Polyhedral and Algebraic Approaches to the *k*-dimensional Multiplication Table Problem

Anna Limbach, Robert Scheidweiler, Eberhard Triesch

Curia, April 17, 2019

SLC82

1 Introduction

- 2 Basic Definitions and Notation
- 3 Modeling with Polytopes
- 4 Algebraic Approach
- 5 Fusion of the Theories

Lehrstuhl II für Mathematik **RWTH**AACHEN UNIVERSITY

How many different entries does a multiplication table have?

•	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

RNTHAA

How many different entries does a multiplication table have?

-										
•	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Answer for the 10 \times 10-table: 42

For $k, n \in \mathbb{N}$

$$P(k,n) := \left\{ \prod_{i=1}^{k} m_i \middle| m_i \in \{1,\ldots,n\} \forall i \in \{1,\ldots,k\} \right\}$$
$$p(k,n) := |P(k,n)|$$

Example (k = 2, n = 4)

•	1	2	3	4
1	1	2	3	4
2	2	4	6	8
3	3	6	9	12
4	4	8	12	16

$$P(2,4) = \{1,2,3,4,6,8,9,12,16\},\\ p(2,4) = 9$$

Basic Definitions and Notation

Definition

• $\mathbb{P} = \{p_1 < p_2 < ...\}$ is the set of all prime numbers,

•
$$\mathbb{P} = \{p_1 < p_2 < ...\}$$
 is the set of all prime numbers,

 $\blacksquare \mathbb{P}_{\leq n} := \{ p \in \mathbb{P} \mid p \leq n \},\$

•
$$\pi(n) := |\mathbb{P}_{\leq n}|$$

$$\mathbb{P} = \{ p_1 < p_2 < ... \} \text{ is the set of all prime numbers,}$$

$$\mathbb{P}_{\leq n} := \{ p \in \mathbb{P} \mid p \leq n \}, \\
 \pi(n) := |\mathbb{P}_{\leq n}| \\
 \mathbb{M}(1, n) := \{ \alpha \in \mathbb{N}_0^{\pi(n)} \mid \prod_{j=1}^{\pi(n)} p_j^{\alpha_j} \leq n \},$$

$$\mathbb{P} = \{ p_1 < p_2 < ... \} \text{ is the set of all prime numbers,}$$
 $\mathbb{P}_{\leq n} := \{ p \in \mathbb{P} \mid p \leq n \},$
 $\pi(n) := |\mathbb{P}_{\leq n}|$
 $M(1, n) := \{ \alpha \in \mathbb{N}_0^{\pi(n)} \mid \prod_{j=1}^{\pi(n)} p_j^{\alpha_j} \leq n \},$

Example ($n = 7, \pi(n) = 4$:)

$$6 = 2^1 3^1 5^0 7^0 \rightsquigarrow (1, 1, 0, 0) \in \mathbb{N}_0^4$$

$$\mathbb{P} = \{ p_1 < p_2 < ... \} \text{ is the set of all prime numbers,}$$
 $\mathbb{P}_{\leq n} := \{ p \in \mathbb{P} \mid p \leq n \},$
 $\pi(n) := |\mathbb{P}_{\leq n}|$
 $M(1, n) := \{ \alpha \in \mathbb{N}_0^{\pi(n)} \mid \prod_{j=1}^{\pi(n)} p_j^{\alpha_j} \leq n \}, \mid M(1, n) \mid = n$

Example ($n = 7, \pi(n) = 4$:)

$$6 = 2^1 3^1 5^0 7^0 \rightsquigarrow (1, 1, 0, 0) \in \mathbb{N}_0^4$$

$$\mathbb{P} = \{ p_1 < p_2 < ... \} \text{ is the set of all prime numbers,}$$

$$\mathbb{P}_{\leq n} := \{ p \in \mathbb{P} \mid p \leq n \},$$

$$\pi(n) := |\mathbb{P}_{\leq n}|$$

$$M(1, n) := \{ \alpha \in \mathbb{N}_0^{\pi(n)} \mid \prod_{j=1}^{\pi(n)} p_j^{\alpha_j} \leq n \}, |M(1, n)| = n$$

$$M(k, n) := \{ \beta \in \mathbb{N}_0^{\pi(n)} \mid \beta = \sum_{i=1}^k \alpha^i, \ \alpha^i \in M(1, n) \}$$

