The generalised Delta square conjecture

Anna Vanden Wyngaerd

joint work with Michele D'Adderio and Alessandro Iraci
April 15, 2019

MacDonald Polynomials

$\Lambda_{\mathbb{C}(q, t)}:=\mathbb{C}(q, t)\left[X_{1}, \ldots, X_{N}\right]^{\mathfrak{S}_{N}}=\bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q, t)}^{n}$

MacDonald Polynomials

$\Lambda_{\mathbb{C}(q, t)}:=\mathbb{C}(q, t)\left[X_{1}, \ldots, X_{N}\right]^{\mathfrak{S}_{N}}=\bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q, t)}^{n}$

- When $n \geq N$, basis of $\Lambda_{\mathbb{C}(q, t)}^{n}$ include elementary e_{λ}, homogeneous h_{λ}, power p_{λ} and Schur s_{λ} symmetric functions.

MacDonald Polynomials

$\Lambda_{\mathbb{C}(q, t)}:=\mathbb{C}(q, t)\left[X_{1}, \ldots, X_{N}\right]^{\mathfrak{S}_{N}}=\bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q, t)}^{n}$

- When $n \geq N$, basis of $\Lambda_{\mathbb{C}(q, t)}^{n}$ include elementary e_{λ}, homogeneous h_{λ}, power p_{λ} and Schur s_{λ} symmetric functions.
- $\left\{\tilde{H}_{\lambda} \mid \lambda \vdash n\right\}$ (modified, Garsia \& Haiman) Macdonald Polynomials: basis of $\Lambda_{\mathbb{C}(q, t)}$

MacDonald Polynomials

$\Lambda_{\mathbb{C}(q, t)}:=\mathbb{C}(q, t)\left[X_{1}, \ldots, X_{N}\right]^{\mathfrak{S}_{N}}=\bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q, t)}^{n}$

- When $n \geq N$, basis of $\Lambda_{\mathbb{C}(q, t)}^{n}$ include elementary e_{λ}, homogeneous h_{λ}, power p_{λ} and Schur s_{λ} symmetric functions.
- $\left\{\tilde{H}_{\lambda} \mid \lambda \vdash n\right\}$ (modified, Garsia \& Haiman) Macdonald Polynomials: basis of $\Lambda_{\mathbb{C}(q, t)}$
- Applications in wide variety of subjects

MacDonald Polynomials

$\Lambda_{\mathbb{C}(q, t)}:=\mathbb{C}(q, t)\left[X_{1}, \ldots, X_{N}\right]^{\mathfrak{S}_{N}}=\bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q, t)}^{n}$

- When $n \geq N$, basis of $\Lambda_{\mathbb{C}(q, t)}^{n}$ include elementary e_{λ}, homogeneous h_{λ}, power p_{λ} and Schur s_{λ} symmetric functions.
- $\left\{\tilde{H}_{\lambda} \mid \lambda \vdash n\right\}$ (modified, Garsia \& Haiman) Macdonald Polynomials: basis of $\Lambda_{\mathbb{C}(q, t)}$
- Applications in wide variety of subjects
- "Generalisation" of Hall-Littlewood, Jack polynomials,...

MacDonald Polynomials

$\Lambda_{\mathbb{C}(q, t)}:=\mathbb{C}(q, t)\left[X_{1}, \ldots, X_{N}\right]^{\mathfrak{S}_{N}}=\bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q, t)}^{n}$

- When $n \geq N$, basis of $\Lambda_{\mathbb{C}(q, t)}^{n}$ include elementary e_{λ}, homogeneous h_{λ}, power p_{λ} and Schur s_{λ} symmetric functions.
- $\left\{\tilde{H}_{\lambda} \mid \lambda \vdash n\right\}$ (modified, Garsia \& Haiman) Macdonald Polynomials: basis of $\Lambda_{\mathbb{C}(q, t)}$
- Applications in wide variety of subjects
- "Generalisation" of Hall-Littlewood, Jack polynomials,...
- Kostka-Macdonald coefficients

$$
\tilde{H}_{\mu}=\sum_{\lambda \vdash n} \tilde{K}_{\lambda \mu}(q, t) s_{\lambda}
$$

