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We aim to study the appearance and role of dispersive singularities
in Schrödinger type equations and in the linearized water waves
equations (possible relevance to rogue waves).
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Three different type of blow-up for conservative equations

I 1. ”Hyperbolic blow-up” (blow-up of gradients).

Typical example the Burgers equation

ut + uux = 0, u(·, 0) = u0 ∈ C 1(R) ∩ L∞(R).

Blow-up of ||ux(·, t)||∞ at T ? = − 1
inf u′0

, but u remains bounded

(shock formation).

I Influence of a ”weak” dispersive perturbation (”dispersive
Burgers”) :

ut + uux − Dαux = 0, D̂αf (ξ) = |ξ|αf̂ (ξ).

(α = 2 : KdV, α = 1 : Benjamin-Ono. Global well-posedness
for α > 1)
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The case α = −1
2 is close (for short waves) to the dispersion of

gravity waves that have the phase velocity :

p(ξ) =
(
tanh ξ
ξ

)1/2
Blow-up in the case α < 1 is delicate

I −1 < α < 0 : one still have blow-up of gradient
(Castro-Córdoba-Gancedo 2010, after previous works of
Naumkin-Shishmarev 1994, Constantin-Escher 1998).

I 0 < α < 1, Linares-Pilod-S, Klein-S (numerics), in progress. It
is claimed by Zakharov 2000 that there is no hyperbolic
blow-up.
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I 2. ”Nonlinear dispersive blow-up”.

I L2 critical and super critical focusing NLS : p ≥ 4
n in

iψt + ∆ψ + |ψ|pψ = 0, ψ = ψ(x , t), x ∈ Rn, t ∈ R.
(Vlasov-Petrishev-Talanov 1971, Zakharov 1972 ; Glassey 1977,
Ginibre-Velo 1979 ; Merle-Raphaël 2005).
Blow-up of |∇ψ|L2 and of |ψ|∞.

I Similar result for the L2 critical and super critical KdV equation

ut + upux + uxxx = 0, p ≥ 4.

I Proved for p = 4 (Martel-Merle 2002), conjectured for p > 4
(numerics by Bona-Dougalis-Karakashian-McKinney 1990).

I For dispersible Burgers, the L2 critical case corresponds to α = 1
2 .
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I 3. ”Dispersive blow-up”.

Dispersive blow-up is a focussing type of behavior which is due to both
the unbounded domain in which the problem is set and the propensity of
the dispersion relation to propagate energy at different speeds. These two
aspects allow the possibility that widely separated, small disturbances
may come together locally in space-time, thereby forming a large
deviation from the rest position. Possible relevance for explaining the
genesis of rogue waves on the surface of large bodies of water and in
electrical networks.

One of the proposed routes to rogue-wave formation is concurrence. This

is the idea that the ambiant wave motion in a big body of water

possesses a large amount of energy which could, in the right

circumstances, temporarily coallesce in space, leading to giant waves.
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Rogue waves, (freak waves), occur in both deep and shallow water. While
the free surface Euler equations could be taken as the overall governing
equations in both deep and shallow water, there is much to be learned
from approximate models.
These, however, differ in deep and shallow water regimes. Bona-S. 1993
dealt with the shallow water situation, exemplified by the Korteweg-de
Vries equation and Boussinesq-type systems of equations.

Interest is focussed here on Schrödinger type equations (occurring for

instance as deep water wave models) and on the linearized surface water

waves.
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Old results on KdV
The starting point is the classical paper of Benjamin, Bona and Mahony
(1972) where they pointed out the ”bad” behaviour of the ”Airy”
equation (which was introduced by Stokes !) with respect to high
frequencies. {

∂u
∂t + ∂3u

∂x3 = 0,
u(., 0) = φ

(1)

Take

φ(x) =
Ai(−x)

(1 + x2)m
,

with

1

8
< m <

1

4
,

where Ai is the Airy function (now the name is correct though Airy did

not introduced it in the context of water waves !).
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Then φ ∈ L2(R) ∩ C∞(R) ∩ L∞(R).
The solution u ∈ C (R+; L2(R)) is given by

c

t
1
3

∫
R

Ai(
x − y

t
1
3

)
Ai(−y)

(1 + y2)m
dy .

