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Goal

Analyze laser-matter interaction,

and understand how singularities can appear, or can be avoided:
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Goal

Analyze laser-matter interaction,

and understand how singularities can appear, or can be avoided:
o self-focusing (associated focusing NLS),

@ optical shocks (self-steepening of the pulse),
° ...

Modelization of ionization effects inspired by [BERGE-SKUPIN].

Eric Dumas (IF) Nonlinear optics: taking full dispersion and io WPI 2013

2/ 22



: :
Maxwell's equations

@ Maxwell’s equations: magnetic field B, electric induction D,
0¢B + curl E =0,
1
0D — —curl B=20

Ho
@ Coupling to matter via the polarization P,
D = ¢E + P.

@ Together with the constitutive laws

V.-D=0, V-B=0.
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: :
Maxwell's equations

@ Maxwell’s equations: magnetic field B, electric induction D,
0¢B + curl E =0,
1
0D — —curl B=20

Ho
@ Coupling to matter via the polarization P,
D = ¢E + P.

@ Together with the constitutive laws
V-D =0, V-B=0.
Maxwell's equations in (B, E):
0¢B + curl E =0,

1
O:E — c?curl B=|——0,P|.
€0
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_______ Maxwell's equations and abstract formulation JRICIESERIIREELY
The polarization

@ The “anharmonic oscillator model” model [LORENTZ]

2P + w10:P + wiP = eobE.
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_______ Maxwell's equations and abstract formulation JRICIESERIIREELY
The polarization

@ The “anharmonic oscillator model” model [LORENTZ]

2P + w10:P + wiP = eobE.

@ The "nonlinear anharmonic oscillator model”
[OWYOUNG, BLOEMBERGEN, DONNAT-JOLY-METIVIER-RAUCH,. . . ]

O2P + w10:P + wiP + |V Vi (P) | = eobE.
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Maxwell's equations and abstract formulation The Maxwell equations

2P 4 w10:P 4+ wWgP + |V Vy(P) | = eobE.

Example

(i) Cubic nonlinearity:
VVNL(P) = a3|P|2P.

(ii) Cubic-quintic nonlinearity:
VVaL(P) = a3|P|*P — as|P|*P.

(iii) Saturated nonlinearity: there exists a function vs : RT — R, with

Veat(x) ~0 a3x and  V V. (P) = veat(|P]?)P.
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Maxwell's equations and abstract formulation The Maxwell equations

Remark

Global well-posedness for some perturbed (focusing) cubic NLS,

i0pv + Av+ (14 f(Jv]))|v[Pv =0, t >0, x € R
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Maxwell's equations and abstract formulation The Maxwell equations

Remark

Global well-posedness for some perturbed (focusing) cubic NLS,

i0pv + Av+ (14 f(Jv]))|v[Pv =0, t >0, x € R

@ Saturated nonlinearity: (1 + f(s))s bounded on R*.
I+ F(vPNIVIPvz < lvilie

ensures global L2-wellposedness.
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Maxwell's equations and abstract formulation The Maxwell equations

Remark

Global well-posedness for some perturbed (focusing) cubic NLS,

i0pv + Av + (14 f(|v]?))|v|Pv =0, t >0, x € RY.

@ Saturated nonlinearity: (1 + f(s))s bounded on R*.
I+ F(vPNIVIPvz < lvilie

ensures global L2-wellposedness.

@ Focusing cubic-defocusing quintic NLS: f(s) = —s.
E(v(t)) = /\v\/ (£, x) dx_/y (£, ) *dx + - /\v(t,x)yﬁd
1
> *IIV(t)IIHl ~(5+35 ) VOl

Globally well-posed in H*(RY) when d = 2.
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The Maxwell-Lorentz equations, nondimensionalized

With Q = 0:P,

0.8[-rcurl ] =0,
0E[—curl B] +2 70| =0,

1 1
0Q + M Pun Q| — - VAE + ZwoP | = % (1+ f(e'|PP)) PP,
0

1
8tP _ngQ = 07

where .
period of the laser

~ duration of the pulse’
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Abstract formulation

Under the form of a first order semilinear hyperbolic system,
1
0:U + A(0)U + gEU +eBU = eF(e,U),

where

d
U: (t,x)eRxRISR", AQ) =) Ad;
j=1

Assumption

(i) The matrices A; are real valued, symmetric matrices.
(ii) The matrix E is a real valued, skew symmetric matrix.
(iii) There exists a quadratic form Q and trilinear mapping T such that

YU EC",  F(sU) = (1+f(e"Q(U))) T(U, T, U).

v
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Three scale WKB analysis

[Res(U) = 0:U+ AQ)U + %EU —¢|UJPU.

