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Introduction Coupled models Scalar models

Internal gravity waves

Stratification, due to variation of salinity and temperature. 1

1. Credits : St. Lawrence Estuary Internal Wave Experiment (SLEIWEX)
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Introduction Coupled models Scalar models

The full Euler system

Horizontal dimension d = 1, flat bottom, rigid lid.

Irrotational, incompressible, inviscid, immiscible fluids.

Fluids at rest at infinity, (very small) surface tension.
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Introduction Coupled models Scalar models

The full Euler system

The system can be rewritten as two coupled evolution equations in

ζ and ψ ≡ φ2|interface.

using Dirichlet-Neumann operators.
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Introduction Coupled models Scalar models

Asymptotic models

Asymptotic models are constructed from asymptotic expansions of the
Dirichlet-Neumann operators, w. r. t. given dimensionless parameters.

ε ≡ a

d1
, µ ≡ d1

2

λ2
, γ ≡ ρ1

ρ2
, δ ≡ d1

d2
, bo ≡ g(ρ2 − ρ1)d2

1

σ
.
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Asymptotic models : examples

Shallow water : µ� 1.

First order : Saint-Venant system

∂tU + A[εU]∂xU = 0.

Second order : Green-Naghdi (or Serre) system

∂tU + A[εU]∂xU + µB[εU, ∂x ]∂xU + µC [εU, ∂x ]∂tU = 0.

Long wave : µ� 1, ε = O(µ).

Boussinesq system :

∂tU + A0∂xU + εA(U)∂xU + µB∂3
xU + µC∂2

x∂tU = 0.

Moderate amplitude regime : µ� 1, ε = O(µ1/2).
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Introduction Coupled models Scalar models

Asymptotic models : remarks

These models are justified in the sense of consistency. 1

In order to fully justify these models, one should prove that they are
well-posed, and that their solution remains close to the full Euler system.

These models are not unique ! One may derive a family of models, with
possibly very different behavior. Typically, when µ� 1, one can manipulate
the dispersion effects on large wavelength without modifying the precision.

Then a question is whereas one can select a (class of) model with improved
properties, such as

optimal frequency dispersion ;
well-posedness for less regular initial data ;
well-posedness over larger time.

1. Bona-Lannes-Saut ’08, Anh ’09, VD-Israwi-Talhouk
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Asymptotic models : state of the art

Shallow water : µ� 1.

First order : Saint-Venant system

∂tU + A[εU]∂xU = 0.

Well-posed, Tmax ≥ T/ε, stable. Guyenne-Lannes-Saut ’10

Second order : Green-Naghdi (or Serre) system

∂tU + A[εU]∂xU + µB[εU, ∂x ]∂xU = 0.

(The original is) ill-posed. Liska-Margolin-Wendroff ’95, Cotter-Holm-Percival ’10

Long wave : µ� 1, ε = O(µ).

Boussinesq system :

∂tU + A0∂xU + εA(U)∂xU + µB∂3
xU + µC∂2

x∂tU = 0.

(Some are) well-posed, Tmax ≥ T/ε, stable. Bona-Chen-Saut ’04, Saut-Xu ’12 ...

 justification of decoupled KdV approximation. Bona-Colin-Lannes ’04, VD’11
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Introduction Coupled models Scalar models

The aim of the talk : construct a well-posed asymptotic model in the
moderate amplitude regime, and use it to describe asymptotically the
behavior of the flow.

1 Introduction
The full Euler system
Asymptotic models

2 Coupled models
Construction
Full justification

3 Scalar models
Unidirectional approximation
Decoupled approximation

Vincent Duchêne Nonlinear dispersive asymptotic models for the propagation of internal waves 8 / 21



Introduction Coupled models Scalar models

1 Introduction
The full Euler system
Asymptotic models

2 Coupled models
Construction
Full justification

3 Scalar models
Unidirectional approximation
Decoupled approximation
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Introduction Coupled models Scalar models

The Green-Naghdi system

The Green-Naghdi system
∂tζ + ∂x

( h1h2

h1 + γh2
v
)

= 0,

∂t

(
v + µQ[ζ]v

)
+ (γ + δ)∂xζ +

ε

2
∂x

( h1
2 − γh2

2

(h1 + γh2)2
|v |2
)

= µε∂x
(
R[ζ, v ]

)
,

(GN)
with h1 = 1− εζ and h2 = 1

δ + εζ and

v ≡ 1

h2(t, x)

∫ εζ(t,x)

− 1
δ

∂xφ2(t, x , z) dz − γ
1

h1(t, x)

∫ 1

εζ(t,x)

∂xφ1(t, x , z) dz .

