Cubic realizations of Tamari interval lattices

Camille Combe
Université de Strasbourg, IRMA

The 82nd Séminaire Lotharingien de Combinatoire
April 16, 2019

Contents

Tamari lattices and goals

Cubic coordinates

Cubic coordinate posets

Contents

Tamari lattices and goals

Tamari lattices

Tamari posets [Tamari, 1962]:

* objects: binary trees with n leaves,
\star covering relation: right rotation:

* partial order relation: $\leqslant \mathrm{t}$.

Tamari lattices

Tamari posets [Tamari, 1962]:

* objects: binary trees with n leaves,
* covering relation: right rotation:

* partial order relation: \leqslant_{t}.

Known facts: they are lattices, formula for their number of intervals, admit generalizations (m-Tamari), etc.

Tamari interval lattices

Tamari interval posets:

* objects: pairs of binary trees $[S, T]$ such that $S \leqslant_{\mathrm{t}} T$,
\star partial order relation: \leqslant_{ti} :

$$
[S, T] \leqslant_{\mathrm{ti}}\left[S^{\prime}, T^{\prime}\right] \Longleftrightarrow S \leqslant_{\mathrm{t}} S^{\prime} \text { and } T \leqslant_{\mathrm{t}} T^{\prime}
$$

Tamari interval lattices

Tamari interval posets:

* objects: pairs of binary trees $[S, T]$ such that $S \leqslant_{\mathrm{t}} T$,
\star partial order relation: \leqslant_{ti} :

$$
[S, T] \leqslant_{\mathrm{ti}}\left[S^{\prime}, T^{\prime}\right] \Longleftrightarrow S \leqslant_{\mathrm{t}} S^{\prime} \text { and } T \leqslant_{\mathrm{t}} T^{\prime}
$$

Known facts: they are also lattices, their objects are encoded by interval-posets, etc.

Work context

Goal: study Tamari interval posets.

Work context

Goal: study Tamari interval posets.
Way: introduce a new encoding of Tamari intervals.

Work context

Goal: study Tamari interval posets.
Way: introduce a new encoding of Tamari intervals.
Results:

* simple representation of Tamari intervals,
* easy reading of some properties of Tamari intervals,
* geometric realization of the lattice.

Contents

Cubic coordinates

Interval-posets

An interval-poset P of size n is a partial order \triangleleft on the set $\left\{x_{1}, \ldots, x_{n}\right\}$ such that, for any $i<k$,
(i) if $x_{k} \triangleleft x_{i}$ then for all x_{j} such that $i<j<k$, one has $x_{j} \triangleleft x_{i}$,
(ii) if $x_{i} \triangleleft x_{k}$ then for all x_{j} such that $i<j<k$, one has $x_{j} \triangleleft x_{k}$. We denote $\mathcal{I} \mathcal{P}_{n}$ the set of interval-posets of size n.

Interval-posets

An interval-poset P of size n is a partial order \triangleleft on the set $\left\{x_{1}, \ldots, x_{n}\right\}$ such that, for any $i<k$,
(i) if $x_{k} \triangleleft x_{i}$ then for all x_{j} such that $i<j<k$, one has $x_{j} \triangleleft x_{i}$,
(ii) if $x_{i} \triangleleft x_{k}$ then for all x_{j} such that $i<j<k$, one has $x_{j} \triangleleft x_{k}$. We denote $\mathcal{I} \mathcal{P}_{n}$ the set of interval-posets of size n.

Interval-posets

An interval-poset P of size n is a partial order \triangleleft on the set $\left\{x_{1}, \ldots, x_{n}\right\}$ such that, for any $i<k$,
(i) if $x_{k} \triangleleft x_{i}$ then for all x_{j} such that $i<j<k$, one has $x_{j} \triangleleft x_{i}$,
(ii) if $x_{i} \triangleleft x_{k}$ then for all x_{j} such that $i<j<k$, one has $x_{j} \triangleleft x_{k}$. We denote $\mathcal{I} \mathcal{P}_{n}$ the set of interval-posets of size n.

