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System of two coupled nonlinear Schrodinger equations
with an external driven field

Let us consider:

2

i0pp1 = —%A% + %|X’2w1 + Bua|v 21 + Bralba 21 + Mo
2

Dt = 3B+ P + Bualun P+ ralia P + A

P1(x,0) = p1(x), ¥2(x,0) = pa(x) (1)

with x e RV in N< 3

» Bji, B12 € R intraspecific and interspecific scattering lengths,
respectively

» )\ € R external driven field constant
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Physical Experiments

» First experiment concerning with the binary Bose-Einstein
condensate (BEC) was performed in JILA with
|F =2,mf=2>and |1,—1 > spin states of 8’Rb. (C. J.
Myatt et al.,Phys. Rev. Lett., 78 (1997))

» When A = 0, the above system models a mixture of
Bose-Einstein condensates consisting of two different
hyperfine states of Rubidium atoms confined in the same
harmonic trap. By applying a weak magnetic (driven) field
with the Rabi frequency A, the two components are coupled in
the overlap region. This coupling realizes a Josephson-type
junction and gives rise to nonlinear oscillations in the relative
populations.(J.Williams et. al, Phys.Rev.A,59(1999))
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Physical literature

» question: will two-component BEC with one repulsive and one
attractive component collapse or may it reach a stable state?

> a stabilization method for the single Bose-Einstein condensate
— controle the scattering length using the
Feshbach-resonance;
Phys. Rev. A 67 (2003), 013605,
Phys. Rev. Lett 90 (2003) 040403.

» for the two-component BEC Saito et. al. proposed to use the
Rabi oscillations in order to achieve oscillations of the
scattering lengths and consequently stabilize the Bose-
Einstein condensate.

Phys. Rev. A 76 (2007) 053619
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Motivation

» Does two-component NLS-system with focusing and
defocusing nonlinearities in the presence of the Rabi frequency
blow-up or exist globally?

» Does the Rabi term influence the long time behavior of the
system, thus can it avoid blow-up?

» Numerical experiments suggest the fact that the Rabi
frequency may affect the long time behavior of the system
Math. Models Methods Appl. Sci. (2013) A.Jiingel, R.W.

> It will make sense to deal with the case of great Rabi
frequencies = we are interested in asymptotics when
|A| = 0.
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Some Definitions |

Definition

For functions W = (¢1,92) " : RN x [0, T] — C2, we define the
norms, where [[1;(t)|[ ey is the standard LP-norm:

1/p
Hw(t)Hp = <Z2J2—1 H??DJ( )||Lp RN ) for1 < p< oo
2 j=1 ij(t)HLOO(RN)

Wl = [ 7,

with the corresponding Banach spaces LP(RN) and
LI((0, T), LP(RY)).
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Some Definitions |l

We introduce the energy-type space
Y(RV) := {u € HYRN) : |xu| € L2(R)}.

We remind the definition of an admissible pair (g, r):

with2<r< 7% 2<r<ooif N=1and2<r<ocif N=2)
(q',r") denote the Holder dual exponents of an admissible pair.
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Local Existence

Let ¢ := (1, ¢2) € L(RN), then there exists a unique, maximal
solution W € C([0, Trax), Z(RN)) of (1).
The blow-up alternative holds true, i.e. Tpax < 0o if and only if

[W(E) |2 — o0
as t — T,.,.. Moreover for any admissible pair (g, r), we have

W, VY, |- |V e LI((0, Tmax); L(RY)).
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Conserved quantities

Total mass:
M(t) = My(e) + Ma(6) = [ [0nCe 0Pder [ a0 e

Total energy:

2

1 2 "
e - | (2 (GI7w+ P + %1%
Bzl 2ol + 2XR(2) | (x, ),

M(t) = M(0) and E(t) = E(0) for all t > 0.
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Two-component NLSE in an external driven field

Global Existence |

Theorem

Let N < 3 and set § = max{(—f11)", (=B22)*}. Then there
exists a global-in-time solution to in the following cases:

