Nonlinear optics: taking full dispersion and ionization into account

Eric Dumas

Institut Fourier, Université de Grenoble

Workshop "Modified dispersion for dispersive equations and systems"

Joint work with D. Lannes and J. Szeftel

Goal

Analyze laser-matter interaction,

and understand how singularities can appear, or can be avoided:

Goal

Analyze laser-matter interaction,

and understand how singularities can appear, or can be avoided:

- self-focusing (associated focusing NLS),
- optical shocks (self-steepening of the pulse),
-

Modelization of ionization effects inspired by [Bergé-Skupin].

Maxwell's equations

Maxwell's equations: magnetic field B, electric induction D,

$$\begin{cases} \partial_t B + \text{curl } E = 0, \\ \partial_t D - \frac{1}{\mu_0} \text{curl } B = 0 \end{cases}$$

Coupling to matter via the polarization P,

$$D=\epsilon_0 E+P.$$

Together with the constitutive laws

$$\nabla \cdot D = 0, \qquad \nabla \cdot B = 0.$$

Maxwell's equations

Maxwell's equations: magnetic field B, electric induction D,

$$\begin{cases} \partial_t B + \text{curl } E = 0, \\ \partial_t D - \frac{1}{\mu_0} \text{curl } B = 0 \end{cases}$$

Coupling to matter via the polarization P,

$$D=\epsilon_0 E+P.$$

Together with the constitutive laws

$$\nabla \cdot D = 0, \qquad \nabla \cdot B = 0.$$

Maxwell's equations in (B, E):

$$\left\{ \begin{array}{l} \partial_t B + \mathrm{curl} \ E = 0, \\ \\ \partial_t E - c^2 \mathrm{curl} \ B = \boxed{-\frac{1}{\epsilon_0} \partial_t P}. \end{array} \right.$$

The polarization

• The "anharmonic oscillator model" model [LORENTZ]

$$\partial_t^2 P + \omega_1 \partial_t P + \omega_0^2 P = \epsilon_0 b E.$$

The polarization

• The "anharmonic oscillator model" model [LORENTZ]

$$\partial_t^2 P + \omega_1 \partial_t P + \omega_0^2 P = \epsilon_0 b E.$$

• The "nonlinear anharmonic oscillator model" [OWYOUNG,BLOEMBERGEN,DONNAT-JOLY-METIVIER-RAUCH,...]

$$\partial_t^2 P + \omega_1 \partial_t P + \omega_0^2 P + \boxed{\nabla V_{NL}(P)} = \epsilon_0 b E.$$

4 / 22

$$\partial_t^2 P + \omega_1 \partial_t P + \omega_0^2 P + \left| \nabla V_{NL}(P) \right| = \epsilon_0 b E.$$

Example

(i) Cubic nonlinearity:

$$\nabla V_{NL}(P) = a_3 |P|^2 P.$$

(ii) Cubic-quintic nonlinearity:

$$\nabla V_{NL}(P) = a_3|P|^2P - a_5|P|^4P.$$

(iii) Saturated nonlinearity: there exists a function $\textit{v}_{\textit{sat}}: \mathbb{R}^+ o \mathbb{R}$, with

$$v_{sat}(x) \sim_0 a_3 x$$
 and $\nabla V_{NL}(P) = v_{sat}(|P|^2)P$.

Remark

Global well-posedness for some perturbed (focusing) cubic NLS,

$$i\partial_t v + \Delta v + (1 + f(|v|^2))|v|^2 v = 0, \ t > 0, x \in \mathbb{R}^d.$$

Remark

Global well-posedness for some perturbed (focusing) cubic NLS,

$$i\partial_t v + \Delta v + (1 + f(|v|^2))|v|^2 v = 0, \ t > 0, x \in \mathbb{R}^d.$$

• Saturated nonlinearity: (1 + f(s))s bounded on \mathbb{R}^+ .

$$||(1+f(|v|^2))|v|^2v||_{L^2} \lesssim ||v||_{L^2}$$

ensures global L^2 -wellposedness.

Global well-posedness for some perturbed (focusing) cubic NLS,

$$i\partial_t v + \Delta v + (1 + f(|v|^2))|v|^2 v = 0, \ t > 0, x \in \mathbb{R}^d.$$

• Saturated nonlinearity: (1 + f(s))s bounded on \mathbb{R}^+ .

$$||(1+f(|v|^2))|v|^2v||_{L^2} \lesssim ||v||_{L^2}$$

ensures global L^2 -wellposedness.

• Focusing cubic-defocusing quintic NLS: f(s) = -s.

$$E(v(t)) = \frac{1}{2} \int |\nabla v(t,x)|^2 dx - \frac{1}{4} \int |v(t,x)|^4 dx + \frac{1}{6} \int |v(t,x)|^6 dx$$

$$\geq \frac{1}{2} ||v(t)||_{H^1}^2 - \left(\frac{1}{2} + \frac{3}{32}\right) ||v(t)||_{L^2}^2.$$

Globally well-posed in $H^1(\mathbb{R}^d)$ when d=2.

