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Internal gravity waves

1

Stratification, due to variation of salinity and temperature.

Depth (m)

15:33:45 15:35:00 15:36:15 15:37:30 15:38:45 15:40:00 15:41:15
Time (HH:MM:SS UTC)

1. Credits : St. Lawrence Estuary Internal Wave Experiment (SLEIWEX)
http://myweb.dal.ca/kelley/SLEIWEX/index.php
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The full Euler system

d

¢t )

@ Horizontal dimension d = 1, flat bottom, rigid lid.

@ lrrotational, incompressible, inviscid, immiscible fluids.

@ Fluids at rest at infinity, (very small) surface tension.



Introduction Coupled models Scalar models
900000 0000 000000

The full Euler system

z
00 =0 W
vi= Va1 div vy = Agy =0 KoL+ 5| Vet = —£ — gz
AP =-7 k() o ¢ =1+ [0:CP0ud1 = /1+[0:C[0nd
C(t,x)
vo =V .02 div vg = Agp =0 0d2 + 3| Va0 = *p—‘z -9z
.02 =0 L

@ Horizontal dimension d = 1, flat bottom, rigid lid.

@ lrrotational, incompressible, inviscid, immiscible fluids.

o Fluids at rest at infinity, (very small) surface tension.
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The full Euler system

z
2.0, =0
£ 0
vi=Va.61 div vy = A¢ =0 o1+ 5| Vet = —£ — gz
APl =-0 k() ¢ 9= VIF[0:CP06r = VI+[0:C PO
C(t,x)
vz = V.02 div va = Agy =0 062+ 5| Vet = —£ — gz
—0:02=0 —dy

The system can be rewritten as two coupled evolution equations in

¢ and ¥ = P2jinterface-

using Dirichlet-Neumann operators.
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Asymptotic models

Asymptotic models are constructed from asymptotic expansions of the

Dirichlet-Neumann operators, w. r. t. given dimensionless parameters.
z

dq

P1

0 N

P2 A

X

a d1? P1 d glp2 — Pl)dl2
= — = — = = = —, bo==2r—""~-+2
€ dl y M N2 Y P2, d2’ o =
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Asymptotic models : examples

Shallow water : ;1 < 1.
First order : Saint-Venant system

0:U + AleU]ox U = 0.

Second order : Green-Naghdi (or Serre) system

0tU + AleU)0x U + nBleU, 0x]0xU + uCleU, 0]0: U = 0.

Long wave : 1 < 1, e = O(p).
Boussinesq system :

DU + Agdy U + eA(U)0 U + uBO2U + u1Co20:U = 0.

Moderate amplitude regime : 1 < 1, € = O(u'/?).

Scalar models
000000
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Asymptotic models : remarks

@ These models are justified in the sense of consistency.
In order to fully justify these models, one should prove that they are
well-posed, and that their solution remains close to the full Euler system.

@ These models are not unique! One may derive a family of models, with
possibly very different behavior. Typically, when 1 < 1, one can manipulate
the dispersion effects on large wavelength without modifying the precision.

@ Then a question is whereas one can select a (class of) model with improved
properties, such as

e optimal frequency dispersion ;
e well-posedness for less regular initial data;
e well-posedness over larger time.

1. Bona-Lannes-Saut '08, Anh '09, VD-Israwi-Talhouk
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Asymptotic models : state of the art

Shallow water : p < 1.
First order : Saint-Venant system
0:U + AleU]o, U = 0.
Well-posed, Tmax > T /¢, stable. Guyenne-Lannes-Saut '10
Second order : Green-Naghdi (or Serre) system
0:U + AleU)0x U + uBleU, 0x]0, U = 0.
(The original is) ill-posed. Liska-Margolin-Wendroff '95, Cotter-Holm-Percival '10

Long wave : <1, e =O(u).
Boussinesq system :
OrU + Agdx U + eA(U)0x U + 1B U + nCo20,U = 0.

(Some are) well-posed, Tax > T /e, stable. Bona-Chen-Saut '04, Saut-Xu '12 ...
~ justification of decoupled KdV approximation. Bona-Colin-Lannes '04, VD'11
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The aim of the talk : construct a well-posed asymptotic model in the
moderate amplitude regime, and use it to describe asymptotically the
behavior of the flow.

