= g (1 — @ri—Am+1¢e(i9)—c(m,S)=1) (1 — gAi=Am+14c(i,8)—c(m,S)+1)
" ﬁ (1 — grretmS)=cGS)=1) (1 — ghmpetmS)=c(3:5)+1)
et (1= Prtetm ) —eG9)?
m—1 N
= 2N TT w (@) =emS) T T (gPmgelmS)=<0s))
=1 j=m+1

= (2m1NE (0, 8) JE (B, S).

N
Also [] (qtc (@.5) ,q) /H (qtc 05). q) = 1 — ¢* (™S The formula

i=1
satisfies the relation ||M>\5|| = = qkrt:m 2 & a S) ;1M

at A\ =0 since Mopg=1® S and |[1® S| —HSHO. O

_.s|I? and is valid

Definition 8. The symmetric bilinear form is given by (3.22) for A €
Név’+, Se)Y(r), by ||Ma,5||2 =& (a,5)7! ||]\40l+,5||2 for a € NIY and by
(Ma,s, Mg,sr) =0 for (o, S) # (8,5) -

Next we show that the definition satisfies the hypotheses (BF2).

The step s; with «; < ;41 satisfies (3.15b) because of the value
E(a.s;,S)
E(e,S)
step. The (i, j)-product in (3.22) can be written as (note ¢t 1u(z) =

(1—2/t)(1—tz) )
(=22

It remains to check the step with a; = ;11 and the affine

H t)\ -\ H tc(zS jS))

1<i<j<N
Suppose a € N) and X := a; in the formula for € («, S) the condi-
tion (i < j) & (o < ;) is equivalent to (1 < j) & (14 (i) > 74 (j)). Let
Vo = T, so that \; = Qy,(i)- Then the product can be indexed by
(v (7") < wva (§") & (" > j') (where i' =1, (i), J' =74 (7). Thus

£ (,8) = I1 w (g eSS )
1<)/ <i' <N,va (i) <va (5')
Proposition 9. Suppose a; = i1, j = 14 (i) and m = ¢(j,5) —

. 2 1—tt=m) (t—t—m
G +1,8) 2 2. Then | M0 [F = 00 g, g,
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Proof. By hypothesis (o5 (i) = ¢*t°U%) and (.5 (i + 1) = ¢itcU+h9)
so that (o5 (i +1)/Cas (i) = t—™. Also by Proposition 5 we have
HSU)Hi = u (t7™)||S||2. Suppose first that a € Ny"". Then j = i. In
the formula for || M, s||*> the first product does not change when S is
replaced by S9; the factors (qt«"); q)/\,,(qtc(i“’s); q), trade places.
By a similar argument the (7, j)-product also does not change, and
2 2112 .
M, 500 ||” 7 1SD|c = |Masl? /1IS|le. Otherwise a # ot and

2 2
| M, 50| _ | M s | _ | Mo+ sl
ISDZ E(a,SO) SO & (o, SD) S5
_ £(0.8) [Masl®
& (a, S9) 92

(3.23)

Recall £ (Oé,S) = H1§l<n§N, e, U (qocn—ocztc(ra(n),S)—c(ra(l),S)) and the
product does not change when S is replaced by SU) (the factors involv-
ing [ =i or n = ¢ are interchanged with those involving [ =7+ 1 or

n=1i+1). Thus & (o, SV) = & (e, S). O
Proposition 10. Suppose o € N, S € Y (7). Then

1 — qa1+1tc(ra(1),S)
1 —

”Ma@,SHz = ||Ma,S||2'

Proof. We need to compute various ratios of & (a,S), HMa"’,SH27
2

& (ad, ), HM(Q‘I’)+’SH . Also ry (i4+1) = 100 (@) for 1 < i < N,

To (1) = 7o (N). Let A := a'. Then A\ ;) = o; for all i. Let

m = r, (1). This implies # {i: a; > a1} = m — 1, thus \,,_1 > A\,

and (a®)’ = N\, + 1. Also k ((a®)") —k(\) = N —2m+ 1. This

implies

2
HM(O“I>)+’S _ (N-2m+1 1 — g tigetm:s)
1M s l—q
m—1
o ¢m—1 H u (inf)\mtc(i,S)fc(m,S))_l
i=1

N
« 75m—N H u (q)\m—i-l—)\itc(m,S)—c(j,S)) )
j=m+1
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Let p:= (a®)™. Then
5 (Oéq), S) = H U (qui*u’jtc(i:s)fc(j’s))

1<J
Vg (1) >vaa (5)

and
E(a,8) = H u (in—Ath(iﬁs)—C(jﬂ)) )
i<j
va(i)>va(j)