The Maxwell-Lorentz equations, nondimensionalized

With $Q = \partial_t P$,

$$\begin{cases} \partial_t B + \text{curl } E = 0, \\ \partial_t E - \text{curl } B + \frac{1}{\varepsilon} \sqrt{\gamma} Q = 0, \\ \partial_t Q + \varepsilon^{1+\rho} \omega_1 Q - \frac{1}{\varepsilon} \sqrt{\gamma} E + \frac{1}{\varepsilon} \omega_0 P = \varepsilon \frac{\gamma}{\omega_0^3} (1 + f(\varepsilon^r |P|^2)) |P|^2 P, \\ \partial_t P - \frac{1}{\varepsilon} \omega_0 Q = 0, \end{cases}$$

where

$$\varepsilon = \frac{\text{period of the laser}}{\text{duration of the pulse}}.$$

Abstract formulation

Under the form of a first order semilinear hyperbolic system,

$$\partial_t \mathbf{U} + A(\partial)\mathbf{U} + \frac{1}{\varepsilon}E\mathbf{U} + \varepsilon B\mathbf{U} = \varepsilon F(\varepsilon, \mathbf{U}),$$

where

$$\mathbf{U}: \quad (t,x) \in \mathbb{R} imes \mathbb{R}^d o \mathbb{R}^n, \qquad A(\partial) = \sum_{j=1}^d A_j \partial_j.$$

Assumption

- (i) The matrices A_i are real valued, symmetric matrices.
- (ii) The matrix E is a real valued, skew symmetric matrix.
- (iii) There exists a quadratic form ${\it Q}$ and trilinear mapping ${\it T}$ such that

$$\forall U \in \mathbb{C}^n$$
, $F(\varepsilon, U) = (1 + f(\varepsilon^r Q(U))) T(U, \overline{U}, U)$.

Nonlinear optics: taking full dispersion and io

8 / 22

$$egin{aligned} extit{Res}(\mathbf{U}) := \partial_t \mathbf{U} + A(\partial) \mathbf{U} + rac{1}{arepsilon} E \mathbf{U} - arepsilon |\mathbf{U}|^2 \mathbf{U}. \end{aligned}$$

At diffractive scale:

$$\mathbf{U}(t,x) \sim U(\varepsilon t,t,x)e^{i\frac{\mathbf{k}\cdot \mathbf{x}-\omega t}{\varepsilon}}$$
 (slowly modulated wave packets).

$$egin{aligned} \operatorname{{\it Res}}({f U}) := \partial_t {f U} + {\it A}(\partial) {f U} + rac{1}{arepsilon} {\it E} {f U} - arepsilon |{f U}|^2 {f U}. \end{aligned}$$

At diffractive scale:

$$\mathbf{U}(t,x) \sim U(\varepsilon t,t,x)e^{i\frac{\mathbf{k}\cdot x - \omega t}{\varepsilon}}$$
 (slowly modulated wave packets).

$$Res(\mathbf{U}) \quad e^{-i\frac{\mathbf{k}\cdot\mathbf{x}-\omega t}{\varepsilon}} \sim \\ \frac{1}{\varepsilon} \quad \left(-i\omega\operatorname{Id} + iA(\mathbf{k}) + E\right)U$$
 (dispersion relation & polarization condition)

<ロ > ← □ > ← □ > ← □ > ← □ = ・ の へ ○

$$egin{aligned} extit{Res}(\mathbf{U}) := \partial_t \mathbf{U} + A(\partial) \mathbf{U} + rac{1}{arepsilon} E \mathbf{U} - arepsilon |\mathbf{U}|^2 \mathbf{U}. \end{aligned}$$

At diffractive scale:

$$\mathbf{U}(t,x) \sim U(\varepsilon t,t,x)e^{i\frac{\mathbf{k}\cdot x - \omega t}{\varepsilon}}$$
 (slowly modulated wave packets).

$$\begin{split} Res(\mathbf{U}) & e^{-i\frac{\mathbf{k}\cdot\mathbf{x}-\omega t}{\varepsilon}} \sim \\ & \frac{1}{\varepsilon} \quad (-i\omega \mathrm{Id} + iA(\mathbf{k}) + E)U \\ & \qquad \qquad (\text{dispersion relation \& polarization condition}) \\ & + \quad (\partial_t + \nabla\omega(\mathbf{k})\cdot\nabla)U \quad (\text{transport at the group velocity}) \end{split}$$

4 D > 4 A > 4 B > 4 B > B 9 9 9

$$oxed{{\it Res}({f U}):=\partial_t {f U} + {\it A}(\partial) {f U} + rac{1}{arepsilon} {\it E} {f U} - arepsilon |{f U}|^2 {f U}.}$$

At diffractive scale:

$$\mathbf{U}(t,x) \sim U(\varepsilon t,t,x)e^{i\frac{\mathbf{k}\cdot x - \omega t}{\varepsilon}}$$
 (slowly modulated wave packets).