Q[ζ]V ≡ −1
3h1h2

(
h1∂x

(
h2

3∂x
( h1 V
h1+γh2

))
+ γh2∂x

(
h1

3∂x
( h2 V
h1+γh2

)))
,

R[ζ,V ] ≡ 1
2

((
h2∂x

( h1 V
h1+γh2

))2
− γ

(
h1∂x

( h2 V
h1+γh2

))2
)

+ 1
3

V
h1+γh2

(
h1
h2
∂x

(
h2

3∂x
( h1 V
h1+γh2

))
− γ h2

h1
∂x

(
h1

3∂x
( h2 V
h1+γh2

)))
.
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Introduction Coupled models Scalar models

The Green-Naghdi system

The Green-Naghdi system
∂tζ + ∂x

( h1h2

h1 + γh2
v
)

= 0,

∂t

(
v + µQ[ζ]v

)
+ (γ + δ)∂xζ +

ε

2
∂x

( h1
2 − γh2

2

(h1 + γh2)2
|v |2
)

= µε∂x
(
R[ζ, v ]

)
,

(GN)

Consistency

The full Euler system is consistent with the Green-Naghdi model, with
precision O(µ2).

Remarks :

This extends to 3D case, non-flat topography, surface tension.

Linearly well-posed. Nonlinear well-posedness is completely open.

Unconditionally ill-posed in presence of background shear.
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Construction of our model
The Serre system


∂tζ + ∂x

( h1h2

h1 + γh2
v
)

= 0,

∂t

(
v + µQ[ζ]v

)
+ (γ + δ)∂xζ +

ε

2
∂x

( h1
2 − γh2

2

(h1 + γh2)2
|v |2
)

= µε∂x
(
R[ζ, v ]

)
,

(S)
with h1 = 1− εζ, h2 = 1

δ + εζ and

Q[ζ]V ≡ −a ∂2
xV + ε

(
b V ∂2

x ζ + c (∂xζ)(∂xV ) + d ∂x(ζ∂xV )
)

+O(ε2),
R[ζ,V ] ≡ e (∂xV )2 + f V ∂2

xV + O(ε).

Introduce

F (εζ, v) = F0(εζ) + ε2 F1(εζ)v 2

S[εζ]V = (1 + κ1εζ)V − µ a ∂x
(

(1 + κ2εζ)∂xV
)
.

Fit the parameters, extra manipulations, withdraw O(µ2 + µε2) terms.
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Justification of our model

The modified Serre system
F (εζ, v)∂tζ + F (εζ, v)∂x

( h1h2

h1 + γh2
v
)

= 0,

S[εζ](∂tv + εσv∂xv) + (γ + δ)(1 + κ1εζ)∂xζ + ε
2∂x

((
h1

2−γh2
2

(h1+γh2)2 − σ)|v |2
)

= µε ς ∂x
(
(∂xv)2

)
,

(S’)with h1 = 1− εζ, h2 = 1
δ + εζ, and

S[εζ]V = (1 + κ1εζ)V − µ a ∂x
(

(1 + κ2εζ)∂xV
)
.

Properties of the system.

Linearly well-posed.
Our manipulations do not modify the dispersion relation ;

Conditionally (|εv0|2 < f (δ, γ)) linearly well-posed in presence of a
background shear. The original Serre system was not !

“Symmetric” + lower order terms
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Rigorous justification of the model

Consistency

The full Euler system is consistent with (S’), with precision O(µ2 + µε2 + µbo−1).

Well posedness

The new model is well-posed in X s ≡ Hs × Hs+1
µ (s > 3/2) over times of order & 1/ε.

Stability

If V satisfies (S’) up to R ∈ L1([0,T/ε);X s), then for US the solution of (S’) with same
initial data, one has

∀t ∈ [0,T/ε],
∣∣V − US

∣∣
X s ≤ C |R|L1([0,t);X s )

Convergence
The difference between any sufficiently smooth solution U of the full Euler system, and
the solution US of the new model (S’) with corresponding initial data, satisfies

∀t ∈ [0,T/ε],
∣∣U − US

∣∣
L∞([0,t];X s )

≤ C (µ2 + µε2 + µbo−1)t.
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h1 + γh2
∈ Hs (H1)
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1 + εκiζ ≥ h0 > 0 (i = 1, 2) =⇒ S is elliptic. (H3)

This allows to obtain energy estimates in the energy space∣∣(ζ, v)
∣∣2

Hs×Hs+1
µ
≡

∣∣ζ∣∣2

Hs +
∣∣v ∣∣2

Hs + µ
∣∣∂xv ∣∣2

Hs .
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Rigorous justification of the model

Consistency

The full Euler system is consistent with (S’), with precision O(µ2 + µε2 + µbo−1).

Well posedness

The new model is well-posed in X s ≡ Hs × Hs+1
µ (s > 3/2) over times of order & 1/ε.

Stability

Convergence
The difference between any sufficiently smooth solution U of the full Euler system, and
the solution US of the new model (S’) with corresponding initial data, satisfies

∀t ∈ [0,T/ε],
∣∣U − US

∣∣
L∞([0,t];X s )

≤ C (µ2 + µε2 + µbo−1)t.

Remarks.

We do not use ε . µ1/2.

The result extends to (small) non-flat topography, (small) surface tension.
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1 Introduction
The full Euler system
Asymptotic models

2 Coupled models
Construction
Full justification

3 Scalar models
Unidirectional approximation
Decoupled approximation
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The unidirectional model
Seek an approximate solution under the form

∂tζ + a ∂xζ + ε b ζ∂xζ + µ c ∂2
x∂tζ

+ ε2d ζ2∂xζ + ε3e ζ3∂xζ + µε∂x
(
f ζ∂2

x ζ + g (∂xζ)2
)

= 0 ,

v = F [ζ] = α ζ + ε β ζ2 + µ ν ∂2
x ζ + · · · ,

with precision (consistency) O(µ2 + ε4).