Example ($n = 7, \pi(n) = 4$:)

$$6 = 2^1 3^1 5^0 7^0 \rightsquigarrow (1, 1, 0, 0) \in \mathbb{N}_0^4$$

$$\mathbb{P} = \{ p_1 < p_2 < \dots \} \text{ is the set of all prime numbers,} \\
 \mathbb{P}_{\leq n} := \{ p \in \mathbb{P} \mid p \leq n \}, \\
 \pi(n) := |\mathbb{P}_{\leq n}| \\
 M(1, n) := \{ \alpha \in \mathbb{N}_0^{\pi(n)} \mid \prod_{j=1}^{\pi(n)} p_j^{\alpha_j} \leq n \}, |M(1, n)| = n \\
 M(k, n) := \{ \beta \in \mathbb{N}_0^{\pi(n)} \mid \beta = \sum_{i=1}^k \alpha^i, \ \alpha^i \in M(1, n) \}$$

Example ($n = 7, \pi(n) = 4$:)

$$6 = 2^1 3^1 5^0 7^0 \rightsquigarrow (1, 1, 0, 0) \in \mathbb{N}_0^4$$

Proposition

$$p(k,n) = |M(k,n)|$$

Anna Limbach - RWTH Aachen

A lattice polytope is a polytope whose vertices are integral.

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^d$ and $t \in \mathbb{N}$ we denote:

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^d$ and $t \in \mathbb{N}$ we denote:

• $t\Phi = \{tx | x \in \Phi\}, \quad int(\Phi) = \mathbb{Z}^d \cap \Phi,$

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^d$ and $t \in \mathbb{N}$ we denote:

- $t\Phi = \{tx | x \in \Phi\}, \quad int(\Phi) = \mathbb{Z}^d \cap \Phi,$
- $L_{\Phi}(t) = |int(t\Phi)|$ is called the **Ehrhart function**, and

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^d$ and $t \in \mathbb{N}$ we denote:

•
$$t\Phi = \{tx | x \in \Phi\}, \quad int(\Phi) = \mathbb{Z}^d \cap \Phi,$$

- $L_{\Phi}(t) = |int(t\Phi)|$ is called the **Ehrhart function**, and
- $t \star \Phi = \{\sum_{i=1}^{t} v_i \mid v_i \in int(\Phi)\}$ is called the t-fold sum.

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^d$ and $t \in \mathbb{N}$ we denote:

•
$$t\Phi = \{tx | x \in \Phi\}, \quad int(\Phi) = \mathbb{Z}^d \cap \Phi,$$

- $L_{\Phi}(t) = |int(t\Phi)|$ is called the **Ehrhart function**, and
- $t \star \Phi = \{\sum_{i=1}^{t} v_i \mid v_i \in int(\Phi)\}$ is called the t-fold sum.

Lemma

For every full dimensional lattice polytope Φ and every $t\in\mathbb{N}$ we have

 $t \star \Phi \subseteq \operatorname{int}(t\Phi).$

A lattice polytope is a polytope whose vertices are integral.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^d$ and $t \in \mathbb{N}$ we denote:

•
$$t\Phi = \{tx | x \in \Phi\}, \quad int(\Phi) = \mathbb{Z}^d \cap \Phi,$$

- $L_{\Phi}(t) = |int(t\Phi)|$ is called the **Ehrhart function**, and
- $t \star \Phi = \{\sum_{i=1}^{t} v_i \mid v_i \in int(\Phi)\}$ is called the t-fold sum.

Lemma

For every full dimensional lattice polytope Φ and every $t\in\mathbb{N}$ we have

 $t \star \Phi \subseteq \operatorname{int}(t\Phi).$

Definition

If $t \star \Phi = int(t\Phi)$ holds for every $t \in \mathbb{N}$, the polytope Φ is called integrally closed.

Anna Limbach - RWTH Aachen

Let Γ_n denote the polytope conv $(M(1, n)) \subseteq \mathbb{R}^d$ with $d = \pi(n)$.

Let
$$\Gamma_n$$
 denote the polytope conv $(M(1, n)) \subseteq \mathbb{R}^d$ with $d = \pi(n)$.

Let
$$\Gamma_n$$
 denote the polytope conv $(M(1, n)) \subseteq \mathbb{R}^d$ with $d = \pi(n)$.

Remark

- In general: Γ_n is not integrally closed.
- $k \star \Gamma_n \subseteq int(k\Gamma_n)$ and $|k \star \Gamma_n| \leq L_{\Gamma_n}(k)$.
- $int(\Gamma_n) = M(1, n)$, therefore $k \star \Gamma_n = M(k, n)$.
- In conclusion: $p(k, n) = |M(k, n)| = |k \star \Gamma_n| \le L_{\Gamma_n}(k)$.
- If Γ_n is integrally closed (e.g. for $1 \le n \le 27$), we have $p(k, n) = L_{\Gamma_n}(k)$.