When (x , t)→ (0, 1), u(x , t)→ c
∫
R

Ai2(−y)
(1+y2)m

dy = +∞.

Actually one can prove with some extra work using the asymptotics
of the Airy function (Bona-S. 1993) that
u is continuous on R× R∗+ except at (x , t) = (0, 1).
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A similar ”dispersive blow-up” holds true for the KdV equation (or
any generalized KdV equation). For instance (Bona-S. 1993) :

Theorem
Let (x∗, t∗) ∈ R× R∗+. There exists φ ∈ L2(R) ∩ C∞(R) ∩ L∞(R)
such that the Cauchy problem{

∂u
∂t + uux + ∂3u

∂x3
= 0,

u(., 0) = φ
(2)

has a unique solution u ∈ C ([0,∞); L2(R) ∩ L2
loc(R+; H1

loc(R))
which is continuous on (R× R∗+) \ (x∗, t∗) and satisfies

lim
(x ,t)→(x∗,t∗)

|u(x , t)| = +∞.
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Sketch of proof : one can reduce to (x∗, t∗) = (0, 1). We take φ
leading to the dispersive blow-up of the linear Airy equation.
Write the solution as

u(x , t) = S(t)φ(x) +

∫ t

0

∫
R

1

(t − s)
1
3

Ai
( (x − y)

(t − s)
1
3

)
uux(y , s)dsdy

= S(t)φ(x) + C

∫ t

0

∫
R

1

(t − s)
2
3

Ai ′
( (x − y)

(t − s)
1
3

)
u2(y , s)dsdy

This seems silly since Ai ′ grows as (−x)
1
4 as x → −∞.

The solution is to work in a weighted L2 space and u2 will
compensate the growth of Ai ′.
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More precisely one can solves the Cauchy problem in the weighed
space L2(R,w) where

w(x) = wσ(x) =

{
1 for x < 0
(1 + x2)σ for x > 1.

Choosing 3
16 < m < 1

4 , the initial data φ ∈ L2(R,wσ) where
σ ≥ 1

16 . The linear part still blows up at (0, 1). On the other hand
the Duhamel integral is shown to be a continuous function of
(x , t). So the nonlinear solution blows up exactly at (0, 1).

I Similar results for any generalized KdV equations and for the
C k norms (for data in Hk).

I Alternative proof for modified KdV (Linares-Scialom 1993).
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The nonlinear case

The same method works for the linear Schrödinger equation, (and
more generally for linear dispersive equations with unbounded
phase velocity , limk→∞ c(k) = ω(k)

k =∞) :{
i ∂u∂t + ∆u = 0,
u(., 0) = φ

(3)
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Theorem
Let (x∗, t∗) ∈ Rd × (0,+∞) be given. There exist functions φ
lying in the class C∞(Rd) ∩ L∞(Rd) ∩ L2(Rd) such that the
corresponding solution u of (3) satisfies

1. u ∈ Cb(R+; L2(Rd)),

2. u is a continuous function of (x , t) on Rd × ((0,+∞) \ {t∗}),

3. u(·, t∗) is a continuous function of x on Rd \ {x∗} and

4.
lim

(x,t)∈Rd×(0,+∞)→(x∗,t∗)
(x,t) 6=(x∗,t∗)

|u(x , t)| = +∞.
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Take :

φ(y) =
e−i |y |

2

(1 + |y |2)m
. (4)

with

d

4
< m ≤ d

2
. (5)

Remark
In particular, one deduces from the previous Theorem that for any
fixed t ∈ (0,+∞) \ {t∗}, the function x 7→ u(x , t) is continuous on
Rd (but not necessarily bounded).
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Remark
With some modifications, a similar analysis applies to what is
sometimes called the ”hyperbolic” Schrödinger equation, namely{

i∂tu + ∂xxu − ∂yyu = 0, in R2 × R+,

u(x , 0) = φ(x), for x ∈ R2.
(6)

This equation is the linearization about the rest state of a model
for deep water surface gravity waves (Zakharov 1968).
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I By linearity, the dispersive blow-up is stable to smooth (and
localized) perturbations of the initial data leading to DBU.

