Cubic coordinate posets 0000000000

Cubic realizations of Tamari interval lattices

Camille Combe

Université de Strasbourg, IRMA

The 82nd Séminaire Lotharingien de Combinatoire

April 16, 2019

Cubic coordinates 0000000 Cubic coordinate posets 0000000000

Contents

Tamari lattices and goals

Cubic coordinates

Cubic coordinate posets

Cubic coordinates 0000000 Cubic coordinate posets 0000000000

Contents

Tamari lattices and goals

Cubic coordinates 0000000 Cubic coordinate posets 0000000000

Tamari lattices

Tamari posets [Tamari, 1962]:

- \star objects: binary trees with n leaves,
- \star covering relation: right rotation:

★ partial order relation: \leq_t .

Tamari lattices and goals $0 \bullet 00$

Cubic coordinates 0000000 Cubic coordinate posets 0000000000

Tamari lattices

Tamari posets [Tamari, 1962]:

- \star objects: binary trees with n leaves,
- \star covering relation: right rotation:

★ partial order relation: \leq_t .

Known facts: they are lattices, formula for their number of intervals, admit generalizations (m-Tamari), *etc.*

Cubic coordinate posets 0000000000

Tamari interval lattices

Tamari interval posets:

- ★ objects: pairs of binary trees [S, T] such that $S \leq_t T$,
- \star partial order relation: $\leqslant_{\rm ti}$:

$$[S,T] \leqslant_{\mathrm{ti}} [S',T'] \iff S \leqslant_{\mathrm{t}} S' \text{ and } T \leqslant_{\mathrm{t}} T'.$$

Cubic coordinate posets 0000000000

Tamari interval lattices

Tamari interval posets:

- ★ objects: pairs of binary trees [S, T] such that $S \leq_t T$,
- \star partial order relation: $\leqslant_{\rm ti}$:

$$[S,T] \leqslant_{\mathrm{ti}} [S',T'] \iff S \leqslant_{\mathrm{t}} S' \text{ and } T \leqslant_{\mathrm{t}} T'.$$

Known facts: they are also lattices, their objects are encoded by interval-posets, *etc.*

Tamari lattices and goals $000 \bullet$

Cubic coordinates 0000000 Cubic coordinate posets 0000000000

Work context

Goal: study Tamari interval posets.

Cubic coordinate posets 0000000000

Work context

Goal: study Tamari interval posets.

Way: introduce a new encoding of Tamari intervals.

Cubic coordinate posets 0000000000

Work context

Goal: study Tamari interval posets.

Way: introduce a new encoding of Tamari intervals.

Results:

- \star simple representation of Tamari intervals,
- \star easy reading of some properties of Tamari intervals,
- \star geometric realization of the lattice.

Cubic coordinates •000000

Cubic coordinate posets 0000000000

Contents

Cubic coordinates

7/23

Cubic coordinate posets 0000000000

Interval-posets

An interval-poset P of size n is a partial order \triangleleft on the set $\{x_1, \ldots, x_n\}$ such that, for any i < k,

(i) if $x_k \triangleleft x_i$ then for all x_j such that i < j < k, one has $x_j \triangleleft x_i$,

(ii) if $x_i \triangleleft x_k$ then for all x_j such that i < j < k, one has $x_j \triangleleft x_k$.

We denote \mathcal{IP}_n the set of interval-posets of size n.

Cubic coordinate posets 0000000000

Interval-posets

An interval-poset P of size n is a partial order \triangleleft on the set $\{x_1, \ldots, x_n\}$ such that, for any i < k,

(i) if $x_k \triangleleft x_i$ then for all x_j such that i < j < k, one has $x_j \triangleleft x_i$,

(ii) if $x_i \triangleleft x_k$ then for all x_j such that i < j < k, one has $x_j \triangleleft x_k$.

We denote \mathcal{IP}_n the set of interval-posets of size n.

