Arithmetic relations between the coefficients of integer polynomials caused by the fixed divisor

Jose Brox

Centre for Mathematics of the University of Coimbra

$$
17 / 04 / 19
$$

Fixed divisor

- Consider a univariate integer polynomial $f \in \mathbb{Z}[X]$ of degree d,

$$
f=\sum_{i=0}^{d} a_{i} X^{i}
$$

- Its content is the gad of its coefficients,

$$
c(f)=\underset{0 \leq i \leq d}{\operatorname{gcd}}\left(a_{i}\right)
$$

- Its (fixed) divisor is the gcd of its integral images,

$$
d(f)=\operatorname{gcd}_{z \in \mathbb{Z}}(f(z))
$$

Fixed divisor

Introduction
Prime case
General case
Kempner

Examples:

- $2 X+2$ has content 2 and divisor $2(f(0)=2)$
- The content always divides the divisor, $c(f) \mid d(f)$
- It is not true that $c(f)=d(f)$:

$$
X^{2}-X=X(X-1)
$$

has $c(f)=1, d(f)=2$
(the product of two consecutive integers is always even and $f(2)=2$)

Motivation

- The very important Bouniakowsky's conjecture claims that an irreducible integer polynomial with trivial fixed divisor should produce an infinite number of primes.
- Only the $\operatorname{deg} f=1$ case is proven. This is Dirichlet's theorem on arithmetic progressions:

$$
a X+b
$$

produces an infinite number of primes iff $\operatorname{gcd}(a, b)=1$ iff

$$
c(f)=d(f)=1
$$

Basic results

- Hensel's theorem (1896) gives the simplest way of computing the fixed divisor:

$$
d(f)=\operatorname{gcd}(f(0), \ldots, f(d))
$$

- Pólya's theorem: (1915) If f is primitive then $d(f) \mid d$!
- Well known to É. Borel: (1900) Let p be a prime in the divisor which is greater than the degree of f. Then p is in the content

$$
p>d, p \mid d(f) \text { implies } p \mid c(f)
$$

Basic questions

Amazing!

$$
\text { If } p \mid d(f) \text { and } p>d \text { then } p \mid a_{0}, a_{1}, \ldots, a_{d}
$$

Questions

- How can this be proved in a simple way?
- What happens if $p \leq d$? Is there some arithmetic relation between the coefficients of f which is a multiple of p, caused by $p \mid d(f)$?

Basic answers

- The standard basis

$$
X^{0}, X^{1}, X^{2}, \ldots
$$

is badly suited for relating $d(f)$ to the coefficients. Change to the combinatorial basis

$$
1, X, X(X-1), X(X-1)(X-2), \ldots
$$

Call the basis elements $\Pi(0), \Pi(1), \Pi(2), \ldots$

- Observe that $d(\Pi(i))=i$!

Basic answers

- Let $f=\sum_{i=0}^{d} c_{i} \Pi(i)$. Then it is not difficult to prove

$$
d(f)=\operatorname{gcd}\left(c_{i} \cdot i!\right)
$$

- In particular, if $p \mid d(f)$ then $p \mid c_{i}$ or $p \mid i$. If $p>i$ then p Xi!, hence $p \mid c_{i}$. If $p>d$ then $p \mid c_{i}$ for all i
- Since the a_{i} are linear combinations of the $c_{i}, p \mid a_{i}$ for all i
- If $p \leq d, p \mid c_{i}$ for some i gives some relations for the a_{i}, starring the Stirling numbers of the second kind

Not the best way to proceed!

