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Introduction : maps

= 6=
Map = embedding up to homeomorphism of
a connected multigraph (loops and multiple
edges allowed) in a compact connected
orientable surface.
Rooted = an oriented edge is distinguished

Genus g of the map = genus of the surface
= # of handles

Bipartite maps (also called hypermaps, or
dessins d’enfants) : vertices are either black
or white, and monochromatic edges are
forbidden



Bipartite maps as permutations
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�� = (1, 3, 7, 11)(2, 6, 9, 10)(4, 5)(8, 12)

�• = (1, 12, 10)(2, 8, 11)(3, 5, 7)(4, 9)(6)

� = (1, 8)(2, 12)(3, 4, 10)(5, 11, 6, 9)(7)

���• = �

Each vertex/face is a cycle
(degree=size of cycle)

Connectedness = transitivity of
h��,�•i

Edge labeled  ! rooted

(n�1)!-to-1



KP/2-Toda hierarchies
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”original” KP equation

GFs of maps are solutions [Goulden-Jackson ’08], but also Hurwitz numbers,
random partitions [Okounkov ’0x], . . .

KP hierarchy

Obtained from the KP equation by
studying its symmetries

An infinite set of variables
(p1, p2, . . . ) . . . and an infinite
number of equations

F3,1 = F2,2 +
1
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F4,1 = F3,2 + F1,1F2,1 +
1
6F1,1,1,2

...

2-Toda hierarchy

Extension of the KP hierarchy with
two sets of infinite variables



KP/2-Toda hierarchies

Very powerful tool, gives very nice, combinatorial formulas

[Goulden–Jackson ’08] �! triangulations

[Carrell–Chapuy ’15] �! maps

[Kazarian–Zograf ’15] �! bipartite maps

[L. ’19+] �! bipartite maps with prescribed degrees (+ constellations,
monotone Hurwitz numbers)
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Bg(f)= number of bipartite maps of genus g with fi faces of degree 2i,
f = (f1, f2, . . . )



What is it useful for ?

• Counting (very fast, simplest way known)

• Finding bijections that explain the structure of maps
([Chapuy–Féray–Fusy ’13], [L. 18+])

• Asymptotic study of random high genus maps + convergence towards
random hyperbolic maps ([Budzinski, L. 19+])



The semi-infinite wedge space ⇤
1
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Z

Maya diagram: Z+ 1
2 decorated with

particles and antiparticles

”Balanced” diagrams are in
bijection with integer partitions

(every diagram is balanced up to a
shift)

Operators on ⇤
1
2

Fermions  k/  ⇤
k
: add/remove a particle in position

k (up to a sign)

Bosons ↵n/↵�n : add/remove a ribbon of size n to a
partition

Energy H : counts the size of a partition

⇤
1
2 = vector space whose orthonormal

basis is the Maya diagrams

can be expressed in
terms of fermions



The GF of bipartite maps

W (l,�, µ)=number of 4-uples of permutations (�1,�2,��,�µ)s.t.
• �1,�2 have l cycles in total
• (��,�µ) have cycle types (�, µ)

⌧(z,p,q, u) =
X

|�|=|µ|=n>0
l>0

W (l,�, µ)
z
n
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u
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Remark:
Setting qi = �i=1, one recovers the exponential GF of (non necessarily
connected, edge labeled) bipartite maps, counted by edges, vertices,
and faces of each degree
log ⌧ is the GF of connected maps.



The GF of bipartite maps is a solution to the 2-Toda

hierarchy

We have
⌧ = h;|�+(p)z
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with
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Proof includes :
• Jucys-Murphy elements
• Representation theory of Sn

• Schur functions
• the Jacobi-Trudi rule
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Outline of the proof of the formula

Because ⌧ is a solution of the 2-Toda hierarchy, the
following equation holds:

@
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log ⌧ =

⌧1⌧�1

⌧2
(1)

where ⌧1 and ⌧�1 are auxilliary functions related to ⌧

First, express ⌧1 and ⌧�1 in terms of ⌧ , then transform
(1) in a quadratic equation in log ⌧ (using algebraic
tricks)

Then, interpret @
2

@p1@q1
combinatorially

Finally, extracting coe�cients in the equation yields the
recurrence formula



Bijections ? More formulas ?

Take home message:
• The calculus of fermions is a good algebraic

framework to work on partitions
• The KP/2-Toda hierarchies are very powerful, apply

to many combinatorial models and involve a lot of
nice algebraic combinatorics

Thank you !