I Can be used (by truncation) to construct smooth initial data
which are arbitrary small in L∞(Rd) and lead to solutions
which have very large values at a specified, dispersive blow-up
point :
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Let φ the initial data leading to DBU at (x , t) = (0, 14 ). Let

φR(y) = ρ
(
|y |
R

)
φ(y), where ρ ∈ C∞0 (R), ρ ≥ 0, ρ ≡ 0 on [0, 1], ρ ≡ 0

for |y | ≥ 2.
Let δ > 0 small and m > 0 large. Take as initial data u0(y) = δφR(y).
Then u0 ∈ Hk(Rd) ∀k and ||u0||∞ = O(δ) as δ → 0.
The solution corresponding to u0 satisfies

u

(
0,

1

4

)
= δ

∫
Rd

ρ
(
|y |
R

)
(1 + |y |2)m

dy ≥ δ
∫
|y |≤R

1

(1 + |y |2)m
dy

The last integral is bounded below by δO(Rd−2m) when m < d
2 and

δO(log R) when m = d
2 .
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Same result for the NLS in one dimension :

iut + uxx ± |u|pu = 0

I By using Duhamel formula and Strichartz to control the
integral term one obtains DBU when 1 ≤ p < 3 (Bona-S.
2010).

I This proof does not seem to work straightforwardly in
dimension d > 1 by lack of integrability of t → 1

td/2
at 0.
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I An alternate proof that works for any p’s (Bona-S-Sparber
2013)

Use the Hs theory of Cazenave-Weissler (1990). When
particularized to n = 1, their results yield local well-posedness for
the Cauchy problem for the 1D NLS provided the following
conditions are satisfied :

(i) 0 < s < 1
2 .

(ii) 0 < p ≤ 4
1−2s .

In particular the solution u to the Cauchy problem lies in
C ([0,T0]; Hs(R)) for some T0 > 0.
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We want furthermore Hs(R) ⊂ Lp+1(R), (so that
|u|pu ∈ C ([0,T0]; L1(R))), implying that

(iii) 1
p+1 ≥

1
2 − s.

Take s = 1
2 − ε, where ε > 0 is (arbitrarily) small.

Then the conditions (i), (ii) and (iii) are fulfilled provided
0 < p < min(2ε ,

1−ε
ε ) = 1−ε

ε .

I This will allow us to prove dispersive blow-up in the 1D case
with p arbitrarily large.

Jean-Claude Saut Université Paris-Sud Dispersive blow up for Schrödinger type equations



Outline
Introduction

Old results for KdV
Schrödinger type equations

Extensions
Linearized Water Waves

Fractional Schrödinger equations
Open questions

The linear case
The nonlinear case

Admit for the moment :

I Let f be defined by f (x) = exp(−ix2)
(1+x2)

1
2
. Then f ∈ Hs(R) for any

0 ≤ s < 1
2 .

We take u0 = f as initial data. By the results in Bona-S 2010, the
free part exp(it∂2x )u0 exhibits a dispersive blow-up point at
(x , t) = (0, 1).
On the other hand, the Duhamel part has the representation (in
the usual sense of Lebesgue integrals) for 0 < t ≤ T0,

F (x , t) = ±
∫ t

0

∫
R

1

(t − s)
1
2

exp

(
i
|x − y |2

4(t − s)

)
|u|pu(y , s)dyds (7)

Since F is clearly a continuous function on R× [0,T0], it is locally
bounded and there is has a dispersive blow-up at (0, 1).
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I Proof of the assertion.