Cubic coordinate posets 0000000000

Interval-posets

An interval-poset P of size n is a partial order \triangleleft on the set $\{x_1, \ldots, x_n\}$ such that, for any i < k,

(i) if $x_k \triangleleft x_i$ then for all x_j such that i < j < k, one has $x_j \triangleleft x_i$,

(ii) if $x_i \triangleleft x_k$ then for all x_j such that i < j < k, one has $x_j \triangleleft x_k$.

We denote \mathcal{IP}_n the set of interval-posets of size n.

There is a bijection $\rho : \mathcal{IP}_n \to \mathcal{TI}_n$ [Châtel, Pons, 2015].

Cubic coordinate posets 0000000000

Tamari diagrams

A Tamari diagram is a word $u = u_1 u_2 \dots u_n$ of integers such that

- (i) $0 \leq u_i \leq n-i$ for all $i \in [n]$;
- (ii) $u_{i+j} \leq u_i j$ for all $i \in [n]$ and $0 \leq j \leq u_i$.

The size of a Tamari diagram is its number of letters [Palo, 1986].

Cubic coordinate posets 0000000000

Tamari diagrams

A Tamari diagram is a word $u = u_1 u_2 \dots u_n$ of integers such that

- (i) $0 \leq u_i \leq n-i$ for all $i \in [n]$;
- (ii) $u_{i+j} \leq u_i j$ for all $i \in [n]$ and $0 \leq j \leq u_i$.

The size of a Tamari diagram is its number of letters [Palo, 1986].

Cubic coordinate posets 0000000000

Tamari diagrams

A Tamari diagram is a word $u = u_1 u_2 \dots u_n$ of integers such that

- (i) $0 \leq u_i \leq n-i$ for all $i \in [n]$;
- (ii) $u_{i+j} \leq u_i j$ for all $i \in [n]$ and $0 \leq j \leq u_i$.

The size of a Tamari diagram is its number of letters [Palo, 1986].

A word $v = v_1 v_2 \dots v_n$ is a dual Tamari diagram if and only if its reversal is a Tamari diagram.

Cubic coordinate posets 0000000000

Compatibility

Let u (resp. v) be a (resp. dual) Tamari diagram of size n.

The diagrams u and v are compatible if $j - i \leq u_i$ implies $v_j < j - i$, for all $1 \leq i < j \leq n$.

In this case, (u, v) is a Tamari interval diagram.

Let \mathcal{TID}_n be the set of Tamari interval diagrams of size n.

Cubic coordinate posets 0000000000

Compatibility

Let u (resp. v) be a (resp. dual) Tamari diagram of size n.

The diagrams u and v are compatible if $j - i \leq u_i$ implies $v_j < j - i$, for all $1 \leq i < j \leq n$.

In this case, (u, v) is a Tamari interval diagram.

Let \mathcal{TID}_n be the set of Tamari interval diagrams of size n.

Cubic coordinate posets 0000000000

Bijection

Let χ be the map sending a Tamari interval diagram (u, v) of size n to the binary relation \triangleleft on $\{x_1, \ldots, x_n\}$ where for all $i \in [n]$ and $0 \leq l \leq u_i, x_{i+l} \lhd x_i$, and for all $i \in [n]$ and $0 \leq k \leq v_i, x_{i-k} \lhd x_i$.

Cubic coordinate posets 0000000000

Bijection

Let χ be the map sending a Tamari interval diagram (u, v) of size n to the binary relation \triangleleft on $\{x_1, \ldots, x_n\}$ where for all $i \in [n]$ and $0 \leq l \leq u_i, x_{i+l} \lhd x_i$, and for all $i \in [n]$ and $0 \leq k \leq v_i, x_{i-k} \lhd x_i$.

Cubic coordinate posets 0000000000

Bijection

Let χ be the map sending a Tamari interval diagram (u, v) of size n to the binary relation \triangleleft on $\{x_1, \ldots, x_n\}$ where for all $i \in [n]$ and $0 \leq l \leq u_i, x_{i+l} \lhd x_i$, and for all $i \in [n]$ and $0 \leq k \leq v_i, x_{i-k} \lhd x_i$.

