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Abstract

In this text we shortly address some questions about the Lagrangian points.

We show that there are five such points and then consider the stability of two

of them. In finding their approximate positions we demonstrate a problem in

perturbation theory and give a method to deal with a certain class of problems

in approximations. To show stability we consider a powerful method that

reduces the problem to calculating eigenvalues of a matrix.

The three-body problem is not exactly solvable. If however the mass of the third

object is really much smaller than the other two masses, we can ignore the backre-

action of the third mass on the other two masses. In this setting the Lagrangian

points are discussed: We have a configuration of two masses rotating in circular or-

bits around their center of mass. The Lagrangian points are those co-rotating points

where an infinitesimal mass would experience no force. In these points one could

leave a space-ship, without having to burn fuel to stay there.

Let M1 and M2 be the masses of the two larger objects. Let r1 and r2 be the position

vectors, where the origin is taken to be the center of mass. We thus have

M1r1 +M2r2 = 0 .

We assume that the masses rotate in circular orbits. The angular velocity ω can

be calculated using Kepler’s law, or by considering the centripetal force and the

gravitational force. In any case, one finds

ω2 =
G(M1 +M2)

|r1 − r2|3
=

GM2

|r1 − r2|2|r1|
,

where G is Newton’s gravitational constant and where the last equality uses M1r1 +

M2r2 = 0.

In addition to the choice of the origin, we make another choice: We consider a

coordinate system that is co-rotating, thus one in which the masses are at fixed

positions. Since this is a non-inertial frame, two additional forces show up: the
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centrifugal force and the Coriolis force. The forces Fm on a mass m at position r are

now

Fm = − GM1m

|r − r1|3
(r− r1)−

GM2m

|r− r2|3
(r− r2) +mω2r− 2mω × ṙ , (1)

where ω is the angular velocity vector; ω2 is as above the square of its norm. For an

explanation where the Coriolis force and the centrifugal forces come from, one can

consult any classical mechanics textbook, or the hand-out

http://www.mat.univie.ac.at/~westra/coriolis.pdf.

For stationary points the Coriolis force is irrelevant, as we want points with zero

velocity ṙ. We first consider those points that lie on the line through the masses M1

and M2. We divide this line into three parts: Region 1 is to the right of M2, region

3 is between M1 and M2 and region 2 is to the left of M1 – see the sketch below,

where CM stands for center of mass. We will in general not be able to solve exactly

for the positons where Fm = 0, but we will find good approximations if M1 >> M2.

M1 M2CM

Region 1Region 3Region 2

Region 1 and region 2 have the same equation for Fm = 0, but with M1 and M2

interchanged. However, if we assume M2 << M1 the approximate equations are

different.

Region 1

Coordinates on the line through M1 and M2 are given as follows: The center of mass

ist at x = 0, mass M1 is at position x = −r1, mass M2 is at position x = r2. We

thus have |r1 − r2| = r1 + r2. Our task is to find a position x such that all forces are

balanced at this point, that is Fm = 0.

Balance of forces in the third region is determined by the following equation

GM1

(x+ r1)2
+

GM2

(x− r2)2
=

G(M1 +M2)

(r1 + r2)3
x .

This is a quintic equation, so that solving it by hand seems hopeless. We introduce

the new parameter α = M2

M1

and z = x
r2

and obtain the following equation

(z − 1)2 + α(z + α)2 =
1

(1 + α)2
z(z − 1)2(z + α)2 . (2)
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We now want to use perturbation theory. The perturbation parameter is α. We

would like to find a perturbative expansion in α for a solution. The zeroth order

problem is obtained by setting α = 0. For α = 0 eqn.(2) reduces to

(z − 1)2 = z3(z − 1)2

which is solved for by z = 1. Naive perturbation theory now would proceed as

follows: expand the original equation to first order α and consider a solution of the

form z = 1 + λα and put it into the equation, discard all higher order terms α2, α3

and so on and then determine λ. We now show this does not work, why it does not

work and how to proceed in this and similar cases.

If we use the expansion

1

(1 + α)2
= 1− 2α+ 3α2 − 4α3 − . . .

we find that the function

P (z) = (z − 1)2 + α(z + α)2 − 1

(1 + α)2
z(z − 1)2(z + α)2

is to first in α given by

P (z) = (z − 1)2(1− z3) + αz2(1 + 2(z − 1)3) +O(α2) .

To find an approximate zero, we write z = 1 + αλ and find

0 = α +O(α2) .

The symbol O(α2) stands for terms that are at least quadratic in α. The variable λ

has dropped out of the equation!