At diffractive scale:

k-x—wt

U(t,x) ~ U(ct, t,x)e" < (slowly modulated wave packets).
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Three scale WKB analysis

[Res(U) = 0:U+ AQ)U + %EU —¢|UJPU.

At diffractive scale:

k-x—wt

U(t,x) ~ U(ct, t,x)e" < (slowly modulated wave packets).

Res(U) e' = ~
é (—iwld + iA(K) + E)U

(dispersion relation & polarization condition)
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Three scale WKB analysis

[Res(U) = ;U + A(9)U + éEU —¢|UJ?U.

At diffractive scale:

k-x—wt

U(t,x) ~ U(ct, t,x)e" < (slowly modulated wave packets).

Res(U) e' = ~
1
- (—iwld + iA(k) + E)U
(dispersion relation & polarization condition)
+ (0t + Vw(k) - V)U (transport at the group velocity)
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Three scale WKB analysis

[Res(U) = 0:U+ AQ)U + %EU —¢|UJPU.

At diffractive scale:

k-x—wt

U(t,x) ~ U(ct, t,x)e" < (slowly modulated wave packets).

Res(U) e' = ~
1
R (—iwld + iA(k) + E)U
(dispersion relation & polarization condition)

+ (0t + Vw(k) - V)U (transport at the group velocity)
+  eNLS(U) 4+ O(£?).

Notations: w = w(k), ¢z = Vw(k).
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The NLS approximation Derivation

With U(et, t,x) = V(et,x — cgt) € Ker(—wld + A(k) + E),

residual of order O(£2) if V solves the NLS equation

i0.V + 5%w”(k)(8, )V =3i|V|*V.
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The NLS approximation Derivation

With U(et, t,x) = V(et,x — cgt) € Ker(—wld + A(k) + E),

residual of order O(£2) if V solves the NLS equation

i0.V + 5%w”(k)(8, )V =3i|V|*V.

Theorem (Donnat-Joly-Métivier-Rauch, Kalyakin, Schneider, Lannes. . .

The NLS approximation can be justified “far from singularities”.
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The NLS approximation

The Cauchy problem

Justification

Theorem

Let s > d/2, U% € H5(RY)". Then there exists T = T(|JU°|ys) and a
unique solution U € C([0, T /]; H®) of

1
0:U + A(D)U + ZEU +BU = F (&, U),

with initial condition U°.

Eric Dumas (IF) Nonlinear optics: taking full dispersion and io WPI 2013 11 /22




The NLS approximation

The Cauchy problem

Justification

Theorem

Let s > d/2, U% € H5(RY)". Then there exists T = T(|JU°|ys) and a
unique solution U € C([0, T /]; H®) of

1
0:U + A(D)U + ZEU +BU = F (&, U),

with initial condition U°.

Initial conditions

Initial conditions corresponding to laser pulses:

U._, = uo(x)ei% +c.c.,

whith k € R? the (spatial) wave-number of the oscillations.

y
These initial conditions are O(¢~%) in H®!
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The profile equation

1
[Original equation: 9;U + A(0)U + gEU = eF(e, U)]

@ Add an extra variable 8

U(t,x) = U (t kwt) ,

with the profile U(t, x, ) periodic with respect to 6 (and any w).
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The profile equation

1
[Original equation: 9;U + A(0)U + gEU = eF(e, U)]

@ Add an extra variable 8

U(t,x) = U (t kwt) ,

€

with the profile U(t, x, ) periodic with respect to 6 (and any w).
@ Now, solve the profile equation (with nonsingular initial data),

8:U + AQ)U + éﬁ(ng, kDy)U = £F (e, U),
U_o(x,0) = u°(x)e” + c.c.
Notation:

E
E(ng, kDg) = —wDy + A(k)D@ + -, Dy = —i0y.
I
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The NLS approximation The profile equation

1 kex
[8tU + A(9)U + gEU = eF(e,U), U, = uo(x)e’kT + c.c.]