There is a bijection $\rho: \mathcal{I P}_{n} \rightarrow \mathcal{T} \mathcal{I}_{n}$ [Châtel, Pons, 2015].

Tamari diagrams

A Tamari diagram is a word $u=u_{1} u_{2} \ldots u_{n}$ of integers such that
(i) $0 \leqslant u_{i} \leqslant n-i$ for all $i \in[n]$;
(ii) $u_{i+j} \leqslant u_{i}-j$ for all $i \in[n]$ and $0 \leqslant j \leqslant u_{i}$.

The size of a Tamari diagram is its number of letters [Palo, 1986].

Tamari diagrams

A Tamari diagram is a word $u=u_{1} u_{2} \ldots u_{n}$ of integers such that
(i) $0 \leqslant u_{i} \leqslant n-i$ for all $i \in[n]$;
(ii) $u_{i+j} \leqslant u_{i}-j$ for all $i \in[n]$ and $0 \leqslant j \leqslant u_{i}$.

The size of a Tamari diagram is its number of letters [Palo, 1986].

9021043100

0010040002

Tamari diagrams

A Tamari diagram is a word $u=u_{1} u_{2} \ldots u_{n}$ of integers such that
(i) $0 \leqslant u_{i} \leqslant n-i$ for all $i \in[n]$;
(ii) $u_{i+j} \leqslant u_{i}-j$ for all $i \in[n]$ and $0 \leqslant j \leqslant u_{i}$.

The size of a Tamari diagram is its number of letters [Palo, 1986].

9021043100

0010040002

A word $v=v_{1} v_{2} \ldots v_{n}$ is a dual Tamari diagram if and only if its reversal is a Tamari diagram.

Compatibility

Let u (resp. v) be a (resp. dual) Tamari diagram of size n.
The diagrams u and v are compatible if $j-i \leqslant u_{i}$ implies $v_{j}<j-i$, for all $1 \leqslant i<j \leqslant n$.
In this case, (u, v) is a Tamari interval diagram.
Let $\mathcal{T} \mathcal{I D}_{n}$ be the set of Tamari interval diagrams of size n.

Compatibility

Let u (resp. v) be a (resp. dual) Tamari diagram of size n.
The diagrams u and v are compatible if $j-i \leqslant u_{i}$ implies $v_{j}<j-i$, for all $1 \leqslant i<j \leqslant n$.
In this case, (u, v) is a Tamari interval diagram.
Let $\mathcal{T I D}_{n}$ be the set of Tamari interval diagrams of size n.

Bijection

Let χ be the map sending a Tamari interval diagram (u, v) of size n to the binary relation \triangleleft on $\left\{x_{1}, \ldots, x_{n}\right\}$ where for all $i \in[n]$ and $0 \leqslant l \leqslant u_{i}, x_{i+l} \triangleleft x_{i}$, and for all $i \in[n]$ and $0 \leqslant k \leqslant v_{i}, x_{i-k} \triangleleft x_{i}$.

Bijection

Let χ be the map sending a Tamari interval diagram (u, v) of size n to the binary relation \triangleleft on $\left\{x_{1}, \ldots, x_{n}\right\}$ where for all $i \in[n]$ and $0 \leqslant l \leqslant u_{i}, x_{i+l} \triangleleft x_{i}$, and for all $i \in[n]$ and $0 \leqslant k \leqslant v_{i}, x_{i-k} \triangleleft x_{i}$.

Bijection

Let χ be the map sending a Tamari interval diagram (u, v) of size n to the binary relation \triangleleft on $\left\{x_{1}, \ldots, x_{n}\right\}$ where for all $i \in[n]$ and $0 \leqslant l \leqslant u_{i}, x_{i+l} \triangleleft x_{i}$, and for all $i \in[n]$ and $0 \leqslant k \leqslant v_{i}, x_{i-k} \triangleleft x_{i}$.

