Stuttering multipartitions and blocks of Ariki-Koike algebras

Salim Rostam

Univ Rennes
17/04/2019
82nd Séminaire Lotharingien de Combinatoire
and
9th Combinatorics Days
(1) Motivations
(2) A theorem in combinatorics
(3) Tools for the proof

Motivations

Let $\mathcal{H}_{n}^{\mathrm{X}}$ be a Hecke algebra of type $\mathrm{X} \in\{\mathrm{B}, \mathrm{D}\}$.

- If $\mathcal{H}_{n}^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the bipartitions $\{(\lambda, \mu)\}$ of n.

Motivations

Let $\mathcal{H}_{n}^{\mathrm{X}}$ be a Hecke algebra of type $\mathrm{X} \in\{\mathrm{B}, \mathrm{D}\}$.

- If $\mathcal{H}_{n}^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the bipartitions $\{(\lambda, \mu)\}$ of n.
- In this case, by Clifford theory the irreducible $\mathcal{H}_{n}^{\mathrm{D}}$-modules are exactly the irreducible summands in the restrictions $\left.\mathcal{D}^{\lambda, \mu}\right|_{\mathcal{H}_{n}^{\mathrm{D}}} ^{\mathcal{H}_{\mathrm{B}}^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda=\mu$ or $\lambda \neq \mu$.

Motivations

Let $\mathcal{H}_{n}^{\mathrm{X}}$ be a Hecke algebra of type $\mathrm{X} \in\{\mathrm{B}, \mathrm{D}\}$.

- If $\mathcal{H}_{n}^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the bipartitions $\{(\lambda, \mu)\}$ of n.
- In this case, by Clifford theory the irreducible $\mathcal{H}_{n}^{\mathrm{D}}$-modules are exactly the irreducible summands in the restrictions $\left.\mathcal{D}^{\lambda, \mu}\right|_{\mathcal{H}_{n}^{D}} ^{\mathcal{H}_{n}^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda=\mu$ or $\lambda \neq \mu$.
The theory of cellular algebras gives a general framework to construct Specht and irreducible modules. The algebra $\mathcal{H}_{n}^{\mathrm{B}}$ is cellular, with Specht modules $\left\{\mathcal{S}^{\lambda, \mu}\right\}$.

Motivations

Let $\mathcal{H}_{n}^{\mathrm{X}}$ be a Hecke algebra of type $\mathrm{X} \in\{\mathrm{B}, \mathrm{D}\}$.

- If $\mathcal{H}_{n}^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the bipartitions $\{(\lambda, \mu)\}$ of n.
- In this case, by Clifford theory the irreducible $\mathcal{H}_{n}^{\mathrm{D}}$-modules are exactly the irreducible summands in the restrictions $\left.\mathcal{D}^{\lambda, \mu}\right|_{\mathcal{H}_{n}^{D}} ^{\mathcal{H}_{n}^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda=\mu$ or $\lambda \neq \mu$.
The theory of cellular algebras gives a general framework to construct Specht and irreducible modules. The algebra $\mathcal{H}_{n}^{\mathrm{B}}$ is cellular, with Specht modules $\left\{\mathcal{S}^{\lambda, \mu}\right\}$. To each $\mathcal{S}^{\lambda, \mu}$ corresponds a block of $\mathcal{H}_{n}^{\mathrm{B}}$, entirely determined by $\alpha:=\alpha(\lambda, \mu)$. We define $\sigma \cdot \alpha:=\alpha(\mu, \lambda)$.

Motivations

Let $\mathcal{H}_{n}^{\mathrm{X}}$ be a Hecke algebra of type $\mathrm{X} \in\{\mathrm{B}, \mathrm{D}\}$.