Recording that 1

(1+x2)
1
2

is the inverse Fourier transform of the

Bessel function K0, one can write f as a convolution

f (x) = Ce iαx
2
? K0, (8)

where C and α are real constants. This expresses f as the value at
a certain time of the Schrödinger group acting on K0. Since the
Schrödinger group is unitary on all Sobolev spaces, the proof is
reduced to proving that K0 ∈ Hs(R) for any 0 ≤ s < 1

2 . Since
K0 ∈ C∞(R \ {0}), this results from the fast decay of K0 at infinity
and from its logarithmic singularity at the origin, K0(x) ∼ − log x .

Jean-Claude Saut Université Paris-Sud Dispersive blow up for Schrödinger type equations



Outline
Introduction

Old results for KdV
Schrödinger type equations

Extensions
Linearized Water Waves

Fractional Schrödinger equations
Open questions

Fourth order NLS
Schrödinger equation with potentials
Gross-Pitaevskii equation :
Possible connection with optical rogue waves

Extensions (Bona-S-Sparber 2013)

I Fourth order nonlinear Schrödinger equations

iut + α∆u + β∆2u + λ|u|pu = 0, in Rn × R (9)

where α, β, λ are real constants, β 6= 0, together with the linear
Schrödinger equations

iut − ε∆u + ∆2u = 0, ε ∈ {0,−1,+1}. (10)

(nonlinear case via Strichartz or a Hs theory à la Cazenave-Weissler
for 4th order NLS. Works in Rn, n ≤ 3).

I NLS with anisotropic dispersion

iut + α∆u + iβ∂3x1x1x1u + γ∂4x1x1x1x1u + |u|pu = 0. (11)

Jean-Claude Saut Université Paris-Sud Dispersive blow up for Schrödinger type equations



Outline
Introduction

Old results for KdV
Schrödinger type equations

Extensions
Linearized Water Waves

Fractional Schrödinger equations
Open questions

Fourth order NLS
Schrödinger equation with potentials
Gross-Pitaevskii equation :
Possible connection with optical rogue waves

I A natural question is to ask for which class of potentials V
the linear Schrödinger equation

iut +
1

2
∆u + V (x , t)u = 0 (12)

displays the dispersive blow-up phenomena.
An easy case is that of harmonic potentials, V (x , t) = ±1

2ω|x |
2,

the + sign corresponding to the repulsive case and the − sign to
the attractive case (see Carles 2003).
In both cases the corresponding group has an explicit
representation. In the attractive case, the solution is given by
(Mehler’s formula)

u(x , t) = e−in
π
4
sgn t

∣∣∣ ω

2π sinωt

∣∣∣ n2 ∫
Rn

e
iω

sinωt
( |x|

2+|y|2
2

cosωt−x ·y)u0(y)dy ,

(13)
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while in the repulsive case,

u(x , t) = e−in
π
4
sgn t

∣∣∣ ω

2π sinhωt

∣∣∣ n2 ∫
Rn

e
iω

sinhωt
( |x|

2+|y|2
2

coshωt−x ·y)u0(y)dy ,

(14)
Mehler’s formula is valid for |t| < π

2ω , while that in the repulsive
case makes sense for t > 0.

I In both cases one can prove the DBU property.
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Another simple case is that of a linear potential, for instance V (x , t) = αx1
where α is a non zero real constant. The corresponding Schrödinger equation is
thus

iut + ∆u + αx1u = 0,

and the evolution is given by the Avron-Herbst formula :

u(x , t) =
e−itαx1e−iα2t3/3

(4πt)n/2

∫
Rn

e−i
|x−y|2

4t u0(y1 − αt2, y⊥)dy (15)

The dispersive blow-up at (x , t) = (0, 1
4
) is obtained by choosing the initial data

u0(y) =
e i(y1+

α
16

)2+|y⊥|2)