MacDonald Polynomials

$\Lambda_{\mathbb{C}(q, t)}:=\mathbb{C}(q, t)\left[X_{1}, \ldots, X_{N}\right]^{\mathfrak{S}_{N}}=\bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q, t)}^{n}$

- When $n \geq N$, basis of $\Lambda_{\mathbb{C}(q, t)}^{n}$ include elementary e_{λ}, homogeneous h_{λ}, power p_{λ} and Schur s_{λ} symmetric functions.
- $\left\{\tilde{H}_{\lambda} \mid \lambda \vdash n\right\}$ (modified, Garsia \& Haiman) Macdonald Polynomials: basis of $\Lambda_{\mathbb{C}(q, t)}$
- Applications in wide variety of subjects
- "Generalisation" of Hall-Littlewood, Jack polynomials,...
- Kostka-Macdonald coefficients

$$
\tilde{H}_{\mu}=\sum_{\lambda \vdash n} \tilde{K}_{\lambda \mu}(q, t) s_{\lambda}
$$

Macdonald Positivity Conjecture

$\tilde{K}_{\lambda \mu}(q, t) \in \mathbb{N}[q, t]$, i.e. the Macdonald polynomials are Schur positive

n ! conjecture

Strategy to prove Schur positivity of Macdonald Polynomials

$n!$ conjecture

Strategy to prove Schur positivity of Macdonald Polynomials

- Construction, for each μ, a bi-graded module M_{μ} (Garsia Haiman module), affording regular representation of \mathfrak{S}_{n}

n ! conjecture

Strategy to prove Schur positivity of Macdonald Polynomials

- Construction, for each μ, a bi-graded module M_{μ} (Garsia Haiman module), affording regular representation of \mathfrak{S}_{n}
- \tilde{H}_{μ} is image of the bi-graded character of this module by Frobenius characteristic map

$n!$ conjecture

Strategy to prove Schur positivity of Macdonald Polynomials

- Construction, for each μ, a bi-graded module M_{μ} (Garsia Haiman module), affording regular representation of \mathfrak{S}_{n}
- \tilde{H}_{μ} is image of the bi-graded character of this module by Frobenius characteristic map
- Garsia and Haiman reduced this to the problem of showing that $\operatorname{Dim}\left(M_{\mu}\right)=n!$

$n!$ conjecture

Strategy to prove Schur positivity of Macdonald Polynomials

- Construction, for each μ, a bi-graded module M_{μ} (Garsia Haiman module), affording regular representation of \mathfrak{S}_{n}
- \tilde{H}_{μ} is image of the bi-graded character of this module by Frobenius characteristic map
- Garsia and Haiman reduced this to the problem of showing that $\operatorname{Dim}\left(M_{\mu}\right)=n!$
- Proved by Haiman in 2001, using tools from Algebraic Geometry

The Delta operators

Working on the Macdonald positivity conjecture, Garsia and Haiman introduced the \mathfrak{S}_{N}-module $D H_{n}$ of diagonal harmonics.
It turns out that

$$
\mathcal{F}\left(D H_{n} ; q, t\right)=\nabla e_{n}
$$

The Delta operators

Working on the Macdonald positivity conjecture, Garsia and Haiman introduced the \mathfrak{S}_{N}-module $D H_{n}$ of diagonal harmonics.
It turns out that

$$
\mathcal{F}\left(D H_{n} ; q, t\right)=\nabla e_{n}
$$

- ∇ is the operator defined by $\nabla \widetilde{H}_{\mu}:=T_{\mu} \widetilde{H}_{\mu}$ where $T_{\mu} \in \mathbb{N}[q, t]$.

