Simple recurrence formulas for bipartite maps with prescribed degrees

Baptiste Louf (IRIF Paris Diderot)

Work supported by the grant ERC - Stg 716083 - "CombiTop"

Introduction : maps

Map $=$ embedding up to homeomorphism of a connected multigraph (loops and multiple edges allowed) in a compact connected orientable surface.

Rooted $=$ an oriented edge is distinguished

Genus g of the map $=$ genus of the surface = \# of handles

Bipartite maps (also called hypermaps, or dessins d'enfants) : vertices are either black or white, and monochromatic edges are forbidden

Bipartite maps as permutations

$$
\begin{aligned}
& \sigma_{\circ}=(1,3,7,11)(2,6,9,10)(4,5)(8,12) \\
& \sigma_{\bullet}=(1,12,10)(2,8,11)(3,5,7)(4,9)(6) \\
& \phi=(1,8)(2,12)(3,4,10)(5,11,6,9)(7)
\end{aligned}
$$

Each vertex/face is a cycle (degree=size of cycle)

$$
\sigma_{\circ} \sigma_{\bullet}=\phi
$$

Connectedness $=$ transitivity of $\left\langle\sigma_{\circ}, \sigma_{\bullet}\right\rangle$

Edge labeled \longleftrightarrow rooted

$$
(n-1) \text { !-to-1 }
$$

KP/2-Toda hierarchies

KP hierarchy

Obtained from the KP equation by studying its symmetries

An infinite set of variables $\left(p_{1}, p_{2}, \ldots\right) \ldots$ and an infinite number of equations

$$
\begin{gathered}
F_{3,1}=F_{2,2}+\frac{1}{2} F_{1,1}^{2}+\frac{1}{12} F_{1,1,1,1} \\
F_{4,1}=F_{3,2}+F_{1,1} F_{2,1}+\frac{1}{6} F_{1,1,1,2}
\end{gathered}
$$

2-Toda hierarchy

Extension of the KP hierarchy with two sets of infinite variables

GFs of maps are solutions [Goulden-Jackson '08], but also Hurwitz numbers, random partitions [Okounkov '0x], ...

KP/2-Toda hierarchies

Very powerful tool, gives very nice, combinatorial formulas
[Goulden-Jackson '08] \longrightarrow triangulations
[Carrell-Chapuy '15] \longrightarrow maps
[Kazarian-Zograf '15] \longrightarrow bipartite maps
$\left[\mathrm{L} .{ }^{\prime} 19+\right] \longrightarrow$ bipartite maps with prescribed degrees (+ constellations, monotone Hurwitz numbers)

$$
\begin{aligned}
\binom{n+1}{2} B_{g}(\mathbf{f})= & \sum_{\substack{\mathbf{s}+\mathbf{t}=\mathbf{f} \\
\mathbf{s}, \mathbf{t} \neq \mathbf{0} \\
g_{1}+g_{2}+g^{*}=g}}\left(1+n_{1}\right)\binom{v_{2}}{2 g^{*}+2} B_{g_{1}}(\mathbf{s}) B_{g_{2}}(\mathbf{t}) \\
& +\sum_{g^{*} \geq 0}\binom{v+2 g^{*}}{2 g^{*}+2} B_{g-g *}(\mathbf{f})
\end{aligned}
$$

$B_{g}(\mathbf{f})=$ number of bipartite maps of genus g with f_{i} faces of degree $2 i$, $\mathbf{f}=\left(f_{1}, f_{2}, \ldots\right)$

What is it useful for ?

- Counting (very fast, simplest way known)
- Finding bijections that explain the structure of maps ([Chapuy-Féray-Fusy '13], [L. 18+])
- Asymptotic study of random high genus maps + convergence towards random hyperbolic maps ([Budzinski, L. 19+])

The semi-infinite wedge space $\Lambda^{\frac{\infty}{2}}$

Maya diagram: $\mathbb{Z}+\frac{1}{2}$ decorated with $\quad \Lambda^{\frac{\infty}{2}}=$ vector space whose orthonormal particles and antiparticles

Operators on $\Lambda^{\frac{\infty}{2}}$

Fermions ψ_{k} / ψ_{k}^{*} : add/remove a particle in position k (up to a sign)
Bosons α_{n} / α_{-n} : add/remove a ribbon of size n to apartition

Energy H : counts the size of a partition
can be expressed in terms of fermions

The GF of bipartite maps

$W(l, \lambda, \mu)=$ number of 4-uples of permutations $\left(\sigma_{1}, \sigma_{2}, \sigma_{\lambda}, \sigma_{\mu}\right)$ s.t.

- σ_{1}, σ_{2} have l cycles in total
- $\left(\sigma_{\lambda}, \sigma_{\mu}\right)$ have cycle types (λ, μ)

$$
\tau(z, \mathbf{p}, \mathbf{q}, u)=\sum_{\substack{|\lambda|=|\mu|=n>0 \\ l>0}} W(l, \lambda, \mu) \frac{z^{n}}{n!} u^{2 n-l} p_{\lambda} q_{\mu}
$$

Remark:
Setting $q_{i}=\delta_{i=1}$, one recovers the exponential GF of (non necessarily connected, edge labeled) bipartite maps, counted by edges, vertices, and faces of each degree
$\log \tau$ is the GF of connected maps.

The GF of bipartite maps is a solution to the 2-Toda hierarchy

We have

$$
\tau=\langle\emptyset| \Gamma_{+}(\mathbf{p}) z^{H} \Lambda \Gamma_{-}(\mathbf{q})|\emptyset\rangle \quad\left(\Gamma_{ \pm}(\mathbf{p})=\exp \left(\sum_{n=1}^{\infty} \frac{p_{n}}{n} \alpha_{ \pm n}\right)\right)
$$

with

$$
\Lambda|\nu\rangle=\left(\prod_{\square \in \nu}(1+u c(\square))^{2}|\nu\rangle\right.
$$

(Classical form of solutions : $\langle\emptyset| \Gamma_{+}(\mathbf{p}) A \Gamma_{-}(\mathbf{q})|\emptyset\rangle$ with $[A \bigotimes A, \Omega]=0$ and $\left.\Omega=\sum_{k} \psi_{k} \bigotimes \psi_{k}^{*}\right)$

Proof includes:

- Jucys-Murphy elements
- Representation theory of \mathfrak{S}_{n}
- Schur functions
- the Jacobi-Trudi rule

Outline of the proof of the formula

Because τ is a solution of the 2-Toda hierarchy, the following equation holds:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial p_{1} \partial q_{1}} \log \tau=\frac{\tau_{1} \tau_{-1}}{\tau^{2}} \tag{1}
\end{equation*}
$$

where τ_{1} and τ_{-1} are auxilliary functions related to τ
First, express τ_{1} and τ_{-1} in terms of τ, then transform (1) in a quadratic equation in $\log \tau$ (using algebraic tricks)

Then, interpret $\frac{\partial^{2}}{\partial p_{1} \partial q_{1}}$ combinatorially
Finally, extracting coefficients in the equation yields the recurrence formula

Bijections ? More formulas ?

Take home message:

- The calculus of fermions is a good algebraic framework to work on partitions
- The KP/2-Toda hierarchies are very powerful, apply to many combinatorial models and involve a lot of nice algebraic combinatorics

Thank you!