The reason for this bad bevavior is that z = 1 is not an ordinary zero of P (z), but a

third order zero, indeed P (z) = −(z − 1)3(1 + z + z2) +O(α). To study this kind of

problems, we consider the following problem: Let P (x; ǫ) be a polynomial in x that

is given as an expansion in ǫ:

P (x; ǫ) = P0(x) + ǫP1(x) + ǫ2P2(x) + . . .

where all the Pi(x) are polynomials – which is not really a necessary requierement

yet. We assume P0(0) = 0 and want a perturbative expansion for this zero in ǫ. We

thus want an expression x(ǫ) = ǫx1+ ǫ2x2+ . . . such that P (x(ǫ); ǫ) = 0 for all orders
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in ǫ. Using the first order Taylor expansion P0(ǫx1) = ǫx1P
′(0), we find that the first

order equation is

ǫx1P
′
0(0) + ǫP1(0) = 0 .

Now we clearly see the structure; this equation can only be solved for x1 if x = 0 is

an ordinary zero of P0. If it is a double zero, then P ′
0(0) = 0 and one cannot solve

for x1.

Let us assume that P0(0) = P ′
0(0) = P ′′

0 (0) but P
′′′
0 (0) 6= 0. Then P0(x) =

1
6
P ′′′
0 (0)x3+

higher order terms. This makes clear that x3 should be of order ǫ, and thus we can

expand in powers of ǫ1/3, thus x = ǫ1/3a + ǫ2/3b+ . . ..

We thus consider the problem to find approximate solutions for the zero of P (x; ǫ) =

x3Q(x)+ ǫR(x)+ . . ., where Q(0) 6= 0 and the ellipsis contains terms of higher order

in ǫ. Putting in x(ǫ) = aǫ1/3 + bǫ2/3 + . . . one finds

P (x(ǫ); ǫ) = ǫ(a3Q(0) +R(0)) + ǫ4/3(3a2bQ(0) + a3Q′(0) + aR′(0)) + . . . .

Requiring P (x(ǫ); ǫ) = 0 to all orders in ǫ thus results in a = − 3

√

R(0)
Q(0)

.

Now we return to our original problem and consider the transformation z = 1 + y,

so that the zero lies at y = 0. We then find

P (y) = −y3(3+3y+ y2)+α(1+α)2(1+2y3)+α2(1+ y)(2− y2)(2+6y+3y2)+ . . . .

Identifying Q(y) = −(3 + 3y + y2) and R(y) = (1 + y)2(1 + 2y2), we find Q(0) = −3

and R(0) = 1. Thus we have

y(ǫ) = ǫ1/3
3

√

1

3
+ . . . = 3

√

ǫ

3
+ . . . .

Retracing back the definitions we find

x = r2

(

1 + 3

√

M2

3M1

)

.

In the literature this point is called L2.

Now let us plug in some numbers. For the system earth-sun we have M1 = Msun ≈
2 · 1030 kg, M2 = Mearth ≈ 6 · 1024 kg and r2 ≈ 150 · 106 km. Thus x ≈ r2 + 1.5 · 106
km. That is, L2 lies at 1.5 Million km from the earth, away from the sun.

Region 2

We let x be the distance between the test mass and the center of mass. Mass M1 is

r1 left from the center of mass, M2 is r2 right from the center of mass. Balance of
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forces in region 3 is then given by the equation

ω2x =
GM1

(x− r1)2
+

GM2

(x+ r2)2
. (3)

Again, a general solution is hopeless to find, so we assume M1 >> M2, and thus

r1 << r2. We put x = zr2, M2 = ǫM1 and thus r1 = ǫr2. Together with ω2 =
G(M1+M2)
(r1+r2)3

this turns eqn.(3) into

1

(1 + ǫ)2
z(z − ǫ)2(z + 1)2 = (z + 1)2 + ǫ(z − ǫ)2 . (4)

For convenience we multiply through by (1 + ǫ)2. Then, to first order in ǫ eqn.(4)

reduces to

0 = (z3 − 1)(z + 1)2 − ǫ(2z4 + 4z3 + 5z2 + 4z + 2) . (5)

The relevant solution for ǫ = 0 is z = 1. Since z3 − 1 = (z − 1)(1 + z + z2) we recast

eqn.(5) in the form

0 = (z − 1)Q(z) + ǫR(z) .

Now z = 1 is an ordinary zero and we thus can savely take z(ǫ) = 1+ λǫ and find to

first order λ = R(1)
Q(1)

. In our case Q(1) = 12 and R(1) = 17.

