Polyhedral and Algebraic Approaches to the k-dimensional Multiplication Table Problem

\cdot	1	2	3	4
1	1	2	3	4
2	2	4	6	8
3	3	6	9	12
4	4	8	12	16

Anna Limbach, Robert Scheidweiler, Eberhard Triesch

Curia, April 17, 2019
SLC82

1 Introduction
2 Basic Definitions and Notation
3 Modeling with Polytopes
4 Algebraic Approach
5 Fusion of the Theories

Question

How many different entries does a multiplication table have?

\cdot	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Question

How many different entries does a multiplication table have?

\cdot	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Answer for the 10×10-table: 42

Basic Definitions and Notation

Definition

For $k, n \in \mathbb{N}$

$$
\begin{aligned}
P(k, n) & :=\left\{\prod_{i=1}^{k} m_{i} \mid m_{i} \in\{1, \ldots, n\} \forall i \in\{1, \ldots, k\}\right\} \\
p(k, n) & :=|P(k, n)|
\end{aligned}
$$

Example ($k=2, n=4$)

\cdot	1	2	3	4		
1	1	2	3	4		
2	2	4	6	8		
3	3	6	9	12		
4	4	8	12	16	\quad	
:---						

Definition

$■ \mathbb{P}=\left\{p_{1}<p_{2}<\ldots\right\}$ is the set of all prime numbers,

Definition

$\square \mathbb{P}=\left\{p_{1}<p_{2}<\ldots\right\}$ is the set of all prime numbers,
■ $\mathbb{P}_{\leq n}:=\{p \in \mathbb{P} \mid p \leq n\}$,

Definition

$\square \mathbb{P}=\left\{p_{1}<p_{2}<\ldots\right\}$ is the set of all prime numbers,
$\square \mathbb{P}_{\leq n}:=\{p \in \mathbb{P} \mid p \leq n\}$,
■ $\pi(n):=\left|\mathbb{P}_{\leq n}\right|$

Basic Definitions and Notation

Definition

$■ \mathbb{P}=\left\{p_{1}<p_{2}<\ldots\right\}$ is the set of all prime numbers,

- $\mathbb{P}_{\leq n}:=\{p \in \mathbb{P} \mid p \leq n\}$,

■ $\pi(n):=\left|\mathbb{P}_{\leq n}\right|$

- $M(1, n):=\left\{\alpha \in \mathbb{N}_{0}^{\pi(n)} \mid \prod_{j=1}^{\pi(n)} p_{j}^{\alpha_{j}} \leq n\right\}$,

Basic Definitions and Notation

Definition

$■ \mathbb{P}=\left\{p_{1}<p_{2}<\ldots\right\}$ is the set of all prime numbers,

- $\mathbb{P}_{\leq n}:=\{p \in \mathbb{P} \mid p \leq n\}$,

■ $\pi(n):=\left|\mathbb{P}_{\leq n}\right|$

- $M(1, n):=\left\{\alpha \in \mathbb{N}_{0}^{\pi(n)} \mid \prod_{j=1}^{\pi(n)} p_{j}^{\alpha_{j}} \leq n\right\}$,

Example ($n=7, \pi(n)=4$:)

$$
6=2^{1} 3^{1} 5^{0} 7^{0} \rightsquigarrow(1,1,0,0) \in \mathbb{N}_{0}^{4}
$$

Basic Definitions and Notation

Definition

$■ \mathbb{P}=\left\{p_{1}<p_{2}<\ldots\right\}$ is the set of all prime numbers,

- $\mathbb{P}_{\leq n}:=\{p \in \mathbb{P} \mid p \leq n\}$,
- $\pi(n):=\left|\mathbb{P}_{\leq n}\right|$
- $M(1, n):=\left\{\alpha \in \mathbb{N}_{0}^{\pi(n)} \mid \prod_{j=1}^{\pi(n)} p_{j}^{\alpha_{j}} \leq n\right\},|M(1, n)|=n$

Example ($n=7, \pi(n)=4$:)

$$
6=2^{1} 3^{1} 5^{0} 7^{0} \rightsquigarrow(1,1,0,0) \in \mathbb{N}_{0}^{4}
$$

Definition

$■ \mathbb{P}=\left\{p_{1}<p_{2}<\ldots\right\}$ is the set of all prime numbers,