Notations: $\omega = \omega(\mathbf{k}), c_g = \nabla \omega(\mathbf{k}).$

4 D > 4 A > 4 B > 4 B > B = 900

With
$$U(\varepsilon t, t, x) = V(\varepsilon t, x - c_g t) \in Ker(-\omega Id + A(\mathbf{k}) + E)$$
,

residual of order $O(\varepsilon^2)$ if V solves the NLS equation

$$i\partial_{\tau}V + \varepsilon \frac{1}{2}\omega''(\mathbf{k})(\partial,\partial)V = 3i|V|^{2}V.$$

With
$$U(\varepsilon t, t, x) = V(\varepsilon t, x - c_g t) \in Ker(-\omega Id + A(\mathbf{k}) + E)$$
,

residual of order $O(\varepsilon^2)$ if V solves the NLS equation

$$i\partial_{\tau}V + \varepsilon \frac{1}{2}\omega''(\mathbf{k})(\partial,\partial)V = 3i|V|^{2}V.$$

Theorem (Donnat-Joly-Métivier-Rauch, Kalyakin, Schneider, Lannes...)

The NLS approximation can be justified "far from singularities".

The Cauchy problem

Theorem

Let s > d/2, $\mathbf{U}^0 \in H^s(\mathbb{R}^d)^n$. Then there exists $T = T(|\mathbf{U}^0|_{H^s})$ and a unique solution $\mathbf{U} \in C([0, T/\varepsilon]; H^s)$ of

$$\partial_t \mathbf{U} + A(\partial)\mathbf{U} + \frac{1}{\varepsilon}E\mathbf{U} + \varepsilon B\mathbf{U} = \varepsilon F(\varepsilon, \mathbf{U}),$$

with initial condition U^0 .

The Cauchy problem

Theorem

Let s > d/2, $\mathbf{U}^0 \in H^s(\mathbb{R}^d)^n$. Then there exists $T = T(|\mathbf{U}^0|_{H^s})$ and a unique solution $\mathbf{U} \in C([0, T/\varepsilon]; H^s)$ of

$$\partial_t \mathbf{U} + A(\partial)\mathbf{U} + \frac{1}{\varepsilon}E\mathbf{U} + \varepsilon B\mathbf{U} = \varepsilon F(\varepsilon, \mathbf{U}),$$

with initial condition U^0 .

Initial conditions

Initial conditions corresponding to laser pulses:

$$\mathbf{U}_{|_{t=0}} = u^0(x)e^{i\frac{\mathbf{k}\cdot x}{\varepsilon}} + \text{c.c.},$$

whith $\mathbf{k} \in \mathbb{R}^d$ the (spatial) wave-number of the oscillations.

These initial conditions are $O(\varepsilon^{-s})$ in H^{s} !

11 / 22

The profile equation

Original equation:
$$\partial_t \mathbf{U} + A(\partial) \mathbf{U} + \frac{1}{\varepsilon} E \mathbf{U} = \varepsilon F(\varepsilon, \mathbf{U}).$$

• Add an extra variable θ

$$\mathbf{U}(t,x) = U\left(t,x,\frac{\mathbf{k}\cdot x - \omega t}{\varepsilon}\right),\,$$

with the profile $U(t, x, \theta)$ periodic with respect to θ (and any ω).

The profile equation

Original equation:
$$\partial_t \mathbf{U} + A(\partial) \mathbf{U} + rac{1}{arepsilon} E \mathbf{U} = arepsilon F(arepsilon, \mathbf{U}).$$

• Add an extra variable θ

$$\mathbf{U}(t,x) = U\left(t,x,\frac{\mathbf{k}\cdot x - \omega t}{\varepsilon}\right),\,$$

with the profile $U(t, x, \theta)$ periodic with respect to θ (and any ω).

• Now, solve the profile equation (with nonsingular initial data),

$$\begin{cases} \partial_t U + A(\partial)U + \frac{i}{\varepsilon}\mathcal{L}(\omega D_{\theta}, \mathbf{k}D_{\theta})U = \varepsilon F(\varepsilon, U), \\ U_{|_{t=0}}(x, \theta) = u^0(x)e^{i\theta} + \text{c.c.} \end{cases}$$

Notation:

$$\mathcal{L}(\omega D_{ heta}, \mathbf{k} D_{ heta}) = -\omega D_{ heta} + A(\mathbf{k}) D_{ heta} + \frac{E}{i}, \qquad D_{ heta} = -i \partial_{ heta}.$$

$$\partial_t \mathbf{U} + A(\partial) \mathbf{U} + \frac{1}{\varepsilon} E \mathbf{U} = \varepsilon F(\varepsilon, \mathbf{U}), \qquad \mathbf{U}_{|_{t=0}} = u^0(x) e^{i\frac{\mathbf{k} \cdot \mathbf{x}}{\varepsilon}} + \text{c.c.}$$

Theorem

Let s > d/2. There exists $T = T(|u^0|_{H^s})$ and a unique solution $\mathbf{U} \in C([0, T/\varepsilon]; H^s)$. Moreover,

$$\mathbf{U}(t,x) = U\left(t,x,\frac{\mathbf{k}\cdot x - \omega t}{\varepsilon}\right),\,$$

where U solves the profile equation.

Eric Dumas (IF)

$$\left[\partial_t \mathbf{U} + A(\partial) \mathbf{U} + \frac{1}{\varepsilon} E \mathbf{U} = \varepsilon F(\varepsilon, \mathbf{U}), \qquad \mathbf{U}_{|_{t=0}} = u^0(x) e^{i\frac{\mathbf{k} \cdot x}{\varepsilon}} + \text{c.c.}\right]$$

Theorem

Let s > d/2. There exists $T = T(|u^0|_{H^s})$ and a unique solution $\mathbf{U} \in C([0, T/\varepsilon]; H^s)$. Moreover,

$$\mathbf{U}(t,x) = U\left(t,x,\frac{\mathbf{k}\cdot x - \omega t}{\varepsilon}\right),\,$$

where U solves the profile equation.

