Stuttering multipartitions and blocks of Ariki-Koike algebras

Salim ROSTAM

Univ Rennes

17/04/2019

82nd Séminaire Lotharingien de Combinatoire and 9th Combinatorics Days

2 A theorem in combinatorics

Tools for the proof

Let \mathcal{H}_n^X be a Hecke algebra of type $X \in \{B, D\}$.

• If $\mathcal{H}_n^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the *bipartitions* $\{(\lambda, \mu)\}$ of n.

Let \mathcal{H}^{X}_{n} be a Hecke algebra of type $X \in \{B,D\}.$

- If $\mathcal{H}_n^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the *bipartitions* $\{(\lambda,\mu)\}$ of n.
- In this case, by Clifford theory the irreducible $\mathcal{H}_n^{\mathrm{D}}$ -modules are exactly the irreducible summands in the restrictions $\mathcal{D}^{\lambda,\mu}\Big|_{\mathcal{H}_n^{\mathrm{D}}}^{\mathcal{H}_n^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda=\mu$ or $\lambda\neq\mu$.

Let \mathcal{H}^{X}_{n} be a Hecke algebra of type $X \in \{B,D\}.$

- If $\mathcal{H}_n^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the *bipartitions* $\{(\lambda,\mu)\}$ of n.
- In this case, by Clifford theory the irreducible $\mathcal{H}_n^{\mathrm{D}}$ -modules are exactly the irreducible summands in the restrictions $\mathcal{D}^{\lambda,\mu}\Big|_{\mathcal{H}_n^{\mathrm{D}}}^{\mathcal{H}_n^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda=\mu$ or $\lambda\neq\mu$.

The theory of *cellular algebras* gives a general framework to construct *Specht* and irreducible modules. The algebra $\mathcal{H}_n^{\mathrm{B}}$ is cellular, with Specht modules $\{\mathcal{S}^{\lambda,\mu}\}$.

Let \mathcal{H}_n^X be a Hecke algebra of type $X \in \{B, D\}$.

- If $\mathcal{H}_n^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the *bipartitions* $\{(\lambda,\mu)\}$ of n.
- In this case, by Clifford theory the irreducible $\mathcal{H}_n^{\mathrm{D}}$ -modules are exactly the irreducible summands in the restrictions $\mathcal{D}^{\lambda,\mu}\Big|_{\mathcal{H}_n^{\mathrm{D}}}^{\mathcal{H}_n^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda=\mu$ or $\lambda\neq\mu$.

The theory of *cellular algebras* gives a general framework to construct *Specht* and irreducible modules. The algebra $\mathcal{H}_n^{\mathrm{B}}$ is cellular, with Specht modules $\{\mathcal{S}^{\lambda,\mu}\}$. To each $\mathcal{S}^{\lambda,\mu}$ corresponds a *block* of $\mathcal{H}_n^{\mathrm{B}}$, entirely determined by $\alpha \coloneqq \alpha(\lambda,\mu)$. We define $\sigma \cdot \alpha \coloneqq \alpha(\mu,\lambda)$.

Let $\mathcal{H}^{X}_{\textbf{n}}$ be a Hecke algebra of type $X \in \{B,D\}.$

- If $\mathcal{H}_n^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the *bipartitions* $\{(\lambda, \mu)\}$ of n.
- In this case, by Clifford theory the irreducible $\mathcal{H}_n^{\mathrm{D}}$ -modules are exactly the irreducible summands in the restrictions $\mathcal{D}^{\lambda,\mu}\Big|_{\mathcal{H}_n^{\mathrm{D}}}^{\mathcal{H}_n^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda=\mu$ or $\lambda\neq\mu$.

The theory of *cellular algebras* gives a general framework to construct *Specht* and irreducible modules. The algebra $\mathcal{H}_n^{\mathrm{B}}$ is cellular, with Specht modules $\{\mathcal{S}^{\lambda,\mu}\}$. To each $\mathcal{S}^{\lambda,\mu}$ corresponds a *block* of $\mathcal{H}_n^{\mathrm{B}}$, entirely determined by $\alpha \coloneqq \alpha(\lambda,\mu)$. We define $\sigma \cdot \alpha \coloneqq \alpha(\mu,\lambda)$.

- If $\lambda = \mu$ then $\sigma \cdot \alpha = \alpha$.
- If $\sigma \cdot \alpha = \alpha$, does there necessarily exist ν such that $\alpha = \alpha(\nu, \nu)$?

