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Motivation
In this talk, we consider the propagation of (non)linear high frequency

waves in heterogeneous media with periodic microstructures. Such problems
arise, e.g., in the study of

composite materials,
photonic crystals,
laser optics,
Bose-Einstein condensates in optical lattices,
· · · · · ·
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Semiclassical regime
We are interested in the case where the typical wavelength is comparable

to the period of the medium, and both of which are assumed to be small on the
length-scale of the considered physical domain. This consequently leads us to
a problem involving two-scales where from now on we shall denote by
0 < ε ≪ 1 the small dimensionless parameter describing the microscopic /
macroscopic scale ratio.
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Typical Methods

The mathematically precise asymptotic description of these problems has
been intensively studied by
⋆ A. Bensoussan, J. L. Lions, and G. Papanicolaou, 1978;
⋆ P. Gérard, P. Markowich, N. Mauser, and F. Poupaud, 1997;
⋆ J. C. Guillot, J. Ralston, and E. Trubowitz, 1998;
⋆ G. Panati, H. Spohn, and S. Teufel, 2003;
⋆ · · · · · · ;

On the other hand, the numerical literature on these issues is not so
abundant, cf. L. Gosse, P. A. Markowich, N. Mauser, et al, 2004--2007.
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Numerical Methods and Challenges

Markowich, Pietra, Pohl, et al, (1999, 2003): Using finite difference
schemes for linear Schrödinger equation, one needs ∆x = o(ε) and
∆t = o(ε) to get the correct observables.
Bao, Jin, Markowich (2002, 2004): Using Fourier spectral method for
(non)linear Schrödinger equation, to get the correct observables, one
needs

∆x = O(ε) and ∆t = O(ε) for defocusing case,
∆x = O(ε) and ∆t = o(ε) for strong focusing case.

Therefore, the computational costs are very expensive for semiclassical
cases (ε ≪ 1), especially with highly oscillating potential.

Recently, we developed an efficient numerical approach based on
Bloch-decomposition method to reduce the computational costs.123

1Huang, Jin, Markowich, Sparber, SISC 07’/MMS 08’/WM 09’/CAM 10’
2Jin, Wu, Yang, Huang, JCP, 10’
3Wu, Huang, Jin, Yin, CMS, 12’
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Outline

...1 Model problem in quantum dynamics
A classical time-splitting spectral method (TS)
The Bloch decomposition based algorithm (BD)

...2 Bloch Decomposition Based Algorithm
Review of Bloch’s Decomposition
Our BD algorithm in details

...3 Numerical Implementation and Applications
Numerical tests for 1D problems
Numerical examples for lattice BEC in 3D
Random coefficients: Stability tests and Anderson localization

...4 Conclusion
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Model problem in quantum dynamics
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Model problem in quantum dynamics

Model Problem

Let us first focus on the Schrödinger equation for the electrons in a
semiclassical asymptotic scaling, i.e. iε∂tψ = −ε2

2
∆ψ + VΓ

(
x

ε

)
ψ + U(x)ψ + β|ψ|2ψ, x ∈ Rd,

ψ
∣∣
t=0 = ψin(x),

(1)

where 0 < ε ≪ 1, denotes the small semiclassical parameter describing the
microscopic/macroscopic scale ratio.

The equation (1) describes the motion of the electrons on the macroscopic
scale induced by the external potentials U and VΓ.

The highly oscillating lattice-potential VΓ(y) is assumed to be periodic
w.r.t some regular lattice Γ.

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 9 / 49



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Model problem in quantum dynamics

Conserved Quantities

It is well known that we have two conserved quantities:
Mass

M
(
ψ(t)

)
=
∫
Rd

|ψ|2dx = M
(
ψ(0)

)
.

Energy

E
(
ψ(t)

)
=
∫
Rd

[
ε2

2
|∇ψ|2 + (U + VΓ)|ψ|2 + β

2
|ψ|4

]
dx = E

(
ψ(0)

)
.

β > 0 --- defocusing case,
β < 0 --- focusing case.