» all Bij > 0 withi,j=1,2
> at least one 3j; <0

1. 11, B2 > 0 and B3, < B11f22
2. N=1
3. N=2and
> M(0) < 2/(G|Br2|), if 12 <0
> M(O) < 1/(C25), I'fmir‘l{ﬁu,ﬂzz} <0
> M(O) < 4/(C2(2B + |ﬁ12|)), I'fmin{/j'n,ﬁzz} <0andpf2<0

Two-component NLS system with linear coupling

Rada M. Weishaupl



Local Existence
Global Existence
Two-component NLSE in an external driven field Sufficient condition for the blow-up of the system
Sharp thresholds for N = 2
Ground State
The Effect of the External Driven Field

Global Existence Il

4. N =

VW(0)[I3 < 2(E(0) + WM( )), and
> ’V’(O)(E(O) +[AIM(0)) < 27(;2[32 ,if 12 <0
> M(O)(E(O) + |)\|M(0)) < 27C252 /fmm{ﬁn,ﬁgg} <0
> M(O)(E(O) + |A|M(O)) < W, /fmln{ﬂn,ﬁn} <0
and 512 <0

where Cy is the best constant in the Gagliardo-Nirenberg
inequality:

Wi < CulvwiF vz v e HY(RY)

Math. Models Methods Appl. Sci. (2013) A.Jiingel, R.W.
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Blow-up of the system |

Theorem

Let ¢ == (¢1,¢2) € Z(RN) and denote by
I(t) == [fan [X[2(|¥1]? + [¢2|?)dx. If one of the conditions

am+umm»<23mx or

I'(0) < o, E(O)+|A\M(O)<—%I’(O)

is satisfied, the solution W = (11,1)2) to the system blows up at
time t* < w/(2v) or t* < w/(4~), respectively, i.e.

lim [|[ VW2 = +oo,
t—t*
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Blow-up of the system I

if the additional conditions on N are fulfilled- in the (mass) critical
or super critical case:

1. N =2 and at least one 3;; <0, withi,j =1,2
2. N =311 <0,B0 <0; if f10 > 0 we should have

additionally 812 < \/| 311522

Math. Models Methods Appl. Sci. (2013) A.Jiingel, R.W.
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Sharp threshold for N = 2

In Phys. Lett. A 374 (2010) 2133-2136, Zhongxue and Zuhan

showed that for 3;; < 0 for i,j = 1,2 and for |B12] < \/|B1152|
the system:

Av; — v — (Bu|vi|? + Biz|ve|?)vi = 0
Avy — vy — (Br2|vi|? + Baz|val?)vo = 0

has a ground state solution V := (vi, v2). All v; , i = 1,2 must be
positive, radially symmetric and strictly decreasing.
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Sharp threshold for N = 2

If (¢1,02) € X(R?) (remember M(0) = [[¢1l3 + [|2]13) and

1
M(0) < 51 VI3

then the corresponding solution W = (11, 1») exists globally in
time.
At the same time, for arbitrary positive 1 and complex ¢ satisfying

|| > /15X if we take initial data @1 = cpuvi(px) and
o = cuvz(,ux), then

1
M(0) = S[IV|3,

and the corresponding solution W = (1)1, v») blows up in finite
time.
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In East Asian J. Appl. Math. 1, no.1 (2011), 49-81 W. Bao and Y.
Cai showed existence of the ground state (¢, ¢5)7 if at least one
of the conditions holds:

> N e ]_

» N=2and 11 > -1/, B > -1/G,

B2 > —1/C — /1/C + B11/1/ G + Baz

» N = 3 either all ﬁ,‘j >0, or #1711 > 0 and 5%2 < 811822
In addition (e®1|¢%|, e/%2|¢5|), with 61 — 6 = 7 for A > 0 and
01 — 0> =0 for A < 0, respectively. Furthermore if 511 > 0 and
5%2 < B11822, and one of the parameters A,y are nonzero, then
the ground state is (|¢$|, —sign(A\)|¢5]) T is unique.
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Example: one focusing, one defocusing nonlinearity

Let 811 < 0 and B2, 812 > 0 and N = 2. If the initial mass is not
smaller than the critical mass M(0) < 1/(C;|B11]), and the
sufficient condition for blow-up E(0) + [A|M(0) < %/(0) is not
satisfied, we cannot say anything on the long time behavior of the

system
. 1 72 2 2
0y = —§A1/11 + 7’X\ 1 — [h1["h1 + Aibo
. 1 ’Y2 2 2
0 = —EA% + ?’X\ V2 + || b2 + Ay

¥1(x,0) = ¢1(x),  ¥a(x,0) = pa(x)

Numerical simulations suggests that the system may blow-up or
"exist globally” depending on A.

