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SURJECTIONS AS DOUBLE POSETS

LOÏC FOISSY AND FRÉDÉRIC PATRAS

Abstract. The theory of double posets and pictures between
them, introduced by Malvenuto and Reutenauer, is a far reach-
ing development of Zelevinsky’s theory of pictures in that, among
others, it embeds the latter into a self-dual Hopf algebraic frame-
work. It has brought forward many ideas and results and has led
recently to several developments, in various directions. Namely,
besides algebraic combinatorics and noncommutative representa-
tion theory: algebraic topology and the geometry of polytopes.

One of these developments, by the first author of this article, was
the combinatorial and Hopf algebraic study of symmetric groups
from the point of view of double posets. The present article extends
these results to surjections. We introduce first a family of double
posets, packed double posets. Using an appropriate statistics on
surjections that generalizes inversions, it is shown that they are
in bijection with surjections or, equivalently, with packed words.
The following sections investigate their self-dual Hopf algebraic
properties. Using an appropriate notion of linear extensions of
packed double posets, the Hopf algebra of packed double posets is
proved to be isomorphic with (two different versions of) the Hopf
algebra of word quasi-symmetric functions.

1. Introduction

The theory of double posets and pictures between them was intro-
duced by Malvenuto and Reutenauer in 2011 [14]. It is a far reaching
development of Zelevinsky’s theory of pictures [17] in that it embeds
for example the latter into a self-dual Hopf algebraic framework. It
has brought forward many ideas and results and has recently led to
several developments, in various directions. In algebraic combinatorics
and noncommutative representation theory, double posets have been
used to study the combinatorics of symmetric groups [4, 5, 6] and, in
relation to quasisymmetric functions, to generalize objects such as dual
immaculate functions or quasisymmetric pP, ωq-partition enumerators
[11]. The theory of double posets was also generalized to double quasi-
posets, a natural framework to study objects such as semi-standard
tableaux on which several quasi-orders coexist naturally [8]. In al-
gebraic topology, they appear as an example of monoidal (directed)
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restriction species [10]. In the geometry of polytopes, the notion of
double poset polytopes [3, 1] has been introduced as a generalization
of Stanley’s work relating the geometry of polytopes with the combi-
natorics of associated posets [16].

The present article extends the results of [4, 5] on permutations to
surjections. It is organized as follows. We introduce first (Section 2)
a family of double posets, packed double posets, that generalize the
planar posets of [5]. They can be shown to be in bijection with sur-
jections or, equivalently, with packed words (Theorem 4, Section 3).
Section 4 investigates their self-dual Hopf algebraic properties, which
are inherited from the Hopf algebra structure of double posets [14].
Section 5 recalls briefly the idea of non-linear Schur–Weyl duality and
how two Hopf algebra structures can be constructed on the linear span
of surjections using their interpretation as operations on tensor powers
of a commutative algebra. One of these two Hopf algebras is the classi-
cal Chapoton–Hivert Hopf algebra WQSym of word quasi-symmetric
functions [12, 2]. Section 6 introduces the notion of linear and weak
linear extensions of packed double posets. It gives rise to Hopf algebra
isomorphisms from the Hopf algebra of packed double posets to the
two Hopf algebra structures introduced in Section 5.

2. Packed double posets

Recall that a double poset is a set equipped with two orders. A
quasi-order is a binary relation ď which is reflexive and transitive but
not necessarily antisymmetric (so that one may have x ď y and y ď x
with x ­“ y). A quasi-order is total when all elements are comparable
(i.e., when x ď y or y ď x for arbitrary x and y). If x ď y and y ď x,
we write x ” y and say that x and y are equivalent (the relation ” is
an equivalence relation). A quasi-poset is a set equipped with a quasi-
order. All the posets, double posets, quasi-posets, . . . we consider here
are assumed to be finite (we omit therefore “finite” in our definitions
and statements).

Definition 1. A packed double poset is a double poset pP,ď1,ď2q that
satisfies the following two properties:

(1) For all x, y P P , we have px ď1 y and x ď2 yq ùñ px “ yq.
(2) The relation ĺ defined on P by px ď1 y or x ď2 yq is a total

quasi-order.