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 10 / 49
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Model problem in quantum dynamics A classical time-splitting spectral method (TS)

Typical methods for numerical solution

Certainly, one can consider the finite difference method or
pseudo-spectral method to solve this problem.

Actually, the time-splitting pseudo-spectral method proposed by Bao, Jin,
Markowich (2002, 2004) is almost the optimal method for (non)linear
Schrödinger equation without lattice potential.

To get the correct observables, one needs

∆x = O(ε) and ∆t = O(ε) for defocusing case,
∆x = O(ε) and ∆t = o(ε) for strong focusing case.
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Model problem in quantum dynamics A classical time-splitting spectral method (TS)

Classical Time-Splitting Spectral Method (TS)
That means, ignoring the additional structure provided by the periodic

potential VΓ, one might solve (1) by a classical time-splitting spectral scheme:
Step 1. First, we solve the equation

iε∂tψ = −ε2

2
∆ψ, (2)

on a fixed time interval ∆t, relying on the pseudo-spectral method.
Step 2. Then, we solve the ordinary differential equation

iε∂tψ =
(
VΓ

(
x

ε

)
+ U(x) + β|ψ|2

)
ψ, (3)

on the same time-interval, where the solution obtained in Step 1 serves as
initial condition for Step 2. It is clear that |ψ|2 does not change in Step 2, i.e.
the exact solution of (3) is

ψ(t, x) = ψ(0, x) e−i(VΓ(x/ε)+U(x)+β|ψ|2)t/ε.

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 12 / 49
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Model problem in quantum dynamics The Bloch decomposition based algorithm (BD)

Bloch Decomposition Based Algorithm (BD)
Our analysis and numerical simulation show that the former algorithm

does not work well for this problem. Another natural time-splitting algorithm
is given as follows:

Step 1. First, we solve the equation

iε∂tψ = −ε2

2
∆ψ + VΓ

(
x

ε

)
ψ, (4)

on a fixed time-interval ∆t. Certainly, we can not use the typical spectral
method to solve it. We shall use the Bloch-decomposition method in this step.

Step 2. Second, we solve the ordinary differential equation (ODE)

iε∂tψ =
(
U(x) + β|ψ|2

)
ψ, (5)

on the same time-interval, where the solution obtained in Step 1 serves as
initial condition for Step 2. We easily obtain the exact solution for this linear
ODE by

ψ(t, x) = ψ(0, x) e−i(U(x)+β|ψ|2)t/ε.

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 13 / 49
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Bloch Decomposition Based Algorithm
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Bloch Decomposition Based Algorithm Review of Bloch’s Decomposition

Notations and definitions

For the sake of simplicity, first, we let d = 1 and assume that Γ = 2πZ,
i.e.

VΓ(y + 2π) = VΓ(y) ∀y ∈ R. (6)

With VΓ obeying (6) we have:
The fundamental domain of our lattice Γ = 2πZ, is C = (0, 2π).
The dual lattice Γ∗ can then be defined as the set of all wave numbers
k ∈ R, for which plane waves of the form exp(ikx) have the same
periodicity as the potential VΓ.
The fundamental domain of the dual lattice, i.e. the (first) Brillouin zone,
B = C∗ is the set of all k ∈ R closer to zero than to any other dual lattice
point. In our case, that is B =

(
−1

2 ,
1
2

)
.

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 15 / 49
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Bloch Decomposition Based Algorithm Review of Bloch’s Decomposition

Review of Bloch’s Decomposition
If we want to solve the two-scale problem (4) in Step 1,

iε∂tψ = −ε2

2
∆ψ + VΓ

(
x

ε

)
ψ ≡ Hψ,

by a method similar to the pseudo-spectral method in TS algorithm, we need
to consider the Bloch eigenvalue problem (shifted cell problem),{

H(k)φm(y, k) =Em(k)φm(y, k),
φm(y + 2π, k) = ei2πkφm(y, k) ∀ k ∈ B,

(7)

with H(k) = 1
2(−i∂y + k)2 + VΓ(y).

Felix Bloch
Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 16 / 49
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Bloch Decomposition Based Algorithm Review of Bloch’s Decomposition

Review of Bloch’s Decomposition (cont.)