Basic answers

- Actually, it is better to stick with the canonical basis, and use Hensel's theorem and linear algebra
- $p \mid d(f)$ iff $f(x)=0(\bmod p)$ for all $x=0, \ldots, d$. Write this as the linear system $V(d) \cdot a=0$ in \mathbb{Z}_{p},

$$
\left(\begin{array}{cccc}
0^{0} & 0^{1} & \ldots & 0^{d} \\
1^{0} & 1^{1} & \ldots & 1^{d} \\
\vdots & \ddots & \ddots & \vdots \\
d^{0} & d^{1} & \ldots & d^{d}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d}
\end{array}\right)=0,
$$

where $V(d)$ is a Vandermonde matrix

Basic answers

$$
\left(\begin{array}{cccc}
0^{0} & 0^{1} & \ldots & 0^{d} \\
1^{0} & 1^{1} & \ldots & 1^{d} \\
\vdots & \ddots & \ddots & \vdots \\
d^{0} & d^{1} & \ldots & d^{d}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d}
\end{array}\right)=0
$$

- $\operatorname{det}(V(d))$ is the product of the differences $i-j$ for $0 \leq j<i \leq d$
- Hence, if $d<p$, then $p \nmid \operatorname{det}(V(d))$, so $V(d)$ is invertible in \mathbb{Z}_{p}
- The only solution is $a_{0}, \ldots, a_{d}=0$ in \mathbb{Z}_{p}

Basic answers

$$
\left(\begin{array}{cccc}
0^{0} & 0^{1} & \ldots & 0^{d} \\
1^{0} & 1^{1} & \ldots & 1^{d} \\
\vdots & \ddots & \ddots & \vdots \\
d^{0} & d^{1} & \ldots & d^{d}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d}
\end{array}\right)=0
$$

- Now suppose $p \leq d$. Then $p \mid \operatorname{det}(V(d))$
- Use Fermat's little theorem,

$$
x^{p}=x \text { for all } x \in \mathbb{Z}_{p}
$$

and hence group x together with x^{p}, x^{p+p-1}, \ldots, x^{2} together with $x^{p+2}, x^{p+2+p-1}$, and so on

Basic answers

- We get new variables $s_{1}=a_{1}+a_{p}+a_{2 p-1}+\cdots$, $s_{2}=a_{2}+a_{p+1}+a_{2 p}+\cdots$,

$$
s_{i}=\sum_{j \equiv i(\bmod p-1)} a_{i}, i=1, \ldots, p-1
$$

- The new system is

$$
\left(\begin{array}{cccc}
0^{0} & 0^{1} & \ldots & 0^{p-1} \\
1^{0} & 1^{1} & \ldots & 1^{p-1} \\
\vdots & \ddots & \ddots & \vdots \\
(p-1)^{0} & (p-1)^{1} & \ldots & (p-1)^{p-1}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
s_{1} \\
\vdots \\
s_{p-1}
\end{array}\right)=0
$$

$$
\left(\begin{array}{cccc}
0^{0} & 0^{1} & \cdots & 0^{p-1} \\
1^{0} & 1^{1} & \cdots & 1^{p-1} \\
\vdots & \ddots & \ddots & \vdots \\
(p-1)^{0} & (p-1)^{1} & \cdots & (p-1)^{p-1}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
s_{1} \\
\vdots \\
s_{p-1}
\end{array}\right)=0
$$

- Now the matrix of the system is $V(p-1)$, invertible in \mathbb{Z}_{p}
- The only solution is $a_{0}, s_{1}, \ldots, s_{p-1}=0$ in \mathbb{Z}_{p}

$$
p \mid d(f) \text { iff } p \mid a_{0}, \sum_{k} a_{1+k(p-1)}, \ldots, \sum_{k} a_{p-1+k(p-1)}
$$

Example: $3 \mid d\left(\sum_{i=0}^{6} a_{i} X^{i}\right)$ iff $3 \mid a_{0}, a_{1}+a_{3}+a_{5}, a_{2}+a_{4}+a_{6}$

Generalization

- Given $n \in \mathbb{N}$, the polynomials $f \in \mathbb{Z}[X]$ such that $n \mid d(f)$ form an ideal I_{n}
- I_{n} has been studied before, and described by sets of generators
- Goal: To describe I_{n} in terms of a smallest set of implicit relations for the coefficients of f
- This is doable: By Hensel's theorem, we get the relations in form of a Vandermonde system of linear equations (over the commutative ring \mathbb{Z}_{n}), with noninvertible matrix $V(d)$ in general. Then...