- $\mathbb{P}_{\leq n}:=\{p \in \mathbb{P} \mid p \leq n\}$,
- $\pi(n):=\left|\mathbb{P}_{\leq n}\right|$
- $M(1, n):=\left\{\alpha \in \mathbb{N}_{0}^{\pi(n)} \mid \prod_{j=1}^{\pi(n)} p_{j}^{\alpha_{j}} \leq n\right\},|M(1, n)|=n$
- $M(k, n):=\left\{\beta \in \mathbb{N}_{0}^{\pi(n)} \mid \beta=\sum_{i=1}^{k} \alpha^{i}, \alpha^{i} \in M(1, n)\right\}$

Example ($n=7, \pi(n)=4$:)

$$
6=2^{1} 3^{1} 5^{0} 7^{0} \rightsquigarrow(1,1,0,0) \in \mathbb{N}_{0}^{4}
$$

Definition

$■ \mathbb{P}=\left\{p_{1}<p_{2}<\ldots\right\}$ is the set of all prime numbers,

- $\mathbb{P}_{\leq n}:=\{p \in \mathbb{P} \mid p \leq n\}$,

■ $\pi(n):=\left|\mathbb{P}_{\leq n}\right|$

- $M(1, n):=\left\{\alpha \in \mathbb{N}_{0}^{\pi(n)} \mid \prod_{j=1}^{\pi(n)} p_{j}^{\alpha_{j}} \leq n\right\},|M(1, n)|=n$
- $M(k, n):=\left\{\beta \in \mathbb{N}_{0}^{\pi(n)} \mid \beta=\sum_{i=1}^{k} \alpha^{i}, \alpha^{i} \in M(1, n)\right\}$

Example $(n=7, \pi(n)=4:)$

$$
6=2^{1} 3^{1} 5^{0} 7^{0} \rightsquigarrow(1,1,0,0) \in \mathbb{N}_{0}^{4}
$$

Proposition

$$
p(k, n)=|M(k, n)|
$$

Definition

A lattice polytope is a polytope whose vertices are integral.

Definition

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^{d}$ and $t \in \mathbb{N}$ we denote:

Definition

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^{d}$ and $t \in \mathbb{N}$ we denote:

- $t \Phi=\{t x \mid x \in \Phi\}, \quad \operatorname{int}(\Phi)=\mathbb{Z}^{d} \cap \Phi$,

Definition

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^{d}$ and $t \in \mathbb{N}$ we denote:

- $t \Phi=\{t x \mid x \in \Phi\}, \quad \operatorname{int}(\Phi)=\mathbb{Z}^{d} \cap \Phi$,
- $L_{\Phi}(t)=|\operatorname{int}(t \Phi)|$ is called the Ehrhart function, and

Definition

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^{d}$ and $t \in \mathbb{N}$ we denote:

- $t \Phi=\{t x \mid x \in \Phi\}, \quad \operatorname{int}(\Phi)=\mathbb{Z}^{d} \cap \Phi$,
- $L_{\Phi}(t)=|\operatorname{int}(t \Phi)|$ is called the Ehrhart function, and
- $t \star \Phi=\left\{\sum_{i=1}^{t} v_{i} \mid v_{i} \in \operatorname{int}(\Phi)\right\}$ is called the t-fold sum.

Definition

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^{d}$ and $t \in \mathbb{N}$ we denote:

- $t \Phi=\{t x \mid x \in \Phi\}, \quad \operatorname{int}(\Phi)=\mathbb{Z}^{d} \cap \Phi$,
- $L_{\Phi}(t)=|\operatorname{int}(t \Phi)|$ is called the Ehrhart function, and
- $t \star \Phi=\left\{\sum_{i=1}^{t} v_{i} \mid v_{i} \in \operatorname{int}(\Phi)\right\}$ is called the t-fold sum.