The Delta operators

Working on the Macdonald positivity conjecture, Garsia and Haiman introduced the \mathfrak{S}_{N}-module $D H_{n}$ of diagonal harmonics.
It turns out that

$$
\mathcal{F}\left(D H_{n} ; q, t\right)=\nabla e_{n}
$$

- ∇ is the operator defined by $\nabla \widetilde{H}_{\mu}:=T_{\mu} \widetilde{H}_{\mu}$ where $T_{\mu} \in \mathbb{N}[q, t]$.
- The Delta operators, for some $f \in \Lambda$ are defined by

$$
\Delta_{f} \widetilde{H}_{\mu}:=f\left[B_{\mu}(q, t)\right] \widetilde{H}_{\mu} \quad \text { and } \quad \Delta_{f}^{\prime} \widetilde{H}_{\mu}:=f\left[B_{\mu}(q, t)-1\right] \widetilde{H}_{\mu}
$$

where $B_{\mu} \in \mathbb{N}[q, t]$.

The Delta operators

Working on the Macdonald positivity conjecture, Garsia and Haiman introduced the \mathfrak{S}_{N}-module $D H_{n}$ of diagonal harmonics. It turns out that

$$
\mathcal{F}\left(D H_{n} ; q, t\right)=\nabla e_{n}
$$

- ∇ is the operator defined by $\nabla \widetilde{H}_{\mu}:=T_{\mu} \widetilde{H}_{\mu}$ where $T_{\mu} \in \mathbb{N}[q, t]$.
- The Delta operators, for some $f \in \Lambda$ are defined by

$$
\Delta_{f} \widetilde{H}_{\mu}:=f\left[B_{\mu}(q, t)\right] \widetilde{H}_{\mu} \quad \text { and } \quad \Delta_{f}^{\prime} \widetilde{H}_{\mu}:=f\left[B_{\mu}(q, t)-1\right] \widetilde{H}_{\mu}
$$

where $B_{\mu} \in \mathbb{N}[q, t]$.

- On $\Lambda^{(n)}$,

$$
\Delta_{e_{n}}=\nabla \quad \text { and } \quad \Delta_{e_{k}}=\Delta_{e_{k}}^{\prime}+\Delta_{e_{k-1}}^{\prime}
$$

The Delta operators

Working on the Macdonald positivity conjecture, Garsia and Haiman introduced the \mathfrak{S}_{N}-module $D H_{n}$ of diagonal harmonics. It turns out that

$$
\mathcal{F}\left(D H_{n} ; q, t\right)=\nabla e_{n}
$$

- ∇ is the operator defined by $\nabla \widetilde{H}_{\mu}:=T_{\mu} \widetilde{H}_{\mu}$ where $T_{\mu} \in \mathbb{N}[q, t]$.
- The Delta operators, for some $f \in \Lambda$ are defined by

$$
\Delta_{f} \widetilde{H}_{\mu}:=f\left[B_{\mu}(q, t)\right] \widetilde{H}_{\mu} \quad \text { and } \quad \Delta_{f}^{\prime} \widetilde{H}_{\mu}:=f\left[B_{\mu}(q, t)-1\right] \widetilde{H}_{\mu}
$$

where $B_{\mu} \in \mathbb{N}[q, t]$.

- On $\Lambda^{(n)}$,

$$
\Delta_{e_{n}}=\nabla \quad \text { and } \quad \Delta_{e_{k}}=\Delta_{e_{k}}^{\prime}+\Delta_{e_{k-1}}^{\prime}
$$

- Just a few weeks ago, Zabrocki found a module extending the diagonal harmonics, whose bi-graded Frobenius characteristic he conjectured to be $\Delta_{e_{n-k-1}}^{\prime} e_{n}$.

Combinatorial interpretations

Combinatorial interpretations

Function
Conjecture
Proof
Shuffle conjecture
$\nabla e_{n}=\Delta_{e_{n}} e_{n}$
Carlsson
Mellit
2015

Combinatorial interpretations

$$
\begin{aligned}
& \text { Function } \\
& \nabla e_{n}=\Delta_{e_{n}} e_{n} \\
& \Delta_{e_{n-k-1}}^{\prime} e_{n}
\end{aligned}
$$

Proof

Shuffle conjecture
Haglund, Haiman, Loehr Remmel, Ulyanov, 2005.