In particular, the relation defined by (x ĺ y and y ĺ x) is an equiv-
alence relation (we denote it as above by ”).
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Example. A plane poset is a double poset pP,ď1,ď2q with the following
properties:

‚ For all x, y P P , if x and y are comparable for both ď1 and ď2,
then x “ y.

‚ For all x, y P P , x and y are comparable for ď1 or for ď2.

By Proposition 11 of [5], if pP,ď1,ď2q is a plane poset, then ĺ is a total
order, and obviously (1) is also satisfied. So plane posets are packed
double posets. Moreover, if P is a packed double poset, then ĺ is an
order if, and only if, P is plane: by (2), two distinct elements x, y are
always comparable, and the fact that ĺ is an order implies that they
cannot be comparable for both ď1 and ď2.

Lemma 2. Let pP,ď1,ď2q be a packed double poset. Then:

(3) The relation ! defined on P by py ď1 x or x ď2 yq is a total
order.

Proof. Let x, y, z P P , such that x ! y and y ! z. The following three
cases are possible:

‚ (y ď1 x and z ď1 y) or (x ď2 y and y ď2 z). Then (z ď1 x or
x ď2 z), so x ! z.

‚ x ď2 y and z ď1 y. As ĺ is a total quasi-order, the following
two subcases are possible:

– x ĺ z, then x ď1 z or x ď2 z. If x ď2 z, then x ! z. If
x ď1 z, then x ď1 y and x ď2 y. By (1), x “ y, so x ! z.

– z ĺ x, then z ď1 x or z ď2 x. If z ď1 x, then x ! z. If
z ď2 x, then z ď2 y and z ď1 y. By (1), y “ z, so x ! z.

‚ y ď1 x and y ď2 z. Similar proof.

Therefore, ! is transitive.
Let x, y P P , such that x ! y and y ! x. The following two cases

are possible:

(1) (y ď1 x and x ď1 y) or (x ď2 y and y ď2 x): then x “ y.
(2) y ď1 x and y ď2 x, or x ď1 y and x ď2 y: by (1), x “ y.

So ! is an order.
For all x, y P P , x ĺ y or y ĺ x, so y ď1 x or x ď2 y or x ď1 y or

y ď2 x, so x ! y or y ! x: in other words, ! is total. �

Remark. (3) implies (1), but not (2).

Remark. The lemma allows one to canonically identify P with rns and
the pair pP,ĺq with a packed word. This is the reason for the termi-
nology adopted for “packed double posets”. See the next section for
details.
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3. Surjections and packed words

When a surjection f from rns to rks is represented by the sequence
of its values, wf :“ fp1q . . . fpnq, the word wf is packed: its set of
letters can be identified with an initial subset of the integers (in that
case, rks). Conversely, an arbitrary packed word of length n can always
be obtained in that way: packed words (of length n) are in bijection
with surjections (with domain rns and codomain an initial subset of
the integers). We write pack for the packing operation: given a word
w with (possibly repeated) letters x1 ă ¨ ¨ ¨ ă xk in rns, packpwq is the
word obtained from w by replacing the letter xi by i. For example,
packp714274q “ p413243q.

Recall also that total quasi-orders ĺ on rns are in bijection with
packed words. An example illustrates the general rule: assume that
n “ 6 and that the quasi-order is defined by

2 ” 5 ĺ 1 ” 3 ” 6 ĺ 4.

Then the corresponding packed word is 212312: the first equivalence
class t2, 5u gives the position of letter 1, the second, t1, 3, 6u, the posi-
tions of letter 2, and so on.

Proposition 3. Let w be a packed word of length n. The double poset
Pw (also written Dppwq) is defined by Pw “ prns,ď1,ď2q, with:

for all i, j P rns, i ď1 j ðñ pi ě j and wpiq ď wpjqq,

i ď2 j ðñ pi ď j and wpiq ď wpjqq.

It is a packed double poset. The total quasi-order ĺ is the one associated
bijectively with w; the total order is the natural order on rns.