From v, (1) = vae (i) +1 except v, (m) = 1, vae (m) = N the inversions
{(4,7) 14 < j,va (i) > vs (j)} occur in both the products provided that
j # m in which case the pairs {(i,m) : 1 <i < m — 1} do not occur in
& (a®,S), or if i = m and the pairs {(m,j) : m < j < N} do not occur
in £ (a,S). Also p; = A; for all i except pi,, = A, + 1. Thus

m—1
Hu i )\mtczS) c(mS))
i=1

5 a<I> S
N
y H u<q)\m+1f)\jtc(m,S)fC(j,S))_1’
j=m+1
and

2
| Mao.5))° _ HM(a<1>)+,s E(a,S) 1 — g mtigems)
IMasl® Masl® € (a®,5) l—q¢

Finally (, 5 (1) = go1teral):5) = ghmge(m.S), .
Corollary 2. The bilinear form satisfies (3.15d).

Proof. By Lemma 4 we have
(Maa,sDn, Mas (w*) ™) = (1 = qas (1) (Ma,sw, M s (w*) ™)
= (1= gCas (1) [ Mas]’

and

<Ma¢>,57 TN (Moz,S (w*)il) ’UJ*UJ> = <Ma<1> S MaCD S>

— 1qga5‘( )HM H
q

by the proposition, thus (1 —q) (Mae.s,zygw*w) = (MaesDn,g)
when g = M, s (w*)~". Tt suffices to prove

<fDN7.g> = (1 - Q) <f7 IN (g'w*'w)>
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for f = M, s and gw* = Mag with |y| = |f]| + 1. If vy = 0 then
M'y,SDN =0 and <M%5'DN, Mg.sl ('w*)_1> = 0 while

(My.5, x5 (Mpgw)) = (My,s, Mgg,5) = 0
because v # . If v = ad for some a with («, S) # (5,S") then

(Maa.s, 25 (Mg sw)) = (Maa,s, Mpa,s1) =0
and
(Maw,sDy, Mp.s (w") ™) = (1 = qCa (1)) (Masw,Mp.g (w*) )
= (1= q¢a (1)) (Ma,s5,Mp.5) = 0.
The case (o, S) = (8,5") is already done. O

Proposition 11. Suppose dimV, > 2, q,t > 0 and q # 1. Then the
form (-,-) is positive-definite provided 0 < q < min (t‘hf,thf) or q >
max (t_hf, thf), that is, min (q_l/hf, ql/hf) <t < max (q_l/hf, ql/hf).

Proof. In the definition of (M, s, M, s) there is an even number of
factors of the form 1 — ¢%® where a = 1,2,3, ... and b is one of ¢ (i, .59),
c(i,S) —c(3,5), or ¢(i,8) — c(j,S) £ 1. The c(i,S) values lie in
[1—4(7), 7 —1]; thus —h, < b < h, where h, = 71 +{(7) — 1, the
maximum hook length in the Ferrers diagram A. Consider the four
cases

(1) 0<qg<1,0<t<1. Then ¢** < gt~ < 1 provided ¢ < t~.

(2) 0<q<1,t>1. Then ¢** < qt"™ < 1 provided ¢ < t~".

(3) ¢ >1,0<t<1. Then ¢°t® > qth~ > 1 provided q > t=h-.

(4) ¢ > 1,t>1. Then ¢9t* > gt~ > 1 provided ¢ > t'.
Thus || M,s|” > 0 if min (¢, ¢"/*) <t < max (¢"V/*, ¢/M). O

There is an illustration in Figure 2 with h, = 3 (for 7 = (2,1) or
T =(2,2)).

From a similar argument it follows that the transformation formulas
for Macdonald polynomials have no poles when min (¢~ '/*, ¢'/*) <t <

max (qil/k, ql/k) with k = h, — 1.

3.4. Singular polynomials. A singular polynomial f € P, is one
which satisfies fD; = 0 for all i when (g,t) are specialized to some
specific relation of the form ¢*t* = 1. By Proposition 7 the polynomial
f satisfies (f,g) = 0 for all g € P,, and in particular (f, f) = 0.
Thus the singular polynomial phenomenon can not occur in the (g, t)-
region of positivity. The boundary of the region does allow singular
polynomials. There are Macdonald polynomials which are singular
when specialized to ¢ = t" or ¢ = t~"7. These values do not produce
1

poles in the polynomial coefficients as remarked above, since ;- < ﬁ
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Proposition 12. Suppose « € N, S € Y (1) and a; =0 for m < i <
N. Then My sDj =0 form < j < N.