Rada M. Weishaupl Two-component NLS system with linear coupling



Local Existence
Global Existence
Two-component NLSE in an external driven field Sufficient condition for the blow-up of the system
Sharp thresholds for N = 2
Ground State
The Effect of the External Driven Field

The effect of the external driven field

Remember:
va(e) = [ loa(x 0P Male) = [ foatet) o

The total mass equals M = M; + M, is conserved. We also define

M12(t) =S RN ¢1(X7 t)T/’;(Xa t)dX7

Lemma

My and My, satisfy the following differential equations:
0tMo = —2AMy5, 0tMqp = )\M(O) —2\M5 — Q(t), t > 0, where

Q(6) =R | 3 (Bualval® = Beolial® = Bra(lval®  vaf) (x. ).
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The functions Mx(t) and Mi»(t) can be computed explicitly from
the ODE system. Then My(t) = —Ma,(t) + M(0). The solution
reads as

Mi(t) = —sin(2At)M12(0) + cos(2At)M1(0) + %(1 — cos(2At))M(0)
+ [ sin(2A(t — 5))Q(s)ds,

Mo(t) = sin(2At)Mi2(0) + cos(2At) Ma(0) + 5(1 — cos(2At))M(0)
— [y sin(2\(t — 5)) Q(s)ds.

— the components exchange their mass periodically.

In the special case 811 = (22 = P12, this exchange occurs actually
with the frequency 2.
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The Transformed System

We first perform the following transformation:

d1(x,1) = 2RO (x, £) + a(x, 1))
da(x,t) = ZERD (4 (x, t) = dha(x, t)

Let us denote by H := —1A + 772M2
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Nonautonomous System

We obtain the non-autonomous system:

i1 = He1 + o1|p12¢1 + 02| da 1 + o3(At)|p1] 2o
+oa(At)| g2 b2 + o5(At) i3 + o6(AE) P15
(2)
iOrpa = Heo + 01|¢2|?da + 02|61 > P2 + 03(At)|d2|* 1
+oi (M) @11 + o5 (ML) d5dT + o6 (M) P30]

$1(x,0) = p1(x) + p2(x); P2(x,0) = p1(x) — p2(x).

For the single nonlinear Schrodinger equation with a periodic
coefficient there is a rigorous result by Cazenave and Scialom
Revista Matématica Complutense, 23, 2(2010), 321-339
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Main result
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With the coefficients:

o1

72
o3(At)
oa(At)
o5(At)

06(>\t)

P11+ 2612 + B2

2 ;
P11 + P22
—
= @ exp (2i\t);
= fu — ; P22 exp (2i\t);

-2
_ P11 i12 + B22 exp (4iMt):

P11 — P22
4

exp (—2iAt).
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Asymptotics for |\| — co

Remark Note that for 811 = (22 = P12 =  the system (2) does
not depend on A:

IOy = —2A¢1 + L |x[2h1 + Blo1 21 + BlbalPn
iOrdy = —LA¢s + L|x|2h + Blda2d2 + Bléa2da

Rada M. Weishaupl Two-component NLS system with linear coupling



Main result
Sketch of the Proof

As totics for |\ 00 5 A
ymptoti XAl = oo Properties of the Limiting System

Formal Limit

We expect the coefficients of the nonlinearities to go to their
average in time:

2
‘j:/ oj(t)dt =0 for j=3,4...6.
0

and the solution (¢1, ¢2) to converges locally in time for |A| — oo
to the solution U = (u1, up) of:

