Relations between coefficients Brox Introduction Prime case General case Kempner Algorithm

Arithmetic relations between the coefficients of integer polynomials caused by the fixed divisor

Jose Brox

Centre for Mathematics of the University of Coimbra

17/04/19

Fixed divisor

between coefficients

Brox

Introduction

- Prime case
- General ca
- Kempner
- Algorithm
- Multivariate

Consider a univariate integer polynomial f ∈ Z[X] of degree d,

$$f=\sum_{i=0}^d a_i X^i$$

Its content is the gcd of its coefficients,

$$c(f) = \gcd_{0 \le i \le d}(a_i)$$

Its (fixed) divisor is the gcd of its integral images,

$$d(f) = \gcd_{z \in \mathbb{Z}}(f(z))$$

Brox (CMUC)

Fixed divisor

Examples:

- 2X + 2 has content 2 and divisor 2 (f(0) = 2)
- The content always divides the divisor, c(f)|d(f)
- It is not true that c(f) = d(f):

$$X^2 - X = X(X - 1)$$

has c(f) = 1, d(f) = 2(the product of two consecutive integers is always even and f(2) = 2)

Motivation

General ca

Relations between coefficients

- Kempner
- Algorithm
- Multivariate

- The very important Bouniakowsky's conjecture claims that an irreducible integer polynomial with trivial fixed divisor should produce an infinite number of primes.
 - Only the deg f = 1 case is proven. This is Dirichlet's theorem on arithmetic progressions:

aX + b

produces an infinite number of primes iff gcd(a, b) = 1 iff c(f) = d(f) = 1

Basic results

Hensel's theorem (1896) gives the simplest way of computing the fixed divisor:

$$d(f) = \gcd(f(0), \ldots, f(d))$$

- Pólya's theorem: (1915) If f is primitive then d(f)|d!
- ▶ Well known to É. Borel: (1900) Let *p* be a prime in the divisor which is greater than the degree of *f*. Then *p* is in the content

$$p > d$$
, $p|d(f)$ implies $p|c(f)$

Basic questions

Amazing!

Relations between coefficients

Introduction

(If
$$p|d(f)$$
 and $p > d$ then $p|a_0, a_1, \ldots, a_d$

Questions

- How can this be proved in a simple way?
- What happens if p ≤ d? Is there some arithmetic relation between the coefficients of f which is a multiple of p, caused by p|d(f)?

The standard basis

$$X^0, X^1, X^2, \dots$$

is badly suited for relating d(f) to the coefficients. Change to the combinatorial basis

$$1, X, X(X - 1), X(X - 1)(X - 2), \dots$$

Call the basis elements $\Pi(0), \Pi(1), \Pi(2), \ldots$

• Observe that $d(\Pi(i)) = i!$

Introduction Prime case General case Kempner Algorithm

Relations between

coefficients

► Let $f = \sum_{i=0}^{d} c_i \Pi(i)$. Then it is not difficult to prove $\boxed{d(f) = \gcd(c_i \cdot i!)}$

- ▶ In particular, if p|d(f) then $p|c_i$ or p|i!. If p > i then $p \not|i!$, hence $p|c_i$. If p > d then $p|c_i$ for all i
- Since the a_i are linear combinations of the c_i , $p|a_i$ for all i
- If p ≤ d, p|c_i for some i gives some relations for the a_i, starring the Stirling numbers of the second kind

Not the best way to proceed!

Introduction

Relations between coefficients

- Prime case
- General cas
- Kempner
- Algorithm
- Multivariate

- Actually, it is better to stick with the canonical basis, and use Hensel's theorem and linear algebra
- p|d(f) iff f(x) = 0 (mod p) for all x = 0,...,d. Write this as the linear system V(d) ⋅ a = 0 in Z_p,

$$egin{pmatrix} 0^0 & 0^1 & \dots & 0^d \ 1^0 & 1^1 & \dots & 1^d \ dots & \ddots & \ddots & dots \ d^0 & d^1 & \dots & d^d \end{pmatrix} egin{pmatrix} a_0 \ a_1 \ dots \ a_d \end{pmatrix} = 0,$$

where V(d) is a Vandermonde matrix

Basic answers

$$\begin{pmatrix} 0^{0} & 0^{1} & \dots & 0^{d} \\ 1^{0} & 1^{1} & \dots & 1^{d} \\ \vdots & \ddots & \ddots & \vdots \\ d^{0} & d^{1} & \dots & d^{d} \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{d} \end{pmatrix} = 0$$

