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Profile of a permutation group, a finite example

e Permutation group G ~—  induced action on subsets
e Orbit of n-subsets = orbit of degree n

Profile of G
va(n) = # orbits of degree n

Example
The group of symmetries of the cube Dg

n $G n $aG
0 1 5 3
1 1 6 3
2 3 7 1
3 3 8 1
4 6 >80
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Ppy(2) =14+ 12+ 322 +323 + 62 + 325 + 326 + 127 + 128

G infinite —  Ha(z) =3, va(n)z"

Hypothesis
G is P-oligomorphic: ¢g is bounded by a polynomial in n

Example
He (2) = 1424224 = =

Conjecture 1 - Cameron, 70’s
G P-oligomorphic = Hg(z) = H Wlth N(z) € Z[7]
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Orbit algebra

Orbit algebra (Cameron, 80’s)
Structure of graded algebra Ag = @p,, A, on the orbits
e combinatorial description of the product

e graded according to the orbital degree:
orby.orby = linear combination of orbits of degree d; + do

o dim(A,) = ¢a(n), so Ha(z) =3, dim(A,)z"

Conjecture 2 (stronger) - Macpherson, 85
G P-oligomorphic = Ag is finitely generated
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Block system

e Equivalence relation preserved by the group
e Blocks = the classes

e (G acts by permutation on the blocks

Example

4 3
Block systems of Cy -
Not a block system —
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The complete primitive P-oligomorphic groups

Macpherson:
G P-oligomorphic with no non trivial blocks = ¢g(n) =1

Soo

Theorem (Classification, Cameron)

Only 5 complete groups such that pg(n) =1 Vn

o Aut(Q) : automorphisms of the rational chain
K

Aut(
e Rev(Q) : generated by Aut(Q) and one reflection
Aut(
R

(
Q/Z), preserving the circular order
(

ev(Q/Z) : generated by Aut(Q/Z) and a reflection

e S : the symmetric group

Well known, nice groups (called highly homogeneous).
In particular, their orbit algebra is finitely generated.
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An infinite example: G G3

Wreath product
600 Z 63 ~ 620 X 63

e ——
A Subset of shape 2,3,2 — zfxy 3
(] Orbits of subsets
([

<> symmetric polynomials in =1, x9, 3

1 b ! '® 1
U U U A = SymglX] = QLX)
One can obtain functions counting integer
G (G

partitions, combinations, P-partitions (with
optional length and/or hight restrictions)
as profiles of wreath products...

S3
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000000~ ...

Two cases if G is P-oligomorphic :

. — @g(n) = O 1)

e N <00 — pa(n) > OomN Y

Better have finite blocks and/or "small" infinite ones...
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Lattices of block systems

Lattice of partitions — structure of lattice on block systems

/\ (Ca X C2) 1B
g e

Non trivial fact

e {Systems with < oo blocks only} = sublattice with maximum

e {Systems with oo blocks only} = sublattice with minimum

Remark. If G is P-oligomorphic, both of them are actually finite !



Profile, conjectures Nested block system One superblock Classification Bonus
000 O0000e [e]e] 0000

The nested block system
Idea



Profile, conjectures Nested block system One superblock Classification Bonus
[e]e]e} 0O0000e (e]e] 0000

The nested block system
Idea

1. Take the mazximal system of finite blocks



ile, conjectures Nested block system One superblock

The nested block system
Idea

1. Take the mazximal system of finite blocks

R R
36900000668
36900000668



e, conjectures Nested block system One superblock
(e]e]

OOOOOO

The nested block system

Idea

1. Take the mazximal system of finite blocks

R R
36900000668
36900000668

Action on the maximal finite blocks...



e, conjectures Nested block system One superblock Classification Bonu s
00 0000

The nested block system
Idea

1. Take the mazximal system of finite blocks

FEIOOPEBEER -
38900000668 -
3900000668 -

Action on the maximal finite blocks... that has no finite blocks.



Bonus

The nested block system
Idea

1. Take the mazximal system of finite blocks

2. Take the minimal system of infinite blocks of the action of G
on the maximal finite blocks

FEIOOREBEEDR -
36900000668

dOOOEOU000OE

Action on the maximal finite blocks... that has no finite blocks.



Profile, conjectures Nested block system One superblock Classification Bonus
000 00000® 0o 0000

The nested block system
Idea

1. Take the mazximal system of finite blocks

2. Take the minimal system of infinite blocks of the action of G
on the maximal finite blocks — finitely many superblocks

THHIITITES

@O00Q0C0000Q )0
@e00Q0000000 - )
(v o o o o o o o o o o )

(. [ [ ] [ [ ] ([ ] [ [ [ [ [ ] e )

Action on the maximal finite blocks... that has no finite blocks.



