Queens' Graph

Inês Serôdio Costa

Universidade de Aveiro
inesserodiocosta@ua.pt

April 16, 2019

A joint work with Domingos Cardoso and Rui Duarte

Outline

(1) The n-Queens Problem
(2) Queens' Graph
(3) Combinatorial Properties of $\mathcal{Q}(n)$
(4) Spectral Properties of $\mathcal{Q}(n)$
(5) Equitable partitions
(6) Open Problems
(7) References

The n-Queens Problem

This problem was first posed by a German chess player in 1848.

The n-Queens Problem

This problem was first posed by a German chess player in 1848.

Gauss (1777-1855) had knowledge of this problem and found 72 solutions.

The n-Queens Problem

This problem was first posed by a German chess player in 1848.

Gauss (1777-1855) had knowledge of this problem and found 72 solutions.
He claimed later that the total number of solutions is 92.

The n-Queens Problem

This problem was first posed by a German chess player in 1848.

Gauss (1777-1855) had knowledge of this problem and found 72 solutions. He claimed later that the total number of solutions is 92.

The proof that there is no more solutions was published in [E. Pauls, 1874].

The n-Queens Problem

This problem was first posed by a German chess player in 1848.

Gauss (1777-1855) had knowledge of this problem and found 72 solutions.
He claimed later that the total number of solutions is 92.

The proof that there is no more solutions was published in [E. Pauls, 1874].

The n-queens problem is a generalization of the above problem, consisting of placing n non attacking queens on $n \times n$ chessboard.

The n-Queens Problem

This problem was first posed by a German chess player in 1848.

Gauss (1777-1855) had knowledge of this problem and found 72 solutions. He claimed later that the total number of solutions is 92.

The proof that there is no more solutions was published in [E. Pauls, 1874].

The n-queens problem is a generalization of the above problem, consisting of placing n non attacking queens on $n \times n$ chessboard.
E. Pauls also proved in 1874 that the n-queens problem has a solution for every $n \geq 4$.

Chessboard and Queens' Graph

$\mathcal{Q}(n)$ and \mathcal{T}_{n}

Queen's Graph, $\mathcal{Q}(n)$, associated to $n \times n$ chessboard \mathcal{T}_{n} has $n \times n$ vertices, corresponding to each square of the $n \times n$ chessboard.
Two vertices of $\mathcal{Q}(n)$ are adjacent if and only if they are in the same row or column or diagonal of the chessboard.

Chessboard and Queens' Graph

$\mathcal{Q}(n)$ and \mathcal{T}_{n}

Queen's Graph, $\mathcal{Q}(n)$, associated to $n \times n$ chessboard \mathcal{T}_{n} has $n \times n$ vertices, corresponding to each square of the $n \times n$ chessboard.
Two vertices of $\mathcal{Q}(n)$ are adjacent if and only if they are in the same row or column or diagonal of the chessboard.

The squares of \mathcal{T}_{n} and the corresponding vertices in $\mathcal{Q}(n)$ are labeled from the left to the right and from the top to the bottom. For instance, \mathcal{T}_{4} is labelled as in the figure.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Queens' Graph

Table: \mathcal{T}_{n} - Chessboard for $n=3$.

Figure: $\mathcal{Q}(3)$ - Queen's Graph for $n=3$.

Queens' Graph

1	2	3
4	5	6
7	8	9

Table: \mathcal{T}_{n} - Chessboard for $n=3$.

Figure: $\mathcal{Q}(3)$ - Queen's Graph for $n=3$.
Since two vertices are connected by an edge if and only if they are in the same row, column or diagonal, we have
$e(\mathcal{Q}(n))=2(n+1)\binom{n}{2}+4\left(\binom{2}{2}+\cdots+\binom{n-1}{2}\right)=\frac{n(n-1)(5 n-1)}{3}$.

Combinatorial Properties

A closed formula, in terms of n, for the degrees of the vertices of $\mathcal{Q}(n)$ can be obtained from its structure.

Combinatorial Properties

A closed formula, in terms of n, for the degrees of the vertices of $\mathcal{Q}(n)$ can be obtained from its structure.