Theorem

Let s > d/2. There exists T = T(|u®|ns) and a unique solution
U € C([0, T /e]; H®). Moreover,

U(t7X) = U <t7X7 ‘(‘);_u)t) Y

where U solves the profile equation.
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The NLS approximation The profile equation

1 kex
[8tU + A(9)U + EEU = eF(e,U), U, = uo(x)e’kT + c.c.]

Theorem

Let s > d/2. There exists T = T(|u®|ns) and a unique solution
U € C([0, T /e]; H®). Moreover,

U(t,x) = <t X, kXE_Wt) ,

where U solves the profile equation.

Functional setting: U € C([0, T /e]; H*(T; H%)) (k > 1),

Hk(T, HS) = {f = Z f,,eine, |f’Hk(T,H5) < OO} y

nez
|l enmsy = 2 (L4 1)Kol
neZ
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The slowly varying envelope approximation
The slowly varying envelope approximation

Profile equation: 9, U + A(d)U + éﬁ(ng, kDy)U = eF (e, U).

U(t,x,0) ~ teny(t,x)e" +c.c.
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The slowly varying envelope approximation
The slowly varying envelope approximation

Profile equation: 9, U + A(d)U + éﬁ(ng, kDy)U = eF (e, U).

U(t,x,0) ~ teny(t,x)e" +c.c.

The envelope u = uep, formally satisfies the envelope equation

: E
deu + AO)u + é (~wld + A(k) + —)u=eF(e,u),  u,_, =,

1
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The NLS approximation The slowly varying envelope approximation

The slowly varying envelope approximation

Profile equation: 9, U + A(d)U + éﬁ(ng, kDy)U = eF (e, U).

U(t,x,0) ~ teny(t,x)e" +c.c.

The envelope u = uep, formally satisfies the envelope equation

: E
deu + AO)u + é (~wld + A(k) + —)u=eF(e,u),  u,_, =,

1

where )
1 L .
Fe"(e,u) = 27r/0 e "F(e, ue’ + c.c.)do.
Example
With F(u) = |ul?u, one gets Fe™(u) = (u - u)T + 2|u|u. J
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The NLS approximation The slowly varying envelope approximation

Fast oscillations in the envelope must be avoided. But:

@ The singular linear term creates fast oscillations with frequencies
w — wj(k), where the wj(k) are the eigenvalues of

£(0,k) = A(k) + %E = wi(k)mj(k).
j=1

@ The nonlinearity creates other oscillations that may resonate with the
linear propagator.
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The NLS approximation The slowly varying envelope approximation

Fast oscillations in the envelope must be avoided. But:

@ The singular linear term creates fast oscillations with frequencies
w — wj(k), where the wj(k) are the eigenvalues of

£(0,k) = A(k) + %E = wi(k)mj(k).
j=1

@ The nonlinearity creates other oscillations that may resonate with the
linear propagator.

Solution:

@ A good choice of w:

L(w,k)=0 (w=wi(k)), |w—wj(k’)|bounded from below.
@ Polarization condition on 1% 71(k)u® = 1°.
@ Nonresonance condition:  £(3w, 3k) # 0.
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The NLS approximation The slowly varying envelope approximation

Fast oscillations in the envelope must be avoided. But:

@ The singular linear term creates fast oscillations with frequencies
w — wj(k), where the wj(k) are the eigenvalues of

£(0,k) = A(k) + %E = wi(k)mj(k).
j=1

@ The nonlinearity creates other oscillations that may resonate with the
linear propagator.

Solution:
@ A good choice of w:
L(w,k)=0 (w=wi(k)), |w—wj(k’)|bounded from below.
@ Polarization condition on 1% 71(k)u® = 1°.
@ Nonresonance condition:  £(3w, 3k) # 0.
Satisfied by Maxwell's equations!
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The NLS approximation The slowly varying envelope approximation

Fast oscillations in the envelope must be avoided. But:

@ The singular linear term creates fast oscillations with frequencies
w — wj(k), where the wj(k) are the eigenvalues of

£(0,k) = A(k) + %E = wi(k)mj(k).
j=1

@ The nonlinearity creates other oscillations that may resonate with the
linear propagator.

Solution:
@ A good choice of w:
L(w,k)=0 (w=wi(k)), |w—wj(k’)|bounded from below.
@ Polarization condition on 1% 71(k)u® = 1°.
@ Nonresonance condition:  £(3w, 3k) # 0.