Generalization

...we can do an approximation of Gaussian elimination:
(1) Over \mathbb{Z} we have the Hermite normal form H of $V(d)$, which is upper triangular (with some other properties) and so that there exists a unimodular U such that

$$
U V(d)=H
$$

(2) Since U is unimodular, the Hermite normal form projects well to \mathbb{Z}_{n}. So we can equivalently put $V(d)$ in triangular form in \mathbb{Z}_{n}
(3) We can further simplify H by multiplying pivots by the units in \mathbb{Z}_{n}^{*}

This way we get a minimum system of implicit equations

Generalization

Question: Is this good enough?

- The computation of the Hermite normal form runs in polynomial time, but the matrix is of order n, while the cardinal of the minimal system could be much smaller
- An specific Hermite plus pivots algorithm over \mathbb{Z}_{n} needs to be implemented (also, in \mathbb{Z} the entries of H grow fast)

Question: Can we do better?

- In the prime case we used Fermat's theorem to reduce the system to its minimal expression
- Let's try something similar

Bumpy road Fermat's little theorem

- Euler's theorem on $\phi(n)$ is of no use to us, it justs ignores the bad elements
- We need a result for all $x \in \mathbb{Z}_{n}$
- The Lucas-Bachmann-Singmaster theorem (1966):

$$
x^{\lambda(n)+m(n)} \equiv x^{m(n)}(\bmod n)
$$

and this is the smallest identity of its kind

- $\lambda(n)$ is Carmichael's function (an improvement on $\phi(n)$)
- $m(n)$ is the highest exponent in the prime decomposition of n

Bumpy road Fermat's little theorem

Pros:

- With this trick we reduce the problem to

$$
V(\lambda(n)+m(n)-1)
$$

- The reduction is the simplest possible: just group coefficients in sums as before

Cons:

- We need the factorization of n
- $\lambda(n)$ is quite large most of the time, probably not the best possible reduction

Bumpy road Fermat's little theorem

n	$\lambda(n)$	$m(n)$	$\lambda(n)+m(n)-1$
2	1	1	1
3	2	1	2
4	2	2	3
5	4	1	4
6	2	1	2
7	6	1	6
8	2	3	4
9	6	2	7
10	4	1	4
12	2	2	3
14	6	1	6
15	4	1	4
16	4	4	7

Kempner to the rescue

Question: How can we do better?

- We are actually looking at \mathbb{Z}_{n} as a polynomial identity ring
- We need not the simplest, but a smallest degree polynomial identity of \mathbb{Z}_{n} in one variable
- We also need it to be primitive (monic)
- That identity is given precisely by a smallest degree polynomial inside I_{n}, the ideal of integer polynomials whose fixed divisor contains n
- The best description of I_{n} in terms of generators was given by Kempner (1918)

Kempner to the rescue

- Recall that $\Pi(i)=X(X-1) \cdots(X-i+1)$
- Kempner's theorem: For any $n \in \mathbb{N}$, the ideal of integer polynomials whose fixed divisor contains n is generated by all the polynomials of the form

$$
\frac{n}{k} \Pi(\mu(k)),
$$

where k is a divisor of n and μ is the Kempner function

Kempner to the rescue

- The Kempner function $\mu(n)$ returns the smallest m such that $n \mid m$!
- Example: $\mu(6)=3$ since 6|3!, 6 X2!
- For a prime $p, \mu(p)=p$ and $\mu\left(p^{k}\right)=k p$ while $k \leq p$, but $\mu\left(p^{p+1}\right)=\mu\left(p^{p}\right)=p^{2}$
- Why does this matter? Because n already divides the product of $\mu(n)$ consecutive numbers, and perhaps $\mu(n)<n$.