Proof. The fact that Pw is a double poset is obvious. For all i, j P rns,
if i ď1 j and i ď2 j, then i ě j and i ď j, so i “ j: (1) is verified.
Moreover:

i ĺ j ðñ wpiq ď wpjq,

so ĺ is indeed a total quasi-order. �

Theorem 4. The set of packed words of length n and the set of iso-
morphism classes of packed double posets are in bijection through Dp.
The inverse map, pack, is given as follows. Let P be a packed double
poset. By Lemma 2, we can assume that P “ rns with ! the natural
order. Then Dp´1pP q “: packpP q is the packed word associated with
the total quasi-order ĺ.

Proof. We first show that, for any packed words w, w1, the double
posets Pw and Pw1 are isomorphic if, and only if, w “ w1. Let f :
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Pw Ñ Pw1 be an isomorphism. Then f is increasing from prns,!q to
prn1s,!1q. As ! and !1 are the usual total orders of rns and rn1s, n “ n1

and f “ Idrns. Consequently, for all i, j P rns with i ď j, we have

wpiq ď wpjq ðñ i ď2 j ðñ i ď12 j ðñ w1piq ď w1pjq.

As w and w1 are packed words, we infer w “ w1.

Let now P be a packed double poset. We claim that DpppackpP qq “
P . We may assume that pP,!q “ prns,ďq. The packed word w “

packpP q is such that, for all i, j P rns, i ĺ j ðñ wpiq ď wpjq. We
denote the orders of Pw by ď11 and ď12. Then, for all i, j P rns, we have

i ď11 j ðñ pj ď iq and pwpiq ď wpjqq

ðñ pj ! iq and pi ĺ jq

ðñ pi ď1 j or j ď2 iq and pi ď1 j or i ď2 jq

ðñ pi ď1 jq or pj ď2 i and i ď2 jq

ðñ pi ď1 jq or pi “ jq

ðñ i ď1 j.

So ď11“ď1. Similarly, ď12“ď2. �

4. The self-dual Hopf algebra structure

We denote by HDP the vector space generated by isomorphism classes
of double posets, and by HPDP its subspace generated by isomorphism
classes of packed double posets. Below we show how definitions and
results in [14, 8] apply in this context (definitions and results relative
to double posets are taken from [14]).

Let P,Q be two double posets. We define two orders on P \Q by:

for all i, j P P \Q, i ď1 j if pi, j P P and i ď1 jq

or pi, j P Q and i ď1 jq;

i ď2 j if pi, j P P and i ď2 jq

or pi, j P Q and i ď2 jq

or pi P P and j P Qq.

This defines a double poset, which we denote by PQ. Extension of this
product by bilinearity makes HDP an associative algebra, whose unit
is the empty double poset denoted 1. If P and Q are packed double
posets, then so is PQ. Hence, HPDP is a subalgebra of HDP .

Definition 5. Let P be a double poset (respectively packed double
poset) and let X Ď P .
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‚ X is also a double poset (respectively packed) by restriction of
ď1 and ď2: we denote this double poset (respectively packed)
by P|X .

‚ We say that X is an open set of P if

for all i, j P P, i ď1 j and i P X ùñ j P X.

The set of open sets of P is denoted by ToppP q.
‚ A coproduct is defined on HDP (respectively HPDP ) by

∆pP q “
ÿ

OPToppP q

P|P zO b P|O.

Theorem 6. The product and the coproduct equip HDP and therefore
its subspace HPDP with the structure of a graded, connected Hopf alge-
bra.

See [14] for a proof of the compatibility properties between the prod-
uct and the coproduct characterizing a Hopf algebra.

Recall that, for P “ pP,ď1,ď2q, ιpP q :“ pP,ď2,ď1q. If P is a packed
double poset, then so is ιpP q. Recall also that, given two double posets
P,Q, there exists a pairing on HDP defined by

xP,Qy :“ 7PicpP,Qq,

where PicpP,Qq stands for the number of pictures between P and Q
(a picture between P and Q is a bijection f such that

i ď1 j ñ fpiq ď2 fpjq, fpiq ď1 fpjq ñ i ď2 j.

The Hopf algebra of double posets HDP is self-dual for this pairing. By
Proposition 24 of [8], we get the following result.

Proposition 7. The Hopf algebra HPDP is a self-dual Hopf subalgebra
of the Hopf algebra of double posets HDP .