- If $\mathcal{H}_{n}^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the bipartitions $\{(\lambda, \mu)\}$ of n.
- In this case, by Clifford theory the irreducible $\mathcal{H}_{n}^{\mathrm{D}}$-modules are exactly the irreducible summands in the restrictions $\left.\mathcal{D}^{\lambda, \mu}\right|_{\mathcal{H}_{n}^{\mathrm{D}}} ^{\mathcal{H}_{n}^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda=\mu$ or $\lambda \neq \mu$.
The theory of cellular algebras gives a general framework to construct Specht and irreducible modules. The algebra $\mathcal{H}_{n}^{\mathrm{B}}$ is cellular, with Specht modules $\left\{\mathcal{S}^{\lambda, \mu}\right\}$. To each $\mathcal{S}^{\lambda, \mu}$ corresponds a block of $\mathcal{H}_{n}^{\mathrm{B}}$, entirely determined by $\alpha:=\alpha(\lambda, \mu)$. We define $\sigma \cdot \alpha:=\alpha(\mu, \lambda)$.
- If $\lambda=\mu$ then $\sigma \cdot \alpha=\alpha$.
- If $\sigma \cdot \alpha=\alpha$, does there necessarily exist ν such that $\alpha=\alpha(\nu, \nu)$?

Motivations

Let $\mathcal{H}_{n}^{\mathrm{X}}$ be a Hecke algebra of type $\mathrm{X} \in\{\mathrm{B}, \mathrm{D}\}$.

- If $\mathcal{H}_{n}^{\mathrm{B}}$ is semisimple, its irreducible representations are indexed by the bipartitions $\{(\lambda, \mu)\}$ of n.
- In this case, by Clifford theory the irreducible $\mathcal{H}_{n}^{\mathrm{D}}$-modules are exactly the irreducible summands in the restrictions $\left.\mathcal{D}^{\lambda, \mu}\right|_{\mathcal{H}_{n}^{\mathrm{D}}} ^{\mathcal{H}_{n}^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda=\mu$ or $\lambda \neq \mu$.
The theory of cellular algebras gives a general framework to construct Specht and irreducible modules. The algebra $\mathcal{H}_{n}^{\mathrm{B}}$ is cellular, with Specht modules $\left\{\mathcal{S}^{\lambda, \mu}\right\}$. To each $\mathcal{S}^{\lambda, \mu}$ corresponds a block of $\mathcal{H}_{n}^{\mathrm{B}}$, entirely determined by $\alpha:=\alpha(\lambda, \mu)$. We define $\sigma \cdot \alpha:=\alpha(\mu, \lambda)$.
- If $\lambda=\mu$ then $\sigma \cdot \alpha=\alpha$.
- If $\sigma \cdot \alpha=\alpha$, does there necessarily exist ν such that $\alpha=\alpha(\nu, \nu)$?
The above problem appears when studying the cellularity of $\mathcal{H}_{n}^{\mathrm{D}}$.

(1) Motivations

(2) A theorem in combinatorics

Bipartitions

Definition

A partition is a finite non-increasing sequence of positive integers.
We can picture a partition with its Young diagram.

Example

The sequence $(4,2,2,1)$ is a partition and its Young diagram is

Bipartitions

Definition

A partition is a finite non-increasing sequence of positive integers.
We can picture a partition with its Young diagram.

Example

The sequence $(4,2,2,1)$ is a partition and its Young diagram is

Definition

A bipartition is a pair of partitions.

Example

The pair $((5,1),(2))$ is a bipartition, constructed with the partitions $(5,1)$ and (2).

Multiset of residues

Let η be a positive integer and set $e:=2 \eta$.

Definition

The multiset of residues of the bipartition (λ, μ) is the part of

0	1	2	\ldots
-1	0	1	\ldots
-2	-1	0	\ldots
	\vdots	\vdots	\ddots

η	$\eta+1$	$\eta+2$	\ldots
	η	$\eta+1$	\ldots
	$\eta-1$	η	\ldots
	\ldots	\vdots	\ddots

$(\bmod e)$,
corresponding to the Young diagram of (λ, μ).

Let η be a positive integer and set $e:=2 \eta$.

Definition

The multiset of residues of the bipartition (λ, μ) is the part of

0	1	2	\ldots
-1	0	1	\ldots
-2	-1	0	\ldots
	\vdots	\vdots	\ddots

corresponding to the Young diagram of (λ, μ).