Theorem [C., 2019]

The map χ is a bijection from $\mathcal{T I D}_{n}$ to $\mathcal{I P}_{n}$.

Cubic coordinates

Let c be a $(n-1)$-tuple with entries in \mathbb{Z}. We say that c is a cubic coordinate if the pair (u, v), where u is the word defined by $u_{n}=0$ and for all $i \in[n-1]$ by

$$
u_{i}=\max \left(c_{i}, 0\right)
$$

and v is the word defined by $v_{1}=0$ and for all $2 \leqslant i \leqslant n$ by

$$
v_{i}=\left|\min \left(c_{i-1}, 0\right)\right|,
$$

is a Tamari interval diagram. The size of a cubic coordinate is its number of entries plus one. The set of cubic coordinates of size n is denoted by $\mathcal{C} C_{n}$.

Cubic coordinates

Let c be a $(n-1)$-tuple with entries in \mathbb{Z}. We say that c is a cubic coordinate if the pair (u, v), where u is the word defined by $u_{n}=0$ and for all $i \in[n-1]$ by

$$
u_{i}=\max \left(c_{i}, 0\right),
$$

and v is the word defined by $v_{1}=0$ and for all $2 \leqslant i \leqslant n$ by

$$
v_{i}=\left|\min \left(c_{i-1}, 0\right)\right|,
$$

is a Tamari interval diagram. The size of a cubic coordinate is its number of entries plus one. The set of cubic coordinates of size n is denoted by $\mathcal{C C}_{n}$.

Example

$$
\begin{aligned}
& v=00011004400002 \\
& u=90
\end{aligned}
$$

$$
\begin{gathered}
u_{i}-v_{i+1} \\
\longrightarrow
\end{gathered}
$$

$$
(9,-1,2,1,-4,4,3,1,-2)
$$

Some properties

* There is a bijection $\phi: \mathcal{C C}_{n} \rightarrow \mathcal{T} \mathcal{I D}_{n}$.

Some properties

* There is a bijection $\phi: \mathcal{C C}_{n} \rightarrow \mathcal{T I D}_{n}$.
* A cubic coordinate c of size n is synchronized if for all $i \in[n-1]$, $c_{i} \neq 0$. The set of synchronized cubic coordinates of size n is denoted by $\mathcal{C C}_{n}^{\text {sync }}$. (synchronized Tamari interval, [Préville-Ratelle, Viennot, 2017])

Some properties

* There is a bijection $\phi: \mathcal{C C}_{n} \rightarrow \mathcal{T I D}_{n}$.
\star A cubic coordinate c of size n is synchronized if for all $i \in[n-1]$, $c_{i} \neq 0$. The set of synchronized cubic coordinates of size n is denoted by $\mathcal{C}{ }_{n}^{\text {sync }}$. (synchronized Tamari interval, [Préville-Ratelle, Viennot, 2017])
\star A Tamari interval diagram (u, v) of size n is new if the following conditions are satisfied:
(i) $0 \leqslant u_{i} \leqslant n-i-1$ for all $i \in[n-1]$;
(ii) $0 \leqslant v_{j} \leqslant j-2$ for all $j \in\{2, \ldots, n\}$;
(iii) $u_{k}<l-k-1$ or $v_{l}<l-k-1$ for all $k, l \in[n]$ such that $k+1<l$.
(new Tamari intervals, [Chapoton, 2017])

Some properties

* There is a bijection $\phi: \mathcal{C C}_{n} \rightarrow \mathcal{T I D}_{n}$.
* A cubic coordinate c of size n is synchronized if for all $i \in[n-1]$, $c_{i} \neq 0$. The set of synchronized cubic coordinates of size n is denoted by $\mathcal{C}{ }_{n}^{\text {sync }}$. (synchronized Tamari interval, [Préville-Ratelle, Viennot, 2017])
\star A Tamari interval diagram (u, v) of size n is new if the following conditions are satisfied:
(i) $0 \leqslant u_{i} \leqslant n-i-1$ for all $i \in[n-1]$;
(ii) $0 \leqslant v_{j} \leqslant j-2$ for all $j \in\{2, \ldots, n\}$;
(iii) $u_{k}<l-k-1$ or $v_{l}<l-k-1$ for all $k, l \in[n]$ such that $k+1<l$.
(new Tamari intervals, [Chapoton, 2017])
* If (u, v) is synchronized then (u, v) is not new.