Satisfied by Maxwell's equations!
Approximation theorem:
[(T.)COLIN-GALLICE-LAURIOUX, (M.)COLIN-LANNES].
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Other approximations

o Full dispersion:  upp = m1(k 4+ €D)uepy,

e+ Lwa(k +2D) — w)u = em(k + <D)F (e, )
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Other approximations

o Full dispersion:  upp = m1(k 4+ €D)uepy,

e+ Lwa(k +2D) — w)u = em(k + <D)F (e, )

@ NLS: Taylor expansions (Hx Hessian of w; at k)

é(wl(k—i-&?D)—w) - vwl(k).v—gév.Hk(wl)v+0(g2),
mi(k+eD) = mi(k)+ O(e),
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Other approximations

o Full dispersion:  upp = m1(k 4+ €D)uepy,

e+ Lwa(k +2D) — w)u = em(k + <D)F (e, )

@ NLS: Taylor expansions (Hx Hessian of w; at k)

é(wl(k—i-&?D)—w) - vwl(k).v—gév.Hk(wl)v+0(g2),
mi(k+eD) = mi(k)+ O(e),

Oru~+ cg(k) - Vu — 5%V - HVu = emi(k)F" (g, u).
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Other approximations

o Full dispersion:  upp = m1(k 4+ €D)uepy,

e+ Lwa(k +2D) — w)u = em(k + <D)F (e, )

@ NLS: Taylor expansions (Hx Hessian of w; at k)

é(wl(k—i-&?D)—w) - vwl(k).v—gév.Hk(wl)v+0(g2),
mi(k+eD) = mi(k)+ O(e),

Oru~+ cg(k) - Vu — 5%V - HVu = emi(k)F" (g, u).
@ Frequency improved NLS: better approximates the dispersion relation

wis(k') than wi(k) + ¢z - (K — k) + 2(K' — k) - Hi(K' — k).
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The NLS approximation Taylor expanding further

@ Frequency improved NLS:
(1—icb -V — 2V - BV) d¢lljmp

1
+ ( cg(k) -V — eV - (2Hk + kabT> v+ 52C(V)) Uimp
= emi(k)F (g, timp)-
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The NLS approximation Taylor expanding further

@ Frequency improved NLS:
(1—icb -V — 2V - BV) d¢lljmp

1
+ (Cg(k) .V —ieV - (2Hk + kabT> v+ 52C(V)) Uimp

= emi(k)F (g, timp)-
@ NLS with frequency dependent polarization: to capture slight changes
of polarization,

mik+eD) = i)/
~ (1—ieb-V — 2V - BV)fl(m(k) +eQ(D)),
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The NLS approximation Taylor expanding further

@ Frequency improved NLS:
(1—icb -V — 2V - BV) d¢lljmp

1
+ (Cg(k) .V —ieV - (2Hk + kabT> v+ 52C(V)) Uimp

= emi(k)F (g, timp)-
@ NLS with frequency dependent polarization: to capture slight changes
of polarization,

mi(k+eD) = 71l)/H/97)
~ (1—ieb-V — 2V - BV)fl(m(k) +eQ(D)),

Q(D) = 7i(k) - D —i(b- V)mi(k) :

approximation of m1(k + D) up to order ¢.
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The NLS approximation Taylor expanding further

Then,

(K
(1—ieb-V — &2V - BV)dsu — é (wllE )AL + w’f(k)@?) u

=e((1 — ieb- V)mi(k) + emy(k) - D)F*™ (e, u).
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The NLS approximation Taylor expanding further

Then,

(K
(1—ieb-V — &2V - BV)dsu — é (wllE )AL + w;’((k)f)?) u

=e((1 — ieb- V)mi(k) + emy(k) - D)F*™ (e, u).
This equation looks quasilinear!