It is well known that under very mild conditions on VΓ, the problem (7)
has a complete set of eigenfunctions φm(y, k),m ∈ N, providing, ∀k ∈ B, an
orthonormal basis in L2(C).

Correspondingly, there exists a countable family of real-valued
eigenvalues which can be ordered according to

E1(k) ≤ E2(k) ≤ · · · ≤ Em(k) ≤ · · · , m ∈ N,

including the respective multiplicity.

The set {Em(k) | k ∈ B} ⊂ R is called themth energy band of the
operator H(k),
the eigenfunctions φm(·, k) are usually called Bloch functions. (In the
following the indexm ∈ N will always denote the band index.)

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 17 / 49
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Bloch Decomposition Based Algorithm Review of Bloch’s Decomposition

Review of Bloch’s Decomposition (cont.)
According to Bloch's theorem, we can rewrite φm(y, k) as

φm(y, k) = eikyχm(y, k) ∀m ∈ N, (8)

for some 2π-periodic function χm(·, k). In terms of χm(y, k) the Bloch
eigenvalue problem reads{

H(k)χm(y, k) =Em(k)χm(y, k),
χm(y + 2π, k) =χm(y, k) ∀ k ∈ B.

(9)

Solving this eigenvalue problem allows to decompose the Hilbert space
H = L2(R) into a direct sum of, so called, band spaces, i.e.

L2(R) =
∞⊕
m=1

Hm, (10)

Hm :=
{
ψm(y) =

∫
B
f(k)φm(y, k) dk, f ∈ L2(B)

}
.

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 18 / 49



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Bloch Decomposition Based Algorithm Review of Bloch’s Decomposition

Review of Bloch’s Decomposition (cont.)
This is the well known Bloch decomposition method, which allows us to

write

∀ψ(t, ·) ∈ L2(R) : ψ(t, y) =
∑
m∈N

ψm(t, y), ψm(t, ·) ∈ Hm. (11)

The corresponding projection of ψ(t) onto themth band space is thereby
given via

ψm(t, y) ≡ (Pmψ)(t, y)

=
∫

B

(∫
R
ψ(t, ζ)φm (ζ, k) dζ

)
φm (y, k) dk. (12)

In what follows, we denote by

Cm(t, k) :=
∫
R
ψ(t, ζ)φm (ζ, k) dζ (13)

the coefficients of the Bloch decomposition.
Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 19 / 49
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Bloch Decomposition Based Algorithm Review of Bloch’s Decomposition

Bloch Transformation
To apply the Bloch decomposition method in our scheme, we need the

Bloch transformation applying to C∞ rapidly decreasing functions on Rd.
From now on, we denote by ψ̃ the unitary transformation of ψ

ψ̃(t, y, k) :=
∑
γ∈Z

ψ(t, ε(y + 2πγ)) e−i2πkγ , y ∈ C, k ∈ B, (14)

for any fixed t ∈ R. We thus get that

ψ̃(t, y + 2π, k) = e2iπk ψ̃(t, y, k), ψ̃(t, y, k + 1) = ψ̃(t, y, k). (15)

The main advantage of ψ̃ is that we can use the standard fast Fourier
transform (FFT) in the numerical algorithm.

Furthermore, we have the following inversion formula

ψ(t, ε(y + 2πγ)) =
∫

B
ψ̃(t, y, k)ei2πkγdk. (16)

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 20 / 49
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Bloch Decomposition Based Algorithm Review of Bloch’s Decomposition

Bloch Transformation (cont.)
From the first step of our BD algorithm, cf. (4), if we take the Bloch

transformation of ψ, cf. (14), we have

iε∂tψ̃ =
(1

2
(−i∂y + k)2 + VΓ(y)

)
ψ̃ ≡ H(k)ψ̃. (17)

Then by the Bloch decomposition method, cf. (11)--(13), we obtain

ψ̃(t, y, k) =
∑
m∈N

(Pmψ̃) =
∑
m∈N

Cm(t, k)φm (y, k) , (18)

with the coefficients

Cm(t, k) :=
∫

C
ψ̃(t, ζ, k)φm (ζ, k) dζ. (19)

Therefore, we get the evolution equation for the coefficients

iε∂tCm(t, k) = Em(k)Cm(t, k).