1 + |y |2)m

with

n

4
< m ≤ n

2
.
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Gross-Pitaevskii equation

iψt + ∆ψ+ (1−|ψ|2)ψ = 0, ψ = ψ(x , t), (x , t) ∈ Rn×R, (16)

Ginzburg-Landau energy :

E (Ψ) =
1

2

∫
Rd

|∇Ψ|2 +
1

4

∫
Rd

(1− |Ψ|2)2 ≡
∫
Rd

e(Ψ) <∞. (17)

In some sense, |ψ(x , t)| has to tend to one at infinity and our proof
for the classical NLS has to be a bit modified.
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More precisely, by writing ψ = 1 + u, u ∈ H1(RN), one obtains the
following equation for u :

iut + ∆u − 2 Re u = u2 + 2|u|2 + |u|2u. (18)

Following Gustafson-Nakanishi-Tsäı (2006) one writes GP as

ivt − Hv = U(3u2
1 + u2

2 + |u|2u1) + iu2(2u1 + |u|2) (19)

where

u = u1+iu2, v = u1+iUu2, U =
√
−∆(2−∆)−1, H =

√
−∆(2−∆).
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The free evolution is, given by

v = e−itHv0,

or

v = G ?x v0

where

G (x , t) = F−1e it([(|ξ|2(|ξ|2+2)]
1
2 )

Observe that

[(|ξ|2(|ξ|2 + 2)]
1
2 = |ξ|2 + a(ξ),

where a(ξ) = 2|ξ|2

(|ξ|2(|ξ|2+2))
1
2 +|ξ|2

= 1− 2|ξ|2(
[|ξ|2(|ξ|2+2)]

1
2 +|ξ|2

)2 = 1 + r(ξ).
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Thus,

e it([(|ξ|2(|ξ|2+2)]
1
2 ) = e it|ξ|2e ite itr(ξ) = e ite it|ξ|2(1 + ft(|ξ|)

where

ft(|ξ|) = 2it sin(
t

2
r(ξ))e it r(ξ)

2 ,

is continuous, smooth on Rd and decays to 0 like |ξ|−2 as |ξ| → ∞,
uniformly on compact temporal intervals in (0 +∞), since r(|ξ|) does so.
This decomposition leads to an associated splitting of G

G (x , t) = e it

∫
Rd

e it|ξ|2e ix·ξdξ+e it

∫
Rd

ft(|ξ|)e it|ξ|2e ix·ξdξ = I 1t (x)+ I 2t (x).

(20)
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Obviously,

I 1t (x) =
e it

(4πit)d/2
e

i|x|2
4t .

On the other hand, for any fixed t, ft ∈ Hk(Rd) for any k ∈ N and
so is I 2t by the Hk unitarity of the Schrödinger group. In particular,
I 2t is a bounded function of x uniformly on compact temporal
intervals.
Dispersive blow-up at (x , t) = (0, 14) is thus obtained by taking

v0(x) = e−i|x|2

(1+|x |2)m with d
4 < m ≤ d

2 , thus u0 = v01 + iU−1v02.

Blowing-up solutions can be constructed for the one-dimensional
nonlinear equation following the usual NLS case.
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Possible connexion with optical rogue waves
The analysis of optical rogue-wave formation in Dudley-Genty-Eggleton 2008,
Dudley 2008 is based on the generalized nonlinear Schrödinger equation

∂A

∂t
+
α

2
A −

∑
k≥2

ik+1

k!
βk
∂kA

∂zk

= iγ

(
1 + iτshock

∂

∂z

)(
A(z , t)

∫ +∞

−∞
R(z ′)|A(z ′, t)|2dz ′

)
.

The variable t in fact connotes distance along the fiber, whereas z is in reality
the temporal variable. The physical problem is in fact a boundary-value
problem, but this is normally converted to an initial-value problem by viewing
the independent variables as indicated in the present notation.

In this generalized Schrödinger equation, the dispersion is represented by its

Taylor series and the nonlinearity features what is usually called a response

function of the form R(z) = (1− fR)δ + fRhR(z), where δ is the Dirac mass.