Mellit
2015

Delta conjecture
Haglund, Remmel,
Wilson, 2015

Combinatorial interpretations

Function	Conjecture	Proof
$\nabla e_{n}=\Delta_{e_{n}} e_{n}$	Shuffle conjecture	Carlsson
	Haglund, Haiman, Loehr	Mellit
	Remmel, Ulyanov, 2005.	2015
$\Delta_{e_{n-k-1}}^{\prime} e_{n}$	Delta conjecture	
	Haglund, Remmel,	
$\Delta_{h_{m}} \Delta_{e_{n-k-1}}^{\prime} e_{n}$	Wilson, 2015	
	Generalised	
	Delta conjecture	
idem		

Combinatorial interpretations

Function
$\nabla e_{n}=\Delta_{e_{n}} e_{n}$
$\Delta_{e_{n-k-1}}^{\prime} e_{n}$
$\Delta_{h_{m}} \Delta_{e_{n-k-1}}^{\prime} e_{n}$
$\nabla(-1)^{n-1} p_{n}$
Conjecture
Shuffle conjecture Haglund, Haiman, Loehr Remmel, Ulyanov, 2005.

Delta conjecture

Haglund, Remmel, Wilson, 2015

Generalised

Delta conjecture idem
Square conjecture Sergel
Loehr, Warrington, 20072016

Combinatorial interpretations

Function	Conjecture	Proof
$\nabla e_{n}=\Delta_{e_{n}} e_{n}$	Shuffle conjecture Haglund, Haiman, Loehr Remmel, Ulyanov, 2005.	Carlsson Mellit 2015
$\Delta_{e_{n-k-1}}^{\prime} e_{n}$	Delta conjecture Haglund, Remmel, Wilson, 2015	
$\Delta_{h_{m}} \Delta_{e_{n-k-1}}^{\prime} e_{n}$	Generalised Delta conjecture idem	
$\nabla(-1)^{n-1} p_{n}$	Square conjecture Loehr, Warrington, 2007	Sergel 2016
$\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-}}$	Generalised Delta square conjecture D-I-VW	

The Delta conjecture

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{LD}(n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

The Delta conjecture

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{LD}(n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

LD $(n)^{* k}$: labelled decorated Dyck paths

The Delta conjecture

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{LD}(n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

LD $(n)^{* k}$: labelled decorated Dyck paths

- Dyck path of size n

The Delta conjecture

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{LD}(n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

LD $(n)^{* k}$: labelled decorated Dyck paths

- Dyck path of size n
- k decorations on rises (i.e. vertical steps preceded by another vertical step).

The Delta conjecture

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{LD}(n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

LD $(n)^{* k}$: labelled decorated Dyck paths

- Dyck path of size n
- k decorations on rises (i.e. vertical steps preceded by another vertical step).
- vertical steps labelled with nonzero, positive integers

The Delta conjecture

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \mathbf{L D}(n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

LD $(n)^{* k}$: labelled decorated Dyck

- Dyck path of size n
- k decorations on rises (i.e. vertical steps preceded by another vertical step).
- vertical steps labelled with nonzero, positive integers
- labels strictly increasing in columns

The generalised Delta conjecture

$$
\Delta_{h_{m}} \Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{PLD}(m, n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

$\operatorname{PLD}(m, n)^{* k}$: partially labelled decorated Dyck paths

The generalised Delta conjecture

$$
\Delta_{h_{m}} \Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{PLD}(m, n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

$\operatorname{PLD}(m, n)^{* k}$: partially labelled decorated Dyck paths

- m zero labels, n nonzero labels
- first label cannot be zero

The generalised Delta conjecture

$$
\Delta_{h_{m}} \Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{PLD}(m, n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

Area: number of whole squares between the path and $y=x$, and not in a row containing a decorated rise.

