Polynomial invariant and reciprocity theorem on the Hopf monoid of hypergraphs

Theo Karaboghossian, Jean-Christophe Aval, Adrian Tanasa arXiv:1806.08546v2
Bordeaux

April 16, 2019

Table of contents

(1) Hopf monoid
(2) Hopf monoid of hypergraphs

- Polynomial invariant
- Reciprocity theorem
(3) Applications

Table of contents

(1) Hopf monoid
(2) Hopf monoid of hypergraphs

- Polynomial invariant
- Reciprocity theorem
(3) Applications

Species

(Joyal) A species P is given by the data of:

- for each finite set I, a vector space $P[I]$,
- for each bijection $\sigma: I \rightarrow J$, a linear map

$$
P[\sigma]: P[I] \rightarrow P[J],
$$

such that

$$
P[\tau \circ \sigma]=P[\tau] \circ P[\sigma] \text { and } P[\mathrm{id}]=\mathrm{id} .
$$

Species

(Joyal) A species P is given by the data of:

- for each finite set I, a vector space $P[I]$,
- for each bijection $\sigma: I \rightarrow J$, a linear map

$$
P[\sigma]: P[I] \rightarrow P[J]
$$

such that

$$
P[\tau \circ \sigma]=P[\tau] \circ P[\sigma] \text { and } P[\mathrm{id}]=\mathrm{id} .
$$

Ex: $G[I]=\operatorname{Vect}(\{$ graphs over $/\}), G[\sigma]$ relabeling

Hopf monoid

(Aguiar-Mahajan) A Hopf monoid is a species M with, for each $I=S \sqcup T$,

- a product $\mu_{S, T}: M[S] \otimes M[T] \rightarrow M[I]$,
- a co-product $\Delta_{S, T}: M[/] \rightarrow M[S] \otimes M[T]$.

Hopf monoid

(Aguiar-Mahajan) A Hopf monoid is a species M with, for each $I=S \sqcup T$,

- a product $\mu_{S, T}: M[S] \otimes M[T] \rightarrow M[I]$,
- a co-product $\Delta_{S, T}: M[I] \rightarrow M[S] \otimes M[T]$.

Co-associativity:

Hopf monoid

(Aguiar-Mahajan) A Hopf monoid is a species M with, for each $I=S \sqcup T$,

- a product $\mu_{S, T}: M[S] \otimes M[T] \rightarrow M[I]$,
- a co-product $\Delta_{S, T}: M[I] \rightarrow M[S] \otimes M[T]$.

Co-associativity:

Hopf monoid of graphs

$$
\begin{aligned}
\mu_{S, T}: G[S] \otimes G[T] & \rightarrow G[/] & \Delta_{S, T}: G[I] & \rightarrow G[S] \otimes G[T] \\
g_{1} \otimes g_{2} & \mapsto g_{1} \sqcup g_{2} & & g
\end{aligned}
$$

where $g_{\mid S}$ is the sub-graph of g induced by S and $g_{/ S}=g_{\mid T}$.

Hopf monoid of graphs

$$
\begin{aligned}
\mu_{S, T}: G[S] \otimes G[T] & \rightarrow G[/] & \Delta_{S, T}: G[I] & \rightarrow G[S] \otimes G[T] \\
g_{1} \otimes g_{2} & \mapsto g_{1} \sqcup g_{2} & & g
\end{aligned}
$$

where $g_{\mid S}$ is the sub-graph of g induced by S and $g_{/ S}=g_{\mid T}$.

Ex: For $S=\{1,2,3\}$ and $T=\{a, b\}$:

Character

A Hopf monoid character $\zeta: M \rightarrow \mathbb{k}$ is a collection of linear forms

$$
\zeta_{I}: M[I] \rightarrow \mathbb{k}
$$

such that for every $I=S \sqcup T$:

$$
\begin{aligned}
& M[S] \otimes M[T] \xrightarrow{\mu_{S, T}} M[I]
\end{aligned}
$$