Theorem [C., 2019]

The map χ is a bijection from \mathcal{TID}_n to \mathcal{IP}_n .

Cubic coordinates

Let c be a (n-1)-tuple with entries in \mathbb{Z} . We say that c is a cubic coordinate if the pair (u, v), where u is the word defined by $u_n = 0$ and for all $i \in [n-1]$ by

$$u_i = \max(c_i, \ 0),$$

and v is the word defined by $v_1 = 0$ and for all $2 \leq i \leq n$ by

$$v_i = |\min(c_{i-1}, 0)|,$$

is a Tamari interval diagram. The size of a cubic coordinate is its number of entries plus one. The set of cubic coordinates of size n is denoted by \mathcal{CC}_n .

Cubic coordinates

Let c be a (n-1)-tuple with entries in \mathbb{Z} . We say that c is a cubic coordinate if the pair (u, v), where u is the word defined by $u_n = 0$ and for all $i \in [n-1]$ by

$$u_i = \max(c_i, \ 0),$$

and v is the word defined by $v_1 = 0$ and for all $2 \leq i \leq n$ by

$$v_i = |\min(c_{i-1}, 0)|,$$

is a Tamari interval diagram. The size of a cubic coordinate is its number of entries plus one. The set of cubic coordinates of size n is denoted by \mathcal{CC}_n .

Example

$$\begin{array}{ll} v = 0 \ 0 \ 1 \ 0 \ 0 \ 4 \ 0 \ 0 \ 0 \ 2 \\ u = 9 \ 0 \ 2 \ 1 \ 0 \ 4 \ 3 \ 1 \ 0 \ 0 \end{array} \begin{array}{l} u_i - v_{i+1} \\ \longrightarrow \end{array} (9, -1, 2, 1, -4, 4, 3, 1, -2). \end{array}$$

Cubic coordinates

Cubic coordinate posets 0000000000

Some properties

* There is a bijection $\phi : \mathcal{CC}_n \to \mathcal{TID}_n$.

Cubic coordinates

Cubic coordinate posets 0000000000

Some properties

- * There is a bijection $\phi : \mathcal{CC}_n \to \mathcal{TID}_n$.
- ★ A cubic coordinate c of size n is synchronized if for all $i \in [n-1]$, $c_i \neq 0$. The set of synchronized cubic coordinates of size n is denoted by \mathcal{CC}_n^{sync} . (synchronized Tamari interval, [Préville-Ratelle, Viennot, 2017])

Cubic coordinates 0000000

Cubic coordinate posets 0000000000

Some properties

- * There is a bijection $\phi : \mathcal{CC}_n \to \mathcal{TID}_n$.
- ★ A cubic coordinate c of size n is synchronized if for all $i \in [n-1]$, $c_i \neq 0$. The set of synchronized cubic coordinates of size n is denoted by \mathcal{CC}_n^{sync} . (synchronized Tamari interval, [Préville-Ratelle, Viennot, 2017])
- \star A Tamari interval diagram (u,v) of size n is new if the following conditions are satisfied:

(i)
$$0 \le u_i \le n - i - 1$$
 for all $i \in [n - 1]$;
(ii) $0 \le v_j \le j - 2$ for all $j \in \{2, ..., n\}$;
(iii) $u_k < l - k - 1$ or $v_l < l - k - 1$ for all $k, l \in [n]$ such that $k + 1 < l$.

(new Tamari intervals, [Chapoton, 2017])

Cubic coordinates 0000000

Cubic coordinate posets 0000000000

Some properties

- * There is a bijection $\phi : \mathcal{CC}_n \to \mathcal{TID}_n$.
- ★ A cubic coordinate c of size n is synchronized if for all $i \in [n-1]$, $c_i \neq 0$. The set of synchronized cubic coordinates of size n is denoted by \mathcal{CC}_n^{sync} . (synchronized Tamari interval, [Préville-Ratelle, Viennot, 2017])
- \star A Tamari interval diagram (u,v) of size n is new if the following conditions are satisfied:

(i)
$$0 \le u_i \le n - i - 1$$
 for all $i \in [n - 1]$;
(ii) $0 \le v_j \le j - 2$ for all $j \in \{2, ..., n\}$;
(iii) $u_k < l - k - 1$ or $v_l < l - k - 1$ for all $k, l \in [n]$ such that $k + 1 < l$.