Thus the nonlinearity generally includes both instantaneous electronic and

delayed Raman contributions.
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We sketch below a proof of dispersive blow-up also for this model,
thus providing a rigorous account of a possible explanation of the
formation of optical rogue wave formation.
Consider first the linear part and for convenience, truncate the
Taylor expansion of the dispersion so the linear model becomes

∂A

∂t
+
α

2
A−

∑
2≤k≤K

ik+1γk
∂kA

∂zk
= 0,

A(x , 0) = A0(x)

(21)

where γK 6= 0. By changing the independent variable from A to
B = e−αtA, one may take it that the damping coefficient α is zero.
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Demonstrating dispersive blow-up for the linear equation (21) can be
reduced (by perturbation arguments very similar to those used below for
the linearized water-wave equation) to showing dispersive blow-up for the
linear equation with homogeneous dispersion, viz.

∂A

∂t
− iK+1 ∂

KA

∂zK
= 0,

A(x , 0) = A0(x),

(22)

where γK is set equal to 1 without loss of generality. Equation (22)

specializes to the Airy and the linear Schrödinger equations as particular

cases when K = 3 and 2, respectively. When K ≥ 4 one can use

Sidi-Sulem-Sulem 1986 or Ben Artzi-S. 1999 to evaluate the

corresponding fundamental solution and then construct suitable smooth

initial data (a weighted version of the fundamental solution) which leads

to dispersive blow-up.
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This linear theory may then be extended to the nonlinear case.
When the coefficient τshock = 0, the equation is “semilinear” and
the result follows for instance by using Strichartz estimates as for
the one-dimensional nonlinear Schrödinger equation. (This is
especially transparent when the instantaneous electronic
contribution vanishes, that is when fR = 1, but it holds without
this restriction.)
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When τshock 6= 0, the nonlinear term involves a derivative with respect to

z . Assume now that K ≥ 3. The crux of the matter is to analyze the

double integral term in the Duhamel representation of the solution and to

show that it defines a continuous function of space and time. When

K = 3 we are reduced to the Korteweg de Vries case which was dealt

with already in Bona-S 1993 by using a theory of the Cauchy problem in

suitable weighted L2-spaces. This analysis was also extended to a class of

fifth order Korteweg–de Vries equations. This extension is easily made for

any odd value of K greater than 7. When K ≥ 4 is even, the equation is

of Schrödinger type and the weighted space theory (which uses in a

crucial way that the phase velocity of the linear equation has a definite

sign) does not appear to work. One has to rely instead on the

higher-order smoothing properties of the linear group that appertain to

the higher-order dispersion.
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As an example, we focus on a simpler model (Taki et al 2010) that can be
easily reduced to the KdV case, namely we consider the Cauchy problem

ut + iαuxx + βuxxx + iγ|u|2u = 0 u(·, 0) = u0, (23)

where α, β, γ are non zero real constants.
By using the factorization(

ξ +
α

3β

)3

= ξ3 +
α

β
ξ2 +

α2ξ

3β2
+

α3

27β3
,

the fundamental solution of the linearized equation (23) can be expressed as

A(x , t) =
1

(tβ)1/3
exp

(
4itα3

27β2

)
exp

(
−iαx

2β2

)
Ai

(
1

t1/3β1/3
(x − α2

3β
t)

)
,

where the Airy function is defined by

Ai(z) =

∫ ∞
−∞

e i(ξ3+izξ)dξ.

Jean-Claude Saut Université Paris-Sud Dispersive blow up for Schrödinger type equations



Outline
Introduction

Old results for KdV
Schrödinger type equations

Extensions
Linearized Water Waves

Fractional Schrödinger equations
Open questions

Fourth order NLS
Schrödinger equation with potentials
Gross-Pitaevskii equation :
Possible connection with optical rogue waves

Proceedings as in Bona -S 1993, the dispersive blow-up for (23) is then
obtained at (x , t) = (0, 1) by taking

u0(x) =
A(−x)

(1 + x2)m

with

1

8
< m ≤ 1

4
,

and

A(x) = Ai

(
α2 + x

3β4/3

)
.