- det(V(d)) is the product of the differences i − j for 0 ≤ j < i ≤ d</p>
- Hence, if d < p, then p ∦det(V(d)), so V(d) is invertible in Z_p
- The only solution is $a_0, \ldots, a_d = 0$ in \mathbb{Z}_p

$$\begin{pmatrix} 0^{0} & 0^{1} & \dots & 0^{d} \\ 1^{0} & 1^{1} & \dots & 1^{d} \\ \vdots & \ddots & \ddots & \vdots \\ d^{0} & d^{1} & \dots & d^{d} \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{d} \end{pmatrix} = 0$$

- Now suppose $p \leq d$. Then $p | \det(V(d))$
- Use Fermat's little theorem,

$$x^p = x$$
 for all $x \in \mathbb{Z}_p$

and hence group x together with $x^{p}, x^{p+p-1}, ..., x^{2}$ together with $x^{p+2}, x^{p+2+p-1}$, and so on

Relations

coefficients

• We get new variables $s_1 = a_1 + a_p + a_{2p-1} + \cdots$, $s_2 = a_2 + a_{p+1} + a_{2p} + \cdots$,

$$s_i = \sum_{j \equiv i \pmod{p-1}} a_i, \ i = 1, \dots, p-1$$

The new system is

$$\begin{pmatrix} 0^0 & 0^1 & \dots & 0^{p-1} \\ 1^0 & 1^1 & \dots & 1^{p-1} \\ \vdots & \ddots & \ddots & \vdots \\ (p-1)^0 & (p-1)^1 & \dots & (p-1)^{p-1} \end{pmatrix} \begin{pmatrix} a_0 \\ s_1 \\ \vdots \\ s_{p-1} \end{pmatrix} = 0$$

$$\begin{pmatrix} 0^{0} & 0^{1} & \dots & 0^{p-1} \\ 1^{0} & 1^{1} & \dots & 1^{p-1} \\ \vdots & \ddots & \ddots & \vdots \\ (p-1)^{0} & (p-1)^{1} & \dots & (p-1)^{p-1} \end{pmatrix} \begin{pmatrix} a_{0} \\ s_{1} \\ \vdots \\ s_{p-1} \end{pmatrix} = 0$$

- ▶ Now the matrix of the system is V(p-1), invertible in \mathbb{Z}_p
- The only solution is $a_0, s_1, \ldots, s_{p-1} = 0$ in \mathbb{Z}_p

$$p|d(f) \text{ iff } p|a_0, \sum_k a_{1+k(p-1)}, \dots, \sum_k a_{p-1+k(p-1)}$$

Example: $3|d\left(\sum_{i=0}^6 a_i X^i\right) \text{ iff } 3|a_0, a_1 + a_3 + a_5, a_2 + a_4 + a_6$

Generalization

- Given $n \in \mathbb{N}$, the polynomials $f \in \mathbb{Z}[X]$ such that n|d(f) form an ideal I_n
- I_n has been studied before, and described by sets of generators
- ► Goal: To describe I_n in terms of a smallest set of implicit relations for the coefficients of f
- ► This is **doable**: By Hensel's theorem, we get the relations in form of a Vandermonde system of linear equations (over the commutative ring Z_n), with noninvertible matrix V(d) in general. Then...

Generalization

between coefficients Brox

Relations

Introduction

Prime case

General case

Algorithm

Multivariate

...we can do an approximation of **Gaussian elimination**:

Over Z we have the Hermite normal form H of V(d), which is upper triangular (with some other properties) and so that there exists a unimodular U such that

UV(d) = H

- Since U is unimodular, the Hermite normal form projects well to Z_n. So we can equivalently put V(d) in triangular form in Z_n
- So We can further simplify H by multiplying pivots by the units in Z^{*}_n

This way we get a minimum system of implicit equations

Generalization

Question: Is this good enough?