Functional setting: $U \in C([0, T/\varepsilon]; H^k(\mathbb{T}; H^s))$ (k > 1),

$$\begin{split} H^k(\mathbb{T};H^s) &= \left\{ f = \sum_{n \in \mathbb{Z}} f_n e^{in\theta}, |f|_{H^k(\mathbb{T},H^s)} < \infty \right\}, \\ |f|^2_{H^k(\mathbb{T},H^s)} &= \sum (1+n^2)^k |f_n|^2_{H^s}. \end{split}$$

Eric Dumas (IF)

The slowly varying envelope approximation

Profile equation:
$$\partial_t U + A(\partial)U + \frac{i}{\varepsilon}\mathcal{L}(\omega D_\theta, \mathbf{k}D_\theta)U = \varepsilon F(\varepsilon, U).$$

$$U(t,x,\theta) \sim u_{env}(t,x)e^{i\theta} + \text{c.c.}$$

The slowly varying envelope approximation

Profile equation:
$$\partial_t U + A(\partial)U + \frac{i}{\varepsilon}\mathcal{L}(\omega D_\theta, \mathbf{k}D_\theta)U = \varepsilon F(\varepsilon, U).$$

$$U(t,x,\theta) \sim u_{env}(t,x)e^{i\theta} + \text{c.c.}$$

The envelope $u = u_{env}$ formally satisfies the envelope equation

$$\partial_t u + A(\partial)u + \frac{i}{\varepsilon}(-\omega \operatorname{Id} + A(\mathbf{k}) + \frac{E}{i})u = \varepsilon F^{env}(\varepsilon, u), \quad u_{|_{t=0}} = u^0,$$

The slowly varying envelope approximation

Profile equation: $\partial_t U + A(\partial)U + \frac{i}{\varepsilon}\mathcal{L}(\omega D_\theta, \mathbf{k}D_\theta)U = \varepsilon F(\varepsilon, U).$

$$U(t,x,\theta) \sim u_{env}(t,x)e^{i\theta} + \text{c.c.}$$

The envelope $u = u_{env}$ formally satisfies the envelope equation

$$\partial_t u + A(\partial)u + \frac{i}{\varepsilon}(-\omega \operatorname{Id} + A(\mathbf{k}) + \frac{E}{i})u = \varepsilon F^{env}(\varepsilon, u), \quad u_{|_{t=0}} = u^0,$$

where

$$F^{env}(\varepsilon, u) = \frac{1}{2\pi} \int_0^{2\pi} e^{-i\theta} F(\varepsilon, ue^{i\theta} + \text{c.c.}) d\theta.$$

Example

With $F(u) = |u|^2 u$, one gets $F^{env}(u) = (u \cdot u)\overline{u} + 2|u|^2 u$.

 The singular linear term creates fast oscillations with frequencies $\omega - \omega_i(\mathbf{k})$, where the $\omega_i(\mathbf{k})$ are the eigenvalues of

$$\mathcal{L}(0,\mathbf{k}) = A(\mathbf{k}) + \frac{1}{i}E = \sum_{j=1}^{m} \omega_j(\mathbf{k})\pi_j(\mathbf{k}).$$

 The nonlinearity creates other oscillations that may resonate with the linear propagator.

• The singular linear term creates fast oscillations with frequencies $\omega - \omega_j(\mathbf{k})$, where the $\omega_j(\mathbf{k})$ are the eigenvalues of

$$\mathcal{L}(0,\mathbf{k}) = A(\mathbf{k}) + \frac{1}{i}E = \sum_{j=1}^{m} \omega_j(\mathbf{k})\pi_j(\mathbf{k}).$$

 The nonlinearity creates other oscillations that may resonate with the linear propagator.

Solution:

• A good choice of ω :

$$\mathcal{L}(\omega, \mathbf{k}) = 0$$
 $(\omega = \omega_1(\mathbf{k})), \quad |\omega - \omega_j(\mathbf{k}')|$ bounded from below.

- Polarization condition on u^0 : $\pi_1(\mathbf{k})u^0 = u^0$.
- Nonresonance condition: $\mathcal{L}(3\omega, 3\mathbf{k}) \neq 0$.

• The singular linear term creates fast oscillations with frequencies $\omega - \omega_j(\mathbf{k})$, where the $\omega_j(\mathbf{k})$ are the eigenvalues of

$$\mathcal{L}(0,\mathbf{k}) = A(\mathbf{k}) + \frac{1}{i}E = \sum_{j=1}^{m} \omega_j(\mathbf{k})\pi_j(\mathbf{k}).$$

 The nonlinearity creates other oscillations that may resonate with the linear propagator.

Solution:

• A good choice of ω :

$$\mathcal{L}(\omega, \mathbf{k}) = 0$$
 $(\omega = \omega_1(\mathbf{k}))$, $|\omega - \omega_j(\mathbf{k}')|$ bounded from below.