Possibility of optical shocks, induced by the “steepening operator” in front
of the nonlinearity?
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Ul GEek
lonization
Taking current density into account:
0¢B + curl E =0,
5 1 1
OtE —ccurl B+ —Q =——J,
€0

€0
0:Q — €obE + wiP 4+ w1Q = —VVn(P),
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lonization processes The model

lonization

Taking current density into account:
0¢B + curl E =0,

1 1
O:E — Pcurl B+ —Q=——1J,
€0

€0
0:Q — €obE + wiP 4+ w1Q = —VVn(P),
J= Je + Ji:
q2
Otde + Vede = ipeEa
me o
atpe = UKpnt|E|2K + Upe’E|2a
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lonization processes The model

lonization

Taking current density into account:
0¢B + curl E =0,

1 1
O:E — Pcurl B+ —Q=——1J,
€0

€0
0:Q — €obE + wiP 4+ w1Q = —VVn(P),
P

8tJe + VeJe = 7peE,
m

(53
o
Otpe = UKPnt|E|2K + Upe’E|27
1

Ji- E = energy needed to extract one electron

X number of electrons per time and volume unit
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lonization processes The model

lonization

Taking current density into account:
0¢B + curl E =0,

1 1
O:E — Pcurl B+ —Q=——1J,
€0

€0
0:Q — €obE + wiP 4+ w1Q = —VVn(P),
P

8tJe + VeJe = 7peE,
m

(53
o
Otpe = UKPnt|E|2K + Upe’E|27
1

Ji- E = energy needed to extract one electron

X number of electrons per time and volume unit

= atpe-
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g
7peE-

Thus 5= okput|EPKLE + U
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lonization processes The model

g
UipeE-

Usual approximation, when E ~ Egye/(kx—%t) 4 ¢ c.:

Thus 5= okput|EPKLE +

. 2
Jo ~ J01e’(k'xiwt) +cc.  with Jy = I'qiepeE()l.
WwMe
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lonization processes The model

Thus & = oxpu| EPK1E + %peE.
Usual approximation, when E ~ Egye(kx—t) 4 cc.:
Jo ~ J01e’(k'xfwt) +cc.  with  Jogg=i—2 peEo1.
WM,

Approximated relation (k = |k|):

V2 iD,
(1+ D2)1/2°

2 1
Jo = 9e peH (sz) E, H(Dz) =
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lonization processes Modifications

@ After nondimensionalization,

( 0:B +curl E=0,
1
O+E — curl B+ EWQ = —cpH (k- Dy) E
—eco(a1|E|?K2 + cp) E,

1
9:Q + e Pwi Q — ~(VVE —woP) = 5%(1 +f(e"|PP))|PI2P,
0

1
3tP — ngQ = 0,
Otp = ect|E|*K + ecop|EI%.
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lonization processes Modifications

@ After nondimensionalization,

( 0:B +curl E=0,
1
O+E — curl B+ EWQ = —cpH (k- Dy) E
—eco(a1|E|?K2 + cp) E,

0
1
3tP — ngQ = 0,
Otp = ect|E|*K + ecop|EI%.

@ NLS:
i(Or + cg - V)E + (AL + a102)E + eap| EPE =
aspE — ic(as| E|*K72E + aspE),
Orp = cag|E|*K 4 casp|E|°.
Eric Dumas (IF) Nonlinear optice! taking fullldispersion andlio WPI 2013
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Does blow-up occur?

i(0r + cg - V)E + (A1 + a102)E + eap| EPE =
aspE — ic(as|E|*K72E + aspE),
Orp = cag|E*K 4 casp| E.

Eric Dumas (IF) Nonlinear optics: taking full dispersion and io WPI 2013

22 /22



el gL

Does blow-up occur?

i(0r + cg - V)E + (A1 + a102)E + eap| EPE =
aspE — ic(as|E|*K72E + aspE),
Orp = cag|E|*K 4 casp| E|2.

Energy estimates, N > 3/2:

e (1EIEm + olEm)IEllL= + I EIFET + [loll =)

e (1EIEm + ollFm) (X + IEIFn + llollFm)

d
S UIE I + lolEn]

IZANIR AN

ensures existence over times of order 1/¢.
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el gL

Does blow-up occur?

i(0r + cg - V)E + (A1 + a102)E + eap| EPE =
aspE — ic(as|E|*K72E + aspE),
Orp = cag|E|*K 4 casp| E|2.

Energy estimates, N > 3/2:

e (1EIEm + olEm)IEllL= + I EIFET + [loll =)

e (1EIEm + ollFm) (X + IEIFn + llollFm)

d
S UIE I + lolEn]

IZANIR AN

ensures existence over times of order 1/¢.

Global existence?
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