The generalised Delta conjecture

$$
\Delta_{h_{m}} \Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{PLD}(m, n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

Dinv: count the number of pairs

- same diagonal, lower label < upper label (primary dinv)

The generalised Delta conjecture

$$
\Delta_{h_{m}} \Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{PLD}(m, n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

Dinv: count the number of pairs

- same diagonal, lower label < upper label (primary dinv)
- lower step one diagonal above upper step
lower label > upper label (secondary dinv)

The generalised Delta conjecture

$$
\Delta_{h_{m}} \Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{D \in \operatorname{PLD}(m, n)^{* k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}
$$

$$
x^{D}:=\prod_{i=1}^{m+n} x_{l_{i}(D)}
$$

where $l_{i}(D)$ is the label of the i-th vertical step of D and we set $x_{0}=1$.

Generalised Delta conjecture: state of the art

Conditions	Reference
$m=0$ and $k=0$	Carlsson-Mellit
$m=0$ and $q=0$	Garsia-Haglund-Remmel-Yoo
$m=0$ and $q=1$	Romero
$m=0$ and $\left\langle\cdot, h_{n-d} h_{d}\right\rangle$	D'Adderio-Iraci
$\left\langle\cdot, e_{n-d} h_{d}\right\rangle$	D-I-VW
$t=0$ or $q=0$	D-I-VW

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

$\operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$: partially labelled, decorated square paths ending east

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

$\operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$: partially labelled, decorated square paths ending east

- Square paths of size $m+n$ ending east

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

$\operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$: partially labelled, decorated square paths ending east

- Square paths of size $m+n$ ending east
- m zero labels, n nonzero labels, strictly increasing in columns

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

$\operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$: partially labelled, decorated square paths ending east

- Square paths of size $m+n$ ending east
- m zero labels, n nonzero labels, strictly increasing in columns
- k decorations on rises

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

$\operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$: partially labelled,
 decorated square paths ending east

- Square paths of size $m+n$ ending east
- m zero labels, n nonzero labels, strictly increasing in columns
- k decorations on rises
- At least one vertical step starting from the lowest diagonal has a nonzero label

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

$\operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$: partially labelled, decorated square paths ending east

- Square paths of size $m+n$ ending east
- m zero labels, n nonzero labels, strictly increasing in columns
- k decorations on rises
- At least one vertical step starting from the lowest diagonal has a nonzero label
- if the first step is north, its label is nonzero.

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Area: number of whole squares between the path and the lowest diagonal touched by the path and not in a row containing a decorated rise.

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Dinv

- Primary: same diagonal lower label < upper label

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQE}^{(}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Dinv

- Primary: same diagonal lower label < upper label
- Secondary: lower step one diagonal above upper step lower label > upper label

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQE}^{(}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Dinv

- Primary: same diagonal lower label < upper label
- Secondary: lower step one diagonal above upper step lower label > upper label
- Bonus: + 1 for every nonzero label under the line $x=y$

The generalised Delta square conjecture

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQE}_{(m, n)^{* k}}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

$$
x^{D}:=\prod_{i=1}^{m+n} x_{l_{i}(D)}
$$

where $l_{i}(D)$ is the label of the i-th vertical step of D and we set $x_{0}=1$.

Support for our square conjecture

- $k=m=0$ is the square conjecture made by Loehr and Warrington, proven by Sergel.

Support for our square conjecture

- $k=m=0$ is the square conjecture made by Loehr and Warrington, proven by Sergel.
- Computer evidence (using MAPLE and PYTHON)

Support for our square conjecture

- $k=m=0$ is the square conjecture made by Loehr and Warrington, proven by Sergel.
- Computer evidence (using MAPLE and PYTHON)
- We proved
- The case $q=0$. It coincides with the generalised Delta conjecture.

Support for our square conjecture

- $k=m=0$ is the square conjecture made by Loehr and Warrington, proven by Sergel.
- Computer evidence (using MAPLE and PYTHON)
- We proved
- The case $q=0$. It coincides with the generalised Delta conjecture.
- The case $k=t=0$, which is straightforward.