5. Hopf algebras of surjections

We write WQSymn for the linear span of surjections from rns to
an arbitrary rps, p ď n (and set WQSym0 :“ Q, WQSym :“
À

ně0

WQSymn).

The symbol WQSym stands for “word quasi-symmetric functions”.
We refer to [2, 12] for definitions and to [13, 15] for studies of their
combinatorial properties. On the terminology and notation, see also
Remark 9 below.

Recall that natural transformations from the functor (from com-
mutative algebras to vector spaces) TnpAq :“ Abn to TppAq :“ Abp,
0 ď p ď n, are in bijection with the linear span of surjections from



SURJECTIONS AS DOUBLE POSETS 7

rns to rps by non-linear Schur–Weyl duality [9]. For example, the map
f : r5s Ñ r3s, fp1q “ 2, fp2q “ 1, fp3q “ 3, fp4q “ 2, fp5q “ 1 gives rise
to the map

Ab5 ÝÑ Ab3,

a1 b ¨ ¨ ¨ b a5 ÞÝÑ a2a5 b a1a4 b a3.

This observation leads to two Hopf algebra structures on WQSym.
Recall indeed that, given a commutative algebra A, the tensor algebra
over A, T pAq, carries two Hopf algebra structures when equipped with
the deconcatenation coproduct

δ : a1 b ¨ ¨ ¨ b an ÞÝÑ
ÿ

iďn

pa1 b ¨ ¨ ¨ b aiq b pai`1 b ¨ ¨ ¨ b anq.

The first structure uses the shuffle product inductively defined by

a1 b ¨ ¨ ¨ b an� b1 b ¨ ¨ ¨ b bm :“ a1pa2 b ¨ ¨ ¨ b an� b1 b ¨ ¨ ¨ b bmq

` b1pa1 b ¨ ¨ ¨ b an� b2 b ¨ ¨ ¨ b bmq,

the second uses the quasi-shuffle product inductively defined by

a1 b ¨ ¨ ¨ b an ] b1 b ¨ ¨ ¨ b bm :“ a1pa2 b ¨ ¨ ¨ b an ] b1 b ¨ ¨ ¨ b bmq

` b1pa1 b ¨ ¨ ¨ b an ] b2 b ¨ ¨ ¨ b bmq

` pa1b1qpa2 b ¨ ¨ ¨ b an ] b2 b ¨ ¨ ¨ b bmq.

Due to the embedding WQSym ãÑ EndpT pAqq, where a surjection f :
rns Ñ rps acts trivially on TrpAq for r ­“ n and by the action obtained by
Schur–Weyl duality otherwise, we get two graded convolution products:
for f as above, g : rks Ñ rls and w P T pAq, we define

f � gpwq :“ fpwp1qq� gpwp2qq,

f ] gpwq :“ fpwp1qq ] gpwp2qq,

using the Sweedler shortcut notation δpwq “ wp1qbwp2q. That is, equiv-
alently, f � g “

ř

h h, where h runs over the surjections
h : rn ` ks Ñ rp ` ls with packphp1q . . . hpnqq “ pfp1q . . . fpnqq and
packphpn ` 1q . . . hpn ` kqq “ pgp1q . . . gpkqq. Notice that these condi-
tions imply

thp1q, . . . , hpnqu X thpn` 1q, . . . , hpn` kqu “ H.

For the ] product we have instead f ] g “
ř

h h, where h runs over
the surjections h : rn ` ks Ñ rqs with suppp, lq ď q ď p ` l with
packphp1q . . . hpnqq “ pfp1q . . . fpnqq and packphpn` 1q . . . hpn` kqq “
pgp1q . . . gpkqq.
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For example,

p211q� p1q “ p2113q ` p3112q ` p3221q,

p211q ] p1q “ p2113q ` p3112q ` p3221q ` p2111q ` p2112q.

A coproduct ∆ is defined on WQSym by

∆pfq :“
ÿ

iďp

f|t1,...,iu b packpf|ti`1,...,puq,

where a surjection is written as a packed word and, given S Ď rps, f|S
stands for the subword of f containing the letters in S. For example, if
f “ p5312354q and S “ t2, 4, 5u, f|S “ p5254q and packpf|Sq “ p3132q.