- ► The computation of the Hermite normal form runs in polynomial time, but the matrix is of order *n*, while the cardinal of the minimal system could be much smaller
- ► An specific Hermite plus pivots algorithm over Z_n needs to be implemented (also, in Z the entries of H grow fast)

Question: Can we do better?

- In the prime case we used Fermat's theorem to reduce the system to its minimal expression
- Let's try something similar

Relations between coefficients

Introduction

Prime case

General case

Kempner

Algorithm

Multivariate

Bumpy road Fermat's little theorem

- ► Euler's theorem on φ(n) is of no use to us, it justs ignores the bad elements
- We need a result for all $x \in \mathbb{Z}_n$
- ► The Lucas-Bachmann-Singmaster theorem (1966):

$$x^{\lambda(n)+m(n)} \equiv x^{m(n)} \pmod{n},$$

and this is the smallest identity of its kind

- $\lambda(n)$ is **Carmichael's function** (an improvement on $\phi(n)$)
- *m*(*n*) is the **highest exponent** in the prime decomposition of *n*

Relations between coefficients Brox

Introductio

Prime case

General case

......

Multivariate

Bumpy road Fermat's little theorem

Pros:

With this trick we reduce the problem to

 $V(\lambda(n) + m(n) - 1)$

The reduction is the simplest possible: just group coefficients in sums as before

Cons:

- We need the factorization of n
- λ(n) is quite large most of the time, probably not the best
 possible reduction

General case

Relations between coefficients	
General case	

Bumpy road Fermat's little theorem			
n	$\lambda(n)$	<i>m</i> (<i>n</i>)	$\lambda(n) + m(n) - 1$
2	1	1	1
3	2	1	2
4	2	2	3
5	4	1	4
6	2	1	2
7	6	1	6
8	2	3	4
9	6	2	7
10	4	1	4
12	2	2	3
14	6	1	6
15	4	1	4
16	4	4	7

17/04/19 19 / 3

Question: How can we do better?

- We are actually looking at \mathbb{Z}_n as a polynomial identity ring
- ▶ We need not the simplest, but a smallest degree polynomial identity of Z_n in one variable
- We also need it to be primitive (monic)
- ► That identity is given precisely by a smallest degree polynomial inside *I_n*, the ideal of integer polynomials whose fixed divisor contains *n*
- ► The best description of *I_n* in terms of generators was given by Kempner (1918)

• Recall that
$$\Pi(i) = X(X-1)\cdots(X-i+1)$$

Kempner's theorem: For any n ∈ N, the ideal of integer polynomials whose fixed divisor contains n is generated by all the polynomials of the form

$$\frac{n}{k}\Pi(\mu(k)),$$

where k is a divisor of n and μ is the **Kempner function**

- ► The Kempner function µ(n) returns the smallest m such that n|m!
- Example: $\mu(6) = 3$ since 6|3!, 6 / 2!
- ► For a prime p, $\mu(p) = p$ and $\mu(p^k) = kp$ while $k \le p$, but $\mu(p^{p+1}) = \mu(p^p) = p^2$
- Why does this matter? Because n already divides the product of µ(n) consecutive numbers, and perhaps µ(n) < n.</p>

- ► Corollary 1: The smallest monic identity of Z_n in one variable has degree µ(n)
- ► Corollary 2: If n is in the fixed divisor of a polynomial of degree less than µ(n) then f is not primitive, it has a divisor of n in its content

Relations between coefficients

Brox

Introduction

Prime case

General case

Kempner

Algorithm

Multivariate

Kempner to the rescue

n	$\mu(n) - 1$	$\lambda(n) + \mu(n) - 1$
4	3	3
6	2	2
8	3	4
9	5	7
10	4	4
15	4	4
16	5	7
25	9	21
27	8	20
81	8	57