Support for our square conjecture

- $k=m=0$ is the square conjecture made by Loehr and Warrington, proven by Sergel.
- Computer evidence (using MAPLE and PYTHON)
- We proved
- The case $q=0$. It coincides with the generalised Delta conjecture.
- The case $k=t=0$, which is straightforward.
- The Schröder case, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}}\left\langle\Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}, e_{n-d} h_{d}\right\rangle
$$

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word 4

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word
45

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word
453

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word
4532

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word
45320

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word
453206

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word

$$
4532061
$$

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word 45320610

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word

The steps labelled $n-d+1, \ldots, n$ must be peaks.

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

reading word

The steps labelled $n-d+1, \ldots, n$ must be peaks.

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

$$
\mathrm{SQ}^{\mathrm{E}}(m, n)^{* k, o d}
$$

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

$\mathrm{SQ}^{\mathrm{E}}(m, n)^{* k, o d}$

- square paths of ending east of size $m+n$

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

$\mathrm{SQ}^{\mathrm{E}}(m, n)^{* k, o d}$

- square paths of ending east of size $m+n$
- m zero labels in valleys

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

$\mathrm{SQ}^{\mathrm{E}}(m, n)^{* k, o d}$

- square paths of ending east of size $m+n$
- m zero labels in valleys
- d decorations on peaks

Schröder case: combinatorial meaning

Suppose the generalised Delta conjecture is true, i.e.

$$
\frac{[n-k]_{t}}{[n]_{t}} \Delta_{h_{m}} \Delta_{e_{n-k}}(-1)^{n-1} p_{n}=\sum_{P \in \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

Then taking $\left\langle\cdot, e_{n-d} h_{d}\right\rangle$ of this equation gives $\sum_{P \in S} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(P)}$ on the RHS where $S \subseteq \operatorname{PLSQ}^{\mathrm{E}}(m, n)^{* k}$ is the set of paths whose reading word is a shuffle of m zeroes, the string $n-d, \ldots, 1$ and the string $n-d+1, \ldots, n$.

$$
\mathrm{SQ}^{\mathrm{E}}(m, n)^{* k, o d}
$$

- square paths of ending east of size $m+n$
- m zero labels in valleys
- d decorations on peaks
- dinv induced by the implied labelling.

Schröder case: sketch of the proof

Two families of functions

- $F_{n, k ; p}^{(d, \ell)}$ such that

$$
\sum_{k=1}^{n-\ell} F_{n, k ; p}^{(d, \ell)}=\left\langle\Delta_{h_{p}} \Delta_{e_{n-\ell-1}}^{\prime} e_{n}, e_{n-d} h_{d}\right\rangle
$$

- $S_{n, k ; p}^{(d, \ell)}$ such that

$$
\sum_{k=1}^{n-\ell} S_{n, k ; p}^{(d, \ell)}=\frac{[n-\ell]_{t}}{[n]_{t}}\left\langle\Delta_{h_{p}} \Delta_{e_{n-\ell}}(-1)^{n-1} p_{n}, e_{n-d} h_{d}\right\rangle
$$

Schröder case: sketch of the proof

Theorem (D-I-VW)

$$
F_{n, k ; p}^{(d, \ell)}=\sum_{P \in F} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} \quad S_{n, k ; p}^{(d, \ell)}=\sum_{P \in S} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)}
$$

Where $F \subseteq S \subseteq \mathrm{SQ}^{\mathrm{E}}(p, n)^{* \ell, o d}$ such that

- $P \in F \Rightarrow P$ is a Dyck path
- $P \in S \Leftrightarrow$ the number of vertical steps starting from the lowest diagonal and that are not a zero valley equals k.

To prove this, we show that both sides satisfy the same recursion.