Let $P=\left\{V_{i}: i \in\left\{1,2, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}\right\}$ be a partition of $V(\mathcal{Q}(n))$, such that

- V_{1} is the subset of vertices corresponding to the more peripheral squares of \mathcal{T}_{n};

Combinatorial Properties

A closed formula, in terms of n, for the degrees of the vertices of $\mathcal{Q}(n)$ can be obtained from its structure.

Let $P=\left\{V_{i}: i \in\left\{1,2, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}\right\}$ be a partition of $V(\mathcal{Q}(n))$, such that

- V_{1} is the subset of vertices corresponding to the more peripheral squares of \mathcal{T}_{n};
- V_{2} is the subset of vertices corresponding to the more peripheral squares of \mathcal{T}_{n} without V_{1};

Combinatorial Properties

A closed formula, in terms of n, for the degrees of the vertices of $\mathcal{Q}(n)$ can be obtained from its structure.

Let $P=\left\{V_{i}: i \in\left\{1,2, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}\right\}$ be a partition of $V(\mathcal{Q}(n))$, such that

- V_{1} is the subset of vertices corresponding to the more peripheral squares of \mathcal{T}_{n};
- V_{2} is the subset of vertices corresponding to the more peripheral squares of \mathcal{T}_{n} without V_{1};
...
- $V_{\left\lfloor\frac{n+1}{2}\right\rfloor}$ is the subset of vertices corresponding to the more peripheral squares of \mathcal{T}_{n} without

$$
V_{1} \cup V_{2} \cup \cdots \cup V_{\left\lfloor\frac{n+1}{2}\right\rfloor-1}
$$

Combinatorial Properties

Theorem

Considering the above partition of the vertices of $\mathcal{Q}(n)$ into, $V_{1}, V_{2}, \ldots, V_{\left\lfloor\frac{n+1}{2}\right\rfloor}$, the degrees of the vertices are

$$
\begin{equation*}
d(v)=3(n-1)+2(i-1), \quad \forall v \in V_{i}, \forall i=1,2, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor . \tag{1}
\end{equation*}
$$

Combinatorial Properties

For all vertices v of $\mathcal{Q}(n)$,

$$
3 n-3=\delta(\mathcal{Q}(n)) \leq d(v) \leq \begin{cases}4 n-5 & \text { if } n \text { is even } \\ 4 n-4 & \text { otherwise }\end{cases}
$$

Combinatorial Properties

For all vertices v of $\mathcal{Q}(n)$,

$$
3 n-3=\delta(\mathcal{Q}(n)) \leq d(v) \leq \begin{cases}4 n-5 & \text { if } n \text { is even, } \\ 4 n-4 & \text { otherwise. }\end{cases}
$$

Since $e(\mathcal{Q}(n))=\frac{n(n-1)(5 n-1)}{3}$, it follows that the average degree of $\mathcal{Q}(n)$ is

$$
\overline{d_{\mathcal{Q}(n)}}=\frac{2 e(\mathcal{Q}(n))}{n^{2}}=\frac{2(n-1)(5 n-1)}{3 n} .
$$

Combinatorial Properties

Some combinatorial properties of $\mathcal{Q}(n)$ are immediate.

Combinatorial Properties

Some combinatorial properties of $\mathcal{Q}(n)$ are immediate.
$\operatorname{diam}(\mathcal{Q}(n))=2$
The diameter of any $\mathcal{Q}(n)$ with $n \geq 3$ is 2 . Any square of the $n \times n$ chessboard is achieved from any other square with a row movement followed by a column movement.

Combinatorial Properties

Some combinatorial properties of $\mathcal{Q}(n)$ are immediate.
$\operatorname{diam}(\mathcal{Q}(n))=2$
The diameter of any $\mathcal{Q}(n)$ with $n \geq 3$ is 2 . Any square of the $n \times n$ chessboard is achieved from any other square with a row movement followed by a column movement.
$\alpha(\mathcal{Q}(n))=n, n \geq 4$
The stability number of $\mathcal{Q}(n)$ is equal to n, for $n \geq 4$, since every solution of n-queens a maximum stable set.