Example

The multiset of residues of the bipartition $((5,1),(2))$ is given for

Residues multiplicity and shift

Let $e=2 \eta \in 2 \mathbb{N}^{*}$. If (λ, μ) is a bipartition, write $\alpha(\lambda, \mu) \in \mathbb{N}^{e}$ for the e-tuple of multiplicities of the multiset of residues.

Example

The multiset of residues of the bipartition $((4,2),(1))$ for $e=6$ is | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 5 | 0 | | |

Residues multiplicity and shift

Let $e=2 \eta \in 2 \mathbb{N}^{*}$. If (λ, μ) is a bipartition, write $\alpha(\lambda, \mu) \in \mathbb{N}^{e}$ for the e-tuple of multiplicities of the multiset of residues.

Example

The multiset of residues of the bipartition $((4,2),(1))$ for $e=6$ is | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 5 | 0 | | |

Definition (Shift)

For $\alpha=\left(\alpha_{i}\right) \in \mathbb{N}^{e}$, we define $\sigma \cdot \alpha \in \mathbb{N}^{e}$ by $(\sigma \cdot \alpha)_{i}:=\alpha_{\eta+i}$.
We have $\sigma \cdot \alpha=\left(\alpha_{\eta}, \alpha_{\eta+1}, \ldots, \alpha_{e-1}, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{\eta-1}\right)$.

Stutterness

Proposition

We have $\alpha(\mu, \lambda)=\sigma \cdot \alpha(\lambda, \mu)$. In particular, if $\alpha:=\alpha(\lambda, \lambda)$ then $\sigma \cdot \alpha=\alpha$.

Stutterness

Proposition

We have $\alpha(\mu, \lambda)=\sigma \cdot \alpha(\lambda, \mu)$. In particular, if $\alpha:=\alpha(\lambda, \lambda)$ then $\sigma \cdot \alpha=\alpha$.

Theorem (R.)

Let (λ, μ) be a bipartition and let $\alpha:=\alpha(\lambda, \mu) \in \mathbb{N}^{e}$. If $\sigma \cdot \alpha=\alpha$ then there exists a partition ν such that $\alpha=\alpha(\nu, \nu)$.

Stutterness

Proposition

We have $\alpha(\mu, \lambda)=\sigma \cdot \alpha(\lambda, \mu)$. In particular, if $\alpha:=\alpha(\lambda, \lambda)$ then $\sigma \cdot \alpha=\alpha$.

Theorem (R.)

Let (λ, μ) be a bipartition and let $\alpha:=\alpha(\lambda, \mu) \in \mathbb{N}^{e}$. If $\sigma \cdot \alpha=\alpha$ then there exists a partition ν such that $\alpha=\alpha(\nu, \nu)$.

Example

Take $e=6$. The multisets

$$
\begin{array}{|l|l|l|l|}
\hline 0 \\
\hline 5 \\
\hline 3 & 4 & 5 \\
\hline 2 & 3 &
\end{array} \quad \text { and } \quad \begin{array}{|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 \\
\hline 5 & 1 & & & & \begin{array}{|l|l|l|}
\hline 3 & 4 & 5
\end{array} & 0 \\
\hline 2 & & \\
\hline
\end{array}
$$

coincide (and $\alpha=(2,1,2,2,1,2)$).

Proof by example

We have $\alpha(\square, \square)=(2,1,2,2,1,2)$.

0	1	2
5	0	
4	5	
3		

3	4	5
2	3	
1	2	
0		

$$
\alpha=(3,2,3,3,2,3)
$$

Proof by example

We have $\alpha(\square, \square)=(2,1,2,2,1,2)$.

0	1	2
5	0	
4	5	
3		

3	4	5
2	3	
1	2	
0		

$$
\begin{aligned}
\alpha & =(3,2,3,3,2,3) \\
& \downarrow \\
\alpha & =(2,2,3,2,2,3)
\end{aligned}
$$

Proof by example

We have $\alpha(\square, \square)=(2,1,2,2,1,2)$.