Theorem: recursion for F (D-I-VW)

For $k, \ell, d, p \geq 0, n \geq k+\ell$ and $n+p \geq d$, the $F_{n, k ; p}^{(d, \ell)}$ satisfy the following recursion: for $n \geq 1$

$$
F_{n, n ; p}^{(d, \ell)}=\delta_{\ell, 0} q^{\left({ }_{2}^{2-d}\right)}\left[\begin{array}{c}
n \\
n-d
\end{array}\right]\left[\begin{array}{c}
n+p-1 \\
p
\end{array}\right]
$$

and, for $n \geq 1$ and $1 \leq k<n$,

$$
\begin{aligned}
F_{n, k ; p}^{(d, \ell)} & =t^{n-k-\ell} \sum_{j=0}^{p} \sum_{s=0}^{k} q^{\binom{s}{2}}\left[\begin{array}{c}
k \\
s
\end{array}\right]_{q}\left[\begin{array}{c}
k+j-1 \\
j
\end{array}\right]_{q} \\
& \times t^{p-j} \sum_{u=0}^{n-k-\ell} \sum_{v=0}^{s+j} q^{\binom{v}{2}}\left[\begin{array}{c}
s+j \\
v
\end{array}\right]_{q}\left[\begin{array}{c}
s+j+u-1 \\
u
\end{array}\right]_{q} F_{n-k, u+v ; p-j}^{(d-k+s, \ell-v)}
\end{aligned}
$$

with initial conditions

$$
F_{0, k ; p}^{(d, \ell)}=\delta_{k, 0} \delta_{p, 0} \delta_{d, 0} \delta_{\ell, 0} \quad \text { and } \quad F_{n, 0 ; p}^{(d, \ell)}=\delta_{n, 0} \delta_{p, 0} \delta_{d, 0} \delta_{\ell, 0}
$$

Theorem: recursion for S (D-I-VW)

For $k, \ell, d, p \geq 0, n \geq k+\ell$ and $n \geq d$, the $S_{n, k ; p}^{(d, \ell)}$ satisfy the following recursion: for $n \geq 1$

$$
S_{n, n ; p}^{(d, \ell)}=\delta_{\ell, 0} q^{(n-d}{ }^{(n)}\left[\begin{array}{c}
n \\
n-d
\end{array}\right]\left[\begin{array}{c}
n+p-1 \\
p
\end{array}\right]
$$

and, for $n \geq 1$ and $1 \leq k<n$,

$$
\begin{aligned}
S_{n, k ; p}^{(d, \ell)}= & F_{n, k ; p}^{(d, \ell)}+q^{k} t^{n-\ell-k} \sum_{j=0}^{p} \sum_{s=0}^{k} q^{\binom{s}{2}}\left[\begin{array}{c}
s+j \\
s
\end{array}\right]_{q}\left[\begin{array}{c}
k+j-1 \\
s+j-1
\end{array}\right]_{q} \times \\
& \times t^{p-j} \sum_{u=0}^{n-\ell-k} \sum_{v=0}^{s+j} q^{\binom{v}{2}}\left[\begin{array}{c}
u+v \\
v
\end{array}\right]_{q}\left[\begin{array}{c}
s+j+u-1 \\
s+j-v
\end{array}\right]_{q} S_{n-k, u+v ; p-j}^{(d-k+s, \ell-v)},
\end{aligned}
$$

with initial conditions

$$
S_{0, k ; p}^{(d, \ell)}=\delta_{k, 0} \delta_{p, 0} \delta_{d, 0} \delta_{\ell, 0} \quad \text { and } \quad S_{n, 0 ; p}^{(d, \ell)}=\delta_{n, 0} \delta_{p, 0} \delta_{d, 0} \delta_{\ell, 0} .
$$

Thank you for you attention

Variables for the S recursion

- p is the number of zero valleys.
- n is the number of vertical steps that are not zero valleys.
- k is the number of minima in the area word whose index is not a zero valley.
- ℓ is the number of decorated rises.
- d is the number of decorated peak
- $k-s$ is the number of decorated peaks at height 0.
- s is the number of minima in the area word whose index is not a decorated peak nor a zero valley.
- j is the number of zero valleys at height 0 .
- v is the number of decorated rises at height 1 .
- $u+v$ is the number of $m+1$'s in the area word whose index is not a zero valley.