Combinatorial Properties

Some combinatorial properties of $\mathcal{Q}(n)$ are immediate.
$\operatorname{diam}(\mathcal{Q}(n))=2$
The diameter of any $\mathcal{Q}(n)$ with $n \geq 3$ is 2 . Any square of the $n \times n$ chessboard is achieved from any other square with a row movement followed by a column movement.
$\alpha(\mathcal{Q}(n))=n, n \geq 4$
The stability number of $\mathcal{Q}(n)$ is equal to n, for $n \geq 4$, since every solution of n-queens a maximum stable set.
$\omega(\mathcal{Q}(n))=n, n \geq 5$
Since all the vertices of a row (column or any of the two larger diagonals) produce a maximum clique with size n, for $n \geq 5$.

Combinatorial Properties

The domination number of Queens' Graph, $\gamma(\mathcal{Q}(n))$, is the most studied problem about combinatorial properties of this graph.

Some values of $\gamma(\mathcal{Q}(n))$ are already known but the problem remains open.

n	1	2	3	4	5	6	7	8	9	10	11	12	13
$\gamma(\mathcal{Q}(n))$	1	1	1	2	3	3	4	5	5	5	5	6	7

Spectral Properties

The spectrum of the adjacency matrix of $\mathcal{Q}(n)$ is the multiset $\sigma(\mathcal{Q}(n))=$ $\left\{\mu_{1}^{\left[m_{1}\right]}, \ldots, \mu_{p}^{\left[m_{p}\right]}\right\}$, where $\mu_{1}>\cdots>\mu_{p}$ are the p distinct eigenvalues and m_{i} is the multiplicity of the eigenvalues μ_{i} for $i=1, \ldots, p$. When necessary these eigenvalues are also denote by $\mu_{1}(\mathcal{Q}(n)), \ldots, \mu_{p}(\mathcal{Q}(n))$.

Spectral Properties

The spectrum of the adjacency matrix of $\mathcal{Q}(n)$ is the multiset $\sigma(\mathcal{Q}(n))=$ $\left\{\mu_{1}^{\left[m_{1}\right]}, \ldots, \mu_{p}^{\left[m_{p}\right]}\right\}$, where $\mu_{1}>\cdots>\mu_{p}$ are the p distinct eigenvalues and m_{i} is the multiplicity of the eigenvalues μ_{i} for $i=1, \ldots, p$. When necessary these eigenvalues are also denote by $\mu_{1}(\mathcal{Q}(n)), \ldots, \mu_{p}(\mathcal{Q}(n))$.

As it is well known, the largest eigenvalue of a graph G is between its average degree, $\overline{d_{G}}$, and its maximum degree, $\Delta(G)$.

Spectral Properties

The spectrum of the adjacency matrix of $\mathcal{Q}(n)$ is the multiset $\sigma(\mathcal{Q}(n))=$ $\left\{\mu_{1}^{\left[m_{1}\right]}, \ldots, \mu_{p}^{\left[m_{p}\right]}\right\}$, where $\mu_{1}>\cdots>\mu_{p}$ are the p distinct eigenvalues and m_{i} is the multiplicity of the eigenvalues μ_{i} for $i=1, \ldots, p$. When necessary these eigenvalues are also denote by $\mu_{1}(\mathcal{Q}(n)), \ldots, \mu_{p}(\mathcal{Q}(n))$.

As it is well known, the largest eigenvalue of a graph G is between its average degree, $\overline{d_{G}}$, and its maximum degree, $\Delta(G)$.

Therefore, we may conclude

$$
\frac{2(n-1)(5 n-1)}{3 n}=\overline{d_{\mathcal{Q}(n)}} \leq \mu_{1}(\mathcal{Q}(n)) \leq \Delta(\mathcal{Q}(n))=\left\{\begin{array}{l}
4 n-5, \text { if } n \text { is even } \\
4 n-4, \text { otherwise }
\end{array}\right.
$$

Spectral Properties

In this section, the n^{2} entries of vectors are displayed in the $n \times n$ chessboard in the same sequence as the labelling of the vertices in the last section.
Therefore an entry of a vector is referenced by the chessboard coordinates, i.e., $v(i, j)$ with $(i, j) \in[n]^{2}$.