Proof. Arguing by induction the start is

1 1
M, sDn = EMO[,S (1—¢&n) = . (1 ="Cas(N))M,s =0,

since (o5 (V) = 1. Suppose now that §; = 0 for ¢ > k + 1 implies
MgsD; = 0 for j > k+ 1 and any (3,5"). Suppose o = 0 for
i > k. Then r, (i) =i and (, 5 (1) = t"@S) for 4 > k and My sT} is
one Of tMa“g, —Ma’s, Mays(k) — %Ma’s, %Ma,s(“ — ﬁMO&,S
depending on ¢(k+1,5) — c(k,S) = 1, = =1, > 2, < —2 respec-
tively and p = t<"+19)=ck5  Then M, sDy, = 1 (Ma,sTk) Dp+1T) and
(My,sT'x) D1 = 0 by the inductive hypothesis. O

Lemma 5. Suppose a = (ay,...,Qp-1,1,0,...) witha; > 1 fori <m
and S € Y (7). Then
N-1

Mgy 5Dy, = tmN H U (th(m,S)—c(jH,S)) M

«

™) sDNT' N1+ Ty,

Jj=m

where oY) = (aq, ..., pm-1,0,0,...,1).
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) J
Proof. For m < j < N let o) = <a1,...,ozm_l,O,...,l,O...) SO

that ozz(j) = o except 0457) = land o) =0 (when j # m). Then

Cotn 5 (1) = qt°t™S) and Catn g (7 +1) = teU+L9) (since 7y m) () = m)
and

(1—tp)(t—p) p(1—1)
M., sT; = M LS VA
a) sd'; (1- p)2 b+ g T =) ald).8
from (3.12) with p = qt¢(m5)=<lG+15)  Thus
1
Mo sDj = Mo sTiDj T

«

1 .
_ ;U (qtc(m,S)fc(J+1,S)) M (j+1)7SDj+1Tj,

because M, ;) sDjy1 = 0. Iterate this formula starting with j = m and
al™ = «, ending with j = N — 1 to obtain the stated formula. U

Recall that S; is the inv-minimal RSYT with the numbers N, N —
1,N —2,...,1 entered row-by-row and let [ = ¢ (1), a = (1”,0N*”).
Thus the entry at (I,1) is 7, and ¢ (7, S1) = 1 —[. The entry at (1,7)
isN—m+landc(N—7m+1,5)=mn —1

Proposition 13. M, s, is singular for ¢ = t"~.

Proof. By the lemma with m = 7;, we have
N-1
M5, Dpy =tV T (gt V) My 6, DNT iy -+ T,
J=
The factors in the denominator of the product are of the form 1 —
gt eUHLS) with ¢ (j 4+ 1,8;) <7 —1sothat 1 — 1 —c(j+1,5;) >
2—1l—m =1—h, > h,. Furthermore the numerator factor at j =
N — 7 is (t — th*Z*Tl) (1 — qt3*l*71) which vanishes at ¢¢t~" = 1. By
Proposition 12 we have M, ¢,D; = 0 for ¢« > 7. If 1 < i < 7; then
M, s, T; =tM,gs, (because i,i+ 1 are in the same row of S;), thus

Ma,Slpi = ti—TlMa,SiTz’Ti_A,_l e TTl_lpTlTTl—l N
frg MOhSi,DTlTTl—l P TZ f— O

when g = t. O

We apply the same argument to Sop where the numbers N, N—1,...,1
are entered column-by-column. Let m = 7/ , that is, the length of the
last column of 7. Then the entry at (7, 1) is m and ¢ (m, Sp) = — 1.
Also the entry at ([,1)is N—Il+land c(N—-1+1)=1-1.
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Proposition 14. Set a = (lm,ON*m). Then M, g, is singular for

q= t=hr.
Proof. By Lemma 5 we have
N-1
My 50Dy = t™ N H u (gt UTESOY Mo g DNT -1 -+ T
j=m

The factors in the denominator of the product are of the form 1 —
gt UL with ¢(j +1,5,) > 1 —1Isothat 7, — 1 —c(j+1,5;) <
71 +1 — 2 < h,;. Furthermore the numerator factor at j = N — [ is
(t — gt t=2) (1 — g¢™=') which vanishes at qt"~ = 1. The rest of
the argument is as in the previous proposition with the difference that
MQ,SOTZ‘ = _Ma,So for1 <i<m. ]

In conclusion we have constructed a symmetric bilinear form on P,
for which the operators T'; and &; are self-adjoint, the Macdonald poly-
nomials M, g are mutually orthogonal, and the form is positive-definite
for ¢ > 0,q # 1 and min (qil/hf, ql/hT) < t < max (qfl/hf, ql/hf))
where h, = 7 + ¢ (7) — 1. The bound is sharp, as demonstrated by the
existence of singular polynomials for ¢ = t*/.
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