Unidirectional scalar approximation (after Constantin-Lannes ’09)

If the initial data satisfies v(0, x) = F [ζ(0, x)], then let Uuni = (v , ζ) be
defined by v(t, x) = F [ζ(t, x)] and

∂tζ + ∂xζ + ε
3

2

δ2 − γ
γ + δ

ζ∂xζ − µ
1

6

1 + γδ

δ(γ + δ)
∂2
x∂tζ

+ ε2d ζ2∂xζ + ε3e ζ3∂xζ + µε∂x
(
f ζ∂2

x ζ + g (∂xζ)2
)

= 0.

Then Uuni is an approximate solution, with accuracy O
(
(µ2 + ε4)t

)
.
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Decomposition of the flow

Is it true that after a certain time, any perturbation will decompose into
two waves, each one satisfying (approximately) v = F [ζ] ?

Numerically, yes.
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Figure : moderate amplitude regime : ε2 = µ, localized initial data.
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Decoupled models : Strategy

Recall the modified Serre system (S’) :
∂tζ + ∂x

( h1h2

h1 + γh2
v
)

= 0,

S[ζ](∂tv + εσv∂xv) + (γ + δ)(1 + κ1εζ)∂xζ + ε
2∂x

(( h1
2−γh2

2

(h1+γh2)2 − σ)|v |2
)

= µε ς ∂x
(
(∂xv)2

)
,

1 First order : ∂tU + Σ0∂xU = 0
 Decomposition of the flow : U =

∑
uiei , ∂tui + ci∂xui = 0

2 Second order : WKB-type analysis
Uapp =

∑
ui (ιt, t, x)ei + ιUc [ui ]. ι = max{ε(δ2 − γ), ε2, µ}

 Equation on ui , then Uc , for maximal consistency

3 Control of the secular growth of Uc .
 Consistency result.
 Convergence result.
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Introduction Coupled models Scalar models

Rigorous justification

Well-posedness

Let U(t = 0) ∈ Hs+n, s > 1/2. Then there exists a unique strong solution
ui (τ, t, x), uniformly bounded in C 1([0,T ]× R; Hs+n).

If (1 + x2)U(t = 0, ·) ∈ Hs+n, then (1 + x2)ui (τ, ·) ∈ Hs+n.

The residual Uc is uniquely defined, and Uc ∈ C 1([0,T ]× R; Hs).

Secular growth of the residual

∀(τ, t) ∈ [0,T ]× R,
∣∣Uc(τ, t, ·)

∣∣
Hs ≤ C0

√
t.

Moreover, if (1 + x2)U(t = 0) ∈ Hs+n, then one has the uniform estimate∣∣Uc(τ, t, ·)
∣∣
Hs ≤ C0,

Consistency∑
ui (ιt, t, x)ei + ιUc(ιt, t, x) satisfies the Serre model (S’), with precision

O
(
ι2(1 +

√
t)
)

(and O(ι2) if (1 + x2)U(t = 0) ∈ Hs+n), for t ∈ [0,T/ι].

(recall : ι = max{ε(δ2 − γ), ε2, µ}).
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Introduction Coupled models Scalar models

Rigorous justification

Well-posedness+persistence

Secular growth of the residual

Consistency∑
ui (ιt, t, x)ei + ιUc(ιt, t, x) satisfies the Serre model, with precision

O
(
ι2(1 +

√
t)
)

(and O(ι2) if (1 + x2)U(t = 0) ∈ Hs+n).

(recall : ι = max{ε(δ2 − γ), ε2, µ}).

Convergence

The difference between the solution of the full Euler system and the decoupled

model for t ∈ [0,T/ι] is of size O
(
ι×min{t,

√
t}
)
, and of size O

(
ι×min{t, 1}

)
if the initial data is localized in space.
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Introduction Coupled models Scalar models

Error in the moderate amplitude regime

In the non-critical case δ2 − γ 6= 0, the inviscid Burgers’ equation is as
precise as any higher order decoupled model.

∂tu± ± ∂xu± ± ε
3

2

δ2 − γ
γ + δ

u±∂xu± = 0 . (iB)
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Introduction Coupled models Scalar models

Error in the moderate amplitude regime
In the critical case δ2 = γ, if the initial data is localized in space, then
(CL) is the most precise decoupled model for very large times

∂tu± ± ∂xu± ± ε
3

2

δ2 − γ
γ + δ

u±∂xu± − µ
1

6

1 + γδ

δ(γ + δ)
∂2
x∂tu±

± ε2d u2
±∂xu± + ε3e u3

±∂xu± ± µε∂x
(
f u±∂

2
xu± + g (∂xu±)2

)
= 0. (CL)
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Vincent Duchêne Nonlinear dispersive asymptotic models for the propagation of internal waves 20 / 21



Thank you for your attention !
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