If we now retrace the definitions we find x = r2(1+
17
12

M2

M1

); the distance between this

point and the mass M1 is thus

x− r1 = r2

(

1 +
5

12

M2

M1

)

whereas the distance between M1 and M2 is r1 + r2 = r2(1 +
M2

M1

). This Lagrangian

point, called L3 in the literature, is thus closer to M1 than M2 is to M1. For the

sun-earth system we find that L3 is just some 600 km outside the orbit of the earth.

Region 3

Balance of forces is now given by

GM1

(x+ r1)2
− GM2

(x− r2)2
=

G(M1 +M2)

(r1 + r2)3
x . (6)

We put r1 + r2 = a, z = x
a
, s = r2

r1+r2
, t = r1

r1+r2
= 1 − s, so that M1 = s(M1 +M2)

and M2 = t(M1 +M2). This reduces eqn.(6) to

s(z − s)2 − t(z + t)2 = z(z + t)2(z − s)2 .
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If s = t = 1
2
then indeed one finds a solution z = 0, i.e., precisely in between the two

masses. If M1 >> M2, then s tends to 1 and t tends to 0. We thus put s = 1 − β

and t = β and find the following equation for z up to first order in β

0 = (z − 1)3(1 + z + z2) + β(4z4 − 6z3 + 4z2 − 4z + 3) .

This equation is solved perturbatively by z = 1 + λβ1/3 and one finds λ = − 3

√

1
3
.

Hence we have

x = a
(

1− 3

√

M2

3M1

)

,

so that for the system sun-earth we find that this Lagrangian points lies approxi-

mately 1.5 Mio km from the earth in the direction of the sun. In the literature this

point is called L1.

Other Lagrangian points

Are there other Lagrangian points? It turns out, yes, but only two more, making

thus a total of five. Balance of forces leads to an equation of the form

α(r− r1) + β(r− r2) = r ,

where α and β depend on r through |r− r1| and |r− r2|. Rearranging one concludes

that αr1+βr2 has to be parallel to r. Since r1 and r2 lie on the line through M1 and

M2 a solution is only possible ifm is on the line throughM1 andM2, or the coefficients

are chosen such that αr1 + βr2 = 0. The center of mass equation M1r1 +M2r2 = 0

gives the ratio between the lengths of r1 and r2 and thus αr1 + βr2 = 0 if and only

if α : β = M1 : M2. Looking at the precise form of α and β,

α =
GM1

ω2|r− r1|
, β =

GM2

ω2|r− r2|
,

we see that α : β = M1 : M2is only satisfied if |r − r1| = |r − r2|. Let us consider

this case and define s = |r− r1| = |r− r2|. Balance of forces is then given by

M1

s3
(r− r1) +

M2

s3
(r− r2) =

M1 +M2

|r1 − r2|3
r .

It follows straightforwardly that this equation is only satisfied if |r1 − r2| = s. Thus

the final two Lagrangian points are those two points in the plane of rotation that

make the three masses lie on the vertices of an equilateral triangle. In the literature

these are called L4 and L5.
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Stability of L4 and L5

The first free Lagrangian points are unstable. This means that if a space-ship is

parked there a small deviation from the precise position will let the space-ship wander

off from the Lagrangian point. The speed with which this happens differs from point

to point, but a typical time-scale is of the order of years. A good discussion on these

issues is found in

https://map.gsfc.nasa.gov/ContentMedia/lagrange.pdf,

a nice document by Neil Cornish. In fact, we will discuss the stability of L4 and

L5 by the methods outlined in this document, but with a slightly worse notation

perhaps.

In order to study stability we slightly perturb the equations of motion around the

solution. Since Newton’s equations are second order equations, it is convenient to

turn them into a system of first-order differential equations. This is done as follows:

We first introduce the six-dimensional vector Z = (r, ṙ), we then have

Ż = (z4, z5, z6, F1, F2, F3) .

Since the forces depend on positions and velocities the right-hand side is a function

of components of Z.

In the case at hand a few simplifications are possible; from physical grounds we

know that the mass m will always be atracted to the plane of rotation and the

Coriolis force does not work in this direction. We may thus simplify and consider

motion in the plane of rotation. We thus take Z = (x, y, vx, vy). We have a solution

Z0 = (1
2
a+x1,

√
3
2
a, 0, 0) for L4, say. Of course a = |r1− r2| is the length of the sides

of the equilateral triangle on whose corners the three masses are.

The equations of motion are Ż = (vx, vy, ax, ay) = G(Z), where G(Z) is some vector

whose components depend on those of Z, and we consider solutions of the form

Z = Z0 + δZ, where δZ = (δx, δy, δvx, δvy) represents a small deviation from Z0.

Since G(Z0) = 0 we have
d

dt
δZ = G(Z0 + δZ) .