(new Tamari intervals, [Chapoton, 2017])

* If (u, v) is synchronized then (u, v) is not new.

Cubic coordinates 0000000

Cubic coordinate posets •000000000

Contents

Cubic coordinate posets

Cubic coordinate posets

Let $c, c' \in \mathcal{CC}_n$.

Partial order: $c \leq_{cc} c'$ if and only if $c_i \leq c'_i$ for all $i \in [n-1]$.

Covering relation: $c \leq c'$ if and only if there is exactly one $i \in [n-1]$ such that $c_i < c'_i$, and if there is a $c'' \in CC_n$ such that $c \leq_{cc} c'' \leq_{cc} c'$, then either c = c'' or c' = c''.

Cubic coordinate posets

Let $c, c' \in \mathcal{CC}_n$.

Partial order: $c \leq_{cc} c'$ if and only if $c_i \leq c'_i$ for all $i \in [n-1]$.

Covering relation: $c \leq c'$ if and only if there is exactly one $i \in [n-1]$ such that $c_i < c'_i$, and if there is a $c'' \in CC_n$ such that $c \leq_{cc} c'' \leq_{cc} c'$, then either c = c'' or c' = c''.

Let
$$\psi = \phi^{-1} \circ \chi^{-1} \circ \rho^{-1}$$
.

Theorem [C., 2019]

The map ψ is an isomorphism of posets from \mathcal{TI}_n to \mathcal{CC}_n .

Cubic coordinate posets

Let $c, c' \in \mathcal{CC}_n$.

Partial order: $c \leq_{cc} c'$ if and only if $c_i \leq c'_i$ for all $i \in [n-1]$.

Covering relation: $c \leq c'$ if and only if there is exactly one $i \in [n-1]$ such that $c_i < c'_i$, and if there is a $c'' \in CC_n$ such that $c \leq_{cc} c'' \leq_{cc} c'$, then either c = c'' or c' = c''.

Let
$$\psi = \phi^{-1} \circ \chi^{-1} \circ \rho^{-1}$$
.

Theorem [C., 2019]

The map ψ is an isomorphism of posets from \mathcal{TI}_n to \mathcal{CC}_n .

$$\begin{array}{ccc} \mathcal{TID}_n & \stackrel{\chi}{\longrightarrow} \mathcal{IP}_n \\ \uparrow^{\phi} & \downarrow^{\rho} \\ \mathcal{CC}_n & \stackrel{\psi}{\longleftarrow} \mathcal{TI}_n \end{array}$$

Cubic coordinates 0000000 Cubic coordinate posets 000000000

Cubic realization of \mathcal{CC}_3

The elements of \mathcal{CC}_3 are vertices and the cover relations are arrows orientated to the covering cubic coordinates.

Cells

Let $c \in \mathcal{CC}_n$. Suppose that there is $c' \in \mathcal{CC}_n$ such that $c'_i > c_i$ and $c'_j = c_j$ for all $j \neq i$, with $i, j \in [n-1]$. We define then the map of minimal increase \uparrow_i as follows

$$\uparrow_i (c) = (c_1, \dots, c_{i-1}, \widehat{c}_i, c_{i+1}, \dots, c_{n-1}),$$

such that $c \leq \uparrow_i (c)$ and $c_i < \hat{c}_i \leq c'_i$.