Character

A Hopf monoid character $\zeta: M \rightarrow \mathbb{k}$ is a collection of linear forms

$$
\zeta_{I}: M[I] \rightarrow \mathbb{k}
$$

such that for every $I=S \sqcup T$:

$$
\begin{aligned}
& M[S] \otimes M[T] \xrightarrow{\mu_{S, T}} M[I]
\end{aligned}
$$

Ex: For $g \in G[/]$

$$
\zeta_{I}(g)= \begin{cases}1 & \text { if } g \text { is discrete (i.e has no edges) } \\ 0 & \text { if not }\end{cases}
$$

Polynomial invariant

A decomposition of $I,\left(S_{1}, \ldots, S_{n}\right) \vdash I$ is a sequence of disjoint sets of I such that $\bigsqcup S_{i}=I$. We note $\ell(S)$ the number of elements of S.

Polynomial invariant

A decomposition of $I,\left(S_{1}, \ldots, S_{n}\right) \vdash I$ is a sequence of disjoint sets of I such that $\bigsqcup S_{i}=I$. We note $\ell(S)$ the number of elements of S.

Theorem (Aguiar and Ardila)

Let M be a Hopf monoid, ζ a character, n an integer and $x \in M[/]$. Then

$$
\chi_{I}(x)(n)=\sum_{S \vdash I, \ell(S)=n} \zeta_{S_{1}} \otimes \cdots \otimes \zeta_{S_{n}} \circ \Delta_{S_{1}, \ldots, S_{n}}(x)
$$

is a polynomial in n such that $\chi(x y)=\chi(x) \chi(y)$ and $\chi_{I}(x)(1)=\zeta_{I}(x)$.

Polynomial invariant

A decomposition of $I,\left(S_{1}, \ldots, S_{n}\right) \vdash I$ is a sequence of disjoint sets of I such that $\bigsqcup S_{i}=I$. We note $\ell(S)$ the number of elements of S.

Theorem (Aguiar and Ardila)

Let M be a Hopf monoid, ζ a character, n an integer and $x \in M[I]$. Then

$$
\chi_{I}(x)(n)=\sum_{S \vdash I, \ell(S)=n} \zeta_{S_{1}} \otimes \cdots \otimes \zeta_{S_{n}} \circ \Delta_{S_{1}, \ldots, S_{n}}(x)
$$

is a polynomial in n such that $\chi(x y)=\chi(x) \chi(y)$ and $\chi_{I}(x)(1)=\zeta_{I}(x)$.

Ex: With the preceding character, for g a graph, $\chi_{I}(g)$ is the chromatic polynomial of g.

Polynomial invariant

Ex: $I=[3], G=1_{1}^{\bullet} 2^{\bullet}-3^{\bullet}$ and $n=2$:

- $\Delta_{\{123\}, \emptyset}(G)=G \otimes \emptyset \xrightarrow{\zeta_{\{123\}} \otimes \zeta_{\emptyset}} 0 \otimes 1=0$

Polynomial invariant

Ex: $I=[3], G=1_{1}^{\bullet} 2_{2}^{\bullet} 3^{\bullet}$ and $n=2$:

- $\Delta_{\{123\}, \emptyset}(G)=G \otimes \emptyset \xrightarrow{\zeta_{\{123\}} \otimes \zeta_{\emptyset}} 0 \otimes 1=0$
- $\Delta_{\{12\},\{3\}}(G)=1^{\bullet} 2^{\bullet} \otimes 3^{\bullet} \xrightarrow{\zeta_{\{12\}} \otimes\left\{_{\{3\}}\right.} 0 \otimes 1=0$

Polynomial invariant

Ex: $I=[3], G=1_{1}^{\bullet} \mathbf{2}^{\bullet} 3^{\bullet}$ and $n=2$:

- $\Delta_{\{123\}, \emptyset}(G)=G \otimes \emptyset \xrightarrow{\zeta_{\{123\}} \otimes \zeta_{\emptyset}} 0 \otimes 1=0$
- $\Delta_{\{12\},\{3\}}(G)=1^{\bullet} 2^{\bullet} \otimes 3^{\bullet} \xrightarrow{\zeta_{\{12\}} \otimes\left\{_{\{3\}}\right.} 0 \otimes 1=0$
- $\Delta_{\{13\},\{2\}}(G)=1_{1} 3^{\bullet} \otimes 2_{2} \xrightarrow{\zeta_{\{13\}} \otimes \xi_{\{2\}}} 1 \otimes 1=1$

