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Abstract

Given the non-autonomous differential equations

= f(t,x), z(0) = o € CY, (1)
in this talk we show how to obtain an associated equation
y' =fty),  y(0) =, (2)
where f(t y) is a polynomial function of ¢ of degree s — 1 such that
lz(h) = y(h)|| = O(R*>**), (3)
and the coefficients of the polynomial depend linearly on f(c;h,y) where ¢;, i =
1,...,8 are the nodes of any desired quadrature rule of order p > 2s. Eq. (4)

has the same algebraic structure as eq. (1), so y(t) shares most qualitative
properties with z(t) [1] and, for many problems, its numerical integration can
be carried more efficiently. We also show how to obtain an autonomous equation

-~

y =1y,  y(0)=u, (4)

such that the solution of (4) at ¢t = h satisfies (3), or the sequence
M =FE, ) =), (5)
i=1,...,k, with 2[0(h) = z, ﬁ-(z[i]) is a linear combination of f(c;h,y), and

such that 2I*l(h) = z(h) + O(h?**1) (commutator-free quasi-Magnus integrators
[2]). We show how to use these techniques to numerically solve the linear and
non-linear Schrodinger equations with explicitly time dependent Hamiltonian.
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