Lemma

For every full dimensional lattice polytope Φ and every $t \in \mathbb{N}$ we have

$$
t \star \Phi \subseteq \operatorname{int}(t \Phi)
$$

Definition

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^{d}$ and $t \in \mathbb{N}$ we denote:

- $t \Phi=\{t x \mid x \in \Phi\}, \quad \operatorname{int}(\Phi)=\mathbb{Z}^{d} \cap \Phi$,
- $L_{\Phi}(t)=|\operatorname{int}(t \Phi)|$ is called the Ehrhart function, and
- $t \star \Phi=\left\{\sum_{i=1}^{t} v_{i} \mid v_{i} \in \operatorname{int}(\Phi)\right\}$ is called the t-fold sum.

Lemma

For every full dimensional lattice polytope Φ and every $t \in \mathbb{N}$ we have

$$
t \star \Phi \subseteq \operatorname{int}(t \Phi)
$$

Definition

If $t \star \Phi=\operatorname{int}(t \Phi)$ holds for every $t \in \mathbb{N}$, the polytope Φ is called integrally closed.

Definition

Let Γ_{n} denote the polytope $\operatorname{conv}(M(1, n)) \subseteq \mathbb{R}^{d}$ with $d=\pi(n)$.

Application to our Problem

Definition

Let Γ_{n} denote the polytope $\operatorname{conv}(M(1, n)) \subseteq \mathbb{R}^{d}$ with $d=\pi(n)$.

Example $\left(\Gamma_{n}\right)$

Definition

Let Γ_{n} denote the polytope $\operatorname{conv}(M(1, n)) \subseteq \mathbb{R}^{d}$ with $d=\pi(n)$.

Example $\left(\Gamma_{n}\right)$

$$
n=1 \quad n=2
$$

$n=3$
$n=4$
$n=5$
$n=6$

Remark

- In general: Γ_{n} is not integrally closed.

■ $k \star \Gamma_{n} \subseteq \operatorname{int}\left(k \Gamma_{n}\right)$ and $\left|k \star \Gamma_{n}\right| \leq L_{\Gamma_{n}}(k)$.
$■ \operatorname{int}\left(\Gamma_{n}\right)=M(1, n)$, therefore $k \star \Gamma_{n}=M(k, n)$.
■ In conclusion: $p(k, n)=|M(k, n)|=\left|k \star \Gamma_{n}\right| \leq L_{\Gamma_{n}}(k)$.
■ If Γ_{n} is integrally closed (e.g. for $1 \leq n \leq 27$), we have $p(k, n)=L_{\Gamma_{n}}(k)$.

Theorem (Ehrhart)

For every integral polytope Φ of dimension $d, L_{\Phi}(t)$ is a polynomial, which has degree d, and the leading coefficient is the d-dimensional volume of Φ.

Application of Ehrhart Theory

Theorem (Ehrhart)

For every integral polytope Φ of dimension $d, L_{\Phi}(t)$ is a polynomial, which has degree d, and the leading coefficient is the d-dimensional volume of Φ.

By calculations with polytopes we get the following theorem:

Theorem (Scheidweiler \& Triesch)

For all $n, k \in \mathbb{N}$ and for $d=\pi(n)$ the inequalities

$$
p(k, n) \leq L_{r_{n}}(k) \leq p(k+d, n)
$$

hold.

Definition

$$
X_{n}:=\left\{t \cdot \prod_{j=1}^{\pi(n)} x_{j}^{\alpha_{j}} \mid\left(\alpha_{1}, \ldots, \alpha_{\pi(n)}\right) \in M(1, n)\right\} \subseteq K\left[x_{1}, \ldots, x_{\pi(n)}, t\right]
$$

Definition

$X_{n}:=\left\{t \cdot \prod_{j=1}^{\pi(n)} x_{j}^{\alpha_{j}} \mid\left(\alpha_{1}, \ldots, \alpha_{\pi(n)}\right) \in M(1, n)\right\} \subseteq K\left[x_{1}, \ldots, x_{\pi(n)}, t\right]$
$A_{n}:=\left\langle X_{n}\right\rangle_{K}$ the K-algebra generated by X_{n}.