. 2
iOu; = —%Au1+77\x|2u1+01|u1]2u1+02]U2\2u1
. 2
i0ry = —3Aup + L |x|2uz + o1|ua|up + oo |ur|?u2

u1(x,0) = 01(x) + @2(x);  u2(x,0) = p1(x) = @2(x)
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Main Result |

Theorem

Let ¢ == (¢1,¢2) € Z(RN) be a fixed initial value. Given \ € R,
let ®* denote the maximal solution of (2). Let U be the maximal
solution of

. 2

iOru; = —%AU1+%\X|2U1+01|U1]2U1—i—agluQ\zul

. 2

iOrup = —%Auz—|—%|x|2uz+01|uz|2uz—|—Jg]u1|2uz
u1(x,0) = p1(x) + p2(x);  w2(x,0) = p1(x) — p2(x)

defined on the maximal interval [0, Spax)-
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Main Result Il

» Given any 0 < T < Spax the solution ®* exists on [0, T]
provided that || is sufficiently large.

oA V)
» And we have convergence vor | — VU | in
|- o |-|U

L9((0, T), L"(RN)) as |A\| — oo, for all admissible pairs (q,r)
and all 0 < T < Spax. In particular, we have

®* — U inC([0, T]; HHRN)) V0 < T < Spmax.
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Main Result Il

Where

_ B11 + 2B12 + P22
4 )

P11+ B
03 = f

01
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» With the standard techniques it follows that the Cauchy
problems for W, ®* U are locally well-posed.

» The same result stated in the above Theorem for solution W
holds true also for solutions ®* of the non-autonomous
system.

» We can easily check that [¢1]? + [2]? = |$1|? + |¢2|? and
consequently also

IW(t)llgny = [197(8) 5@m)
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Preliminary Results

We first need uniform in A bounds on the H!-norm of the solution:

Proposition

Given M > 0, there exists a § = 6(M) > 0 such that for any
@ = (1, 92) € Z(RN), with |||lsgny < M, there exists a unique
solution W € C((0,6); Z(RN)) for the system. In addition,

(W1 Lo ((0,0):z(rmy) < 2/l D] 5 ()
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Lemma

For any ¢ € L(RN) let ®* be the maximal solution of the
non-autonomous system. Let U be the maximal solution of the
limiting system, defined on [0, Smax). Let 0 < | < Spax and
assume that ®* exists on [0, /] and that

lim sup ”¢)\||Loo((0’/);H1(RN)) < 00
[A| =00

Then we have

1
lim ||| V] (= U)llagoyerny =0

for any admissible pairs (g, r). In particular & — U in
L>((0,1); HY(RM)).
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Let us fix 0 < T < Spax and M = ||U||L°°((0,T);H1(]RN))
®* exists in [0, 6] for all A and furthermore

SUP er H(D/\HLOO((O,(S);Hl(RN)) <2z

let 0 </ < T (we can always choose / = §) be such that

» & exists in [0, /], and
> that we have limsup)y| o [|P* | Lo (0,11 (mN)) < 00

with the Lemma we have convergence ®* — U in

L9((0, 1); L"(RN)) for all admissible pairs (g, r).

In particular limy o0 [|[2(/) = U(N) || pa ey = 0.

= supjy>p [P (N) | r@vy < M for A > 0 sufficiently large
We can thus repeat the argument, starting at time t =/ ...

Thus we repeat this argument to prove the result in the whole
time interval [0, T].

Rada M. Weishaupl Two-component NLS system with linear coupling



Main result
Sketch of the Proof

Asymptotics for [A| — oo Properties of the Limiting System

Properties of the Limiting System

» there are three conserved quantities: the mass of each
component and the energy:

fun(t)ll2 = [lu1(0)]|2,
[u(t)ll2 = |lu2(0)]]2,
E(t) = E(0);
where
2
E 1 Vo2 + ~21x[2 w2 4
(t) = 3 RNZ IVujl® + X[ uj|* + o]y
=1

+aalusPunl?] (x, £)dx,

Rada M. Weishaupl Two-component NLS system with linear coupling



Main result
N 3 Sketch of the Proof
Asymptotics for [A| — oo Properties of the Limiting System