The following proposition is proved in [12, 2], respectively in [7].

Proposition 8. The triples pWQSym,],∆q and pWQSym,�,∆q
are graded connected (noncommutative, noncocommutative) Hopf alge-
bras.

Remark 9. Our notation is slightly conflicting with the usual practice.
Indeed, the symbol WQSym stands very often in the literature for
the Hopf algebra pWQSym,],∆q, not just (as in the present article)
for the underlying graded vector space. Moreover, this Hopf algebra is
classically presented as a subalgebra of a ring of formal series KxxXyy,
where X is a countably infinite totally ordered alphabet, linearly gen-
erated by formal series Mu indexed by surjections. For example,

Mp1q “
ÿ

xPX

x, Mp12q “
ÿ

xăyPX

xy,

Mp11q “
ÿ

xPX

xx, Mp21q “
ÿ

xăyPX

yx.

The coproduct ∆ is then obtained by doubling the alphabet, see [15].
Our notational choice was motivated by the fact that we are working

directly with surjections (and not linear combinations of words indexed
by them) and need to define two products on their linear span, one of
which (�) is not induced by the product of monomials in KxxXyy.

6. Linear extensions and WQSym.

Definition 10. Let P “ pP,ď1,ď2q be a packed double poset. A
linear extension of P is a surjective map f : P ÝÑ rks such that:

(1) For all i, j P P , i ď1 j ùñ fpiq ď fpjq.
(2) For all i, j P P , fpiq “ fpjq ùñ i ” j.

The set of linear extensions of P is denoted by LinpP q, the set of linear
extensions from P to rks is denoted by Link

pP q.



SURJECTIONS AS DOUBLE POSETS 9

If f is a linear extension of a packed double poset P with
pP,!q “ prns,ďq, a property that we can always assume up to a canon-
ical isomorphism, we see it as a packed word fp1q . . . fpnq. We denote
the set of packed words of length n by PW pnq.

Recall that an open set X of a packed double poset P is a packed
double subposet of P such that

for all i, j P P, i ď1 j and i P X ùñ j P X.

The following lemmas follow immediately from the definitions, and
hence their proof is omitted.

Lemma 11. Let P be a packed double poset and X an open set of P .
Let fX : X Ñ rps and fP´X : P ´ X Ñ rqs be two linear extensions.
Then the map f : P Ñ rp` qs defined by

fpiq :“ fP´Xpiq for i P P ´X,

fpjq :“ fXpjq ` q for j P X,

is a linear extension of P .

Lemma 12. Conversely, let f be a linear extension of P , f : P Ñ

rks. For any i ď k, X :“ f´1pti ` 1, . . . , kuq is an open subset of P .
Moreover, f|P´X : P ´X Ñ ris and fX : X Ñ rk´ is, fXpxq :“ fpxq´ i
are linear extensions of P ´X, respectively of X.

The two lemmas show that there is a bijection between triples
pX, fX , fP´Xq and pairs pf, iq. We get the following consequence.

Corollary 13. The following map is a coalgebra morphism:

φ :

$

&

%

pHPDP ,∆q ÝÑ pWQSym,∆q

P ÞÝÑ
ÿ

fPLinpP q

f.

Lemma 14. Let pP,ďP
1 ,ď

P
2 q and pQ,ďQ

1 ,ď
Q
2 q be two packed double

posets. There is a canonical isomorphism

Linn
pPQq –

ž

p`q“n

pLinp
pP q,Linq

pQq, Shpp, qqq,

where Shpp, qq stands for the set of pp, qq-shuffles, which, by definition,
are permutations of rp` qs such that

σ´1p1q ă ¨ ¨ ¨ ă σ´1ppq, σ´1pp` 1q ă ¨ ¨ ¨ ă σ´1pp` qq.

Proof. Let us assume that P “ rls and Q “ rks, so that PQ – rl ` ks.
By definition of linear extensions, if f is a linear extension of PQ, fpiq ­“
fpjq for any i ď l and j ą l, and there are no other relations between
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the restriction of f to rls and to tl ` 1, . . . , l ` ku. In particular, the
restrictions of f to rls and to tl`1, . . . , l`ku have disjoint images and,
composing them with the packing operator defines linear extensions of
P and Q – tl ` 1, . . . , l ` ku. The lemma follows. �

The preceding proof implies the following result.