0	1	2
5	0	
4	5	
3		

3	4	5
2	3	
1	2	
0		

$$
\begin{aligned}
\alpha & =(3,2,3,3,2,3) \\
& \downarrow
\end{aligned}
$$

0	1	2				
5	0					
4	5		\quad	3	4	5
:---	:---	:---				
2	3					
1	2					

$$
\alpha=(2,2,3,2,2,3)
$$

0	1	2
5	0	
4		

3	4	5
2	3	
1		

$$
\alpha=(2,2,2,2,2,2)
$$

Proof by example

We have $\alpha(\square, \square)=(2,1,2,2,1,2)$.

0 1 2	3 4 5 2	$\alpha=(3,2,3,3,2,3)$
50	23 12	
45	12	
\downarrow		\downarrow
0112	34 45	
50	23	$\alpha=(2,2,3,2,2,3)$
45	12	
\downarrow		\downarrow
0 1	3 3445	$\alpha=(2,2,2,2,2,2)$
50	23	
4	1	
\downarrow		\downarrow
0 1 2 5	[3 4 4 5	$\alpha=(2,1,2,2,1,2)$
50	23	$\alpha=(2,1,2,2,1,2)$

Failure of the proof by example

We have $\alpha(\square, \square)=(2,1,2,2,1,2)$.

0	1	2
5	0	
4	5	
3		

3	4	5
2	3	
1	2	
0		

$$
\alpha=(3,2,3,3,2,3)
$$

Failure of the proof by example

We have $\alpha(\square, \square)=(2,1,2,2,1,2)$.

0	1	2
5	0	
4	5	
3		

3	4	5
2	3	
1	2	
0		

$$
\begin{array}{|l|l|l|}
\hline 0 & 1 & 2 \\
\hline 5 & 0 & \\
\cline { 1 - 2 } 4 & 5 & \\
\hline
\end{array} \quad \begin{array}{|l|l|l|}
\hline 3 & 4 & 5 \\
\hline 2 & 3 & \\
\hline 1 & 2 & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\alpha & =(3,2,3,3,2,3) \\
& \downarrow \\
\alpha & =(2,2,3,2,2,3)
\end{aligned}
$$

Failure of the proof by example

We have $\alpha(\square, \square)=(2,1,2,2,1,2)$.

0	1	2
5	0	
4	5	
3		
$y y y$		

3	4	5
2	3	
1	2	
0		
$y y y$		

$$
\alpha=(3,2,3,3,2,3)
$$

\downarrow

0	1	2
5	0	
4	5	

3	4	5
2	3	
1	2	

$$
\alpha=(2,2,3,2,2,3)
$$

\downarrow

0	1
5	0
4	5

3	4
2	3
1	2

$$
\alpha=(2,2,2,2,2,2)
$$

(1) Motivations

(2) A theorem in combinatorics

(3) Tools for the proof

Abaci and cores

To a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{h}\right)$, we associate an abacus with e runners such that for each $a \in \mathbb{N}^{*}$, there are exactly λ_{a} gaps above and on the left of the bead a.

Example

The 3 and 4 -abaci associated with the partition $(6,4,4,2,2)$ are

Abaci and cores

To a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{h}\right)$, we associate an abacus with e runners such that for each $a \in \mathbb{N}^{*}$,
there are exactly λ_{a} gaps above and on the left of the bead a.

Example

The 3 and 4 -abaci associated with the partition ($6,4,4,2,2$) are

Definition

If no runner of the e-abacus of a partition λ has a gap between its beads, we say that λ is an e-core.

The partition of the above example is not a 3-core but a 4-core.

To the e-abacus of an e-core λ, we associate the coordinates $x(\lambda) \in \mathbb{Z}^{e}$ of the first gaps.

Example

For the 4-core $(6,4,4,2,2)$ we have

where each • denote a first gap, hence $x=(-1,2,1,-2)$.