@ Introduction
@ The full Euler system
@ Asymptotic models

© Coupled models
@ Construction
@ Full justification

© Scalar models
@ Unidirectional approximation
@ Decoupled approximation



@ Introduction
@ The full Euler system
@ Asymptotic models

© Coupled models
o Construction
o Full justification

© Scalar models
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The Green-Naghdi system

The Green-Naghdi system

8¢ + Oy (mhi—”i,uv) =0,

0c (v +HQICIV) + (3 +6)0C + 50x (ﬁ| vE) = ped(RIG, V),
(GN)

with by =1 — ¢ and h, = 1 + € and

1 EC(f,X) 1 1
v = —— Oxo(t, x,z) dz — 7/ Oxd1(t, x, z) dz.
mi ), deltxa)d - v [ dalex?)

S

AV = 7k (hldx(hz () + vhgox(hﬁe)x(,,j’if,v)))-
2

RlG V] <<h2() hlhjr hy > N A"<h1(‘)x(h1hi“s\/hz)> )
‘éh Fyho (hz Ox (h2 Ox ( e ‘777)> 7”%@(h13(')X(hll1ia,‘772)>>'
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The Green-Naghdi system

The Green-Naghdi system

8¢ + Ox (hlh:u—h;th) =0,

h
8e(v+ nQICIV) + (v + )¢ + S0 (ﬁ| vE) = ued.(RIC.v),
(GN)
with hy =1 —€( and hy = %—i—e( and

1 CC(I’,X) 1 1
v = ——— OxPa(t,x,z) dz — y————= Oxd1(t, x, z) dz.
ha(t, x) [l P2l ) 7’71(@ x) /e((t,x) #l )

S

Qv

e (hlax(hfax(,,ﬂh ) + whzax(hﬁax(hlﬂvhz))),
3((ron(25)° - (mon(a25))")

+§f71+7\{ﬂ72 (h 8x(h238x(h1+,yh2)) - ’Yh28x(h13ax(hl+,y‘22)))

R[¢, V]




Intmdum on Coupled models Suhr modd<

The Green Naghdl system
The Green-Naghdi system

atg+a(hl’17h§h2):0,

0: (v + nQICIV) + (7 +8):C + 20 (M,;Q’;"‘)zl vE) = nedi(RIG V),
(GN)

Consistency

The full Euler system is consistent with the Green-Naghdi model, with
precision O(u?).

Remarks :
@ This extends to 3D case, non-flat topography, surface tension.
@ Linearly well-posed. Nonlinear well-posedness is completely open.
@ Unconditionally ill-posed in presence of background shear.
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Construction of our model
The Serre system

2 + 0 hlhjrhihz v) =0,

8(v+nQllv) + (v+0)0C + 2o ((h +3,Z2)2| vE) = uedn(RIC, V),
(S)

with hy =1 — €, b = 3 + ¢ and

QUIV = —ad?V +e (b VO2( + ¢ (0:C)(0x V) + d 0,(COx V)) + O(e?),
R[(, V] = e (0«V)? + f VB2V + Ofe).
Introduce

F(e¢,v) = Fo(e€) + € Fi(e¢)v?
S[ec]V = (1+re)V — pu a()x<(1+ eC)(”)XV>.

Fit the parameters, extra manipulations, withdraw O(u? + pe?) terms.
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Construction of our model
The Serre system

hy ho v) _ o,

O + 8X(h1 v

8(v+nQllv) + (v+0)0C + 2o (Mj,fj)g vI2) = ped(RIC, V),
(S)

with hy =1 — €, b = 3 + ¢ and

QUIV = —ad?V +e (b VO2( + ¢ (0:C)(0x V) + d 0,(COx V)) + O(€2),
R[C, V] = e (0V)? + f VIV + O(e).
Introduce

F(e¢,v) = Fo(e€) + € Fl(eC)v2
S[eC]V = (1+ r1eC)V — uaax((1+/€26§)8XV).

Fit the parameters, extra manipulations, withdraw O(u? + pe?) terms.
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Justification of our model

The modified Serre system
h1h
FIG )2 + FeG v (37 pv) = 0.
S[CU(Oev + eovav) + (v+8) 1+ meQ)d + 50 (Pt — o)vP?)
= HES (7 ((({)XV)2>7

with hy =1 —e(, ho = 1 + ¢, and (S)

S[ec]V = (1+ rieQ)V — ﬂaax((umg)axv).