Polynomial invariant

Ex: $I=[3], G=1_{1}^{\bullet} 2^{\bullet} 3^{\bullet}$ and $n=2$:

- $\Delta_{\{123\}, \emptyset}(G)=G \otimes \emptyset \xrightarrow{\zeta_{\{123\}} \otimes \zeta_{\emptyset}} 0 \otimes 1=0$
- $\Delta_{\{12\},\{3\}}(G)=1^{\bullet} 2^{\bullet} \otimes 3^{\bullet} \xrightarrow{\zeta_{\{12\}} \otimes\left\{_{\{3\}}\right.} 0 \otimes 1=0$
- $\Delta_{\{13\},\{2\}}(G)=1_{1}^{\bullet} 3^{\bullet} \otimes 2^{\bullet} \xrightarrow{\left.\zeta_{\{13\}} \otimes\right\}_{\{2\}}} 1 \otimes 1=1$
- $\Delta_{\{23\},\{1\}}(G)=2^{\bullet} 3^{\bullet} \otimes 1^{\bullet} \xrightarrow{\zeta_{\{23\}} \otimes\left\{_{\{1\}}\right.} 1 \otimes 0=0$
- $\cdot \cdots+1$

Table of contents

(1) Hopf monoid
(2) Hopf monoid of hypergraphs

- Polynomial invariant
- Reciprocity theorem

(3) Applications

Hypergraphs

Hypergraph over I: collection of sub-sets of I called edges.
$H G[/]=\operatorname{Vect}(\{$ hypergraphs over I\})

Ex:

$$
\{\{1,2,3\},\{2,3,4\}\} \in H G[[5]]
$$

Hypergraphs

Hopf monoid structure:

$$
\begin{array}{rlrl}
\mu_{S, T}: H G[S] \otimes H G[T] & \rightarrow H G[I] & \Delta_{S, T}: H G[I] & \rightarrow H G[S] \otimes H G[T] \\
H_{1} \otimes H_{2} & \mapsto H_{1} \sqcup H_{2} & H & \mapsto H_{\mid S} \otimes H_{/ S}
\end{array}
$$

- $H_{\mid S}=\{e \in H \mid e \subseteq S\}$ restriction of H to S
- $H_{/ S}=\{e \cap T \mid e \nsubseteq S\} \cup\{\emptyset\}$ contraction of S in H

Hypergraphs

Hopf monoid structure:

$$
\begin{array}{rlrl}
\mu_{S, T}: H G[S] \otimes H G[T] & \rightarrow H G[I] & \Delta_{S, T}: H G[I] & \rightarrow H G[S] \otimes H G[T] \\
H_{1} \otimes H_{2} & \mapsto H_{1} \sqcup H_{2} & H & \mapsto H_{\mid S} \otimes H_{/ S}
\end{array}
$$

- $H_{\mid S}=\{e \in H \mid e \subseteq S\}$ restriction of H to S
- $H_{/ S}=\{e \cap T \mid e \nsubseteq S\} \cup\{\emptyset\}$ contraction of S in H

Ex: For $S=\{1,2,5\} \quad T=\{3,4\}$,

Hypergraphs

Character:
$\zeta_{I}(H)= \begin{cases}1 & \text { if } H \text { doesn't have edges with cardinality greater than one } \\ 0 & \text { else }\end{cases}$

$$
\chi=?
$$

Hypergraphs

Character:
$\zeta_{I}(H)= \begin{cases}1 & \text { if } H \text { doesn't have edges with cardinality greater than one } \\ 0 & \text { else }\end{cases}$

$$
\chi=?
$$

$H \in H G[/]$

Table of contents

(1) Hopf monoid
(2) Hopf monoid of hypergraphs

- Polynomial invariant
- Reciprocity theorem
(3) Applications

Colorings

Definition (Coloring)

A coloring of H with $[n]$ is a function

$$
c: I \rightarrow[n] .
$$

Let $e \in H$. Then $v \in e$ is maximal in $e(f o r c)$ if v is of maximal color in e.