Let \mathcal{H}^{X}_{n} be a Hecke algebra of type $X \in \{B,D\}.$

- If $\mathcal{H}_n^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the *bipartitions* $\{(\lambda, \mu)\}$ of n.
- In this case, by Clifford theory the irreducible $\mathcal{H}_n^{\mathrm{D}}$ -modules are exactly the irreducible summands in the restrictions $\mathcal{D}^{\lambda,\mu}\Big|_{\mathcal{H}_n^{\mathrm{D}}}^{\mathcal{H}_n^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda=\mu$ or $\lambda\neq\mu$.

The theory of *cellular algebras* gives a general framework to construct *Specht* and irreducible modules. The algebra $\mathcal{H}_n^{\mathrm{B}}$ is cellular, with Specht modules $\{\mathcal{S}^{\lambda,\mu}\}$. To each $\mathcal{S}^{\lambda,\mu}$ corresponds a *block* of $\mathcal{H}_n^{\mathrm{B}}$, entirely determined by $\alpha \coloneqq \alpha(\lambda,\mu)$. We define $\sigma \cdot \alpha \coloneqq \alpha(\mu,\lambda)$.

- If $\lambda = \mu$ then $\sigma \cdot \alpha = \alpha$.
- If $\sigma \cdot \alpha = \alpha$, does there necessarily exist ν such that $\alpha = \alpha(\nu, \nu)$?

The above problem appears when studying the cellularity of \mathcal{H}_n^D .

2 A theorem in combinatorics

Tools for the proof

Bipartitions

Definition

A partition is a finite non-increasing sequence of positive integers.

We can picture a partition with its Young diagram.

Example

The sequence (4,2,2,1) is a partition and its Young diagram is \square

Bipartitions

Definition

A partition is a finite non-increasing sequence of positive integers.

We can picture a partition with its Young diagram.

Example

The sequence (4,2,2,1) is a partition and its Young diagram is \square

Definition

A bipartition is a pair of partitions.

Example

The pair ((5,1),(2)) is a bipartition, constructed with the partitions (5,1) and (2).

Multiset of residues

Let η be a positive integer and set $e := 2\eta$.

Definition

The multiset of residues of the bipartition (λ, μ) is the part of

corresponding to the Young diagram of (λ, μ) .

Multiset of residues

Let η be a positive integer and set $e := 2\eta$.

Definition

The multiset of residues of the bipartition (λ, μ) is the part of

corresponding to the Young diagram of (λ, μ) .

Example

The multiset of residues of the bipartition $\Big((5,1),(2)\Big)$ is given for e=4 by $\begin{bmatrix}0&1&2&3&0\\3&&&&\end{bmatrix}$ $\begin{bmatrix}2&3&\\&&&\end{bmatrix}$.

Residues multiplicity and shift

Let $e=2\eta\in 2\mathbb{N}^*$. If (λ,μ) is a bipartition, write $\alpha(\lambda,\mu)\in \mathbb{N}^e$ for the e-tuple of multiplicities of the multiset of residues.

Example

The multiset of residues of the bipartition ((4,2),(1)) for e=6 is $\frac{0}{5}$ $\frac{1}{0}$ $\frac{2}{3}$, thus $\alpha((4,2),(1))=(2,1,1,2,0,1)$.

Residues multiplicity and shift

Let $e=2\eta\in 2\mathbb{N}^*$. If (λ,μ) is a bipartition, write $\alpha(\lambda,\mu)\in \mathbb{N}^e$ for the *e*-tuple of multiplicities of the multiset of residues.

Example

The multiset of residues of the bipartition $\left((4,2),(1)\right)$ for e=6 is $\frac{0}{5}\frac{1}{0}\frac{2}{0}$ 3, thus $\alpha\left((4,2),(1)\right)=(2,1,1,2,0,1)$.

Definition (Shift)

For $\alpha = (\alpha_i) \in \mathbb{N}^e$, we define $\sigma \cdot \alpha \in \mathbb{N}^e$ by $(\sigma \cdot \alpha)_i := \alpha_{n+i}$.

We have $\sigma \cdot \alpha = (\alpha_{\eta}, \alpha_{\eta+1}, \dots, \alpha_{e-1}, \alpha_0, \alpha_1, \dots, \alpha_{\eta-1}).$

Stutterness

Proposition

We have $\alpha(\mu, \lambda) = \sigma \cdot \alpha(\lambda, \mu)$. In particular, if $\alpha := \alpha(\lambda, \lambda)$ then $\sigma \cdot \alpha = \alpha$.

Stutterness

Proposition

We have $\alpha(\mu, \lambda) = \sigma \cdot \alpha(\lambda, \mu)$. In particular, if $\alpha := \alpha(\lambda, \lambda)$ then $\sigma \cdot \alpha = \alpha$.

Theorem (R.)