Contents

Cubic coordinate posets

Cubic coordinate posets

Let $c, c^{\prime} \in \mathcal{C C}_{n}$.
Partial order: $c \leqslant{ }_{\mathrm{cc}} c^{\prime}$ if and only if $c_{i} \leqslant c_{i}^{\prime}$ for all $i \in[n-1]$.
Covering relation: $c \lessdot c^{\prime}$ if and only if there is exactly one $i \in[n-1]$ such that $c_{i}<c_{i}^{\prime}$, and if there is a $c^{\prime \prime} \in \mathcal{C C}_{n}$ such that $c \leqslant_{\mathrm{cc}} c^{\prime \prime} \leqslant_{\mathrm{cc}} c^{\prime}$, then either $c=c^{\prime \prime}$ or $c^{\prime}=c^{\prime \prime}$.

Cubic coordinate posets

Let $c, c^{\prime} \in \mathcal{C C}_{n}$.
Partial order: $c \leqslant{ }_{\mathrm{cc}} c^{\prime}$ if and only if $c_{i} \leqslant c_{i}^{\prime}$ for all $i \in[n-1]$.
Covering relation: $c \lessdot c^{\prime}$ if and only if there is exactly one $i \in[n-1]$ such that $c_{i}<c_{i}^{\prime}$, and if there is a $c^{\prime \prime} \in \mathcal{C} \mathcal{C}_{n}$ such that $c \leqslant_{\mathrm{cc}} c^{\prime \prime} \leqslant_{\mathrm{cc}} c^{\prime}$, then either $c=c^{\prime \prime}$ or $c^{\prime}=c^{\prime \prime}$.

Let $\psi=\phi^{-1} \circ \chi^{-1} \circ \rho^{-1}$.
Theorem [C., 2019]
The map ψ is an isomorphism of posets from $\mathcal{T I}_{n}$ to $\mathcal{C C}_{n}$.

Cubic coordinate posets

Let $c, c^{\prime} \in \mathcal{C C}_{n}$.
Partial order: $c \leqslant{ }_{\mathrm{cc}} c^{\prime}$ if and only if $c_{i} \leqslant c_{i}^{\prime}$ for all $i \in[n-1]$.
Covering relation: $c \lessdot c^{\prime}$ if and only if there is exactly one $i \in[n-1]$ such that $c_{i}<c_{i}^{\prime}$, and if there is a $c^{\prime \prime} \in \mathcal{C} \mathcal{C}_{n}$ such that $c \leqslant_{\mathrm{cc}} c^{\prime \prime} \leqslant_{\mathrm{cc}} c^{\prime}$, then either $c=c^{\prime \prime}$ or $c^{\prime}=c^{\prime \prime}$.

Let $\psi=\phi^{-1} \circ \chi^{-1} \circ \rho^{-1}$.
Theorem [C., 2019]
The map ψ is an isomorphism of posets from $\mathcal{T I}_{n}$ to $\mathcal{C C}_{n}$.

Cubic realization of $\mathcal{C C}_{3}$

The elements of $\mathcal{C C}_{3}$ are vertices and the cover relations are arrows orientated to the covering cubic coordinates.