- Polarization condition on u^0 : $\pi_1(\mathbf{k})u^0 = u^0$.
- Nonresonance condition: $\mathcal{L}(3\omega, 3\mathbf{k}) \neq 0$.

Satisfied by Maxwell's equations!

4D> 4A> 4B> 4B> B 990

• The singular linear term creates fast oscillations with frequencies $\omega - \omega_j(\mathbf{k})$, where the $\omega_j(\mathbf{k})$ are the eigenvalues of

$$\mathcal{L}(0,\mathbf{k}) = A(\mathbf{k}) + \frac{1}{i}E = \sum_{j=1}^{m} \omega_j(\mathbf{k})\pi_j(\mathbf{k}).$$

 The nonlinearity creates other oscillations that may resonate with the linear propagator.

Solution:

• A good choice of ω :

$$\mathcal{L}(\omega, \mathbf{k}) = 0$$
 $(\omega = \omega_1(\mathbf{k})), \quad |\omega - \omega_j(\mathbf{k}')|$ bounded from below.

- Polarization condition on u^0 : $\pi_1(\mathbf{k})u^0 = u^0$.
- Nonresonance condition: $\mathcal{L}(3\omega, 3\mathbf{k}) \neq 0$.

Satisfied by Maxwell's equations!

Approximation theorem:

[(T.)Colin-Gallice-Laurioux, (M.)Colin-Lannes].

• Full dispersion: $u_{FD} = \pi_1(\mathbf{k} + \varepsilon D)u_{env}$,

$$\partial_t u + \frac{i}{\varepsilon} (\omega_1(\mathbf{k} + \varepsilon D) - \omega) u = \varepsilon \pi_1(\mathbf{k} + \varepsilon D) F^{env}(\varepsilon, u).$$

• Full dispersion: $u_{FD} = \pi_1(\mathbf{k} + \varepsilon D)u_{env}$,

$$\partial_t u + \frac{i}{\varepsilon} (\omega_1(\mathbf{k} + \varepsilon D) - \omega) u = \varepsilon \pi_1(\mathbf{k} + \varepsilon D) F^{env}(\varepsilon, u).$$

• NLS: Taylor expansions ($H_{\mathbf{k}}$ Hessian of ω_1 at \mathbf{k})

$$\frac{i}{\varepsilon}(\omega_1(\mathbf{k} + \varepsilon D) - \omega) = \nabla \omega_1(\mathbf{k}) \cdot \nabla - \varepsilon \frac{i}{2} \nabla \cdot H_{\mathbf{k}}(\omega_1) \nabla + O(\varepsilon^2),
\pi_1(\mathbf{k} + \varepsilon D) = \pi_1(\mathbf{k}) + O(\varepsilon),$$

• Full dispersion: $u_{FD} = \pi_1(\mathbf{k} + \varepsilon D)u_{env}$,

$$\partial_t u + \frac{i}{\varepsilon} (\omega_1(\mathbf{k} + \varepsilon D) - \omega) u = \varepsilon \pi_1(\mathbf{k} + \varepsilon D) F^{env}(\varepsilon, u).$$

• NLS: Taylor expansions ($H_{\mathbf{k}}$ Hessian of ω_1 at \mathbf{k})

$$\frac{i}{\varepsilon}(\omega_1(\mathbf{k} + \varepsilon D) - \omega) = \nabla \omega_1(\mathbf{k}) \cdot \nabla - \varepsilon \frac{i}{2} \nabla \cdot H_{\mathbf{k}}(\omega_1) \nabla + O(\varepsilon^2),
\pi_1(\mathbf{k} + \varepsilon D) = \pi_1(\mathbf{k}) + O(\varepsilon),$$

$$\partial_t u + c_g(\mathbf{k}) \cdot \nabla u - \varepsilon \frac{i}{2} \nabla \cdot H_{\mathbf{k}} \nabla u = \varepsilon \pi_1(\mathbf{k}) F^{env}(\varepsilon, u).$$

• Full dispersion: $u_{FD} = \pi_1(\mathbf{k} + \varepsilon D)u_{env}$,

$$\partial_t u + \frac{i}{\varepsilon} (\omega_1(\mathbf{k} + \varepsilon D) - \omega) u = \varepsilon \pi_1(\mathbf{k} + \varepsilon D) F^{env}(\varepsilon, u).$$

• NLS: Taylor expansions (H_k Hessian of ω_1 at k)

$$\frac{i}{\varepsilon}(\omega_{1}(\mathbf{k}+\varepsilon D)-\omega) = \nabla \omega_{1}(\mathbf{k}) \cdot \nabla - \varepsilon \frac{i}{2} \nabla \cdot H_{\mathbf{k}}(\omega_{1}) \nabla + O(\varepsilon^{2}),$$

$$\pi_{1}(\mathbf{k}+\varepsilon D) = \pi_{1}(\mathbf{k}) + O(\varepsilon),$$

$$\partial_t u + c_g(\mathbf{k}) \cdot \nabla u - \varepsilon \frac{i}{2} \nabla \cdot H_{\mathbf{k}} \nabla u = \varepsilon \pi_1(\mathbf{k}) F^{env}(\varepsilon, u).$$

• Frequency improved NLS: better approximates the dispersion relation $\omega_{NLS}(\mathbf{k}')$ than $\omega_1(\mathbf{k}) + c_g \cdot (\mathbf{k}' - \mathbf{k}) + \frac{1}{2}(\mathbf{k}' - \mathbf{k}) \cdot H_{\mathbf{k}}(\mathbf{k}' - \mathbf{k})$.