Actually the proof of dispersive blow-up for the nonlinear case is easier since,

contrary to the KdV equation, the Duhamel term does not involve any x

derivative and can be shown to be bounded by using only Strichartz estimates.
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Linearized water waves
Motivated” by the freak (rogue) wave question we consider here the
linearized (at the trivial state) water wave system in one or two spatial
dimension : {

ηtt + ω2(|D|)η = 0 in Rd × R+,
η(., 0) = η0, ηt(., 0) = η1.

(24)

Here d = 1, 2 and ω2(|D|) = g |D| tanh(h0|D|), |D| = (−∆)1/2.
We consider the finite depth case and will scale the equations so that the
gravity constant g and the mean depth h0 are equal to 1.
The solution is explicit via Fourier transform (k = (k1, k2)) :

η̂(k, t) = η̂0(k) cos[t(|k| tanh |k|) 1
2 ] +

sin[t(|k| tanh |k|) 1
2 ]

(|k| tanh |k|) 1
2

η̂1(k).

I Obviously well-posed in L2.
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Look for well/ill-posedeness in L∞. Taking η1 ≡ 0 we are reduced

to proving that, for a fixed t > 0, mt(k) = e it(k tanh(k))
1
2 is/(is not)

a Fourier multiplier in L∞. Recall that
{Fourier multipliers in L∞} =
{Fourier transforms of bounded measures}.
Noticing that (k tanh(k))

1
2 = |k|

1
2 (1− 2

1+e2|k|
)
1
2 ≡ |k|

1
2 + r(k),

we have

e it(k tanh(k))
1
2 = (1 + ft(k))e it|k|

1
2 ,

where

ft(k) = −2 sin
tr(k)

2
[sin

tr(k)

2
− i cos

tr(k)

2
]

is continuous, smooth on Rd \ {0}, and decays exponentially to 0
as |k| → ∞, uniformly on bounded time intervals
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Theorem
Let (x∗, t∗) ∈ Rd × (0,+∞), d = 1, 2 be given. There exists
η0 ∈ C∞(Rd \ {0}) ∩ C 0(Rd) ∩ L∞(Rd) ∩ L2(Rd) such that the
solution η ∈ Cb(R; L2(Rd)) of (LWW) with η1 ≡ 0 is such that

(i) η is a continuous function of x and t on
Rd ×

(
(0,+∞) \ {t∗})

)
,

(ii) η(·, t∗) is continuous in x on Rd \ {x∗},
(iii) lim (x,t)∈Rd×(0,+∞)→(x∗,t∗)

(x,t) 6=(x∗,t∗)
|η(x , t)| = +∞.
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One may assume that (x∗, t∗) = (0, 1). The idea is to take η1 = 0
and η0(x) = |x |λK̄ (x), where 3d

2 ≤ λ ≤ 2d , and

K = F−1
(
ψ(|k|)e i |k|

1
2

)
,

where ψ ∈ C∞(R), 0 ≤ ψ ≤ 1, ψ ≡ 0 on [0, 1], ψ ≡ 1 on [2,+∞).
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We use a classical result ( Wainger 1965, Miyachi 1981, and Hardy
1913 for n = 1) on the precise behavior of F(ψ(|k|)e i |k|a)(x) at 0
which we state in Rn :
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Theorem
(Wainger, Miyachi)
Let 0 < a < 1, b ∈ R and define
F εa,b(x) =: F

(
ψ(|k|)|k|−b exp(−ε|k|+ i |k|a)

)
(x) for ε > 0 and x ∈ Rd . The

following is true of the function F εa,b.
(i) F εa,b(x) depends only on |x|.
(ii) Fa,b(x) = limε→0+ F εa,b(x) exists pointwise for x 6= 0 and Fa,b is smooth on

Rd \ {0}.
(iii) For all N ∈ N, and µ ∈ Nd , |

(
∂
∂x

)µ
Fa,b(x)| = O(|x|−N) as |x| → +∞.