Properties of the system.

@ Linearly well-posed.
Our manipulations do not modify the dispersion relation ;

e Conditionally (Jevp|? < £(8,7)) linearly well-posed in presence of a
background shear. The original Serre system was not !

@ “Symmetric” 4 lower order terms
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Rigorous justification of the model

Consistency
The full Euler system is consistent with (S'), with precision O(p? + pe? + pbo™?).

Well posedness

The new model is well-posed in X°* = H® x H™' (s > 3/2) over times of order > 1/e.

Stability

If V satisfies (S') up to R € L'([0, T /€); X*), then for Us the solution of (S') with same

initial data, one has
Vt € [0, T /e, |V — Us

s < CR|uo,e:x)

Convergence
The difference between any sufficiently smooth solution U of the full Euler system, and
the solution Us of the new model (S’) with corresponding initial data, satisfies

vt € [0, T /€], |U— US{MMXS) < C (p® 4 pe® + pbo Mt
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Rigorous justification of the model

Consistency
The full Euler system is consistent with (S'), with precision O(p? + pe? + pbo™?). J
Well posedness
The new model is well-posed in X* = H® x H5™' (s > 3/2) over times of order > 1/e. J
Requires the following conditions :
1
h > h hy > h — e H H1
12> ho >0, hp > ho >0 :>h1+fyh2€ (H1)

F(eC,v) > ho >0, i.e. |ev]® < f(eC) (H2)

l+eriC>h>0(i=12) = Sis elliptic. (H3)
This allows to obtain energy estimates in the energy space

2 2 2 2
(¢ v) HexHEL = [Clhs + [V s + 12]Ov e
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Rigorous justification of the model

Consistency
The full Euler system is consistent with (S'), with precision O(p? + pe? + pbo™?).

Well posedness

The new model is well-posed in X° = H® x H;"™ (s > 3/2) over times of order > 1/e.

4

Stability

If V satisfies (S') up to R € L*([0, T /€); X*), then for Us the solution of (S') with same

initial data, one has
vt € [0, T /e, |V — Us

s < CIRIa(o,ex9)

The difference between any sufficiently smooth solution U of the full Euler system, and
the solution Us of the new model (S’) with corresponding initial data, satisfies

vVt € [0, T /€], |U— Us < C (p® 4 pe® + pbo Mt

‘L"([O.r]‘X*) =
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Rigorous justification of the model

Consistency
The full Euler system is consistent with (S'), with precision O(p? + pe? + pbo™?).

Well posedness

The new model is well-posed in X° = H® x H;"™ (s > 3/2) over times of order > 1/e.

4

Stability

If V satisfies (S') up to R € L*([0, T /€); X*), then for Us the solution of (S') with same

initial data, one has
Vt € [0, T /e, |V — Us

s < CIRIa(o,ex9)

Convergence
The difference between any sufficiently smooth solution U of the full Euler system, and
the solution Us of the new model (S’) with corresponding initial data, satisfies

vVt € [0, T/, |U— US\LM([OJI;XS) < C (4® + pé® + pbo Yt
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Rigorous justification of the model

Consistency

The full Euler system is consistent with (S'), with precision O(p? + pe? + pbo™?).

Well posedness

The new model is well-posed in X° = H® x H;"™ (s > 3/2) over times of order > 1/e.

Convergence
The difference between any sufficiently smooth solution U of the full Euler system, and
the solution Us of the new model (S’) with corresponding initial data, satisfies

vt € [0, T /e, |U— Us

J
|
S J
|

2 2 1
| qougxsy < € (17 + pe + pbo™ )t

Remarks.
@ We do not use ¢ < pl/2.

@ The result extends to (small) non-flat topography, (small) surface tension.



@ Introduction
@ The full Euler system
@ Asymptotic models

© Coupled models
o Construction
o Full justification

© Scalar models
@ Unidirectional approximation
@ Decoupled approximation
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The unidirectional model
Seek an approximate solution under the form

0:C 4+ a0 + €b (O + pcd*oC
+ €d Ol + e (30 + pede(f (03¢ + g (<€)%) = 0,
v=F=aC+ el tprdd+ .,

with precision (consistency) O(u? 4 €4).