Cells

Let $c \in \mathcal{C} C_{n}$. Suppose that there is $c^{\prime} \in \mathcal{C} C_{n}$ such that $c_{i}^{\prime}>c_{i}$ and $c_{j}^{\prime}=c_{j}$ for all $j \neq i$, with $i, j \in[n-1]$. We define then the map of minimal increase \uparrow_{i} as follows

$$
\uparrow_{i}(c)=\left(c_{1}, \ldots, c_{i-1}, \widehat{c}_{i}, c_{i+1}, \ldots, c_{n-1}\right),
$$

such that $c \lessdot \uparrow_{i}(c)$ and $c_{i}<\widehat{c}_{i} \leqslant c_{i}^{\prime}$.

Cells

Let $c \in \mathcal{C} C_{n}$. Suppose that there is $c^{\prime} \in \mathcal{C} C_{n}$ such that $c_{i}^{\prime}>c_{i}$ and $c_{j}^{\prime}=c_{j}$ for all $j \neq i$, with $i, j \in[n-1]$. We define then the map of minimal increase \uparrow_{i} as follows

$$
\uparrow_{i}(c)=\left(c_{1}, \ldots, c_{i-1}, \widehat{c}_{i}, c_{i+1}, \ldots, c_{n-1}\right),
$$

such that $c \lessdot \uparrow_{i}(c)$ and $c_{i}<\widehat{c}_{i} \leqslant c_{i}^{\prime}$.
Let $c^{m} \in \mathcal{C C}_{n}$, then c^{m} is minimal-cellular if for all $i \in[n-1], \uparrow_{i}\left(c^{m}\right)$ is well-defined.

Cells

Let $c \in \mathcal{C} C_{n}$. Suppose that there is $c^{\prime} \in \mathcal{C C}_{n}$ such that $c_{i}^{\prime}>c_{i}$ and $c_{j}^{\prime}=c_{j}$ for all $j \neq i$, with $i, j \in[n-1]$. We define then the map of minimal increase \uparrow_{i} as follows

$$
\uparrow_{i}(c)=\left(c_{1}, \ldots, c_{i-1}, \widehat{c}_{i}, c_{i+1}, \ldots, c_{n-1}\right),
$$

such that $c \lessdot \uparrow_{i}(c)$ and $c_{i}<\widehat{c}_{i} \leqslant c_{i}^{\prime}$.
Let $c^{m} \in \mathcal{C C}_{n}$, then c^{m} is minimal-cellular if for all $i \in[n-1], \uparrow_{i}\left(c^{m}\right)$ is well-defined.

Example
$c^{m}=(0,-1,1,-1,-5,0,1,-1,-3)$ is minimal-cellular.

Cells

Lemma

Let c^{m} be a minimal-cellular cubic coordinate of size n and $i \in[n-1]$. If

$$
c^{\prime}=\uparrow_{i+1}\left(\uparrow_{i+2}\left(\ldots\left(\uparrow_{n-1}\left(c^{m}\right)\right) \ldots\right)\right),
$$

is well-defined, then $\uparrow_{i}\left(c^{\prime}\right)$ is well-defined.

Cells

Lemma

Let c^{m} be a minimal-cellular cubic coordinate of size n and $i \in[n-1]$. If

$$
c^{\prime}=\uparrow_{i+1}\left(\uparrow_{i+2}\left(\ldots\left(\uparrow_{n-1}\left(c^{m}\right)\right) \ldots\right)\right),
$$

is well-defined, then $\uparrow_{i}\left(c^{\prime}\right)$ is well-defined.
Let $c^{M} \in \mathcal{C} C_{n}$, then c^{M} is the maximal-cellular correspondent of c^{m} if

$$
c^{M}=\uparrow_{1}\left(\uparrow_{2}\left(\ldots\left(\uparrow_{n-1}\left(c^{m}\right)\right) \ldots\right)\right) .
$$

Cells

Lemma

Let c^{m} be a minimal-cellular cubic coordinate of size n and $i \in[n-1]$. If

$$
c^{\prime}=\uparrow_{i+1}\left(\uparrow_{i+2}\left(\ldots\left(\uparrow_{n-1}\left(c^{m}\right)\right) \ldots\right)\right),
$$

is well-defined, then $\uparrow_{i}\left(c^{\prime}\right)$ is well-defined.
Let $c^{M} \in \mathcal{C} C_{n}$, then c^{M} is the maximal-cellular correspondent of c^{m} if

$$
c^{M}=\uparrow_{1}\left(\uparrow_{2}\left(\ldots\left(\uparrow_{n-1}\left(c^{m}\right)\right) \ldots\right)\right) .
$$

We denote by $\left\langle c^{m}, c^{M}\right\rangle$ the corresponding cell.