Eric Dumas (IF)

• Frequency improved NLS:

$$(1 - i\varepsilon \mathbf{b} \cdot \nabla - \varepsilon^{2} \nabla \cdot B \nabla) \partial_{t} u_{imp}$$

$$+ \left(c_{g}(\mathbf{k}) \cdot \nabla - i\varepsilon \nabla \cdot \left(\frac{1}{2} H_{\mathbf{k}} + \nabla_{\mathbf{k}} \omega \mathbf{b}^{T} \right) \nabla + \varepsilon^{2} \mathbf{C}(\nabla) \right) u_{imp}$$

$$= \varepsilon \pi_{1}(\mathbf{k}) F(\varepsilon, u_{imp}).$$

17 / 22

• Frequency improved NLS:

$$(1 - i\varepsilon \mathbf{b} \cdot \nabla - \varepsilon^{2} \nabla \cdot B \nabla) \partial_{t} u_{imp}$$

$$+ \left(c_{g}(\mathbf{k}) \cdot \nabla - i\varepsilon \nabla \cdot \left(\frac{1}{2} H_{\mathbf{k}} + \nabla_{\mathbf{k}} \omega \mathbf{b}^{T} \right) \nabla + \varepsilon^{2} \mathbf{C}(\nabla) \right) u_{imp}$$

$$= \varepsilon \pi_{1}(\mathbf{k}) F(\varepsilon, u_{imp}).$$

 NLS with frequency dependent polarization: to capture slight changes of polarization,

$$\begin{array}{lll} \pi_1(\mathbf{k} + \varepsilon D) & = & \pi_1(\mathbf{k}) / \pi / \mathcal{O}(\varepsilon) \\ \\ & \simeq & (1 - i\varepsilon \mathbf{b} \cdot \nabla - \varepsilon^2 \nabla \cdot B \nabla)^{-1} (\pi_1(\mathbf{k}) + \varepsilon Q(D)), \end{array}$$

• Frequency improved NLS:

$$(1 - i\varepsilon \mathbf{b} \cdot \nabla - \varepsilon^{2} \nabla \cdot B \nabla) \partial_{t} u_{imp}$$

$$+ \left(c_{g}(\mathbf{k}) \cdot \nabla - i\varepsilon \nabla \cdot \left(\frac{1}{2} H_{\mathbf{k}} + \nabla_{\mathbf{k}} \omega \mathbf{b}^{T} \right) \nabla + \varepsilon^{2} \mathbf{C}(\nabla) \right) u_{imp}$$

$$= \varepsilon \pi_{1}(\mathbf{k}) F(\varepsilon, u_{imp}).$$

 NLS with frequency dependent polarization: to capture slight changes of polarization,

$$\pi_{1}(\mathbf{k} + \varepsilon D) = \pi_{1}(\mathbf{k}) / H/\mathcal{O}(\varepsilon)$$

$$\simeq (1 - i\varepsilon \mathbf{b} \cdot \nabla - \varepsilon^{2} \nabla \cdot B \nabla)^{-1} (\pi_{1}(\mathbf{k}) + \varepsilon Q(D)),$$

$$Q(D) = \pi_1'(\mathbf{k}) \cdot D - i(\mathbf{b} \cdot \nabla)\pi_1(\mathbf{k})$$
:

approximation of $\pi_1(\mathbf{k} + \varepsilon D)$ up to order ε .

Then,

$$(1 - i\varepsilon \mathbf{b} \cdot \nabla - \varepsilon^{2} \nabla \cdot B \nabla) \partial_{t} u - \frac{i}{2} \left(\frac{\omega'_{1}(k)}{k} \Delta_{\perp} + \omega''_{1}(k) \partial_{z}^{2} \right) u$$
$$= \varepsilon ((1 - i\varepsilon \mathbf{b} \cdot \nabla) \pi_{1}(\mathbf{k}) + \varepsilon \pi'_{1}(\mathbf{k}) \cdot D) F^{env}(\varepsilon, u).$$

Then,

$$(1 - i\varepsilon \mathbf{b} \cdot \nabla - \varepsilon^{2} \nabla \cdot B \nabla) \partial_{t} u - \frac{i}{2} \left(\frac{\omega'_{1}(k)}{k} \Delta_{\perp} + \omega''_{1}(k) \partial_{z}^{2} \right) u$$
$$= \varepsilon ((1 - i\varepsilon \mathbf{b} \cdot \nabla) \pi_{1}(\mathbf{k}) + \varepsilon \pi'_{1}(\mathbf{k}) \cdot D) F^{env}(\varepsilon, u).$$

This equation looks quasilinear!

Possibility of optical shocks, induced by the "steepening operator" in front of the nonlinearity?