Table: Vector v displayed on 3×3 chessboard with the coordinates indicated on the outside of the chessboard.

Spectral Properties

Spectrum of Queens' Graph, $\sigma(\mathcal{Q}(n))$.

n	$\sigma(\mathcal{Q}(n))$
2	$\left\{3,-1^{[3]}\right\}$
3	$\left\{\frac{5+\sqrt{57}}{2}, 1,(-1+\sqrt{2})^{[2]},-1^{[2]}, \frac{5+\sqrt{57}}{2},(-1-\sqrt{2})^{[2]}\right\}$
4	$\left\{9.6,1.8^{[2]}, 1.7,1.3,0.5^{[2]}, 0,-0.4,-0.8,-1.5^{[2]},-2.8^{[2]}, 3.3,-4\right\}$

Spectral Properties

Spectrum of Queens' Graph, $\sigma(\mathcal{Q}(n))$.

n	$\sigma(\mathcal{Q}(n))$
2	$\left\{3,-1^{[3]}\right\}$
3	$\left\{\frac{5+\sqrt{57}}{2}, 1,(-1+\sqrt{2})^{[2]},-1^{[2]}, \frac{5+\sqrt{57}}{2},(-1-\sqrt{2})^{[2]}\right\}$
4	$\left\{9.6,1.8^{[2]}, 1.7,1.3,0.5^{[2]}, 0,-0.4,-0.8,-1.5^{[2]},-2.8^{[2]}, 3.3,-4\right\}$

From the computations, we detected some similarities in the spectrum of $\mathcal{Q}(n)$ for different values of n.

Spectral Properties

In the table below, the distinct integer eigenvalues are presented for $\mathcal{Q}(n)$ when $4 \leq n \leq 11$.

n	Distinct integer eigenvalues
4	$-4,0$
5	$-4,-3,0,1$
6	$-4,2$
7	$-4,-3,-2,1,2,3$
8	$-4,4$
9	$-4,-3,-2,-1,2,3,4,5$
10	$-4,6$
11	$-4,-3,-2,-1,0,3,4,5,6,7$

Conjecture:

$$
\begin{array}{c|c}
\text { if } n \text { is even } & -4, n-4 \\
\hline \text { if } n \text { is odd } & \left\{-4,-3, \ldots, \frac{n-11}{2}\right\} \cup\left\{\frac{n-5}{2}, \ldots, n-5, n-4\right\}
\end{array}
$$

Spectral Properties

Lemma

Let $X=x_{(i, j)} \in \mathbb{R}^{n^{2}}$ be an eigenvector of $A_{\mathcal{Q}(n)}$ associated with the eigenvalue μ. Then

$$
\begin{aligned}
(\mu+4)\|X\|^{2} & =\sum_{k=1}^{n}\left(\sum_{j=1}^{n} x_{(k, j)^{2}}\right)+\sum_{k=1}^{n}\left(\sum_{i=1}^{n} x_{(i, k)^{2}}\right)+ \\
& +\sum_{k=2}^{2 n}\left(\sum_{i+j=k} x_{(i, j)^{2}}\right)+\sum_{k=-(n-1)}^{n-1}\left(\sum_{i-j=k} x_{(i, j)}^{2}\right) .
\end{aligned}
$$

Spectral Properties

As a corollary of this lemma, we have the following result.

```
Theorem
If \(\mu\) is an eigenvalue of \(A_{\mathcal{Q}(n)}\), then \(\mu \geq-4\).
```

This lower bound is not attained for $n=1,2,3$ but for $n \geq 4,-4$ is a eigenvalue of $\mathcal{Q}(n)$ with multiplicity $(n-3)^{2}$, as it will stated later.

Spectral Properties

Let X_{4} be the vector represented bellow.