Cells

Example

$c^{m}=(0,-1,1,-1,-5,0,1,-1,-3)$ is minimal-cellular, and its maximal-cellular correspondent is $c^{M}=(1,0,2,0,-4,3,2,0,-2)$.

c^{m}

c^{m}

Cells

Example

$c^{m}=(0,-1,1,-1,-5,0,1,-1,-3)$ is minimal-cellular, and its maximal-cellular correspondent is $c^{M}=(1,0,2,0,-4,3,2,0,-2)$.

c^{m}

$\uparrow_{9}\left(c^{m}\right)$

Cells

Example

$c^{m}=(0,-1,1,-1,-5,0,1,-1,-3)$ is minimal-cellular, and its maximal-cellular correspondent is $c^{M}=(1,0,2,0,-4,3,2,0,-2)$.

c^{m}

$\uparrow_{8}\left(\uparrow_{9}\left(c^{m}\right)\right)$

Cells

Example

$c^{m}=(0,-1,1,-1,-5,0,1,-1,-3)$ is minimal-cellular, and its maximal-cellular correspondent is $c^{M}=(1,0,2,0,-4,3,2,0,-2)$.

c^{m}

$\uparrow_{7}\left(\uparrow_{8}\left(\uparrow_{9}\left(c^{m}\right)\right)\right)$

Cells

Example

$c^{m}=(0,-1,1,-1,-5,0,1,-1,-3)$ is minimal-cellular, and its maximal-cellular correspondent is $c^{M}=(1,0,2,0,-4,3,2,0,-2)$.

c^{m}

$\uparrow_{6}\left(\uparrow_{7}\left(\uparrow_{8}\left(\uparrow_{9}\left(c^{m}\right)\right)\right)\right)$

Cells

Example

$c^{m}=(0,-1,1,-1,-5,0,1,-1,-3)$ is minimal-cellular, and its maximal-cellular correspondent is $c^{M}=(1,0,2,0,-4,3,2,0,-2)$.

c^{m}

$\uparrow_{5}\left(\uparrow_{6}\left(\uparrow_{7}\left(\uparrow_{8}\left(\uparrow_{9}\left(c^{m}\right)\right)\right)\right)\right)$

Cells

Example
$c^{m}=(0,-1,1,-1,-5,0,1,-1,-3)$ is minimal-cellular, and its maximal-cellular correspondent is $c^{M}=(1,0,2,0,-4,3,2,0,-2)$.

c^{m}

c^{M}

Bijection

Let γ be the map defined for all $i \in[n-1]$ by

$$
\gamma\left(c_{i}^{m}, c_{i}^{M}\right)= \begin{cases}c_{i}^{m} & \text { if } c_{i}^{m}<0 \\ c_{i}^{M} & \text { if } c_{i}^{m} \geqslant 0\end{cases}
$$

and Γ be the map from the set of cells of size n to the set of ($n-1$)-tuples defined by

$$
\Gamma\left(\left\langle c^{m}, c^{M}\right\rangle\right)=\left(\gamma\left(c_{1}^{m}, c_{1}^{M}\right), \gamma\left(c_{2}^{m}, c_{2}^{M}\right), \ldots, \gamma\left(c_{n-1}^{m}, c_{n-1}^{M}\right)\right) .
$$