Global Existence of the limiting system |

Let U = (u1, up) be the solution of the limiting system. Then there
exists a global-in-time solution to in the following cases:

> 01,02 > 0
> at least one o; < 0
1. 01 >0 and |oy| < 01

2. N=1
3. N=2and

> M(0) < gipyyr if 02 <0

> M(0) < gy, if 01 <0

> M(0) < Garmiriey if o1 <0and 02 <0

VU(0)|3 < 2E(0), and

4. N =3,

Two-component NLS system with linear coupling
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Global Existence of the limiting system I

» M(0)E(0) < @ if 0o <0
» M(0)E(0) < ﬁ if o1 <0

> M(0)E(0) < s b——, if o1 < 0 and 02 < 0

27C3(2[o1]+|o2])?’

With this we have at least for large A different parameter regimes,
for which we expect global existence.
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Case: 11 = —1, Bao =1, P12 = 0, thus we have:

et = — 5Bt + e — [P + A
iO¢hy = —%sz + %!XV% + [ta] P2 + Aty
Y1(x,0) = p1(x),  2(x,0) = @2(x)

Remember o] = 511+2512+ﬁ22 o>

It follows for the I|m|t|ng system when |A| — oo:

_ Buthn
2

. 2
iOpu; = —%Aul + %|X\2u1
. 2
Oy = —3Aup + L [x|2u;
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Alternative Transformation

We perform following transformation:

¢p1 = cos(At)r + isin(At)yo
¢ = isin(At)y1 + cos(At)yn

2
01 = —%A% + %\X|2¢1 + fi(At)|¢1 2 p1 + (\)| 2| P1
+if(At)| 1 2Pz + ifa(At)|p2|> b2
=26 (A)S (P102) p1 — ifs (M) (P102) P2
2
D2 = —5 B+ LlxPor + B(ADIGal 00 + BODI1 0

—ifa(At)|p1 b1 — ifa(\t)| 2|
—26,(A)S (¢5d2) a2 + ifs(AD)S (¢ 62) f1
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The coefficients depend on A and t.

(At) = P11 cos*(At) + Bopsin*(At) + 2812 cos?(At) sin?(At)
(At) = PBrisin*(\t) + B cos*(At) + 2612 cos?(At) sin®(At)

H(At) = sin(At)cos(At) [—pB11 cos*(At) + Bazsin®(At) + PBio cos(2At)]
(At) = (B11 + Boz) cos?(At)sin®(At) + Bra(cos*(At) + sin*(At))
(At) = sin(At)cos(At) [= P11 sin®(At) + Bao cos®(At) — PBio cos(2At)]
(At) = 2sin?(\t) cos®(At) [B11 + Boz — 2612]
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Formal Limit

. 1 2

Oy = —EAU1+ %\x|2ul+01]u1]2ul +a3\uQ\2u1
—iO’5%(UIU2) u»

, 1 v 2 2 2

Qe = —EAU2+7‘X| up + o1|wa|“ux + o3|ur| U

—I-I'O'5%(UIU2) 7
with initial data u1(x,0) = p1(x) and uz(x,0) = 2(x) and
3611 + 3522 + 2012 on B11 + B2z + 6012
8 3 8
P11 + Bz — 2012
4

g1 =

05 =
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This system has three conserved quantities:

(1) = /Rm[i(w% PR+ Rt

J=1

ma

+o3|u1)?|ua)? + 053 (u1u2)}(x, t)dx
M(t) = /RN (] u]? + |u2?) (x, t)dx

R(t) = R [ (uiw3)(x,t)dx
RN

» we can show the same convergence results as before

> global existence is in the same parameter regions as before
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Asymptotics for [A| — oo Properties of the Limiting System

Conclusion

» we discussed the global existence and the blow-up alternative
of the system

» semi-explicit formula describing the mass evolution, indicating
the role of the Rabi frequency A.

» we performed asymptotics for |A\| — oo

» proved the convergence locally in time in appropriate
Strichartz’ spaces.

» show existence of the system on a time interval strictly
smaller than the existence interval of the limiting system. =

We expect the system to behave like the limiting system for
|A| sufficiently large.
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Thank you for your attention!
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