0	$\mathbf{1}$	$\mathbf{- 1}$	0
$\mathbf{- 1}$	0	0	$\mathbf{1}$
$\mathbf{1}$	0	0	$\mathbf{- 1}$
0	$\mathbf{- 1}$	$\mathbf{1}$	0

We define a new family of vectors, $\mathcal{F}_{n}=\left\{X_{n}^{(a, b)} \in \mathbb{R}^{n^{2}}:(a, b) \in[n-3]^{2}\right\}$, for $n \geq 4$, where

$$
\left[X_{n}^{(a, b)}\right]_{(i, j)}= \begin{cases}{\left[X_{4}\right]_{(i-a+1, j-b+1)},} & \text { if }(i, j) \in A \times B \\ 0, & \text { otherwise }\end{cases}
$$

where $A=\{a, a+1, a+2, a+3\}$ and $B=\{b, b+1, b+2, b+3\}$.

Spectral Properties

0	$\mathbf{1}$	$\mathbf{- 1}$	0	0
$\mathbf{- 1}$	0	0	$\mathbf{1}$	0
$\mathbf{1}$	0	0	$\mathbf{- 1}$	0
0	$\mathbf{- 1}$	$\mathbf{1}$	0	0
0	0	0	0	0

Table: $X_{5}^{(1,1)}$
\mathcal{F}_{5}

0	0	$\mathbf{1}$	$\mathbf{- 1}$	0
0	$\mathbf{- 1}$	0	0	$\mathbf{1}$
0	$\mathbf{1}$	0	0	$\mathbf{- 1}$
0	0	$\mathbf{- 1}$	$\mathbf{1}$	0
0	0	0	0	0

Table: $X_{5}^{(1,2)}$

0	0	0	0	0
0	$\mathbf{1}$	$\mathbf{- 1}$	0	0
$\mathbf{- 1}$	0	0	$\mathbf{1}$	0
$\mathbf{1}$	0	0	$\mathbf{- 1}$	0
0	$\mathbf{- 1}$	$\mathbf{1}$	0	0

Table: $X_{5}^{(2,1)}$

0	0	0	0	0
0	0	$\mathbf{1}$	$\mathbf{- 1}$	0
0	$\mathbf{- 1}$	0	0	$\mathbf{1}$
0	$\mathbf{1}$	0	0	$\mathbf{- 1}$
0	0	$\mathbf{- 1}$	$\mathbf{1}$	0

Table: $X_{5}^{(2,2)}$

Spectral Properties

Theorem

For $n \geq 4,-4$ is an eigenvalue of $\mathcal{Q}(n)$ with multiplicity $(n-3)^{2}$. Futhermore, \mathcal{F}_{n} is a basis for $\mathcal{E}_{\mathcal{Q}(n)}(-4)$.

0	$\mathbf{1}$	$\mathbf{- 1}$	0	0
$\mathbf{- 1}$	0	0	$\mathbf{1}$	0
$\mathbf{1}$	0	0	$\mathbf{- 1}$	0
0	$\mathbf{- 1}$	$\mathbf{1}$	0	0
0	0	0	0	0

Table: $X_{5}^{(1,1)}$

0	0	$\mathbf{1}$	$\mathbf{- 1}$	0
0	$\mathbf{- 1}$	0	0	$\mathbf{1}$
0	$\mathbf{1}$	0	0	$\mathbf{- 1}$
0	0	$\mathbf{- 1}$	$\mathbf{1}$	0
0	0	0	0	0

Table: $X_{5}^{(1,2)}$

0	0	0	0	0
0	$\mathbf{1}$	$\mathbf{- 1}$	0	0
$\mathbf{- 1}$	0	0	$\mathbf{1}$	0
$\mathbf{1}$	0	0	$\mathbf{- 1}$	0
0	$\mathbf{- 1}$	$\mathbf{1}$	0	0

Table: $X_{5}^{(2,1)}$

0	0	0	0	0
0	0	$\mathbf{1}$	$\mathbf{- 1}$	0
0	$\mathbf{- 1}$	0	0	$\mathbf{1}$
0	$\mathbf{1}$	0	0	$\mathbf{- 1}$
0	0	$\mathbf{- 1}$	$\mathbf{1}$	0

Table: $X_{5}^{(2,2)}$

Spectral Properties

Definition

We define row vector R_{i}, column vector C_{j}, sum vector S_{a} and difference vector D_{a} of dimension n^{2} for some $n \in \mathbb{N}$ as

$$
\begin{align*}
& R_{i}(x, y)= \begin{cases}1, & \text { if } x=i \\
0, & \text { otherwise } .\end{cases}
\end{align*} \quad C_{j}(x, y)=\left\{\begin{array}{ll}
1, & \text { if } y=j \\
0, & \text { otherwise } . \tag{2}
\end{array}\right\}
$$

0	0	0
0	0	0
1	1	1

Table: R_{3}.