।≣।> ≣ •ी ९ (7/04/19 24 / 3

Relations between coefficients

Brox

- Introduction Prime case
- General case

Kempner

Algorithm

Multivariate

To compute a minimal system of implicit relations for I_n :

- Find some g ∈ I_n monic of minimal degree µ(n), for example Π(µ(n)), and compute it in Z_n
- ② This gives a relation $x^{\mu(n)} = \sum_{i=1}^{\mu(n)-1} \alpha_i x^i$ or all $x \in \mathbb{Z}_n$
- Seduce all powers xⁱ with i ≥ µ(n) with that relation. This can be done in closed form, since it amounts to solving a linear homogeneous recurrence relation (kudos to Stephan Pfannerer for the help!)
- **④** The evaluation of a generic polynomial f is reduced to an expression of the form $\sum_{i=1}^{\mu(n)-1} S_i x^i + a_0$
- **③** Carry the Vandermonde matrix $V(\mu(n) 1)$ to triangular form H
- **(**) Solve HS = 0, where $S = [S_{\mu-1}, ..., S_1, a_0]^T$

Example: Implicit relations for *I*₉

- ▶ µ(9) = 6
- ► Pick $g = (X^3 X)^2$ (it works since $3|x^3 - x$ for all $x \in \mathbb{Z}$). This is $X^6 - 2X^4 + 2X^2$ in \mathbb{Z}_9
- Hence $x^6 = 2(x^4 x^2)$ for all $x \in \mathbb{Z}_9$
- ► If i ≥ 6,

$$\begin{aligned} x^{i} &= 2(2i+1)x^{2} + 2(4-2i)x^{4} \text{ if } i \text{ even}, \\ x^{i} &= 2(2i-1)x^{3} + 2(6-2i)x^{5} \text{ if } i \text{ odd} \end{aligned}$$

Brox

Introductior

Prime case

General case

Kempner

Algorithm

Multivariate

Example: Implicit relations for I9

- ▶ Now any f evaluates as $Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + a_0$ for $x \in \mathbb{Z}_9$
- ► Triangularize V(µ(9) 1) = V(5) in Z₉ (we skip the 0 row):

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

Relations between coefficients Brox

Introduction

Prime case

General case

Kempner

Algorithm

Multivariate

Example: Implicit relations for I9

Solve

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \\ E \end{pmatrix} = 0$$

The equations are

$$A + C + E = 0, B + D = 0$$

 $3C = 0, 3D = 0, 3E = 0$

• For deg f = 13 this gives

$$a_0 = 0, a_3 + a_5 + \dots + a_{13} = 0, a_2 + a_4 + \dots + a_{12} = 0$$

$$3a_1 = 0, 6(a_{13} + a_7) + 3(a_9 + a_3) = 0, 6(a_{12} + a_6) + 3(a_8 + a_2) = 0$$

Prime case General case Kempner

between coefficients

Algorithm

Multivariate

Question: Can we give a closed form for the reduction of $V(\mu(n) - 1)$ in \mathbb{Z}_n , if the factorization of *n* is known?

This way we could give a formula instead of an algorithm

$$V(\mu(20)-1) \rightsquigarrow egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 2 & 0 & 2 \ 0 & 0 & 4 & 2 \ 0 & 0 & 0 & 4 \end{pmatrix} \rightsquigarrow egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 2 & 0 & 0 \ 0 & 0 & 4 & 0 \ 0 & 0 & 0 & 2 \end{pmatrix}$$

Multivariate case

- Implicit equations are well carried to the multivariate case by induction
- If f(x) = 0 for all $x \in \mathbb{Z}$ implies

$$\sum_{i\in A}\alpha_i a_i = 0$$

with $f = \sum_i a_i X^i$, then g(x, y) = 0 for all $x, y \in \mathbb{Z}$ implies

$$\sum_{i,j\in A} \alpha_i \alpha_j a_{ij} = 0$$

for
$$g = \sum_{i,j} a_{ij} X^i Y^j$$
, and so on.

Relations

between coefficients

Multivariate