Definition

$$
X_{n}:=\left\{t \cdot \prod_{j=1}^{\pi(n)} x_{j}^{\alpha_{j}} \mid\left(\alpha_{1}, \ldots, \alpha_{\pi(n)}\right) \in M(1, n)\right\} \subseteq K\left[x_{1}, \ldots, x_{\pi(n)}, t\right]
$$

$$
A_{n}:=\left\langle X_{n}\right\rangle_{K} \text { the K-algebra generated by } X_{n}
$$

Proposition

A_{n} is a graded K-algebra, which means $A_{n}=\oplus_{k=0}^{\infty} A_{n, k}$, with

$$
A_{n, k}=A_{n} \cap t^{k} \cdot K\left[x_{1}, \ldots, x_{\pi(n)}\right] .
$$

Definition

$$
X_{n}:=\left\{t \cdot \prod_{j=1}^{\pi(n)} x_{j}^{\alpha_{j}} \mid\left(\alpha_{1}, \ldots, \alpha_{\pi(n)}\right) \in M(1, n)\right\} \subseteq K\left[x_{1}, \ldots, x_{\pi(n)}, t\right]
$$

$A_{n}:=\left\langle X_{n}\right\rangle_{K}$ the K-algebra generated by X_{n}.

Proposition

A_{n} is a graded K-algebra, which means $A_{n}=\oplus_{k=0}^{\infty} A_{n, k}$, with

$$
A_{n, k}=A_{n} \cap t^{k} \cdot K\left[x_{1}, \ldots, x_{\pi(n)}\right] .
$$

Lemma

$$
p(k, n)=\operatorname{dim}_{K}\left(A_{n, k}\right)
$$

Definition

The (projective) Hilbert function of a graded K-algebra $B=\oplus_{k=0}^{\infty} B_{k}$ is defined as $H F_{B}(k)=\operatorname{dim}_{K}\left(B_{k}\right)$. For short: $H F_{n}(k):=H F_{A_{n}}(k)=p(k, n)$.

Definition

The (projective) Hilbert function of a graded K-algebra $B=\oplus_{k=0}^{\infty} B_{k}$ is defined as $H F_{B}(k)=\operatorname{dim}_{K}\left(B_{k}\right)$. For short: $H F_{n}(k):=H F_{A_{n}}(k)=p(k, n)$.

Theorem (Hilbert)

For a graded K-algebra $B=\oplus_{k=0}^{\infty} B_{k}$ there exists a polynomial q_{B} (Hilbert polynomial), and a number $k_{B} \in \mathbb{N}_{0}$ (regularity index), such that the equation $H F_{B}(k)=q_{B}(k)$ is fulfilled for every $k \geq k_{B}$.

Definition

The (projective) Hilbert function of a graded K-algebra $B=\oplus_{k=0}^{\infty} B_{k}$ is defined as $H F_{B}(k)=\operatorname{dim}_{K}\left(B_{k}\right)$. For short: $H F_{n}(k):=H F_{A_{n}}(k)=p(k, n)$.

Theorem (Hilbert)

For a graded K-algebra $B=\oplus_{k=0}^{\infty} B_{k}$ there exists a polynomial q_{B} (Hilbert polynomial), and a number $k_{B} \in \mathbb{N}_{0}$ (regularity index), such that the equation $H F_{B}(k)=q_{B}(k)$ is fulfilled for every $k \geq k_{B}$.

Corollary

For every $n \in \mathbb{N}$ there is a number $k_{n} \in \mathbb{N}_{0}$ and a polynomial q_{n} such that $p(k, n)=q_{n}(k)$ is true for every $k \geq k_{n}$.

Definition

The (projective) Hilbert function of a graded K-algebra $B=\oplus_{k=0}^{\infty} B_{k}$ is defined as $H F_{B}(k)=\operatorname{dim}_{K}\left(B_{k}\right)$. For short: $H F_{n}(k):=H F_{A_{n}}(k)=p(k, n)$.

Theorem (Hilbert)

For a graded K-algebra $B=\oplus_{k=0}^{\infty} B_{k}$ there exists a polynomial q_{B} (Hilbert polynomial), and a number $k_{B} \in \mathbb{N}_{0}$ (regularity index), such that the equation $H F_{B}(k)=q_{B}(k)$ is fulfilled for every $k \geq k_{B}$.

Corollary

For every $n \in \mathbb{N}$ there is a number $k_{n} \in \mathbb{N}_{0}$ and a polynomial q_{n} such that $p(k, n)=q_{n}(k)$ is true for every $k \geq k_{n}$.