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 21 / 49
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Bloch Decomposition Based Algorithm Our BD algorithm in details

Bloch Decomposition algorithm in details

Now we can give the details of our BD algorithm. Let's recall the BD
algorithm given before:

Step 1. First, we solve the equation

iε∂tψ = −ε2

2
∆ψ + VΓ

(
x

ε

)
ψ, (20)

on a fixed time-interval ∆t.
Step 2. Second, we solve the ordinary differential equation (ODE)

iε∂tψ =
(
U(x) + β|ψ|2

)
ψ, (21)

on the same time-interval.
Indeed Step 1 consists of several intermediate steps by BD:

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 22 / 49
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Bloch Decomposition Based Algorithm Our BD algorithm in details

Step 1.1We first compute ψ̃, cf. Bloch transform (14), at time tn by

ψ̃nℓ,r =
L∑
j=1

ψnj,r e−i2πkℓ·(j−1).

Step 1.2 Next, we calculate the coefficients Cm(tn, kℓ) via (13),

Cm(tn, kℓ) ≈ Cnm,ℓ = 2π
R

R∑
r=1

ψ̃nℓ,rχm(yr, kℓ) e−ikℓyr .

Step 1.3 The obtained Bloch coefficients are then evolved up to tn+1,
Cn+1
m,ℓ = Cnm,ℓ e−iEm(kℓ)∆t/ε.

Step 1.4 Then we get ψ̃n+1 by summing up all band contributions

ψ̃n+1
ℓ,r =

M∑
m=1

(Pmψ̃)n+1
ℓ,r ≈

M∑
m=1

Cn+1
m,ℓ χm(yr, kℓ) eikℓyr .

Step 1.5 Finally we perform the inverse transformation (16),

ψn+1
ℓ,r = 1

L

L∑
j=1

ψ̃n+1
j,r ei2πkj(ℓ−1).

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 23 / 49
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Bloch Decomposition Based Algorithm Our BD algorithm in details

Numerical Computation of the Bloch Bands

As a preparatory step for our algorithm we shall first calculate Bloch's
energy bands numerically as follows. We expand the potential VΓ ∈ C1(R) in
its Fourier series, i.e.

VΓ(y) =
∑
λ∈Z

V̂ (λ) eiλy, V̂ (λ) = 1
2π

∫ 2π

0
VΓ(y) e−iλy dy. (22)

Likewise, we expand any Bloch eigenfunctions χm(·, k), in its respective
Fourier series

χm(y, k) =
∑
λ∈Z

χ̂m(λ, k) eiλy, χ̂m(λ, k) = 1
2π

∫ 2π

0
χm(y, k) e−iλy dy.

(23)
In general, we only need to take into account a few coefficients.

Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 24 / 49
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Bloch Decomposition Based Algorithm Our BD algorithm in details

Numerical computation of the Bloch bands (cont.)
We consequently aim to approximate the Sturm-Liouville problem (9), by

the following algebraic eigenvalue problem

H(k)


χ̂m(−Λ)
χ̂m(1 − Λ)

...
χ̂m(Λ − 1)

 = Em(k)


χ̂m(−Λ)
χ̂m(1 − Λ)

...
χ̂m(Λ − 1)

 (24)

where the 2Λ × 2Λ matrix H(k) is given by

H(k) =


V̂ (0) + (k−Λ)2

2 V̂ (−1) · · · V̂ (1 − 2Λ)
V̂ (1) V̂ (0) + (k−Λ+1)2

2 · · · V̂ (2 − 2Λ)
...

... . . . ...
V̂ (2Λ − 1) V̂ (2Λ − 2) · · · V̂ (0) + (k+Λ−1)2

2


(25)
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Bloch Decomposition Based Algorithm Our BD algorithm in details

Some Remarks on Our BD Algorithm

It is easy to check that our BD algorithm conserves the mass, and the
total energy numerically.