Using the parametrisation

Proposition

Let λ be an e-core, let $\alpha:=\alpha(\lambda) \in \mathbb{N}^{e}$ be the e-tuple of multiplicities of the multiset of residues and $x:=x(\lambda) \in \mathbb{Z}^{e}$ the parameter of the e-abacus. We have:

$$
\begin{gathered}
x_{0}+\cdots+x_{e-1}=0 \\
\frac{1}{2}\|x\|^{2}=\alpha_{0} \\
x_{i}=\alpha_{i}-\alpha_{i+1} \text { for all } i \in\{0, \ldots, e-1\}
\end{gathered}
$$

Using the parametrisation

Proposition

Let λ be an e-core, let $\alpha:=\alpha(\lambda) \in \mathbb{N}^{e}$ be the e-tuple of multiplicities of the multiset of residues and $x:=x(\lambda) \in \mathbb{Z}^{e}$ the parameter of the e-abacus. We have:

$$
\begin{gathered}
x_{0}+\cdots+x_{e-1}=0, \\
\frac{1}{2}\|x\|^{2}=\alpha_{0} \\
x_{i}=\alpha_{i}-\alpha_{i+1} \text { for all } i \in\{0, \ldots, e-1\}
\end{gathered}
$$

Corollary

If $x=x(\lambda)$ and $y=x(\mu)$ then $\alpha_{0}(\lambda, \mu)=q(x, y)$, where

$$
q: \left\lvert\, \begin{aligned}
\mathbb{Q}^{e} \times \mathbb{Q}^{e} & \longrightarrow \mathbb{Q} \\
(x, y) & \longmapsto \frac{1}{2}\|x\|^{2}+\frac{1}{2}\|y\|^{2}-y_{0}-\cdots-y_{\eta-1}
\end{aligned}\right.
$$

Let (λ, μ) be an e-bicore, define $x:=x(\lambda)$ and $y:=x(\mu) \in \mathbb{Z}^{e}$. We assume that $\alpha:=\alpha(\lambda, \mu)$ satisfies $\sigma \cdot \alpha=\alpha$ and we want to prove that there exists a partition ν such that $\alpha(\nu, \nu)=\alpha$.

Let (λ, μ) be an e-bicore, define $x:=x(\lambda)$ and $y:=x(\mu) \in \mathbb{Z}^{e}$. We assume that $\alpha:=\alpha(\lambda, \mu)$ satisfies $\sigma \cdot \alpha=\alpha$ and we want to prove that there exists a partition ν such that $\alpha(\nu, \nu)=\alpha$.

Lemma

It suffices to find an element $z \in \mathbb{Z}^{e}$ such that:

$$
\left\{\begin{array}{l}
q(z, z) \leq q(x, y) \tag{E}\\
z_{0}+\cdots+z_{e-1}=0, \\
z_{i}+z_{i+\eta}=x_{i}+y_{i+\eta}, \quad \text { for all } i .
\end{array}\right.
$$

Let (λ, μ) be an e-bicore, define $x:=x(\lambda)$ and $y:=x(\mu) \in \mathbb{Z}^{e}$. We assume that $\alpha:=\alpha(\lambda, \mu)$ satisfies $\sigma \cdot \alpha=\alpha$ and we want to prove that there exists a partition ν such that $\alpha(\nu, \nu)=\alpha$.

Lemma

It suffices to find an element $z \in \mathbb{Z}^{e}$ such that:

$$
\left\{\begin{array}{l}
q(z, z) \leq q(x, y) \tag{E}\\
z_{0}+\cdots+z_{e-1}=0, \\
z_{i}+z_{i+\eta}=x_{i}+y_{i+\eta}, \quad \text { for all } i .
\end{array}\right.
$$

Thanks to the convexity of q, the element $z:=\frac{x+y}{2}$ satisfies (E). However, we may have $z \notin \mathbb{Z}^{e}$: in general $z \in \frac{1}{2} \mathbb{Z}^{e}$.

We want to prove that we can choose a red point such that:

- the constraints are still satisfied
- estimate the error made

We want to prove that we can choose a red point such that:

- the constraints are still satisfied \rightarrow binary matrices
- estimate the error made \rightarrow strong convexity

a	t	t	e	n	t	i	O	n
T	h	a	n	k				
y	O	u	r					
y	O	u						
f	0	r						
!								

