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The proof theoretic methodology of deep inference [5] yields
the widest range of analytic proof systems. In particular, several
logics for which there are no analytic proof systems in Gentzen,
or for which there only are cumbersome ones, admit elegant
and regular analytic proof systems in deep inference. This
regularity on the inference rules, coupled with the surprising
observation that if we allow rules to see ‘inside atoms’ then
even disparate rules such as contraction, cut, identity and logical
rules like conjunction-introduction can be made to fit a unique
rule scheme, are the basis of what we call subatomic logic [1].

By employing this new methodology, we are able to present
logical systems in such a way that every rule is an instance of
the rule scheme

(A α B) ν (C β D)

(A ν C) α (B γ D)
,

where α, ν, β, γ are relations, and A,B,C,D are formulae. We
call such systems subatomic. There exist subatomic systems
for a a wide variety of logics– classical logic, linear logic and
BV [6] for example– many of which are substructural in the
sense that contractions are controlled. In this talk, we will
present some of the main results obtained by exploiting the
unprecedented regularity of subatomic systems. We will show
that in many logics we can separate proofs into a purely linear
phase where contractions and weakenings are absent, followed
by a phase made-up of contractions and weakenings only.
Further, we will present a general cut-elimination technique
that can be applied to a wide range of substructural logics
without contractions and weakenings [2]. Last, we will present
some work in progress in which we exploit the ability to
access the ‘inside’ of atoms to turn unit equations of the form
A∨f = A into linear rules, giving us a novel way to understand
equations and adding to the regularity of subatomic systems.

The main idea behind subatomic logic is to consider atoms
as logical relations, and to build formulae by freely composing
constants by connectives and atoms. For example, A ≡ (fat)∨t
is a subatomic formula for classical logic. We will then
translate subatomic formulae into ‘regular’ formulae through
an interpretaton map that will interpret (f a t) as a positive
occurrence of the atom a, and (t a f) as a negative occurrence
of the same atom, denoted by ā. Intuitively, we can view
subatomic formulae as a superposition of truth values. For
example, (f a t) is the superposition of the two possible
assignments for the atom a, and (t a f) is the superposition
of the possible assignments for ā: if we read the value on the
left of the atom we assign f to a and t to ā, and viceversa if
we read the one on the right. By developing this methodology,

we are able to present subatomic proof systems where every
rule has the same shape, and to use the interpretation map to
translate proofs in these subatomic systems into proofs in the
‘usual’ systems.

In many systems, derivations can be arranged into con-
secutive subderivations made up of only certain rules [4],
[8], [9]. We call this property decomposition. In subatomic
systems, since there is only a single inference rule shape
to consider, we are able to generally study the interactions
between rules. We can thus provide generalised reduction rules
to manipulate proofs through local transformations to obtain
their decomposition into a linear phase without contractions
and weakenings, followed by a phase made up only of these
rules.

The reach of the decomposition procedure as a normalisation
technique is made apparent when combined with a particular
cut-elimination method. In the sequent calculus, formulae have
a root connective that allows us to determine which rules are
applied immediately above the cut. In deep inference, rules can
be applied anywhere deep in a formula and as such anything
can happen above a cut. As a consequence, normalisation
techniques in deep inference focus on understanding the
behaviour of the context around the cut. The splitting method
in particular can be used to show cut-elimination for many
different logics [3], [6], [7], [9]. By exploiting the regularity
of subatomic systems, we generalise the splitting theorem
to provide sufficient conditions for a system to enjoy cut-
elimination. This result can be applied to a wide range of
substructural logics without contractions and weakenings [2].

In this way, splitting deals with the interactions between cuts
and linear non-contraction rules, whereas decomposition deals
with the interactions between cuts and contractions. These two
phenomena, tangled in traditional Gentzen-style cut-elimination
procedures through the use of a mix rule conflating cuts and
contractions, turn out to be quite different complexity-wise.
Splitting is a procedure of polynomial-time complexity where
we need to look at a whole proof in order to eliminate the
cuts, whereas decomposition has an exponential cost and can
be achieved through local rewritings. By untangling these
interactions and separating cut-elimination into these two
procedures we can therefore gain a better control on the
complexity, as well as a better understanding of the reasons
behind the prevalence of cut-elimination in such a width of
proof systems.

As well as exploiting the perspective of subatomic logic
for the regularity of the inference rules, we can exploit the
interpretation map as a mechanism that allows us to preserve



information in the subatomic proofs that will not be observable
once interpreted into an ‘ordinary’ proof. We aim to use this
ability to turn equations of the form A ∨ f = A where a unit
disappears into ‘linear’ derivations where all units are preserved.
The general idea is to ‘hide’ the disappearing unit inside of the
atoms of A. By this process, subatomic proofs can be made
fully linear, while in their interpretation we may observe a
unit being eliminated or introduced through equations. More
abstractly, we could represent subatomic proofs as a collection
of strings representing the units, contained on either side of
different logical relations. Each rule would simply change
which logical relation each string is in the scope of, but the
number of strings will remain unchanged. This work in progress
is expected to shed some light on the nature of units, as well as
possibly allowing for a graphical representation of subatomic
proofs via strings.
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