In our BD algorithm, we compute the dominant effects from dispersion
and periodic lattice potential in one step, and treat the non-periodic
potential as a perturbation.

On the same spatial grid, the numerical costs of our Bloch transform
based algorithm is of the same order as the classical time-splitting
spectral method.

Clearly, if there is no lattice potential, i.e. VΓ(y) ≡ 0, the BD algorithm
simplifies to the described time-splitting spectral method.
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Numerical Implementation and Applications
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Numerical Implementation and Applications Numerical tests for 1D problems

Numerical tests for 1D linear problems (β = 0)
First, we consider the 1D linear problem4. We choose the initial data

ψin ∈ S(R) of the following form

ψin(x) =
(2ω
π

)1/4
e−ω(x−π)2

. (26)

Concerning slowly varying, external potentials U , we shall choose,

a harmonic oscillator type potential:

U(x) = |x− π|2

2
, (27)

or an external (non-smooth) step potential,

U(x) =
{

1, x ∈
[
π
2 ,

3π
2

]
0, else.

(28)

4Huang, Jin, Markowich and Sparber, SIAM Sci. Comput., 07’
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Numerical Implementation and Applications Numerical tests for 1D problems

Within the setting described above, we shall focus on two particular
choices for the lattice potential, namely:
.
Example 1 (Mathieu’s model)..

......

The so-called Mathieu’s model, i.e.

VΓ(x) = cos(x). (29)

(For applications in solid state physics this is rather unrealistic, however it
fits quite good with experiments on Bose-Einstein condensates in optical
lattices.)
.
Example 2 (Kronig-Penney’s model)..

......

The so-called Kronig-Penney’s model, i.e.

VΓ(x) = 1 −
∑
γ∈Z

1x∈[ π
2 +2πγ, 3π

2 +2πγ], (30)

where 1Ω denotes the characteristic function of a set Ω ⊂ R.
Zhongyi Huang (Tsinghua Univ.) Bloch Decomposition method for quantum dynamics Vienna, Feb 4-8, 13 . 29 / 49
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Numerical Implementation and Applications Numerical tests for 1D problems

Mathieu’s model and Kronig-Penney’s model

Mathieu's Model Kronig-Penney's Model

−0.5 0 0.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
m=1
m=2
m=3
m=4
m=5

−0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4
m=1
m=2
m=3
m=4
m=5

Em(k),m = 1, · · · , 5
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Numerical Implementation and Applications Numerical tests for 1D problems

Spatial discretization error test, ε = 1
1024

Left: Example 1 with U(x) = 0. TS: △t = 10−4, BD: △t = 1.

Right: Example 2 with U(x) = |x−π|2
2 . TS: △t = 10−6, BD: △t = 10−2.
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Numerical Implementation and Applications Numerical tests for 1D problems

Temporal discretization error test, △x
ε = 1

128

Kronig-Penney's Model with U(x) = |x−π|2
2

Left: (ε = 1
2 at t = 0.1). Right: (ε = 1

1024 at t = 0.01).
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Numerical Implementation and Applications Numerical tests for 1D problems

Some remarks on linear problems

If U(x) ≡ 0:
As discussed before, we can use only one step in time to obtain the
numerical solution, because the Bloch-decomposition method indeed
is ``exact'' in this case (independently of ε).
On the other hand, by using the time-splitting Fourier spectral
method, one has to refine the time steps (depending on ε) as well as
the mesh size in order to achieve the same accuracy.

If U(x) ̸= 0 and ε ≪ 1:
We can achieve quite good accuracy by using the
Bloch-decomposition method with ∆t = O(1) and ∆x = O(ε).
On the other hand, by using the time-splitting Fourier spectral
method, we have to use ∆t = O(εα), ∆x = O(εα), for some
α ≥ 1. In particular α > 1 is required for the case of a non-smooth
lattice potential VΓ.
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Numerical Implementation and Applications Numerical tests for 1D problems

Numerical tests for 1D NLS
Then we consider the NLS 5.

.
Example 3 (Tests for band mixing)..

......

We start with the initial condition likes

ψI(x) = Pm0ψin(x)eikx, (31)

where ψin(x) is given in (26). We’ll test the mass transition from one band
to others.

