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Tamari lattices

Tamari posets [Tamari, 1962]:
? objects: binary trees with n leaves,
? covering relation: right rotation:

A B C

k
l

A B C

k

l
−→

? partial order relation: 6t.

Known facts: they are lattices, formula for their number of intervals,
admit generalizations (m-Tamari), etc.
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Tamari interval lattices

Tamari interval posets:
? objects: pairs of binary trees [S, T ] such that S 6t T ,
? partial order relation: 6ti:

[S, T ] 6ti [S′, T ′]⇐⇒ S 6t S
′ and T 6t T

′.

Known facts: they are also lattices, their objects are encoded by
interval-posets, etc.
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Work context

Goal: study Tamari interval posets.

Way: introduce a new encoding of Tamari intervals.

Results:
? simple representation of Tamari intervals,
? easy reading of some properties of Tamari intervals,
? geometric realization of the lattice.
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Interval-posets
An interval-poset P of size n is a partial order � on the set
{x1, . . . , xn} such that, for any i < k,
(i) if xk � xi then for all xj such that i < j < k, one has xj � xi,
(ii) if xi � xk then for all xj such that i < j < k, one has xj � xk.
We denote IPn the set of interval-posets of size n.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

There is a bijection ρ : IPn → T In [Châtel, Pons, 2015].
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Tamari diagrams
A Tamari diagram is a word u = u1u2 . . . un of integers such that
(i) 0 6 ui 6 n− i for all i ∈ [n];
(ii) ui+j 6 ui − j for all i ∈ [n] and 0 6 j 6 ui.
The size of a Tamari diagram is its number of letters [Palo, 1986].

9021043100 0010040002

A word v = v1v2 . . . vn is a dual Tamari diagram if and only if its
reversal is a Tamari diagram.
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Compatibility
Let u (resp. v) be a (resp. dual) Tamari diagram of size n.
The diagrams u and v are compatible if j − i 6 ui implies vj < j − i,
for all 1 6 i < j 6 n.
In this case, (u, v) is a Tamari interval diagram.
Let T IDn be the set of Tamari interval diagrams of size n.
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Bijection
Let χ be the map sending a Tamari interval diagram (u, v) of size n to
the binary relation � on {x1, . . . , xn} where for all i ∈ [n] and
0 6 l 6 ui, xi+l � xi, and for all i ∈ [n] and 0 6 k 6 vi, xi−k � xi.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Theorem [C., 2019]

The map χ is a bijection from T IDn to IPn.
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Cubic coordinates
Let c be a (n− 1)-tuple with entries in Z. We say that c is a cubic
coordinate if the pair (u, v), where u is the word defined by un = 0
and for all i ∈ [n− 1] by

ui = max(ci, 0),

and v is the word defined by v1 = 0 and for all 2 6 i 6 n by

vi = |min(ci−1, 0)|,

is a Tamari interval diagram. The size of a cubic coordinate is its
number of entries plus one. The set of cubic coordinates of size n is
denoted by CCn.

Example
v = 0 0 1 0 0 4 0 0 0 2 ui − vi+1
u = 9 0 2 1 0 4 3 1 0 0 −→ (9,−1, 2, 1,−4, 4, 3, 1,−2).
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Some properties

? There is a bijection φ : CCn → T IDn.

? A cubic coordinate c of size n is synchronized if for all i ∈ [n− 1],
ci 6= 0. The set of synchronized cubic coordinates of size n is
denoted by CCsyncn . (synchronized Tamari interval,
[Préville-Ratelle, Viennot, 2017])

? A Tamari interval diagram (u, v) of size n is new if the following
conditions are satisfied:
(i) 0 6 ui 6 n− i− 1 for all i ∈ [n− 1];
(ii) 0 6 vj 6 j − 2 for all j ∈ {2, . . . , n};
(iii) uk < l − k − 1 or vl < l − k − 1 for all k, l ∈ [n] such that

k + 1 < l.
(new Tamari intervals, [Chapoton, 2017])

? If (u, v) is synchronized then (u, v) is not new.
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Cubic coordinate posets
Let c, c′ ∈ CCn.