If the initial data satisfies v(0,x) = F[((0,x)], then let Uyni = (v, () be

defined by v(t,x) = F[((t,x)] and

: , 382 -7 . 1 140
0 IR ———(0:( — p== :
0:¢ + ¢ Q+627+0C( ¢ M6()(ﬂ,+d)

+ €d (0 + €e (PO + pedy(f (03¢ + g (0()%) = 0.

020:C

Then Uyni is an approximate solution, with accuracy O((/12 =+ 64)1‘).
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The unidirectional model
Seek an approximate solution under the form

0:C + ad + €bCOC 4+ pcd?0C
+ 2d (PO + €e (O + pedy(f CO2¢ + g (0x0)*) = 0,
v=F¢=al+eBC+pvdi+ -,

with precision (consistency) O(u? + €*).

Unidirectional scalar approximation (after Constantin-Lannes '09)

If the initial data satisfies v(0,x) = F[C(0, x)], then let Uyni = (v, () be
defined by v(t,x) = F[((t,x)] and
36—+ 1 1446

0:¢ + OxC + ﬁgmgaxg - M66(7+5)

+ €d (0 + e (0 + pedy(f (03¢ + g (0()%) = 0.

030:¢

Then U,y is an approximate solution, with accuracy (’)((u2 + 64)t).
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Decomposition of the flow

Is it true that after a certain time, any perturbation will decompose into
two waves, each one satisfying (approximately) v = F[(] 7
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Decomposition of the flow

Is it true that after a certain time, any perturbation will decompose into
two waves, each one satisfying (approximately) v = F[(] 7

Numerically, yes.

epsilon=01 005 0.035

T T T T T T T T
0 5 10 15 20 25 30 0035 005 0075 01 0035 005 0075 01
time epsilon epsilon

Figure : moderate amplitude regime : €2 = p, localized initial data.
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Decoupled models : Strategy
Recall the modified Serre system (S’) :

h1h2 V)
h1 +vh2

S[C1(ev + eavdv) + (v + 8)(1 + r1eC)DC + gax((% - a)|v|2)
= pe < O0x((0xv)?),

¢+ ox( — 0,

@ First order : 0:U + Xg0,U =0
~» Decomposition of the flow : U = > uje;, 0ruj + ¢jOxuj =0

@ Second order : WKB-type analysis
Uapp — z U,'(/,f, t,X)e,' + [UC[Ui]'

~ Equation on u;, then U€, for maximal consistency

© Control of the secular growth of U€.
~ Consistency result.
~ Convergence result.
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Decoupled models : Strategy
Recall the modified Serre system (S’) :

h1h2 V)
h1 +vh2

S[C1(ev + eavdv) + (v + 8)(1 + r1eC)DC + gax((% - U)Mz)
= pe s Ox ((8><V)2)7

¢+ ox( — 0,

@ First order : ;U + Xp0xU =0
~» Decomposition of the flow : U = > uje;, 0ruj + ¢jOxuj =0

@ Second order : WKB-type analysis
Uapp = > uj(et, t, x)ej + cU[u;j].

~ Equation on wu;, then U€¢, for maximal consistency

© Control of the secular growth of U*.
~ Consistency result.
~~ Convergence result.
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Decoupled models : Strategy
Recall the modified Serre system (S’) :

mhy N
e T
S[C1(0tv 4 eavoxv) + (7 + 0)(1 + K1€C)0xC + 50x ((ﬁ — U)M2>

= pe s Ox((0xv)?),

@ First order : 9;U + Xg0,U =0
~» Decomposition of the flow : U = > uje;, 0ruj + ¢jOxuj =0

@ Second order : WKB-type analysis
Uapp = D ui(et, t,x)e; +1U[ui]. 0= max{e(6? — ), €%, u}
~» Equation on u;, then U€, for maximal consistency
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Decoupled models : Strategy
Recall the modified Serre system (S’) :

hyh B
e T
S[C(Oev + eavdv) + (7 + 8)(1 + r1€C)xC + 50, ((ﬁ - a)w)

= pe s Ox((0xv)?),

@ First order : 9;U + Xg0,U =0
~» Decomposition of the flow : U = > uje;, 0ruj + ¢jOxuj =0

@ Second order : WKB-type analysis
Uapp = D ui(et, t,x)e; +1U[ui]. 0= max{e(6? — ), €%, u}
~» Equation on u;, then U€, for maximal consistency

© Control of the secular growth of U€.
~ Consistency result.
~ Convergence result.
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Rigorous justification
Well-posedness
Let U(t =0) € H*"", s > 1/2. Then there exists a unique strong solution
ui(7, t, x), uniformly bounded in C1([0, T] x R; H**").