Let (λ, μ) be a bipartition and let $\alpha := \alpha(\lambda, \mu) \in \mathbb{N}^e$. If $\sigma \cdot \alpha = \alpha$ then there exists a partition ν such that $\alpha = \alpha(\nu, \nu)$.

Stutterness

Proposition

We have $\alpha(\mu, \lambda) = \sigma \cdot \alpha(\lambda, \mu)$. In particular, if $\alpha := \alpha(\lambda, \lambda)$ then $\sigma \cdot \alpha = \alpha$.

Theorem (R.)

Let (λ, μ) be a bipartition and let $\alpha := \alpha(\lambda, \mu) \in \mathbb{N}^e$. If $\sigma \cdot \alpha = \alpha$ then there exists a partition ν such that $\alpha = \alpha(\nu, \nu)$.

Example

Take e = 6. The multisets

coincide (and $\alpha = (2, 1, 2, 2, 1, 2)$).

We have
$$\alpha(\underline{\ \ },\underline{\qquad \ \ })=(2,1,2,2,1,2).$$

0	1	2
5	0	
4	5	

$$\alpha = (3, 2, 3, 3, 2, 3)$$

We have
$$\alpha(\underline{\square},\underline{\square}) = (2,1,2,2,1,2)$$
.

We have
$$\alpha(\underline{\ \ },\underline{\underline{\ \ \ \ }})=(2,1,2,2,1,2).$$

We have
$$\alpha(\underline{\square},\underline{\square}) = (2,1,2,2,1,2).$$

Failure of the proof by example

We have
$$\alpha(\underline{\ \ \ \ \ \ \ \ \ \ \ })=(2,1,2,2,1,2).$$

Failure of the proof by example

We have
$$\alpha(\begin{picture}(0,1)) = (2,1,2,2,1,2). \\ \hline 0 & 1 & 2 \\ \hline 5 & 0 & 1 & 2 \\ \hline 3 & 4 & 5 & 2 & 3 \\ \hline 4 & 5 & 1 & 2 & 2 \\ \hline 3 & 1 & 2 & 0 & 2 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 5 & 0 & 2 & 3 & 4 & 5 \\ \hline 5 & 0 & 2 & 3 & 4 & 5 \\ \hline 6 & 1 & 2 & 2 & 3 \\ \hline 1 & 1 & 2 & 2 & 3 \\ \hline 1 & 1 & 2 & 2 & 3 \\ \hline 1 & 1 & 2 & 2 & 3 \\ \hline 1 & 1 & 2 & 2 & 3 \\ \hline 1 & 1 & 2 & 2 & 3 \\ \hline 0 & 1 & 2 & 2 & 3 \\ \hline 0 & 1 & 2 & 2 & 3 \\ \hline 1 & 1 & 2 & 2 & 3 \\ \hline 0 & 1 & 2 & 2 & 3 \\ \hline 1 & 1 & 2 & 2 & 3 \\ \hline 0 & 2 & 3 & 2 & 3 \\ \hline 0 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 2 &$$

Failure of the proof by example

We have
$$\alpha(\begin{picture}(0,1)) = (2,1,2,2,1,2). \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 5 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 5 & 0 & 3 & 4 & 5 & \alpha = (2,2,3,2,2,3) \\ \hline \downarrow & & & \downarrow & \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 5 & 0 & 1 & 2 & 3 & 4 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 3 & 4 & 5 & 5 & 6 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 3 & 4 & 5 & 5 & 6 \\ \hline 0 & 1 & 2 & 2 & 3 & 2 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 3 & 4 & 5 & 2 & 3 \\ \hline 0 & 2 & 3 & 3 & 4 & 5 \\ \hline 0 & 3 & 4 & 5 & 2 & 3 \\ \hline 0 & 2 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 4 & 5 & 2 & 3 \\ \hline 0 & 2 & 3 & 2 & 2 & 3 \\ \hline 0 & 3 & 4 & 5 & 2 & 2 & 3 \\ \hline 0 & 2 & 3 & 2 & 2 & 2 & 2 \\ \hline 0 & 3 & 4 & 5 & 2 & 2 & 2 \\ \hline 0 & 2 & 3 & 2 & 2 & 2 & 2 \\ \hline 0 & 3 & 4 & 5 & 2 & 2 & 2 \\ \hline 0 & 2 & 3 & 2 & 2 & 2 & 2 \\ \hline 0 & 3 & 4 & 5 & 2 & 2 & 2 \\ \hline 0 &$$

2 A theorem in combinatorics

3 Tools for the proof

Abaci and cores

To a partition $\lambda = (\lambda_1, \dots, \lambda_h)$, we associate an abacus with e runners such that for each $a \in \mathbb{N}^*$,

there are exactly λ_a gaps above and on the left of the bead a.