Partial order: c 6cc c
′ if and only if ci 6 c′i for all i ∈ [n− 1].

Covering relation: cl c′ if and only if there is exactly one i ∈ [n− 1]
such that ci < c′i, and if there is a c′′ ∈ CCn such that c 6cc c

′′ 6cc c
′,

then either c = c′′ or c′ = c′′.

Let ψ = φ−1 ◦ χ−1 ◦ ρ−1.

Theorem [C., 2019]

The map ψ is an isomorphism of posets from T In to CCn.

T IDn IPn

CCn T In

χ

ρφ

ψ
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Cubic realization of CC3

(0, 0) (1, 0) (2, 0)

(2,−1)(1,−1)(0,−1)

(0,−2) (1,−2)(−1,−2)

(−1, 0)

(0, 1)(−1, 1) (2, 1)

The elements of CC3 are vertices and the cover relations are arrows
orientated to the covering cubic coordinates.
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Cells

Let c ∈ CCn. Suppose that there is c′ ∈ CCn such that c′i > ci and
c′j = cj for all j 6= i, with i, j ∈ [n− 1]. We define then the map of
minimal increase ↑i as follows

↑i (c) = (c1, . . . , ci−1, ĉi, ci+1, . . . , cn−1),

such that c l ↑i (c) and ci < ĉi 6 c′i.

Let cm ∈ CCn, then cm is minimal-cellular if for all i ∈ [n− 1], ↑i (cm)
is well-defined.

Example
cm = (0,−1, 1,−1,−5, 0, 1,−1,−3) is minimal-cellular.
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Cells

Lemma
Let cm be a minimal-cellular cubic coordinate of size n and
i ∈ [n− 1]. If

c′ =↑i+1 (↑i+2 (. . . (↑n−1 (cm)) . . . )),

is well-defined, then ↑i (c′) is well-defined.

Let cM ∈ CCn, then cM is the maximal-cellular correspondent of cm if

cM =↑1 (↑2 (. . . (↑n−1 (cm)) . . . )).

We denote by 〈cm, cM 〉 the corresponding cell.
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Cells
Example
cm = (0,−1, 1,−1,−5, 0, 1,−1,−3) is minimal-cellular, and its
maximal-cellular correspondent is cM = (1, 0, 2, 0,−4, 3, 2, 0,−2).

cm cm
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Example
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cm ↑9 (cm)
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Cells
Example
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Cells
Example
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Cells
Example
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Bijection
Let γ be the map defined for all i ∈ [n− 1] by

γ(cmi , cMi ) =
{
cmi if cmi < 0,
cMi if cmi > 0,

and Γ be the map from the set of cells of size n to the set of
(n− 1)-tuples defined by

Γ(〈cm, cM 〉) = (γ(cm1 , cM1 ), γ(cm2 , cM2 ), . . . , γ(cmn−1, c
M
n−1)).

Example
The cell 〈(0,−1, 1,−1,−5, 0, 1,−1,−3), (1, 0, 2, 0,−4, 3, 2, 0,−2)〉 is
sent to (1,−1, 2,−1,−5, 3, 2,−1,−3).

Theorem [C., 2019]

The map Γ is a bijection from the set of cells of size n to CCsyncn .
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Cells and synchronized

? Blue dots: synchronized cubic coordinates.
? Red dot: cubic coordinate (0, 0).
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EL-Shellability

Generalization of Björner and Wachs results on Tamari:

Let c, c′ ∈ CCn such that cl c′ with ci < c′i for i ∈ [n− 1]. Let
λ : E(CCn)→ Z3 the edge-labeling:

λ(c, c′) = (ε, i, ci),

where ε =
{
−1 if ci < 0,
1 otherwise.

Theorem [C., 2019]

The map λ gives an EL-labeling of CCn. Moreover, there is at most
one falling chain in each interval of CCn.
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Cubic realization of CC4
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