The trick is now to expand G(Z0 + δZ) to first order in δZ. The resulting equation

will then be of the form
d

dt
δZ = MδZ , (7)

where M is some matrix. Stability is then guaranteed if all the eigenvalues of M have

non-positive real part. Indeed, if λ = a + ib is some eigenvalue for an eigenvector
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W and a > 0, then the vector We(a+ib)t solves equation (7). Clearly this solution

wanders away from the solution Z0 on time-scales 1/a. Below we will perform these

calculations for Z0 = (1
2
a + x1,

√
3
2
a, 0, 0).

We take M1 to be at position (x1, y1) = (− M2a
M1+M2

, 0) and M2 to be at (x2, y2) =

( M1a
M1+M2

, 0). The accelerations are given by

ax = − GM1

((x− x1)2 + y2)3/2
(x− x1)−

GM2

((x− x2)2 + y2)3/2
(x− x2) + ω2x+ 2ωvy

and

ay = − GM1

((x− x1)2 + y2)3/2
(y − y1)−

GM2

((x− x2)2 + y2)3/2
(y − y2) + ω2y − 2ωvx .

We now insert x = 1
2
a + x1 + δx, y =

√
3
2
a + δy, vx = δvx, vy = δvy, and keep only

terms linear in δx, δy, δvx and δvy. A useful expansion is

1

|r− r1|3
=

1

|r0 − r1|3
− 3(r0 − r1) · (r− r0)

|r− r1|5
+O(|r− r0|2) .

We however stipulate an even easier way. We write the accelerations as

ax =
∂

∂x
U(x, y) + 2ωvy , ay =

∂

∂y
U(x, y)− 2ωvx ,

with U(x, y) = GM1

|r−r1| +
GN2

|r−r2| +
1
2
ω2r2, which plays the role of the negative of a po-

tential. At the point Z0 the gradient of U(x, y) vanishes. Writing Uxx = ∂2

∂x2U(x, y),

Uxy = ∂2

∂x∂y
U(x, y), Uyy = ∂2

∂y2
U(x, y) evaluated at the point (x, y) = (1

2
a + x1,

√
3
2
a)

the matrix M is found to be

M =













0 0 1 0

0 0 0 1

Uxx Uxy 0 2ω

Uxy Uyy −2ω 0













.

Thus we only have to calculate the derivatives of U , evaluate at the solution point,

and then calculate the eigenvalues of M .

One finds that

Uxx =
3

4
ω2 , Uxy =

3

4
τ 2 , Uyy =

9

4
ω2 ,

where τ 2 = G(M1−M2)
a3

√
3, where we already anticipated that M1 > M2. The equation

det(M − λ1) = 0 then becomes

λ4 + ω2λ2 +
27

16
ω4 − 9

16
τ 4 ,
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which is quite remarkable, since no odd powers of λ appear. For us, this is convenient,

as we can now solve exactly by hand. First we remark that

27

16
ω4 − 9

16
τ 4 =

27

4

G2M1M2

a6
.

Then we calculate the discriminant as D = G2

a6
(M2

1 +M2
2 −25M1M2), which is smaller

than ω4. We have for λ2 the expression

λ2 = −1

2
ω2 ± 1

2

√
D .

If D > 0, then λ2 < 0 since
√
D < ω2 and we thus have a total of four imaginary

eigenvalues λ, which implies stability. If D = 0, then we have two imaginary eigen-

values and thus also stability. If however D < 0, then λ2 aquires an imaginary part.

Thus λ2 = ρe±iϕ with π
2
< ϕ < π. Thus λ = ±√

ρe±iϕ/2 and at least one of them

has a positive real part and in this case we thus find an unstable direction.

Since the zeros of t2 − 25t + 1 are at t1 = 25
2
(1 +

√

1− 4
625

) and at t2 = 1/t1 we

conclude that L4 and L5 are stable if the larger mass M1 is at least t1 times as large

as the smaller mass M2. Indeed, we have

D =
G2M2

2

a6

((M1

M2

)2

+ 1− 25
M1

M2

)

which is positive if M1

M2

> t1 or M1

M2

< t2. Since t2 < 1 the last inequality cannot be

satisfied if M1 is larger than M2, hence we need the first, and we have thus proven

stability for large enough M1, i.e.

M1 >
25M2

2

(

1 +

√

1− 4

625

)

≈ 24.96M2 .

For the earth-sun system this is satisfied, and even for the system earth-moon it holds.

The stability of the Trojan asteroids in between Mars and Jupiter is explained this

way: At the points L4 and L5 in the system sun-jupiter little rocks that fly around

our solar system accumulate. In these points they can stay for a long time and small

perturbations will let them tend back to their position.
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