Taking current density into account:

$$\left\{ \begin{array}{l} \partial_t B + \mathrm{curl} \ E = 0, \\ \partial_t E - c^2 \mathrm{curl} \ B + \frac{1}{\epsilon_0} Q = -\frac{1}{\epsilon_0} J, \\ \partial_t Q - \epsilon_0 b E + \omega_0^2 P + \omega_1 Q = -\nabla V_{NL}(P), \\ \partial_t P - Q = 0. \end{array} \right.$$

Taking current density into account:

$$\left\{ \begin{array}{l} \partial_t B + \mathrm{curl} \ E = 0, \\ \partial_t E - c^2 \mathrm{curl} \ B + \frac{1}{\epsilon_0} Q = -\frac{1}{\epsilon_0} J, \\ \partial_t Q - \epsilon_0 b E + \omega_0^2 P + \omega_1 Q = -\nabla V_{NL}(P), \\ \partial_t P - Q = 0. \end{array} \right.$$

$$J=J_{\rm e}+J_{\rm i},$$

$$\begin{cases} \partial_t J_{\rm e} + \nu_{\rm e} J_{\rm e} = \frac{q_{\rm e}^2}{m_{\rm e}} \rho_{\rm e} E, \\ \partial_t \rho_{\rm e} = \sigma_K \rho_{\rm nt} |E|^{2K} + \frac{\sigma}{U_{\rm i}} \rho_{\rm e} |E|^2, \end{cases}$$

Taking current density into account:

$$\left\{ \begin{array}{l} \partial_t B + \mathrm{curl} \ E = 0, \\ \partial_t E - c^2 \mathrm{curl} \ B + \frac{1}{\epsilon_0} Q = -\frac{1}{\epsilon_0} J, \\ \partial_t Q - \epsilon_0 b E + \omega_0^2 P + \omega_1 Q = -\nabla V_{NL}(P), \\ \partial_t P - Q = 0. \end{array} \right.$$

$$J = J_{e} + J_{i},$$

$$\begin{cases} \partial_t J_{\rm e} + \nu_{\rm e} J_{\rm e} = \frac{q_{\rm e}^2}{m_{\rm e}} \rho_{\rm e} E, \\ \partial_t \rho_{\rm e} = \sigma_K \rho_{\rm nt} |E|^{2K} + \frac{\sigma}{U_{\rm i}} \rho_{\rm e} |E|^2, \end{cases}$$

 $J_i \cdot E$ = energy needed to extract one electron

× number of electrons per time and volume unit

◆ロト ◆部 → ◆意 → ◆意 → りへで

Taking current density into account:

$$\left\{ \begin{array}{l} \partial_t B + \mathrm{curl} \ E = 0, \\ \partial_t E - c^2 \mathrm{curl} \ B + \frac{1}{\epsilon_0} Q = -\frac{1}{\epsilon_0} J, \\ \partial_t Q - \epsilon_0 b E + \omega_0^2 P + \omega_1 Q = -\nabla V_{NL}(P), \\ \partial_t P - Q = 0. \end{array} \right.$$

$$\begin{cases} \partial_t J_{\rm e} + \nu_{\rm e} J_{\rm e} = \frac{q_{\rm e}^2}{m_{\rm e}} \rho_{\rm e} E, \\ \partial_t \rho_{\rm e} = \sigma_K \rho_{\rm nt} |E|^{2K} + \frac{\sigma}{U_{\rm i}} \rho_{\rm e} |E|^2, \end{cases}$$

energy needed to extract one electron × number of electrons per time and volume unit

 $= \partial_t \rho_e$.

Thus
$$J_{\rm i} = \sigma_K \rho_{\rm nt} |E|^{2K-1} E + \frac{\sigma}{U_{\rm i}} \rho_{\rm e} E.$$

Thus
$$J_{\rm i} = \sigma_{\rm K} \rho_{\rm nt} |E|^{2{\rm K}-1} E + \frac{\sigma}{U_{\rm i}} \rho_{\rm e} E.$$

Usual approximation, when $E \sim E_{01}e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)} + \text{c.c.}$:

$$J_{
m e} \sim J_{01} e^{i({f k}\cdot {f x}-\omega t)} + {
m c.c.} \quad {
m with} \quad J_{01} = i rac{q_{
m e}^2}{\omega m_{
m e}}
ho_{
m e} E_{01}.$$

Thus
$$J_{\rm i} = \sigma_{\rm K} \rho_{\rm nt} |E|^{2{\rm K}-1} E + \frac{\sigma}{U_{\rm i}} \rho_{\rm e} E.$$

Usual approximation, when $E \sim E_{01}e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)} + \text{c.c.}$:

$$J_{\rm e} \sim J_{01} {\rm e}^{i({f k}\cdot x - \omega t)} + {
m c.c.} \quad {
m with} \quad J_{01} = i rac{q_{
m e}^2}{\omega m_{
m e}}
ho_{
m e} E_{01}.$$

Approximated relation $(k = |\mathbf{k}|)$:

$$J_{\rm e} = \frac{q_{\rm e}^2}{\omega \, m_{\rm e}} \rho_{\rm e} \mathcal{H}\left(\frac{1}{k} D_z\right) E, \quad \mathcal{H}(D_z) = \frac{\sqrt{2} \; i D_z}{(1+D_z^2)^{1/2}}. \label{eq:Je}$$