Here we have the following results,

The isolated band withm0 = 1 is more stable than other bands.
Ifm0 is large, there will be more mass transfers to other bands.
If Em0 is not isolated, there will be O(1) mass transfers to other bands.
If β = O(1), there will be O(1) Mass density transfers to other bands.

5Huang, Jin, Markowich and Sparber, MMS, 08’
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Numerical Implementation and Applications Numerical tests for 1D problems

Example 3: U(x) = |x−π|2
2 , ε = 1

128 , β = 1
100 , m0 = 1.
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Numerical Implementation and Applications Numerical tests for 1D problems

Example 3: U(x) = |x−π|2
2 , ε = 1

128 , β = 1
100 , m0 = 4.
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Numerical Implementation and Applications Numerical tests for 1D problems

Example 3: U(x) = |x−π|2
2 , ε = 1

128 , β = 1, m0 = 1.
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Numerical Implementation and Applications Numerical tests for 1D problems

Example 3: U(x) = |x−π|2
2 , ε = 1

128 , β = 1, m0 = 4.
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Numerical Implementation and Applications Numerical examples for lattice BEC in 3D

Numerical examples for lattice BEC in 3D 6

.
Example 4 (Dynamics of BECs)..

......

Now we want to simulate the dynamics of the BECs. The initial condition
is ψ

∣∣
t=0 = ψin(x), where ψin(x) is the ground state of the nonlinear

eigenvalue problem (without the lattice potential term) µϕ(x) = −1
2∆ϕ+ Uϕ+ β|ϕ|2ϕ

∥ϕ∥L2 =
∫
Rd

|ϕ|2(x)dx = 1.

For example, in 3D case, with U(x) = |x|2
2 ,

weak interaction: |β| ≪ 1, µg = 3ε
2 , ϕg = 1

(πε)3/4 e
−U(x)/ε;

strong interaction: β = O(1),

µsg = 1
2

(
15β
4π

)2/5
, ϕg =

{ √(
µsg − U(x)

)
/β, U(x) < µsg,

0, otherwise.
6Huang, Jin, Markowich and Sparber, MMS, 08’
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Numerical Implementation and Applications Numerical examples for lattice BEC in 3D

Comparison of the initial and final mass densities, evaluated at x3 = 0.

U(x) = |x|2
2 , VΓ(x) =

3∑
l=1

sin2 2πxl.

|β| = 1
16 and ε = 1

16

|β| = 1 and ε = 1
16

|ψ(t,x)|2
∣∣
t=0, |ψd(t,x)|2(defocusing case) and |ψf (t,x)|2(focusing case).
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Numerical Implementation and Applications Numerical examples for lattice BEC in 3D

Coupling with Gaussian Beam method
.
Example 5 (an application to the insulator)..

......

If ε is very small (for example, about 10−4 ∼ 10−2), we will couple with
Gaussian Beam method. Here we study an insulator case with

VΓ(x) = e−20|x|2 .

Em(k),m = 1, · · · , 8
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Numerical Implementation and Applications Numerical examples for lattice BEC in 3D

Coupling with Gaussian Beam method (cont.)
We adopt the Gaussian beam approximation to the dynamics inm-th

band. For more details, please refer to our paper on JCP 7.
Here we consider the external harmonic potential and the initial condition

ψin(x) = e−50|x|2 0.3(1−sin |x|)
ε cos |x|

ε
.

We take the number of Bloch bandsM = 8 and the number of Gaussian
beams N ∼ 1/

√
ε. The l2 errors between the exact solution and the Bloch

decomposition-Gaussian beam solution are given in Table 1. The convergence
rate is of order 1.17 as ε → 0 in l2 norm.
Table 1 : l2 errors between the exact solution ψ and the Bloch decomposition -
Gaussian beam solution ψBD

GB

ε 1/128 1/256 1/512 1/1024
∥ψ − ψBDGB ∥2 8.34E − 2 4.27E − 2 1.71E − 2 7.25E − 3

7Jin, Wu, Yang, Huang, JCP, 2010
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Numerical Implementation and Applications Random coefficients: Stability tests and Anderson localization

Numerical Evidence for the Anderson localization 8

The phenomenon of Anderson localization, also known as the strong
localization, describes the absence of dispersion for waves in random media
with sufficiently strong random perturbations. It has been predicted by P. W.
Anderson (Philos. Mag. B, 52, 1985) in the context of (quantum mechanical)
electron dynamics but is now regarded as a general wave phenomenon that
applies to the transport of electromagnetic or acoustic waves as well.