0	1	0
0	1	0
0	1	0

Table: C_{2}.

Table: S_{3}.

1	0	0
0	1	0
0	0	1

Table: D_{0}.

Spectral Properties

Theorem

$n-4$ is eigenvalue of $\mathcal{Q}(n)$, for $n \geq 4$, with multiplicity at least $\frac{n-2}{2}$ if n even and $\frac{n+1}{2}$ if n odd.
Futhermore, $\left\{Y_{i}^{n}=C_{i}+C_{n-i+1}-R_{i}-R_{n-i+1}: i \in\left\{2, \ldots, \frac{n-2}{2}\right\}\right\}$ and $\left\{Y_{i}^{n}=C_{i}+C_{n-i+1}-R_{i}-R_{n-i+1}: i \in\left\{2, \ldots, \frac{n+1}{2}\right\}\right\} \cup\left\{Z^{n}=D_{0}-S_{n+1}\right\}$ are sets of linearly independent vectors of $\mathcal{E}_{\mathcal{Q}(n)}(n-4)$ when n is even and n is odd, respectively.

Equitable partitions

Definition[Equitable partition]

Given a graph G, the partition $V(G)=V_{1} \dot{U} V_{2} \dot{U} \ldots \dot{U} V_{k}$ is an equitable partition if every vertex in V_{i} has the same number of neighbours in V_{j}, for all $i, j \in\{1,2, \ldots, k\}$. An equitable partition of $V(G)$ is also called equitable partition of G and the vertex subsets $V_{1}, V_{2}, \ldots, V_{k}$ are called the cells of the equitable partition.

Equitable partitions

Definition[Equitable partition]

Given a graph G, the partition $V(G)=V_{1} \cup V_{2} \cup \dot{U} \ldots \dot{\cup} V_{k}$ is an equitable partition if every vertex in V_{i} has the same number of neighbours in V_{j}, for all $i, j \in\{1,2, \ldots, k\}$. An equitable partition of $V(G)$ is also called equitable partition of G and the vertex subsets $V_{1}, V_{2}, \ldots, V_{k}$ are called the cells of the equitable partition.

Every graph has a trivial equitable partition, in which each cell is a singleton.

Equitable partitions

Definition[Equitable partition]

Given a graph G, the partition $V(G)=V_{1} \dot{U} V_{2} \dot{U} \ldots \dot{U} V_{k}$ is an equitable partition if every vertex in V_{i} has the same number of neighbours in V_{j}, for all $i, j \in\{1,2, \ldots, k\}$. An equitable partition of $V(G)$ is also called equitable partition of G and the vertex subsets $V_{1}, V_{2}, \ldots, V_{k}$ are called the cells of the equitable partition.

Every graph has a trivial equitable partition, in which each cell is a singleton.

Definition [Divisor (or quociente) matrix]

Considering that π is an equitable partition $V(G)=V_{1} \dot{\cup} V_{2} \dot{U} \ldots \dot{U} V_{k}$ and that each vertex in V_{i} has $b_{i j}$ neighbors in V_{j} (for all $i, j \in\{1,2, \ldots, k\}$), the matrix $B_{\pi}=\left(b_{i j}\right)$ is called the divisor (or quociente) matrix of π.

Equitable partitions

Theorem[D. Cvetković, P. Rowlinson, S. Simić, 2010]

Let G be a graph with adjacency matrix A and let π be a partition of $V(G)$ with characteristic matrix C.
(1) If π is equitable, with divisor matrix B, then $A C=C B$.
(2) The partition π is equitable if and only if the column space of C is A-invariante.
(3) The characteristic polynomial of the divisor matrix of any equitable partition of G divides its characteristic polynomial.