(iv) If b > d(1− 1
2
), Fa,b is continuous on Rd .

(v) If b ≤ d(1− 1
2
), then for any m0 ∈ N, the function Fa,b has the asymptotic

expansion

Fa,b(x) ∼ 1

|x|
1

1−a
(d−b− ad

2
)

exp

(
iξa

|x|
a

1−a

)
m0∑
m=0

αm|x|
ma
1−a +0(|x|)

(m0+1)a
(1−a) +g(x) (25)

as x→ 0, where ξa ∈ R, ξa 6= 0, and g is a continuous function.
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Use this result with a = 1/2 and b = 0. The choice of λ ensures
that (0, 1) is a blow-up point and that the other values of (x , t)
are under control.
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Remark
The phase velocity g

1
2 ( tanh(|k|h0)|k| )

1
2 k̂ is a bounded function of k.

This is contrary to the case of the linear KdV-equations
(Airy-equation) and the linear Schrödinger equation, where both
the phase velocity and the group velocity become unbounded in
the short wave limit.
The dispersive blow-up phenomenon observed here is thus not
linked to the unboundedness of the phase velocity, but simply to
the fact that monochromatic waves (simple waves) propagate at
speeds that vary substantially with their wavelength. Indeed, what
appears to be important is that the ratio of the phase speeds at
different wavenumbers is not suitably bounded.
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Consider now the case of the linearized gravity-capillary waves.
Again taking all the physical constants equal to 1 to simplify the
discussion, the solution of (LWW) becomes

η̂(k, t) = η̂0(k) cos
[
t(|k| tanh |k|)

1
2 (1 + |k|2)

1
2

]
+ η̂1(k)

sin
[
t(|k| tanh |k|)

1
2 (1 + |k|2)

1
2

]
(|k| tanh |k|)

1
2 (1 + |k|2)

1
2

. (26)

¿From this formula, it is readily discerned that for

(η0, η1) ∈ Hk(Rd)× Hk− 3
2 (Rd), k ∈ N, (LWW) has a unique

solution η ∈ Cb(R; Hk(Rd)) ∩ L2
loc(R; H

k+ 1
4

loc (Rd)).
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Theorem
For d = 1 or 2, let (x∗, t∗) ∈ Rd × (0,+∞), be given. There exists
η0 ∈ C∞(Rd) ∩ L∞(Rd) ∩ L2(Rd) such that the solution
η ∈ Cb(R; L2(Rd)) of (LWW) with η1 ≡ 0 satisfies

(i) η is a continuous function of x and t on R×
(
(0,+∞) \ {t∗})

)
,

(ii) η(·, t∗) is continuous in x on R \ {x∗}, and

(iii)
lim

(x,t)∈Rd×(0,+∞)→(x∗,t∗)
(x,t)6=(x∗,t∗)

|η(x , t)| = +∞.
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I Possible link with rogue waves formation.

In all the previous situations one can use the DBU construction to
find open sets U in Hk(Rd), k ≥ 3, such that if initial data u0 is
taken from U , then |u0|∞ ≤ ε, but the corresponding solution u
with u0 as initial data has the property that |u(·, t∗)|∞ ≥ M,
where the positive values of ε,M and t∗ are specified.
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Similar results for Fractional Schrödinger equations.{
iut + (−∆)

a
2 u = 0, 0 < a < 1,

u(·, t) = u0(·). (27)

for (x , t) ∈ Rd × R+. These equations occur in particular as the
linearization of some weak turbulence models (Zakharov et al) and
are reminiscent of the linearized water waves equations.
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Open questions

I Extension to NLS in higher dimensions.

I Extensions to more general potentials in the linear case.

I Systems (Davey-Stewartson,..).

I Non constant coefficients.

I Relevance to rogue waves formation ?
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