Colorings

Definition (Coloring)

A coloring of H with $[n]$ is a function

$$
c: I \rightarrow[n] .
$$

Let $e \in H$. Then $v \in e$ is maximal in $e($ for $c)$ if v is of maximal color in e.

Ex: Coloring with $\{1,2,3,4\}$.

a maximal in e_{1}, c in e_{2}, c and d in e_{3}.

Polynomial invariant

Theorem

Let I be a set and $H \in H G[I]$ a hypergraph over I. Then $\chi_{I}(H)(n)$ is the number of colorings of H with [n] such that each edge has only one maximal vertex.

Polynomial invariant

Theorem

Let I be a set and $H \in H G[I]$ a hypergraph over I. Then $\chi_{I}(H)(n)$ is the number of colorings of H with [n] such that each edge has only one maximal vertex.

Ex: $\chi_{I}(H)(n)=n^{4}-\frac{8}{3} n^{3}+\frac{5}{2} n^{2}-\frac{5}{6} n$

Polynomial invariant

Theorem

Let I be a set and $H \in H G[I]$ a hypergraph over I. Then $\chi_{I}(H)(n)$ is the number of colorings of H with [n] such that each edge has only one maximal vertex.

Ex: for $n=2$: $\chi_{I}(H)(2)=2^{4}-\frac{8}{3} 2^{3}+\frac{5}{2} 2^{2}-\frac{5}{6} 2=3$

Polynomial invariant

Theorem

Let I be a set and $H \in H G[I]$ a hypergraph over I. Then $\chi_{I}(H)(n)$ is the number of colorings of H with [n] such that each edge has only one maximal vertex.

Ex: for $n=2$: $\chi_{I}(H)(2)=2^{4}-\frac{8}{3} 2^{3}+\frac{5}{2} 2^{2}-\frac{5}{6} 2=3$

Polynomial invariant

Theorem

Let I be a set and $H \in H G[I]$ a hypergraph over I. Then $\chi_{I}(H)(n)$ is the number of colorings of H with [n] such that each edge has only one maximal vertex.

Ex: for $n=2$: $\chi_{I}(H)(2)=2^{4}-\frac{8}{3} 2^{3}+\frac{5}{2} 2^{2}-\frac{5}{6} 2=3$

Polynomial invariant

Theorem

Let I be a set and $H \in H G[I]$ a hypergraph over I. Then $\chi_{I}(H)(n)$ is the number of colorings of H with [n] such that each edge has only one maximal vertex.

Ex: for $n=2$: $\chi_{I}(H)(2)=2^{4}-\frac{8}{3} 2^{3}+\frac{5}{2} 2^{2}-\frac{5}{6} 2=3$

Table of contents

(1) Hopf monoid
(2) Hopf monoid of hypergraphs

- Polynomial invariant
- Reciprocity theorem
(3) Applications

Orientations

Definition (Orientation)

An orientation of H is a function $f: H \rightarrow I$ such that $f(e) \in e$ for all $e \in H$.
A cycle in f is a sequence e_{1}, \ldots, e_{k} of edges such that

$$
f\left(e_{1}\right) \in e_{2} \backslash f\left(e_{2}\right), \ldots, f\left(e_{k}\right) \in e_{1} \backslash f\left(e_{1}\right)
$$

We note \mathcal{A}_{H} the set of acyclic orientations of H.

Orientations

Definition (Orientation)

An orientation of H is a function $f: H \rightarrow I$ such that $f(e) \in e$ for all $e \in H$.
A cycle in f is a sequence e_{1}, \ldots, e_{k} of edges such that

$$
f\left(e_{1}\right) \in e_{2} \backslash f\left(e_{2}\right), \ldots, f\left(e_{k}\right) \in e_{1} \backslash f\left(e_{1}\right)
$$

We note \mathcal{A}_{H} the set of acyclic orientations of H.
Ex:

The orientation $f\left(e_{1}\right)=5, f\left(e_{2}\right)=2, f\left(e_{3}\right)=3$ is cyclic.
The orientation $f\left(e_{1}\right)=1, f\left(e_{2}\right)=1, f\left(e_{3}\right)=3$ is acyclic.