Profile, conjectures Nested block system One superblock Classification Bonus
000 00000® 0o 0000

The nested block system
Idea

1. Take the mazximal system of finite blocks

2. Take the minimal system of infinite blocks of the action of G
on the maximal finite blocks — finitely many superblocks

THHIITITES

ECORRARAA000 )0 « Kema
0000600000 — )
(o ¢ o o o o o o o o o .- )

(. [ [ ] [ [ ] ([ ] [ [ [ [ [ ] e )

Action on the maximal finite blocks... that has no finite blocks.
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One superblock: examples

S

CHEEEE009D-

Ho, Hl, HQ, Hg, H4, H5 Tower of G

-~

H) 64, - H,H,H,H, H, H

"Hy X Gop” — Hyp,Id , Id , Id , Id , Id

<"Hyx 6", H1Sx> — Hop,H, H, H, H, H
Hy>H wlo.g

Notation: [Hy, H]

assification Bonus
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One superblock: classification

e The tower determines G (uses the subdirect product)

e Computer exploration on finitely many blocks
— Observation: always some Hy, H, H, H, ... , H, Hy
— Proof in the infinite case: always some Hy, H, H, H ---

Classification
One superblock = G = [Hy, Hy]
Ac ~ Q[(Xor)ors)0, where orb runs through the orbits of H

In particular, both conjectures hold.
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Shape of the orbit algebra Ag

In K, totally independent superblocks (and kernel)

Linked to the simplicity of &, and Aut(...), and
the wreath products’ being "too big, too free"

= direct product of the restrictions K (%)
= AK = ®l .AK(i)

K@ = g ) & wreath product with finite blocks

= Ak =~ Q; Q(Xors, Jors,] _
free algebra finitely generated by the orbits of the H()’s
(plus some idempotents brought by the kernel)

Fact: G acts by permutation on these generators
= Ag is the algebra of invariants of this finite action

Hilbert’s theorem:
Ag finitely generated (and even Cohen-Macaulay)

Which end the proof of the conjectures!
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For each orbit of blocks, choose
1. One group of profile 1

* Has to be G if the blocks are singletons
o Can alternatively be Id; for at most one orbit of one block
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e Can alternatively be Id; for at most one orbit of one block
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Classification of P-oligomorphic groups
G a finite permutation group, By a block system.
For each orbit of blocks, choose
1. One group of profile 1

o Has to be G if the blocks are singletons
e Can alternatively be Id; for at most one orbit of one block

2. One normal subgroup H of Hy = G p for B in the orbit
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Thank you for your attention !

Context

e (G permutation group of a countably infinite set

Profile ¢g: counts the orbits of finite subsets of £

Hypothesis: ¢g(n) bounded by a polynomial

Conjecture (Cameron): rational form of the generating series

Conjecture (Macpherson): finite generation of the orbit
algebra

Results

e Both conjectures hold !
e Classification of P-oligomorphic permutation groups

e The orbit algebra is an algebra of invariants (up to some
idempotents)
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The tower determines the group (1): "straight &.."

G contains a set of "straight" swaps of blocks

Tii Tl

5 O e o
T,iTy,5 Ty e o e
— 5
[ @] [
B
B; By B,

O«——>0«—0O >Q«—>0 O
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Subdirect product

Subdirect product of G; and G5

e Formalizes the synchronization between G1 and Go
e Subgroup of G; x Gy (with canonical projections G; and G2)
e E = E) U Ej stable = G subdirect product of G|g, and G|g,

Synchronization in a subdirect product
Let N7 = Fixg(Ez) and Ny = Fixg(El).
G _G &
N1 B N1 X N2 o N2
A subdirect product with explicit N;’s is explicit.

Remark. N7 and Ns are normal in G and Go, so the possibilities
of synchronization of a group is linked to its normal subgroups.
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The tower determines the group (2): Stabg(blocks)

Stabg(blocks) = explicit subdirect product of the H;

000000000

Ho,s
Hos Haa < The tower
/N /N ,
Ho,» Hap Hio Hg . determines
/N / N\ / N\ / N\ Stabg (blocks)

Ho1=HoH, H, Hs Hy Hs HgH7y1=Hy

G ~ Stabg(blocks) x "straight 6" — Ok
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Non trivial fact
Product well defined (and graded) on the space of orbits.

— The orbit algebra of a permutation group
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pa(n) = p(n)
An orbit of degree n «+— a partition of n
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Examples of orbit algebras (1)

Example 1
If G = 6w, pa(n) =1 for all n, and QA(G) = K][z].

Example 2

G = 6o 1 63, recall that pg(n) = ps(n).

A, = homogeneous symmetric polynomials of degree n in
T1,%2,T3

U U U = QA(600 1 63) = Kl 1, 75)%
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Examples of orbit algebras (2)
More generally, for H subgroup of G,

e G =061H:
QA(G) = K[z1, ..., 2,], the algebra of invariants of H

QA(G) is finitely generated by Hilbert’s theorem.

AR
: VRVERVAY

QA(G) = the free algebra generated by the age of H

00000
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The tower has shape Hy, H, H, H ---

Lemma to prove
G has tower HO H, Hy H3 = Hy{ = Hy

Proof.

An element s € G stabilizing the blocks <> a quadruple

ge Hi — 3(,9,hk), h ke H.

Let o be an element of G that permutes "straightforwardly" the
first two blocks and fixes the other two.

Conjugation of z by c in G —  y=(g,1,h,k)

Then: 2~ 'y = (¢,97%,1,1)

By arguing that the tower does not depend on the ordering of the
blocks, ¢g~! and therefore g are in Hs.

In the infinite case, apply to each restriction to four consecutive
blocks of the fixator of the previous ones in G.
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