Conjecture (L., Scheidweiler, Triesch)

For every $n \in \mathbb{N}$, the regularity index k_{n} equals 0 and, therefore, $p(k, n)$ is a polynomial in k.

Fusion of the Theories

Theorem (Ehrhart, Repetition)

For every integral polytope Φ of dimension $d, L_{\Phi}(t)$ is a polynomial in t which has degree d and the leading coefficient is the d-dimensional volume of Φ.

Theorem (Repetition)

For all $n, k \in \mathbb{N}$ and for $d=\pi(n)$ the inequalities $p(k, n) \leq L_{\Gamma_{n}}(k) \leq p(k+d, n)$ hold.

Theorem (Ehrhart, Repetition)

For every integral polytope Φ of dimension $d, L_{\Phi}(t)$ is a polynomial in t which has degree d and the leading coefficient is the d-dimensional volume of Φ.

Theorem (Repetition)

For all $n, k \in \mathbb{N}$ and for $d=\pi(n)$ the inequalities $p(k, n) \leq L_{\Gamma_{n}}(k) \leq p(k+d, n)$ hold.

Theorem (Scheidweiler, Triesch)

a) The Hilbert polynomial q_{n} has degree $d=\pi(n)$ and the leading coefficient is equal to the d-dimensional volume of the polytope Γ_{n}.
b) If Γ_{n} is integrally closed, $q_{n}(k)=p(k, n)=L_{\Gamma_{n}}(k)$.

Theorem (Ehrhart, Repetition)

For every integral polytope Φ of dimension $d, L_{\Phi}(t)$ is a polynomial in t which has degree d and the leading coefficient is the d-dimensional volume of Φ.

Theorem (Repetition)

For all $n, k \in \mathbb{N}$ and for $d=\pi(n)$ the inequalities $p(k, n) \leq L_{\Gamma_{n}}(k) \leq p(k+d, n)$ hold.

Theorem (Scheidweiler, Triesch)

a) The Hilbert polynomial q_{n} has degree $d=\pi(n)$ and the leading coefficient is equal to the d-dimensional volume of the polytope Γ_{n}.
b) If Γ_{n} is integrally closed, $q_{n}(k)=p(k, n)=L_{\Gamma_{n}}(k)$.

Corollary

For fixed $n \in \mathbb{N}$: $p(k, n)=\Theta\left(k^{\pi(n)}\right)$.

Definition

The (projective) Hilbert series of a graded K-algebra $B=\oplus_{k=0}^{\infty} B_{k}$ is defined as the formal power series $H S_{B}:=\sum_{k=0}^{\infty} \operatorname{dim}_{K}\left(B_{k}\right) z^{k}$.
For short: $H S_{n}:=H S_{A_{n}}$
Analogously, we define the Ehrhart series.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^{d}$, the Ehrhart series is defined as the formal power series $E S_{\Phi}:=\sum_{k=0}^{\infty} L_{\Phi}(k) z^{k}$.
For short: $E S_{n}:=E S_{\Gamma_{n}}$.

Theorem

For every graded K-algebra B which is generated by elements of degree 1 , there is a polynomial r_{B}, which such that $H S_{B}(z)=\frac{r_{B}(z)}{(1-z)^{\delta}}$ and δ is the Krull-dimension of B. Furthermore $H F_{B}=q_{B}$ if and only if $\operatorname{deg}\left(r_{B}\right) \leq \delta-1$.

Corollary

For every $n \in \mathbb{N}$ there is a polynomial r_{n} such that $H S_{n}(z)=\frac{r_{n}(z)}{(1-z)^{\pi(n)+1}}$.

Lemma

If q is a polynomial of degree d, there is a polynomial r of degree $e \leq d$ such that

$$
\sum_{k=0}^{\infty} q(k) z^{k}=\frac{r(z)}{(1-z)^{d+1}}
$$

Corollary

For every $n \in \mathbb{N}$, there is a polynomial \hat{r}_{n} of degree $\hat{e}_{n} \leq \pi(n)$ such that

$$
\sum_{k=0}^{\infty} L_{\Gamma_{n}}(k) z^{k}=\frac{\hat{r}_{n}(z)}{(1-z)^{\pi(n)+1}}
$$

Thank you for your attention.