Labeling the vertices according to the cell they belong

Considering $n \geq 3$, let us assign to the squares of the chessboard \mathcal{T}_{n}, corresponding to the vertices of $\mathcal{Q}(n)$, the numbers of the cells they belong.

Labeling the vertices according to the cell they belong

Considering $n \geq 3$, let us assign to the squares of the chessboard \mathcal{T}_{n}, corresponding to the vertices of $\mathcal{Q}(n)$, the numbers of the cells they belong. Therefore, the squares belonging to the same cell have the same number.

Labeling the vertices according to the cell they belong

Considering $n \geq 3$, let us assign to the squares of the chessboard \mathcal{T}_{n}, corresponding to the vertices of $\mathcal{Q}(n)$, the numbers of the cells they belong.
Therefore, the squares belonging to the same cell have the same number.

Labeling procedure (Part I)

We start labeling one square of each cell as follows.
(1) Assign to the first square (the top left square) the number 1 ;
(2) Assign to the first and second square of the second column (from the top to bottom) the numbers 2 and 3 ;
($\left\lceil\frac{n}{2}\right\rceil$) Assign to the first $\left\lceil\frac{n}{2}\right\rceil$ squares of the $\left\lceil\frac{n}{2}\right\rceil$-th column (from top to bottom) the numbers $\sum_{j=1}^{\left\lceil\frac{n}{2}\right\rceil-1} j+1, \ldots, \frac{\left(\left\lceil\frac{n}{2}\right\rceil+1\right)\left\lceil\frac{n}{2}\right\rceil}{2}$.

Example

Application of the procedure (Part I) to the 6×6 chessboard

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$			
	3	5			
		6			

Labeling the vertices according to the cell they belong

From the abobe assignment, we get a right triangle of squares assigned to the numbers $1,2, \ldots, \frac{(\lceil n / 2\rceil+1)\lceil n / 2\rceil}{2}$.

Labeling the vertices according to the cell they belong

From the abobe assignment, we get a right triangle of squares assigned to the numbers $1,2, \ldots, \frac{(\lceil n / 2\rceil+1)\lceil n / 2\rceil}{2}$.

Labeling procedure (Part II)

The remainder vertices of each cell are obtained by reflections, as follows.
(1) We reflect the obtained triangle using the vertical cathetus of the triangle as the mirror line and after this reflection we have two right triangles sharing the same vertical line.
(2) Then we reflect both triangles each one using its hypotenuse as the mirror line.
(3) After the above reflections all the squares in the top $\left\lceil\frac{n}{2}\right\rceil$ lines are assigned with the numbers of the cells they belong.
(9) Finally we reflect the rectangle formed by the the upper $\left\lfloor\frac{n}{2}\right\rfloor$ lines taking as the mirror line the horizontal middle line of the chessboard and after that all the squares become assigned to the numbers of their cells.

Example

Application of the procedure (Part I and Part II) to the 6 chessboard

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
$\mathbf{2}$	3	5	5	3	$\mathbf{2}$
$\mathbf{4}$	5	6	6	5	$\mathbf{4}$
$\mathbf{4}$	5	6	6	5	4
$\mathbf{2}$	3	5	5	3	$\mathbf{2}$
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$

A couple of consequences

As immediate consequence of the above procedure we have the following results.

A couple of consequences

As immediate consequence of the above procedure we have the following results.

Every queens graphs $\mathcal{Q}(n)$, with $n \geq 3$, has an equitable partition with

$$
\frac{\left(\left\lceil\frac{n}{2}\right\rceil\right)\left(\left\lceil\frac{n}{2}\right\rceil+1\right)}{2}
$$

cells.

A couple of consequences

As immediate consequence of the above procedure we have the following results.

Every queens graphs $\mathcal{Q}(n)$, with $n \geq 3$, has an equitable partition with

$$
\frac{\left(\left\lceil\frac{n}{2}\right\rceil\right)\left(\left\lceil\frac{n}{2}\right\rceil+1\right)}{2}
$$

cells.

Considering the divisor matrix B of the obtained equitable partition and applying Theorem[D. Cvetković, P. Rowlinson, S. Simić, 2010] it follows that the eigenvalues of B with its respective multiplicities are eigenvalues of the adjacency matrix of $\mathcal{Q}(n)$.