The residual U is uniquely defined, and U € C([0, T] x R; H®).

V(r,t) € [0, TIx R, |U(7,1,)],. < GVt
Moreover, if (1 + x?)U(t = 0) € HS™", then one has the uniform estimate
}UC(T. t,-) s < (G,

Soui(et, t,x)e; + cUC(et, t, x) satisfies the Serre model (S'), with precision
O(2(1+ /1)) (and O(:2) if (1 +x?)U(t = 0) € H"), for t € [0, T /4].
(recall : ).
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Rigorous justification
Well-posedness+persistence

Let U(t =0) € H*"", s > 1/2. Then there exists a unique strong solution
ui(, t,x), uniformly bounded in C}([0, T] x R; H5").

If (1+x3)U(t=0,-) € H"", then (1 + x?)u;(7,-) € HF".

The residual U is uniquely defined, and U € C([0, T] x R; H®).

Secular growth of the residual

V(T7 t) € [07 T] X R? |UC(7-7 t, ) Hs < CO\/E
Moreover, if (1 + x2)U(t = 0) € H*™", then one has the uniform estimate
|UC(T7 t, ) Hs < CO?

Yo ui(et, t,x)e; +1U(et, t, x) satisfies the Serre model (S’), with precision
O(2(L+ /1)) (and O(2) if (1 + x?)U(t = 0) € H5™"), for t € [0, T /4.
(recall : ).
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Rigorous justification
Well-posedness+persistence

Let U(t =0) € H*™", s > 1/2. Then there exists a unique strong solution
u;i(7, t, x), uniformly bounded in C1([0, T] x R; H**").

If (1+x?)U(t=0,-) € H*", then (1 + x?)u;(r,-) € HS*".

The residual U is uniquely defined, and U € C([0, T] x R; H®).

Secular growth of the residual

V(r,t) € [0, TI xR, |US(7,t,)|,. < GVt
Moreover, if (1 + x?)U(t = 0) € HS™", then one has the uniform estimate
|UC(T7 t, ) Hs S CO?

Consistency

Sui(et, t,x)e; + cUC(et, t, x) satisfies the Serre model (S’), with precision
O(2(1+ /1)) (and O(:?) if (1 + x?)U(t = 0) € H¥"), for t € [0, T /4].
(recall : © = max{e(6? — ), €2, u}).
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Rigorous justification

Well-posedness+-persistence J

Secular growth of the residual J

Consistency

Soui(et, t,x)e; + cUS(et, t, x) satisfies the Serre model, with precision
O(2(1+ /1)) (and O(:?) if (1 + x*)U(t = 0) € H™).
(recall : © = max{e(6? — 7), €2, u}).

Convergence

The difference between the solution of the full Euler system and the decoupled
model for t € [0, T/:] is of size O(v x min{t,/t}), and of size O(¢ x min{t,1})
if the initial data is localized in space.
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Error in the moderate amplitude regime

In the non-critical case 5% — « # 0, the inviscid Burgers’ equation is as
precise as any higher order decoupled model.

302 — .
Oiuy + Oguy + enguia ur = 0. (iB)

T T T T T T T T
0035 005 0075 01 0035 005 0075 01
epsilon epsilon
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Error in the moderate amplitude regime

In the critical case §° = 7, if the initial data is localized in space, then
(CL) is the most precise decoupled model for very large times

362~ ~ 11475 .,
0 + Outr £ e Oty — p=—-"1"-029
tu:t U:l: 62 ’}/—i-é U:l: U:l: 6(5(’y+6) X tu:t
+ 2d viokur + e uidwur £ ped(f urdiur + g (0xus)?)
= 0. (CL)
M = e
1 £ £

1

T T T T T T T T T T
0 50 100 150 0035 005 0075 01 0035 005 0075 01
time epsilon epsilon




Thank you for your attention !
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