Bijection

Let γ be the map defined for all $i \in[n-1]$ by

$$
\gamma\left(c_{i}^{m}, c_{i}^{M}\right)= \begin{cases}c_{i}^{m} & \text { if } c_{i}^{m}<0 \\ c_{i}^{M} & \text { if } c_{i}^{m} \geqslant 0\end{cases}
$$

and Γ be the map from the set of cells of size n to the set of ($n-1$)-tuples defined by

$$
\Gamma\left(\left\langle c^{m}, c^{M}\right\rangle\right)=\left(\gamma\left(c_{1}^{m}, c_{1}^{M}\right), \gamma\left(c_{2}^{m}, c_{2}^{M}\right), \ldots, \gamma\left(c_{n-1}^{m}, c_{n-1}^{M}\right)\right) .
$$

Example

The cell $\langle(0,-1,1,-1,-5,0,1,-1,-3),(1,0,2,0,-4,3,2,0,-2)\rangle$ is sent to $(1,-1,2,-1,-5,3,2,-1,-3)$.

Bijection

Let γ be the map defined for all $i \in[n-1]$ by

$$
\gamma\left(c_{i}^{m}, c_{i}^{M}\right)= \begin{cases}c_{i}^{m} & \text { if } c_{i}^{m}<0 \\ c_{i}^{M} & \text { if } c_{i}^{m} \geqslant 0\end{cases}
$$

and Γ be the map from the set of cells of size n to the set of ($n-1$)-tuples defined by

$$
\Gamma\left(\left\langle c^{m}, c^{M}\right\rangle\right)=\left(\gamma\left(c_{1}^{m}, c_{1}^{M}\right), \gamma\left(c_{2}^{m}, c_{2}^{M}\right), \ldots, \gamma\left(c_{n-1}^{m}, c_{n-1}^{M}\right)\right) .
$$

Example

The cell $\langle(0,-1,1,-1,-5,0,1,-1,-3),(1,0,2,0,-4,3,2,0,-2)\rangle$ is sent to $(1,-1,2,-1,-5,3,2,-1,-3)$.

Theorem [C., 2019]

The map Γ is a bijection from the set of cells of size n to $\mathcal{C C}_{n}^{\text {sync }}$.

Cells and synchronized

\star Blue dots: synchronized cubic coordinates.

* Red dot: cubic coordinate $(0,0)$.

EL-Shellability

Generalization of Björner and Wachs results on Tamari:
Let $c, c^{\prime} \in \mathcal{C C}_{n}$ such that $c \lessdot c^{\prime}$ with $c_{i}<c_{i}^{\prime}$ for $i \in[n-1]$. Let $\lambda: \mathcal{E}\left(\mathcal{C C}_{n}\right) \rightarrow \mathbb{Z}^{3}$ the edge-labeling:

$$
\lambda\left(c, c^{\prime}\right)=\left(\varepsilon, i, c_{i}\right),
$$

where $\varepsilon= \begin{cases}-1 & \text { if } c_{i}<0, \\ 1 & \text { otherwise } .\end{cases}$

EL-Shellability

Generalization of Björner and Wachs results on Tamari:
Let $c, c^{\prime} \in \mathcal{C C}_{n}$ such that $c \lessdot c^{\prime}$ with $c_{i}<c_{i}^{\prime}$ for $i \in[n-1]$. Let $\lambda: \mathcal{E}\left(\mathcal{C C}_{n}\right) \rightarrow \mathbb{Z}^{3}$ the edge-labeling:

$$
\lambda\left(c, c^{\prime}\right)=\left(\varepsilon, i, c_{i}\right),
$$

where $\varepsilon= \begin{cases}-1 & \text { if } c_{i}<0, \\ 1 & \text { otherwise } .\end{cases}$

Theorem [C., 2019]

The map λ gives an EL-labeling of $\mathcal{C C}_{n}$. Moreover, there is at most one falling chain in each interval of $\mathcal{C} C_{n}$.

Cubic realization of $\mathcal{C C}_{4}$