Strategy for the S-recursion

- Start from a path P in $S=\operatorname{SQ}^{\mathrm{E}}(p, n \backslash k)^{* \ell, o d}$.
- If it is a Dyck path, thanks to the F recursion it is counted by $F_{n, k ; p}^{(d, \ell)}$.
- Otherwise, remove all the minima from the area word, and then remove both the corresponding decoration on peaks, and decorations on rises at height one (which are not rises any more).
- In this way we obtain a path in

$$
\mathrm{SQ}^{\mathrm{E}}(p-j, n-k \backslash u+v)^{* \ell-v, o d-(k-s)} .
$$

Variables for the F recursion

- k is the number of zeroes in the area word whose index is not a zero valley.
- $k-s$ is the number of decorated peaks at height 0 .
- The previous two imply that s is the number of zeroes in the area word whose index in not a decorated peak nor a zero valley.
- j is the number of zero valleys at height 0 .
- v is the number of decorated rises at height 1 .
- $u+v$ is the number of 1 's in the area word whose index is not a zero valley.

Representation theory

$$
\rho: \mathfrak{S}_{n} \longrightarrow \mathrm{GL}\left(\bigoplus_{(i, j) \in \mathbb{N} \times \mathbb{N}} V^{(j, j)}\right)
$$

- $V^{(i, j)}$ are ρ invariant
- Character

$$
\chi_{\rho}=\operatorname{tr} \circ \rho: \mathfrak{S}_{n} \rightarrow \mathbb{C}
$$

- We can decompose $\chi_{\rho}=\sum_{(i, j)} \chi_{\rho}^{(i, j)}$ and $\chi_{\rho}^{(i, j)}=\sum c_{\lambda} \chi_{\lambda}$ where $c_{\lambda} \in \mathbb{N}$ (multiplicity) and χ_{λ} are the irreducible characters of $\left(\rho_{\mid V^{(i, j)}}, V^{(i, j)}\right)$ (one per conjugacy class)

Frobenius Characteristic map

$$
\begin{aligned}
\mathcal{F}: \operatorname{Class}\left(\mathfrak{S}_{n}\right) & \rightarrow \Lambda_{\mathbb{C}}^{n} \\
f & \mapsto \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} f(\sigma) p_{\lambda(\sigma)}
\end{aligned}
$$

- Irreducible characters get sent to Schur functions
- If a symmetric function is the image of the character of a representation by the Frobenius map then is must be Schur positive because \mathcal{F} is linear
- Bi-graded Frobenius characteristic map

$$
\mathcal{F}: \chi_{\rho} \mapsto \sum_{(i, j)} q^{i} t^{j} \mathcal{F}\left(\chi_{\rho}^{(i, j)}\right)
$$

Symmetric functions

$\Lambda_{K}:=K\left[X_{1}, \ldots, X_{N}\right]^{\mathfrak{S}_{N}}$ space of symmetric functions.

$$
\Lambda_{K}=\bigoplus_{i=1}^{\infty} \Lambda_{K}^{n}
$$

where Λ_{K}^{n} is the space of homogeneous symmetric functions of degree n.

- A lot of different basis for Λ_{K}^{n}, indexed by partitions of n : elementary e_{λ}, homogeneous h_{λ}, power symmetric p_{λ}.
- Link with representation theory of \mathfrak{S}_{n} : the Frobenius characteristic map:

$$
\mathcal{F}: \operatorname{Class}\left(\mathfrak{S}_{n}\right) \rightarrow \Lambda_{K}^{n}
$$

- Schur functions s_{λ} form another basis and are the image of the irreducible characters by the Frobenius map.
- Scalar product \langle,$\rangle on \Lambda_{K}^{n}$ such that s_{λ} are orthonormal $\rightarrow \mathcal{F}$ is an isometry