Theorem (Ehrhart)

For every integral polytope Φ of dimension d, $L_{\Phi}(t)$ is a polynomial, which has degree d, and the leading coefficient is the d-dimensional volume of Φ .

Theorem (Ehrhart)

For every integral polytope Φ of dimension d, $L_{\Phi}(t)$ is a polynomial, which has degree d, and the leading coefficient is the d-dimensional volume of Φ .

By calculations with polytopes we get the following theorem:

Theorem (Scheidweiler & Triesch)

For all $n, k \in \mathbb{N}$ and for $d = \pi(n)$ the inequalities

$$p(k,n) \leq L_{\Gamma_n}(k) \leq p(k+d,n)$$

hold.

$$X_n := \left\{ t \cdot \prod_{j=1}^{\pi(n)} x_j^{\alpha_j} \middle| (\alpha_1, \ldots, \alpha_{\pi(n)}) \in M(1, n) \right\} \subseteq K[x_1, \ldots, x_{\pi(n)}, t]$$

$$X_{n} := \left\{ t \cdot \prod_{j=1}^{\pi(n)} x_{j}^{\alpha_{j}} \middle| (\alpha_{1}, \dots, \alpha_{\pi(n)}) \in M(1, n) \right\} \subseteq K[x_{1}, \dots, x_{\pi(n)}, t]$$

$$A_{n} := \langle X_{n} \rangle_{K} \text{ the } K \text{-algebra generated by } X_{n}.$$

$$X_n := \left\{ t \cdot \prod_{j=1}^{\pi(n)} x_j^{\alpha_j} \middle| (\alpha_1, \dots, \alpha_{\pi(n)}) \in \mathcal{M}(1, n) \right\} \subseteq \mathcal{K}[x_1, \dots, x_{\pi(n)}, t]$$

 $A_n := \langle X_n \rangle_K$ the K-algebra generated by X_n .

Proposition

 A_n is a graded K-algebra, which means $A_n = \bigoplus_{k=0}^{\infty} A_{n,k}$, with

$$A_{n,k} = A_n \cap t^k \cdot K[x_1, \ldots, x_{\pi(n)}].$$

$$X_{n} := \left\{ t \cdot \prod_{j=1}^{\pi(n)} x_{j}^{\alpha_{j}} \middle| (\alpha_{1}, \dots, \alpha_{\pi(n)}) \in M(1, n) \right\} \subseteq K[x_{1}, \dots, x_{\pi(n)}, t]$$

 $A_n := \langle X_n \rangle_K$ the K-algebra generated by X_n .

Proposition

 A_n is a graded K-algebra, which means $A_n = \oplus_{k=0}^{\infty} A_{n,k}$, with

$$A_{n,k} = A_n \cap t^k \cdot K[x_1, \ldots, x_{\pi(n)}].$$

Lemma

$$p(k,n) = \dim_{\mathcal{K}}(A_{n,k})$$

Anna Limbach - RWTH Aachen

The (projective) Hilbert function of a graded K-algebra $B = \bigoplus_{k=0}^{\infty} B_k$ is defined as $HF_B(k) = \dim_K(B_k)$. For short: $HF_n(k) := HF_{A_n}(k) = p(k, n)$.

The (projective) Hilbert function of a graded K-algebra $B = \bigoplus_{k=0}^{\infty} B_k$ is defined as $HF_B(k) = \dim_K(B_k)$. For short: $HF_n(k) := HF_{A_n}(k) = p(k, n)$.

Theorem (Hilbert)

For a graded K-algebra $B = \bigoplus_{k=0}^{\infty} B_k$ there exists a polynomial q_B (Hilbert polynomial), and a number $k_B \in \mathbb{N}_0$ (regularity index), such that the equation $HF_B(k) = q_B(k)$ is fulfilled for every $k \ge k_B$.

The (projective) Hilbert function of a graded K-algebra $B = \bigoplus_{k=0}^{\infty} B_k$ is defined as $HF_B(k) = \dim_K(B_k)$. For short: $HF_n(k) := HF_{A_n}(k) = p(k, n)$.

Theorem (Hilbert)

For a graded K-algebra $B = \bigoplus_{k=0}^{\infty} B_k$ there exists a polynomial q_B (Hilbert polynomial), and a number $k_B \in \mathbb{N}_0$ (regularity index), such that the equation $HF_B(k) = q_B(k)$ is fulfilled for every $k \ge k_B$.

Corollary

For every $n \in \mathbb{N}$ there is a number $k_n \in \mathbb{N}_0$ and a polynomial q_n such that $p(k, n) = q_n(k)$ is true for every $k \ge k_n$.

The (projective) Hilbert function of a graded K-algebra $B = \bigoplus_{k=0}^{\infty} B_k$ is defined as $HF_B(k) = \dim_K(B_k)$. For short: $HF_n(k) := HF_{A_n}(k) = p(k, n)$.