Example

Application of Theorem[D. Cvetković, P. Rowlinson, S. Simić, 2010] to the above example

Example

Application of Theorem[D. Cvetković, P. Rowlinson, S. Simić, 2010] to the above example

Divisor matrix B of the obtained equitable partition for

$$
B=\left(\begin{array}{llllll}
3 & 4 & 1 & 4 & 0 & 2 \\
2 & 4 & 2 & 2 & 4 & 1 \\
2 & 4 & 3 & 2 & 4 & 2 \\
2 & 2 & 1 & 4 & 4 & 2 \\
0 & 4 & 2 & 4 & 4 & 3 \\
2 & 2 & 1 & 4 & 6 & 3
\end{array}\right)
$$

Example

Application of Theorem[D. Cvetković, P. Rowlinson, S. Simić, 2010] to the above example

Divisor matrix B of the obtained equitable partition for

$$
B=\left(\begin{array}{llllll}
3 & 4 & 1 & 4 & 0 & 2 \\
2 & 4 & 2 & 2 & 4 & 1 \\
2 & 4 & 3 & 2 & 4 & 2 \\
2 & 2 & 1 & 4 & 4 & 2 \\
0 & 4 & 2 & 4 & 4 & 3 \\
2 & 2 & 1 & 4 & 6 & 3
\end{array}\right)
$$

Characteristic polynomial of the divisor matrix B

$$
p(x)=x^{6}-21 x^{5}+77 x^{4}+89 x^{3}-690 x^{2}+720 x-245
$$

Open Problems

We have some conjectures about the remaining integer eigenvalues, their multiplicities and eigenvectors of $\mathcal{Q}(n)$, when $n \geq 4$, as follows

Open Problems

We have some conjectures about the remaining integer eigenvalues, their multiplicities and eigenvectors of $\mathcal{Q}(n)$, when $n \geq 4$, as follows

- there is no other integer eigenvalues distinct from -4 and $n-4$, for n even;

Open Problems

We have some conjectures about the remaining integer eigenvalues, their multiplicities and eigenvectors of $\mathcal{Q}(n)$, when $n \geq 4$, as follows

- there is no other integer eigenvalues distinct from -4 and $n-4$, for n even;
- $-3,-2, \ldots, \frac{n-11}{2}, \frac{n-5}{2}, \ldots, n-6, n-5$ are simple eigenvalues for n odd;

Open Problems

We have some conjectures about the remaining integer eigenvalues, their multiplicities and eigenvectors of $\mathcal{Q}(n)$, when $n \geq 4$, as follows

- there is no other integer eigenvalues distinct from -4 and $n-4$, for n even;
- $-3,-2, \ldots, \frac{n-11}{2}, \frac{n-5}{2}, \ldots, n-6, n-5$ are simple eigenvalues for n odd;
- there is no other integer eigenvalues distinct from $-4,-3, \ldots, \frac{n-11}{2}$, $\frac{n-5}{2}, \ldots, n-5, n-4$ for n odd.

References

W．Ahrens，Mathematische Unterhanltungen und Spiele，vol．1，B．G．Teubner， Leipzig， 1901 （Chapter IX）．

J．Bell，B．Stevens，A survey of known results and research areas for n－queens， Discrete Mathematics 309 （2009）：1－31．
T．Mezzel，Proposal of 8－queens problem．Berliner Scachzeitung 3 （1848）： 363.
國
I．P．Gent，C．Jefferson，P．Nightingale，Complexity of n－queens completion，Journal of Artificial Intelligence Research 59 （2017）：815－848．
國
F．Nauck，Briewechseln mit allen füralle，Illustrirte Zeiytung 15（377）（1950）： 182. September 21 ed．
（ E．Pauls，Das maximal problem der Damen auf dem schachbrete，II，Deutsche Schachzeitung．Organ für das Gesammte Schachleben 29（5）（1874）：257－267．

D．Cvetković，P．Rowlinson，S．Simić（2010），An Introduction to the Theory of Graph Spectra，London Mathematical Society，Students Texts 75．Cambridge Press．

Acknowledgments

This research is partially supported by the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2019.