We then study the random Klein-Gordon equation
∂2uω

∂t2
= ∂

∂x

(
aΓ

(
ω,
x

ε

)
∂uω

∂x

)
− 1
ε2WΓ

(
x

ε

)
uω + f(x),

uω
∣∣
t=0 = u0(x), ∂uω

∂t

∣∣∣
t=0

= v0(x),
(32)

which describes the propagation of waves in disordered media. Here, the
coefficient aΓ = aΓ(ω, y) is assumed to be a function of a uniformly
distributed random variable ω with mean zero and variance σ2 ≥ 0.

8Huang, Jin, Markowich, Sparber, Wave Motion, 09’
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Numerical Implementation and Applications Random coefficients: Stability tests and Anderson localization
.
Example 6 (Stability tests and Anderson localization)..

......

Consider (32) with f(x) ≡ 0 and initial data

u0(x) =
( 2
πε

)1/4
e− (x−π)2

ε , v0(x) = 0. (33)

The random coefficient aΓ is chosen as

aΓ(ω, y) = aΓ(y) + ω, aΓ (y) = 2.5 + cos(y), (34)

i.e. including an additive noise. For a given choice of σ we numerically
generate N ∈ N realizations of ω and consequently take the ensemble
average. In our examples we usually choose N ≥ 100, i.e.

Em(k) := E{Em(ω, k)} ≈ 1
N

N∑
ℓ=1

Em(ωℓ, k), (35)

for different values of σ.
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Numerical Implementation and Applications Random coefficients: Stability tests and Anderson localization

Definition of Energy Density

In order to realize the emergence of this localization phenomena we
consider the local energy density eω(t, x) of the solution uω(t, x):

eω(t, x) := 1
2

(∣∣∣∣∂uω∂t
∣∣∣∣2 + aΓ

(
ω,
x

ε

) ∣∣∣∣∂uω∂x
∣∣∣∣2 + 1

ε2WΓ

(
x

ε

)
|uω|2

)
.

The total energy Eω0 (t) of uω(t, x) is then given by the zeroth spatial moment
of eω(t, x), i.e.

Eω0 (ω, t) =
∫
R
eω(t, x)dx, (36)

and we likewise define

Eω2 (ω, t) =
∫
R
x2eω(t, x)dx, (37)

which measures the spread of the wave. It represents the mean square of the
distance of the wave from the origin at time t.
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Numerical Implementation and Applications Random coefficients: Stability tests and Anderson localization

The graph of Aσ(t) for different σ (ε = 1
64)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

t

A
σ (t

)

σ=0
σ=0.5
σ=1.0

Aσ(t) := E{Eω2 (t)}/E{Eω
0 (t)}

The quantity Aσ(t) has been introduced as a measure for the presence of
Anderson localization. As we see it first grows almost linearly in t, a typical
diffusive behavior, and then, around t = 2 it flattens. The latter is a strong
indication of Anderson localization.
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Conclusion

Conclusion
We present a new numerical method for accurate computations of

solutions to (non)linear dispersive wave equations with periodic coefficients.

Our approach is based on the classical Bloch decomposition method.

It is shown by the given numerical examples, that our method is
unconditionally stable, highly efficient, and also conserves the important
physical quantities.

Our new method allows for much larger time-steps and usually a coarser
spatial grid, to achieve the same accuracy as for the usual time-splitting
spectral method. This is particularly visible in cases, where the lattice
potential is non longer smooth and ε ≪ 1.

Ongoing projects:
We are trying to couple our BD algorithm with other methods to the

simulation of other multiscale problems.
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Conclusion

Thank you for your attention!
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