After nondimensionalization,

$$\begin{cases} \begin{array}{l} \partial_t B + \operatorname{curl} \; E = 0, \\ \\ \partial_t E - \operatorname{curl} \; B + \frac{1}{\varepsilon} \sqrt{\gamma} Q = -\varepsilon \rho \mathcal{H} \left(\varepsilon \mathbf{k} \cdot D_x \right) E \\ \\ -\varepsilon c_0 \left(c_1 |E|^{2K-2} + c_2 \rho \right) E, \\ \\ \partial_t Q + \varepsilon^{1+\rho} \omega_1 Q - \frac{1}{\varepsilon} (\sqrt{\gamma} E - \omega_0 P) = \varepsilon \frac{\gamma}{\omega_0^3} \left(1 + f(\varepsilon^r |P|^2) \right) |P|^2 P, \\ \\ \partial_t P - \frac{1}{\varepsilon} \omega_0 Q = 0, \\ \\ \partial_t \rho = \varepsilon c_1 |E|^{2K} + \varepsilon c_2 \rho |E|^2. \end{array} \end{cases}$$

After nondimensionalization,

$$\begin{cases} \partial_t B + \operatorname{curl} E = 0, \\ \partial_t E - \operatorname{curl} B + \frac{1}{\varepsilon} \sqrt{\gamma} Q = -\varepsilon \rho \mathcal{H} \left(\varepsilon \mathbf{k} \cdot D_{\mathsf{X}} \right) E \\ -\varepsilon c_0 \left(c_1 |E|^{2K-2} + c_2 \rho \right) E, \\ \partial_t Q + \varepsilon^{1+p} \omega_1 Q - \frac{1}{\varepsilon} \left(\sqrt{\gamma} E - \omega_0 P \right) = \varepsilon \frac{\gamma}{\omega_0^3} \left(1 + f(\varepsilon^r |P|^2) \right) |P|^2 P, \\ \partial_t P - \frac{1}{\varepsilon} \omega_0 Q = 0, \\ \partial_t \rho = \varepsilon c_1 |E|^{2K} + \varepsilon c_2 \rho |E|^2. \end{cases}$$

NLS:

$$\begin{cases} i(\partial_t + c_g \cdot \nabla)E + \varepsilon(\Delta_{\perp} + a_1\partial_z^2)E + \varepsilon a_2|E|^2E = \\ a_3\rho E - ic(a_4|E|^{2K-2}E + a_5\rho E), \\ \partial_t \rho = \varepsilon a_4|E|^{2K} + \varepsilon a_5\rho|E|^2. \end{cases}$$

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ト り へ ○

Does blow-up occur?

$$\begin{cases} i(\partial_t + c_g \cdot \nabla)E + \varepsilon(\Delta_{\perp} + a_1\partial_z^2)E + \varepsilon a_2|E|^2E = \\ a_3\rho E - ic(a_4|E|^{2K-2}E + a_5\rho E), \\ \partial_t \rho = \varepsilon a_4|E|^{2K} + \varepsilon a_5\rho|E|^2. \end{cases}$$

Does blow-up occur?

$$\begin{cases} i(\partial_t + c_g \cdot \nabla)E + \varepsilon(\Delta_{\perp} + a_1\partial_z^2)E + \varepsilon a_2|E|^2E = \\ a_3\rho E - ic(a_4|E|^{2K-2}E + a_5\rho E), \\ \partial_t \rho = \varepsilon a_4|E|^{2K} + \varepsilon a_5\rho|E|^2. \end{cases}$$

Energy estimates, N > 3/2:

$$\frac{d}{dt}[\|E\|_{H^{N}}^{2} + \|\rho\|_{H^{N}}^{2}] \lesssim \varepsilon(\|E\|_{H^{N}}^{2} + \|\rho\|_{H^{N}}^{2})(\|E\|_{L^{\infty}} + \|E\|_{L^{\infty}}^{2K-2} + \|\rho\|_{L^{\infty}})$$

$$\lesssim \varepsilon(\|E\|_{H^{N}}^{2} + \|\rho\|_{H^{N}}^{2})(1 + \|E\|_{H^{N}}^{2} + \|\rho\|_{H^{N}}^{2})^{K-1}$$

ensures existence over times of order $1/\varepsilon$.

Does blow-up occur?

$$\begin{cases} i(\partial_t + c_g \cdot \nabla)E + \varepsilon(\Delta_{\perp} + a_1\partial_z^2)E + \varepsilon a_2|E|^2E = \\ a_3\rho E - ic(a_4|E|^{2K-2}E + a_5\rho E), \\ \partial_t \rho = \varepsilon a_4|E|^{2K} + \varepsilon a_5\rho|E|^2. \end{cases}$$

Energy estimates, N > 3/2:

$$\frac{d}{dt}[\|E\|_{H^{N}}^{2} + \|\rho\|_{H^{N}}^{2}] \lesssim \varepsilon(\|E\|_{H^{N}}^{2} + \|\rho\|_{H^{N}}^{2})(\|E\|_{L^{\infty}} + \|E\|_{L^{\infty}}^{2K-2} + \|\rho\|_{L^{\infty}})$$

$$\lesssim \varepsilon(\|E\|_{H^{N}}^{2} + \|\rho\|_{H^{N}}^{2})(1 + \|E\|_{H^{N}}^{2} + \|\rho\|_{H^{N}}^{2})^{K-1}$$

ensures existence over times of order $1/\varepsilon$.

Global existence?