Proposition 15. The map φ defined by

φ :

$

&

%

pHPDP , ¨,∆q ÝÑ pWQSym,�,∆q

P ÞÝÑ
ÿ

fPLinpP q

f

is a Hopf algebra morphism.

Notice that, since the product of two double posets is a double poset,
the image of packed double posets by φ is a multiplicative family (actu-
ally a multiplicative basis, see Corollary 17 below) in WQSym for the
product �. This is similar to what happens with the usual product ],
see the construction of multiplicative bases for pWQSym,]q in [15].
The forthcoming results below on pWQSym,]q and its relations to
HPDP and pWQSym,�q can actually be understood as a refinement
of the results in that article.

Proposition 16. For all f, g P PW pnq, we say that f ď g if:

(1) For all i, j P rns, i ě j and fpiq ď fpjq ùñ gpiq ď gpjq.
(2) For all i, j P rns, gpiq “ gpjq ùñ fpiq “ fpjq.

Then ď is an order on PW pnq. Moreover, for all f P PW pnq, we have

φpPf q “
ÿ

fďg

g.

Proof. The relation ď is clearly transitive and reflexive. Let us assume
that f ď g and g ď f . By (2), for all i, j P rns, fpiq “ fpjq if, and
only if, gpiq “ gpjq. Hence, putting k “ maxpfq “ maxpgq, there
exists a unique permutation σ P Sk such that, for all i P rks, f´1piq “
g´1pσpiqq. By (1), if i ě j, we have gpiq ď gpjq ðñ fpiq ď fpjq.
Hence,

max f´1p1q “ maxti P rns | for all j ď i, fpiq ď fpjqu

“ maxti P rns | for all j ď i, gpiq ď gpjqu

“ max g´1p1q

“ max g´1pσp1qq,
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so σp1q “ 1. Iterating this, one shows that σ “ Idk, so f “ g: the
relation ď is an order. Let f, g P PW pnq. Then we have

g P Linpfq ðñ

$

’

&

’

%

for all i, j P rns, i ě j and

fpiq ď fpjq ùñ gpiq ď gpjq,

for all i, j P rns, gpiq “ gpjq ùñ fpiq “ fpjq,

ðñ f ď g.

So LinpPf q “ tg P PW pnq, f ď gu. �

Corollary 17. The map φ is a Hopf algebra isomorphism.

Here are the Hasse graphs of pPW p2q,ďq and pPW p3q,ďq.
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Remark. If f and g are two permutations, then

f ď g ðñ for all i, j P rns, i ą j and fpiq ă fpjq ùñ gpiq ă gpjq

ðñ Invpfq Ď Invpgq,

where Invpfq stands for the set of inversions of f . So the restriction of
ď to Sn is the Bruhat order.

Definition 18. Let P “ pP,ď1,ď2q be a packed double poset. We
assume that pP,!q “ prns,ďq. A weak linear extension of P is a
surjective map f : rns ÝÑ rks such that:

(1) For all i, j P rns, i ď1 j ùñ fpiq ď fpjq.
(2) For all i, j P rns, if i ď1 j and fpiq “ fpjq ùñ i ” j.

The set of weak linear extensions of P is denoted by WLinpP q.

In [7], an order is defined on PW pnq: for all f, g P PW pnq, f ă g if

(1) For all i, j P rns, gpiq ď gpjq ùñ fpiq ď fpjq.
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(2) For all i, j P rns, i ă j and gpiq ą gpjq ùñ fpiq ą fpjq.

It is proved that the following map is a Hopf algebra isomorphism:

ψ :

$

&

%

pWQSym,�,∆q ÝÑ pWQSym,],∆q

f ÞÝÑ
ÿ

gĺf

g.

Lemma 19. Let P be a packed double poset. Then

WLinpP q “
ğ

fPLinpP q

tg P PW pnq, g ĺ fu.

