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Motivation

Hall-Littlewood functions Py (a; t) interpolate between Schur functions

and Schur's P-functions:
Hall-Littlewood functions Py(x;1)

/t_ ! ' _\
Schur functions sy () Schur's P-functions Py (x)

Macdonald extended a definition of Hall-Littlewood functions to any
root systems A:

Hall-Littlewood functions
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where g is the semi-simple Lie algebra with root system A.



Symplectic Hall-Littlewood Functions
The symplectic Hall-Littlewood functions (Hall-Littlewood functions
associated to the root system of type C),) are defined by
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where A = > " 1 \je; is a dominant weight (identified with a partition

of length < n), W is the Weyl group of type C),, and
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It can be shown that

11 +1
PC(x;t) € Zt[zi, .. s )Y



Symplectic Schur functions
For a partition A of length < n (A > Ao > --- > X, > 0), we define
the symplectic Schur function sg(w) by
C
5§ (x) = PY(x;0).

Then sg\j(w) gives the irreducible character of the symplectic group Spoy,,
with highest weight .

Symplectic Q-functions

For a strict partition A of length [ < n (A > --- > A; > 0), we
define the symplectic P-function Pg(a}) and the symplectic ()-function

QS () by
PC(x) = PY(x;—1), QF () = 2P¥ (x; —1).



Nimmo-type formula
Theorem For a strict partition A\ of length [, we have
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where r = [ or [ + 1 according to whether n + [ is even or odd, and
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(= PfA%(x) if n is even).
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Schur-type formula

Theorem For a strict partition A, we have
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where . = [ or [ + 1 according to whether [ is even or odd, and

Q(C;ﬁ)(az) = Q(C;)(w)

Proposition
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Jozefiak—Pragacz—Nimmo-type formula
Theorem For strict partitions A of length [ and i of length m, we put
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where r = m or m + 1 according to whether [ +m is even or odd. Then

we have
Q5 (. y) Z@W )Qj, (y),

where 1 runs over all strict partltlons.



Symplectic Primed Shifted Tableau

Definition (King—Hamel) A symplectic primed shifted tableau of shape
A is a filling of the boxes in the shifted diagram S()\) with entries from

- = =/ = _r
"<1<1T <1<2<2<2<2<---<n<n<i <n
satisfying the following conditions:
e the entries in each row and in each column are weakly increasing;

e each unprimed entry appears at most once in every column;

e each primed entry appears at most once in every row;

— =+ .
e at most one element from {k’, k, k , k} appears on the main diagonal.

Example

! 17 3 T 2. —1 72
T = o3, x =wiry X374




Tableau Description of Symplectic Q-Functions
Theorem  (Conjectured by King—Hamel) For a strict partition A, we

have
QS (x)=> =’
T

where T' runs over all symplectic primed shifted tableaux of shape .
ldea of Proof Both sides satisfy

® Qg(xla ceey Ip—1, xn) — Z Qg(xla s 7$n—1>Q§/ﬂ<xn),
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Hence the proof is reduced to the case where A = (r) and & = (zy,).

IO\ — I(p) < 1.



Structure Constants for Symplectic P-Functions

The symplectic P-functions {P)\C(m)})\:strict partition of length < n form
a basis of the ring

Iy
— {f S (C[xfl, W e, —t, 2, ... @) is independent of t} .

Conjecture 1  Given two strict partitions 1 and v of length < n, we
can expand
C C A C
P/ (x)- P/ (x) = Z S Py (@)

where A runs over all strict partitions of length < n. Then the structure
constants fu ., are nonnegative integers.

It can be proved that Conjecture 1 is true if [() = 1 (Pieri-type rule).



Pieri-type Rule for Symplectic P-functions

Theorem Let i1 and A be strict partitions of length < n and let r be
a positive integer. Then we have

(1) }27<T> = 0 unless [(\) = I(u) or I(p) + 1.
(2) If I(A) = 1(p) or I(p) + 1, then
Py = 30 gl ralhn) Xl > ()1

Y,

where K runs over all strict partitions satisfying
Pl 2R Z M2 K2 oy AL ZRIZ2AZ2K) 2> ..,

(el = 16D + (1A} = |&]) = 7,

and
a(ph, k) = F#{1 ;> Kg > fir1t,  a(A k) =F#{1 N > Kk > Ny}

xl(p) > UrR)] = {1 if [(p) > 1(k),

0 otherwise.



Outline of Proof
Step 1 By using Nimmo-type Pfaffian formula for Pc(m) and

1+22P

we can show that
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Outline of Proof

Step 2 By Lindstrom—Gessel-Vienno lemma, we can show that

1+22 z = det (a)\z,uj( >)1§i,j§l()\)

is equal to the Welghted generating function of non-intersecting lattice
paths with starting points (4, ..., Ay, ) and ending points (Cy , ..., C)))
on the following directed graph:

A() Al AQ A?, A4
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where the vertical edges have weight 1 and the other edges have weight
Z.



Positivity Conjectures for symplectic P-functions

Conjecture 2 For a strict partition A\ of length < n, we can expand

Py(x1,...,%n, xl_l, . ,:Cgl) — Z c)\juPE(xl, e, T,
(L
where 1 runs over all strict partitions of length < n. Then the coefficients
C), are nonnegative integers.

Known Case If [(\) < 2, then Conjecture 2 is true.

Remark For a partition X\ of length < n, we have

sy(x1, ... ,ZEn,Zlfl_l, . ,;z:gl) = ZbA,M‘SS(xl’ oy p), by, =0,
L4



Positivity Conjectures for symplectic P-functions

Conjecture 3 For a strict partition A\ of length < n, we can expand
C ~ C
Py (@) = G\ pusy (@),
7

where 1 runs over all partitions of length < n. Then the coefficients
g, are nonnegative integers.

Known Case If [(A) =1 or n, then Conjecture 3 is true.

Remark For a strict partition A of length < n, we have

Py@) = arusu(®), 9y, >0
i