Cells

Let $c \in \mathcal{CC}_n$. Suppose that there is $c' \in \mathcal{CC}_n$ such that $c'_i > c_i$ and $c'_j = c_j$ for all $j \neq i$, with $i, j \in [n-1]$. We define then the map of minimal increase \uparrow_i as follows

$$\uparrow_i (c) = (c_1, \dots, c_{i-1}, \widehat{c}_i, c_{i+1}, \dots, c_{n-1}),$$

such that $c \lessdot \uparrow_i (c)$ and $c_i < \widehat{c}_i \leqslant c'_i$.

Let $c^m \in \mathcal{CC}_n$, then c^m is minimal-cellular if for all $i \in [n-1]$, $\uparrow_i (c^m)$ is well-defined.

Cells

Let $c \in \mathcal{CC}_n$. Suppose that there is $c' \in \mathcal{CC}_n$ such that $c'_i > c_i$ and $c'_j = c_j$ for all $j \neq i$, with $i, j \in [n-1]$. We define then the map of minimal increase \uparrow_i as follows

$$\uparrow_i (c) = (c_1, \dots, c_{i-1}, \widehat{c}_i, c_{i+1}, \dots, c_{n-1}),$$

such that $c \lessdot \uparrow_i (c)$ and $c_i < \widehat{c}_i \leqslant c'_i$.

Let $c^m \in \mathcal{CC}_n$, then c^m is minimal-cellular if for all $i \in [n-1]$, $\uparrow_i (c^m)$ is well-defined.

Example

 $c^m = (0, -1, 1, -1, -5, 0, 1, -1, -3)$ is minimal-cellular.

Cubic coordinates 0000000 Cubic coordinate posets 000000000

Lemma

Let c^m be a minimal-cellular cubic coordinate of size n and $i \in [n-1]$. If

$$c' = \uparrow_{i+1} (\uparrow_{i+2} (\dots (\uparrow_{n-1} (c^m))\dots)),$$

is well-defined, then $\uparrow_i (c')$ is well-defined.

Cubic coordinates 0000000 Cubic coordinate posets 000000000

Lemma

Let c^m be a minimal-cellular cubic coordinate of size n and $i \in [n-1]$. If

$$c' = \uparrow_{i+1} (\uparrow_{i+2} (\dots (\uparrow_{n-1} (c^m))\dots)),$$

is well-defined, then $\uparrow_i (c')$ is well-defined.

Let $c^M \in \mathcal{CC}_n$, then c^M is the maximal-cellular correspondent of c^m if

$$c^{M} = \uparrow_1 (\uparrow_2 (\dots (\uparrow_{n-1} (c^m))\dots)).$$

Cubic coordinates 0000000 Cubic coordinate posets 000000000

Lemma

Let c^m be a minimal-cellular cubic coordinate of size n and $i \in [n-1]$. If

$$c' = \uparrow_{i+1} (\uparrow_{i+2} (\dots (\uparrow_{n-1} (c^m))\dots)),$$

is well-defined, then $\uparrow_i (c')$ is well-defined.

Let $c^M \in \mathcal{CC}_n$, then c^M is the maximal-cellular correspondent of c^m if

$$c^{M} = \uparrow_1 (\uparrow_2 (\dots (\uparrow_{n-1} (c^m))\dots)).$$

We denote by $\langle c^m, c^M \rangle$ the corresponding cell.

Cubic coordinates 0000000

Cells

Example

Cubic coordinates 0000000

Cells

Example

 $\uparrow_9 (c^m)$

Cubic coordinates 0000000

Cells

Example

 $\uparrow_8 (\uparrow_9 (c^m))$

Cubic coordinates 0000000

Cells

Example

Cubic coordinates 0000000

Cells

Example

 $c^m = (0, -1, 1, -1, -5, 0, 1, -1, -3)$ is minimal-cellular, and its maximal-cellular correspondent is $c^M = (1, 0, 2, 0, -4, 3, 2, 0, -2)$.