Proof. Ď. Let g P WLinpP q. For any p P rmaxpgqs, we put Pp “

P|g´1ppq. Then Pp is a packed double poset, so there exists a unique
packed word fp such that Pp is isomorphic to Pfp . Let us define g1 by
g1piq “ fppiq `maxpf1q ` ¨ ¨ ¨ `maxpfp´1q for any i P Pp; g

1 is a packed
word.

We first show that g1 P Linppq. Assume that i ď1 j. Then gpiq ď
gpjq. We claim that we also have g1piq ď g1pjq:

‚ If we do not have i ” j, then, as g is a weak linear extension of
P , gpiq ă gpjq, which implies g1piq ă g1pjq.

‚ If gpiq “ gpjq “ p, then i ” j in Pp, so fppiq “ fppjq and finally
g1piq “ g1pjq.

Now, if g1piq “ g1pjq, then gpiq “ gpjq “ p and fppiq “ fppjq, so i ” j
in Pp and finally i ” j. Thus, we have indeed g1 P LinpP q.

We finally show that g ĺ g1. If g1piq ď g1pjq, then necessarily gpiq ď
gpjq. Let us assume i ă j and g1piq ą g1pjq. Then gpiq ě gpjq. If
gpiq “ gpjq “ p, then fppiq ą fppjq, so j ďi 1 and we do not have
i ” j: this contradicts the fact that g is a weak linear extension. So
gpiq ą gpjq, and finally g ĺ g1.

Ě. Let f P LinpP q and g ĺ f . If i ď1 j, then fpiq ď fpjq, so
gpiq ď gpjq. If moreover gpiq “ gpjq, as i ě j (because i ď1 j), we
can not have fpiq ă fpjq as g ĺ f , so fpiq “ fpjq and i ” j. So
g P WLinpP q.

Disjoint union. Let f, f 1 P LinpP q, such that there exists g P PW pnq,
g ĺ f, f 1. Let us consider i ă j. If fpiq ą fpjq, then gpiq ą gpjq. If
f 1piq ď f 1pjq, we would have gpiq ď gpjq, which is a contradiction.
Hence, by symmetry,

for all i, j P rns such that i ă j, fpiq ą fpjq ðñ f 1piq ą f 1pjq,

fpiq ď fpjq ðñ f 1piq ď f 1pjq.

Let us assume that i ă j and fpiq “ fpjq. Then i ” j, and f 1piq ď
f 1pjq. As P is isomorphic to Ph for a certain packed word h, i ă j
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and hpiq “ hpjq, so j ď1 i in P ; consequently, f 1pjq ď f 1piq and finally
f 1piq “ f 1pjq. As a conclusion, we have

for all i, j P rns such that i ă j, fpiq ą fpjq ðñ f 1piq ą f 1pjq,

fpiq “ fpjq ðñ f 1piq “ f 1pjq,

fpiq ă fpjq ðñ f 1piq ă f 1pjq.

So Pf “ Pf 1 , which implies f “ f 1. �

Proposition 20. The following map is a Hopf algebra isomorphism:

φ1 “ ψ ˝ φ :

$

&

%

HPDP ÝÑ pWQSym,],∆q

Pf ÞÝÑ
ÿ

fPWLinpP q

f.

Proof. Indeed, for any packed word f , by the preceding lemma we have

ψ ˝ φpPf q “
ÿ

fPLinpP q

ÿ

gĺf

g “
ÿ

fPWLinpP q

f.

By composition, φ1 is an isomorphism. �

Examples. We order the packed words of degree 2 in the following way:
(11,12,21).

(1) The matrices of φ and φ1 from the basis pPf qfPPW p2q to the basis
PW p2q are given by

¨

˝

1 0 0
0 1 0
1 1 1

˛

‚,

¨

˝

1 1 0
0 1 0
1 1 1

˛

‚,

respectively.
(2) The matrix of the pairing of HPDP in the basis pPf qfPPW p2q is

given by
¨

˝

1 1 0
1 2 1
0 1 0

˛

‚.

(3) Via φ and φ1, pWQSym,�,∆q and pWQSym,],∆q inherit
nondegenerate Hopf pairings. The matrices of these pairings in
the basis PW p2q are given by

¨

˝

1 0 0
0 0 1
0 1 0

˛

‚,

¨

˝

1 ´1 0
´1 1 1
0 1 0

˛

‚,

respectively.
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