Reciprocity theorem

Theorem

Let I be a set and $H \in H G[I]$ be a hypergraph over I. Then $(-1)^{|l|} \chi_{I}(H)(-1)=\left|\mathcal{A}_{H}\right|$ is the number of acyclic orientations of H.

Reciprocity theorem

Theorem

Let I be a set and $H \in H G[I]$ be a hypergraph over I. Then $(-1)^{|/|} \chi_{I}(H)(-1)=\left|\mathcal{A}_{H}\right|$ is the number of acyclic orientations of H.

Ex: $\chi_{I}(H)(n)=n^{4}-\frac{8}{3} n^{3}+\frac{5}{2} n^{2}-\frac{5}{6} n$

Reciprocity theorem

Theorem

Let I be a set and $H \in H G[I]$ be a hypergraph over I.
Then $(-1)^{|I|} \chi_{I}(H)(-1)=\left|\mathcal{A}_{H}\right|$ is the number of acyclic orientations of H.

Ex: $\chi_{I}(H)(-1)=1+\frac{8}{3}+\frac{5}{2}+\frac{5}{6}=7$

$3 \cdot 3=9$ orientations minus 2 cyclic orientations.

Reciprocity theorem

Theorem

Let I be a set and $H \in H G[I]$ be a hypergraph over I. Then $(-1)^{|l|} \chi_{I}(H)(-1)=\left|\mathcal{A}_{H}\right|$ is the number of acyclic orientations of H.

$$
E x: \chi_{I}(H)(-1)=1+\frac{8}{3}+\frac{5}{2}+\frac{5}{6}=7
$$

$3 \cdot 3=9$ orientations minus 2 cyclic orientations.
Remark: There is a combinatorial interpretation of $(-1)^{|/|} \chi_{I}(H)(-n)$.

Table of contents

(1) Hopf monoid

(2) Hopf monoid of hypergraphs

- Polynomial invariant
- Reciprocity theorem
(3) Applications

Graphs

Reminder:

$$
\begin{aligned}
\mu_{S, T}: G[S] \otimes G[T] & \rightarrow G[I] & \Delta_{S, T}: G[I] & \rightarrow G[S] \otimes G[T] \\
g_{1} \otimes g_{2} & \mapsto g_{1} \sqcup g_{2} & & g
\end{aligned}>g_{\mid S} \otimes g_{\mid T},
$$

Graphs

Reminder:

$$
\begin{aligned}
\mu_{S, T}: G[S] \otimes G[T] & \rightarrow G[I] & \Delta_{S, T}: G[I] & \rightarrow G[S] \otimes G[T] \\
g_{1} \otimes g_{2} & \mapsto g_{1} \sqcup g_{2} & & g
\end{aligned}>g_{\mid S} \otimes g_{\mid T},
$$

Theorem

Let $g \in G[I]$. Then $\chi_{l}^{G}(g)$ is the chromatic polynomial of g. Furthermore $(-1)^{|/|} \chi_{I}^{G}(g)(-1)$ is the number of acyclic orientations of g.

Graphs

Reminder:

$$
\begin{aligned}
\mu_{S, T}: G[S] \otimes G[T] & \rightarrow G[I] & \Delta_{S, T}: G[I] & \rightarrow G[S] \otimes G[T] \\
g_{1} \otimes g_{2} & \mapsto g_{1} \sqcup g_{2} & & g
\end{aligned}>g_{\mid S} \otimes g_{\mid T},
$$

Theorem

Let $g \in G[I]$. Then $\chi_{I}^{G}(g)$ is the chromatic polynomial of g. Furthermore $(-1)^{|/|} \chi_{I}^{G}(g)(-1)$ is the number of acyclic orientations of g.
proof:
Only one maximal vertex \Longleftrightarrow neighbour vertex of different colors.

Simplicial complexes (Benedetti, Hallam, Machacek)

A simplicial complex over I is a set of parts S of I such that $K \subset J \in S \Rightarrow K \in S$. We note $S C$ the species of simplicial complexes.