The 3 and 4-abaci associated with the partition (6,4,4,2,2) are

Abaci and cores

To a partition $\lambda = (\lambda_1, \dots, \lambda_h)$, we associate an abacus with e runners such that for each $a \in \mathbb{N}^*$,

there are exactly λ_a gaps above and on the left of the bead a.

Example

The 3 and 4-abaci associated with the partition (6,4,4,2,2) are

Definition

If no runner of the e-abacus of a partition λ has a gap between its beads, we say that λ is an e-core.

The partition of the above example is not a 3-core but a 4-core.

Parametrisation

To the *e*-abacus of an *e*-core λ , we associate the coordinates $x(\lambda) \in \mathbb{Z}^e$ of the first gaps.

Example

For the 4-core (6,4,4,2,2) we have

where each \bullet denote a first gap, hence x = (-1, 2, 1, -2).

Using the parametrisation

Proposition

Let λ be an e-core, let $\alpha := \alpha(\lambda) \in \mathbb{N}^e$ be the e-tuple of multiplicities of the multiset of residues and $x := x(\lambda) \in \mathbb{Z}^e$ the parameter of the e-abacus. We have:

$$x_0 + \dots + x_{e-1} = 0,$$

$$\frac{1}{2} ||x||^2 = \alpha_0,$$

$$x_i = \alpha_i - \alpha_{i+1} \text{ for all } i \in \{0, \dots, e-1\}.$$

Using the parametrisation

Proposition

Let λ be an e-core, let $\alpha := \alpha(\lambda) \in \mathbb{N}^e$ be the e-tuple of multiplicities of the multiset of residues and $x := x(\lambda) \in \mathbb{Z}^e$ the parameter of the e-abacus. We have:

$$x_0 + \dots + x_{e-1} = 0,$$

$$\frac{1}{2} \|x\|^2 = \alpha_0,$$

$$x_i = \alpha_i - \alpha_{i+1} \text{ for all } i \in \{0, \dots, e-1\}.$$

Corollary

If
$$x = x(\lambda)$$
 and $y = x(\mu)$ then $\alpha_0(\lambda, \mu) = q(x, y)$, where

$$q: \left| \begin{array}{ccc} \mathbb{Q}^e \times \mathbb{Q}^e & \longrightarrow & \mathbb{Q} \\ (x,y) & \longmapsto & \frac{1}{2} ||x||^2 + \frac{1}{2} ||y||^2 - y_0 - \dots - y_{\eta-1} \end{array} \right.$$

Key lemma

Let (λ, μ) be an e-bicore, define $x := x(\lambda)$ and $y := x(\mu) \in \mathbb{Z}^e$. We assume that $\alpha := \alpha(\lambda, \mu)$ satisfies $\sigma \cdot \alpha = \alpha$ and we want to prove that there exists a partition ν such that $\alpha(\nu, \nu) = \alpha$.

Key lemma

Let (λ, μ) be an *e*-bicore, define $x := x(\lambda)$ and $y := x(\mu) \in \mathbb{Z}^e$. We assume that $\alpha := \alpha(\lambda, \mu)$ satisfies $\sigma \cdot \alpha = \alpha$ and we want to prove that there exists a partition ν such that $\alpha(\nu, \nu) = \alpha$.

Lemma

It suffices to find an element $z \in \mathbb{Z}^e$ such that:

$$\begin{cases} q(z,z) \le q(x,y), \\ z_0 + \dots + z_{e-1} = 0, \\ z_i + z_{i+\eta} = x_i + y_{i+\eta}, \end{cases}$$
 for all i .

Key lemma

Let (λ, μ) be an e-bicore, define $x := x(\lambda)$ and $y := x(\mu) \in \mathbb{Z}^e$. We assume that $\alpha := \alpha(\lambda, \mu)$ satisfies $\sigma \cdot \alpha = \alpha$ and we want to prove that there exists a partition ν such that $\alpha(\nu, \nu) = \alpha$.

Lemma

It suffices to find an element $z \in \mathbb{Z}^e$ such that:

$$\begin{cases} q(z,z) \le q(x,y), \\ z_0 + \dots + z_{e-1} = 0, \\ z_i + z_{i+\eta} = x_i + y_{i+\eta}, \end{cases}$$
 for all i .

Thanks to the convexity of q, the element $z := \frac{x+y}{2}$ satisfies (E). However, we may have $z \notin \mathbb{Z}^e$: in general $z \in \frac{1}{2}\mathbb{Z}^e$.

First try

We want to prove that we can choose a red point such that:

- the constraints are still satisfied
- estimate the error made

First try

We want to prove that we can choose a red point such that:

- ullet the constraints are still satisfied o binary matrices
- ullet estimate the error made o strong convexity

End