Theorem (Hilbert)

For a graded K-algebra $B = \bigoplus_{k=0}^{\infty} B_k$ there exists a polynomial q_B (Hilbert polynomial), and a number $k_B \in \mathbb{N}_0$ (regularity index), such that the equation $HF_B(k) = q_B(k)$ is fulfilled for every $k \ge k_B$.

Corollary

For every $n \in \mathbb{N}$ there is a number $k_n \in \mathbb{N}_0$ and a polynomial q_n such that $p(k, n) = q_n(k)$ is true for every $k \ge k_n$.

Conjecture (L., Scheidweiler, Triesch)

For every $n \in \mathbb{N}$, the regularity index k_n equals 0 and, therefore, p(k, n) is a polynomial in k.

Theorem (Ehrhart, Repetition)

For every integral polytope Φ of dimension d, $L_{\Phi}(t)$ is a polynomial in t which has degree d and the leading coefficient is the d-dimensional volume of Φ .

Theorem (Repetition)

For all $n, k \in \mathbb{N}$ and for $d = \pi(n)$ the inequalities $p(k, n) \leq L_{\Gamma_n}(k) \leq p(k + d, n)$ hold.

Theorem (Ehrhart, Repetition)

For every integral polytope Φ of dimension d, $L_{\Phi}(t)$ is a polynomial in t which has degree d and the leading coefficient is the d-dimensional volume of Φ .

Theorem (Repetition)

For all $n, k \in \mathbb{N}$ and for $d = \pi(n)$ the inequalities $p(k, n) \leq L_{\Gamma_n}(k) \leq p(k + d, n)$ hold.

Theorem (Scheidweiler, Triesch)

- a) The Hilbert polynomial q_n has degree $d = \pi(n)$ and the leading coefficient is equal to the d-dimensional volume of the polytope Γ_n .
- b) If Γ_n is integrally closed, $q_n(k) = p(k, n) = L_{\Gamma_n}(k)$.

Theorem (Ehrhart, Repetition)

For every integral polytope Φ of dimension d, $L_{\Phi}(t)$ is a polynomial in t which has degree d and the leading coefficient is the d-dimensional volume of Φ .

Theorem (Repetition)

For all $n, k \in \mathbb{N}$ and for $d = \pi(n)$ the inequalities $p(k, n) \leq L_{\Gamma_n}(k) \leq p(k + d, n)$ hold.

Theorem (Scheidweiler, Triesch)

- a) The Hilbert polynomial q_n has degree $d = \pi(n)$ and the leading coefficient is equal to the d-dimensional volume of the polytope Γ_n .
- b) If Γ_n is integrally closed, $q_n(k) = p(k, n) = L_{\Gamma_n}(k)$.

Corollary

For fixed $n \in \mathbb{N}$: $p(k, n) = \Theta(k^{\pi(n)})$.

The (projective) Hilbert series of a graded K-algebra $B = \bigoplus_{k=0}^{\infty} B_k$ is defined as the formal power series $HS_B := \sum_{k=0}^{\infty} \dim_K(B_k)z^k$. For short: $HS_n := HS_{A_n}$

Analogously, we define the Ehrhart series.

Definition

For a full dimensional lattice polytope $\Phi \subset \mathbb{R}^d$, the **Ehrhart series** is defined as the formal power series $ES_{\Phi} := \sum_{k=0}^{\infty} L_{\Phi}(k) z^k$. For short: $ES_n := ES_{\Gamma_n}$.

Theorem

For every graded K-algebra B which is generated by elements of degree 1, there is a polynomial r_B , which such that $HS_B(z) = \frac{r_B(z)}{(1-z)^{\delta}}$ and δ is the Krull-dimension of B. Furthermore $HF_B = q_B$ if and only if deg $(r_B) \le \delta - 1$.

Corollary

For every $n \in \mathbb{N}$ there is a polynomial r_n such that $HS_n(z) = \frac{r_n(z)}{(1-z)^{\pi(n)+1}}$.

Lemma

If q is a polynomial of degree d, there is a polynomial r of degree $e \leq d$ such that

$$\sum_{k=0}^{\infty} q(k) z^k = \frac{r(z)}{(1-z)^{d+1}}.$$

Corollary

For every $n \in \mathbb{N}$, there is a polynomial \hat{r}_n of degree $\hat{e}_n \leq \pi(n)$ such that

$$\sum_{k=0}^{\infty} L_{\Gamma_n}(k) z^k = \frac{\hat{r}_n(z)}{(1-z)^{\pi(n)+1}}.$$

Thank you for your attention.