The 1-skeleton of simplicial complex is the graph formed by its parts of cardinality 2.

Simplicial complexes (Benedetti, Hallam, Machacek)

A simplicial complex over I is a set of parts S of I such that $K \subset J \in S \Rightarrow K \in S$. We note $S C$ the species of simplicial complexes.

The 1-skeleton of simplicial complex is the graph formed by its parts of cardinality 2.

Theorem

$S C$ is a Hopf sub-monoid of $H G$. Let be $C \in S C[I]$ and g be its 1-skeleton. Then $\chi_{I}^{S C}(C)=\chi_{I}^{G}(g)$.

Set of paths (Aguiar and Ardila)

A path over I is a word over I quotiented by the relation $w_{1} \ldots w_{|| |} \sim w_{|| |} \ldots w_{1}$. A set of paths $s_{1}|\ldots| s_{\ell}$ over I is a partition of I in paths.

Set of paths (Aguiar and Ardila)

A path over I is a word over I quotiented by the relation $w_{1} \ldots w_{|| |} \sim w_{|| |} \ldots w_{1}$. A set of paths $s_{1}|\ldots| s_{\ell}$ over I is a partition of I in paths.

The species F of sets of paths is a Hopf monoid:

$$
\begin{aligned}
\mu_{S, T}: F[S] \otimes F[T] & \rightarrow F[/] \\
s_{1}|\ldots| s_{\ell} \otimes t_{1}|\ldots| t_{\ell^{\prime}} & \mapsto s_{1}|\ldots| s_{\ell}\left|t_{1}\right| \ldots \mid t_{\ell^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{S, T}: F[I] & \rightarrow F[S] \otimes F[T] \\
s_{1}|\ldots| s_{\ell} & \mapsto s_{1} \cap S|\ldots| s_{\ell} \cap S \otimes s_{1 S \leftarrow}|\ldots| s_{\ell S \leftarrow}
\end{aligned}
$$

Set of paths (Aguiar and Ardila)

A path over I is a word over I quotiented by the relation $w_{1} \ldots w_{|| |} \sim w_{|| |} \ldots w_{1}$. A set of paths $s_{1}|\ldots| s_{\ell}$ over I is a partition of I in paths.

The species F of sets of paths is a Hopf monoid:

$$
\begin{aligned}
& \mu_{S, T}: F[S] \otimes F[T] \rightarrow F[/] \\
& s_{1}|\ldots| s_{\ell} \otimes t_{1}|\ldots| t_{\ell^{\prime}} \mapsto s_{1}|\ldots| s_{\ell}\left|t_{1}\right| \ldots \mid t_{\ell^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{S, T}: F[I] & \rightarrow F[S] \otimes F[T] \\
s_{1}|\ldots| s_{\ell} & \mapsto s_{1} \cap S|\ldots| s_{\ell} \cap S \otimes s_{1 S \leftarrow 1}|\ldots| s_{\ell S \leftarrow}
\end{aligned}
$$

Ex: For $I=\{a, b, c, d, e, f, g\}$ and $S=\{b, c, e\}$ and $T=\{a, d, f, g\}$ we have:

$$
\Delta_{S, T}(b f c|g| a e d)=b c|e \otimes f| g|a| d
$$

Set of paths (Aguiar and Ardila)

Theorem

Let α be a path over I. $\chi_{I}^{F}(\alpha)(n)$ is the number of rooted binary trees with $|I|$ vertices and colored with $[n]$ such that the color of a vertex is strictly greater than the color of its children.
Furthermore $(-1)^{|I|} \chi_{I}^{F}(\alpha)(-1)=C_{|I|}$ with $\left(C_{k}\right)_{k \in \mathbb{N}}$ the Catalan number sequence.

Perspectives

Generalisation to all characters on $H G$.

Perspectives

Generalisation to all characters on $H G$.

Antipode $S: M \rightarrow M$ such that:

$$
\chi_{I}(x)(-n)=\chi_{I}(S(x))(n)
$$

Open question: find a (nice) proof of reciprocity theorems using the antipode.

Thank you for your attention.

arXiv:1806.08546v2