 $\uparrow_6 (\uparrow_7 (\uparrow_8 (\uparrow_9 (c^m))))$

Cubic coordinates 0000000 Cubic coordinate posets

Cells

Example

Cubic coordinates 0000000

Cells

Example

Bijection

Let γ be the map defined for all $i \in [n-1]$ by

$$\gamma(c_i^m,c_i^M) = \begin{cases} c_i^m & \text{ if } c_i^m < 0, \\ c_i^M & \text{ if } c_i^m \geqslant 0, \end{cases}$$

and Γ be the map from the set of cells of size n to the set of (n-1)-tuples defined by

$$\Gamma(\langle c^m, c^M \rangle) = (\gamma(c_1^m, c_1^M), \gamma(c_2^m, c_2^M), \dots, \gamma(c_{n-1}^m, c_{n-1}^M)).$$

Bijection

Let γ be the map defined for all $i \in [n-1]$ by

$$\gamma(c_i^m,c_i^M) = \begin{cases} c_i^m & \text{ if } c_i^m < 0, \\ c_i^M & \text{ if } c_i^m \geqslant 0, \end{cases}$$

and Γ be the map from the set of cells of size n to the set of (n-1)-tuples defined by

$$\Gamma(\langle c^m, c^M \rangle) = (\gamma(c_1^m, c_1^M), \gamma(c_2^m, c_2^M), \dots, \gamma(c_{n-1}^m, c_{n-1}^M)).$$

Example

The cell $\langle (0, -1, 1, -1, -5, 0, 1, -1, -3), (1, 0, 2, 0, -4, 3, 2, 0, -2) \rangle$ is sent to (1, -1, 2, -1, -5, 3, 2, -1, -3).

Bijection

Let γ be the map defined for all $i\in [n-1]$ by

$$\gamma(c_i^m,c_i^M) = \begin{cases} c_i^m & \text{ if } c_i^m < 0, \\ c_i^M & \text{ if } c_i^m \geqslant 0, \end{cases}$$

and Γ be the map from the set of cells of size n to the set of (n-1)-tuples defined by

$$\Gamma(\langle c^m, c^M \rangle) = (\gamma(c_1^m, c_1^M), \gamma(c_2^m, c_2^M), \dots, \gamma(c_{n-1}^m, c_{n-1}^M)).$$

Example

The cell $\langle (0, -1, 1, -1, -5, 0, 1, -1, -3), (1, 0, 2, 0, -4, 3, 2, 0, -2) \rangle$ is sent to (1, -1, 2, -1, -5, 3, 2, -1, -3).

Theorem [C., 2019]

The map Γ is a bijection from the set of cells of size n to \mathcal{CC}_n^{sync} .

Cubic coordinates 0000000

Cells and synchronized

- \star Blue dots: synchronized cubic coordinates.
- ★ Red dot: cubic coordinate (0, 0).

EL-Shellability

Generalization of Björner and Wachs results on Tamari:

Let $c, c' \in \mathcal{CC}_n$ such that $c \leq c'$ with $c_i < c'_i$ for $i \in [n-1]$. Let $\lambda : \mathcal{CC}_n \to \mathbb{Z}^3$ the edge-labeling:

$$\lambda(c,c') = (\varepsilon, i, c_i),$$

where $\varepsilon = \begin{cases} -1 & \text{if } c_i < 0, \\ 1 & \text{otherwise.} \end{cases}$

EL-Shellability

Generalization of Björner and Wachs results on Tamari:

Let $c, c' \in CC_n$ such that $c \leq c'$ with $c_i < c'_i$ for $i \in [n-1]$. Let $\lambda : \mathcal{E}(CC_n) \to \mathbb{Z}^3$ the edge-labeling:

$$\lambda(c,c') = (\varepsilon, i, c_i),$$

where
$$\varepsilon = \begin{cases} -1 & \text{if } c_i < 0, \\ 1 & \text{otherwise.} \end{cases}$$

Theorem [C., 2019]

The map λ gives an EL-labeling of \mathcal{CC}_n . Moreover, there is at most one falling chain in each interval of \mathcal{CC}_n .

Cubic coordinate posets

Cubic realization of \mathcal{CC}_4