Kempner to the rescue

- Corollary 1: The smallest monic identity of \mathbb{Z}_{n} in one variable has degree $\mu(n)$
- Corollary 2: If n is in the fixed divisor of a polynomial of degree less than $\mu(n)$ then f is not primitive, it has a divisor of n in its content

Kempner to the rescue

Brox

n	$\mu(n)-1$	$\lambda(n)+\mu(n)-1$
4	3	3
6	2	2
8	3	4
9	5	7
10	4	4
15	4	4
16	5	7
25	9	21
27	8	20
81	8	57

Algorithm

To compute a minimal system of implicit relations for I_{n} :
(1) Find some $g \in I_{n}$ monic of minimal degree $\mu(n)$, for example $\Pi(\mu(n))$, and compute it in \mathbb{Z}_{n}
(2) This gives a relation $x^{\mu(n)}=\sum_{i=1}^{\mu(n)-1} \alpha_{i} x^{i}$ or all $x \in \mathbb{Z}_{n}$
(3) Reduce all powers x^{i} with $i \geq \mu(n)$ with that relation. This can be done in closed form, since it amounts to solving a linear homogeneous recurrence relation (kudos to Stephan Pfannerer for the help!)
(4) The evaluation of a generic polynomial f is reduced to an expression of the form $\sum_{i=1}^{\mu(n)-1} S_{i} x^{i}+a_{0}$
(5) Carry the Vandermonde matrix $V(\mu(n)-1)$ to triangular form H
(0) Solve $H S=0$, where $S=\left[S_{\mu-1}, \ldots, S_{1}, a_{0}\right]^{T}$

Algorithm

Example: Implicit relations for I_{9}

- $\mu(9)=6$
- Pick $g=\left(X^{3}-X\right)^{2}$
(it works since $3 \mid x^{3}-x$ for all $x \in \mathbb{Z}$).
This is $X^{6}-2 X^{4}+2 X^{2}$ in \mathbb{Z}_{9}
- Hence $x^{6}=2\left(x^{4}-x^{2}\right)$ for all $x \in \mathbb{Z}_{9}$
- If $i \geq 6$,

$$
\begin{aligned}
& x^{i}=2(2 i+1) x^{2}+2(4-2 i) x^{4} \text { if } i \text { even } \\
& x^{i}=2(2 i-1) x^{3}+2(6-2 i) x^{5} \text { if } i \text { odd }
\end{aligned}
$$

Algorithm

Example: Implicit relations for I_{9}

- Now any f evaluates as $A x^{5}+B x^{4}+C x^{3}+D x^{2}+E x+a_{0}$ for $x \in \mathbb{Z}_{9}$
- Triangularize $V(\mu(9)-1)=V(5)$ in \mathbb{Z}_{9} (we skip the 0 row):

$$
\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

Example: Implicit relations for I_{9}

- Solve

$$
\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C \\
D \\
E
\end{array}\right)=0
$$

- The equations are

$$
\begin{aligned}
& A+C+E=0, B+D=0 \\
& 3 C=0,3 D=0,3 E=0
\end{aligned}
$$

- For $\operatorname{deg} f=13$ this gives

$$
\begin{aligned}
& a_{0}=0, a_{3}+a_{5}+\cdots+a_{13}=0, a_{2}+a_{4}+\cdots+a_{12}=0 \\
& 3 a_{1}=0,6\left(a_{13}+a_{7}\right)+3\left(a_{9}+a_{3}\right)=0,6\left(a_{12}+a_{6}\right)+3\left(a_{8}+a_{2}\right)=0
\end{aligned}
$$

Algorithm

Question: Can we give a closed form for the reduction of $V(\mu(n)-1)$ in \mathbb{Z}_{n}, if the factorization of n is known?

- This way we could give a formula instead of an algorithm

$$
V(\mu(20)-1) \rightsquigarrow\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 0 & 2 \\
0 & 0 & 4 & 2 \\
0 & 0 & 0 & 4
\end{array}\right) \rightsquigarrow\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Multivariate case

- Implicit equations are well carried to the multivariate case by induction
- If $f(x)=0$ for all $x \in \mathbb{Z}$ implies

$$
\sum_{i \in A} \alpha_{i} a_{i}=0
$$

with $f=\sum_{i} a_{i} X^{i}$, then $g(x, y)=0$ for all $x, y \in \mathbb{Z}$ implies

$$
\sum_{i, j \in A} \alpha_{i} \alpha_{j} a_{i j}=0
$$

for $g=\sum_{i, j} a_{i j} X^{i} Y^{j}$, and so on.

