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System of two coupled nonlinear Schrödinger equations
with an external driven field

Let us consider:

i∂tψ1 = −1

2
∆ψ1 +

γ2

2
|x |2ψ1 + β11|ψ1|2ψ1 + β12|ψ2|2ψ1 + λψ2

i∂tψ2 = −1

2
∆ψ2 +

γ2

2
|x |2ψ2 + β12|ψ1|2ψ2 + β22|ψ2|2ψ2 + λψ1

ψ1(x , 0) = ϕ1(x), ψ2(x , 0) = ϕ2(x) (1)

with x ∈ RN in N ≤ 3

I βjj , β12 ∈ R intraspecific and interspecific scattering lengths,
respectively

I λ ∈ R external driven field constant
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Physical Experiments

I First experiment concerning with the binary Bose-Einstein
condensate (BEC) was performed in JILA with
|F = 2,mf = 2 > and |1,−1 > spin states of 87Rb. (C. J.
Myatt et al.,Phys. Rev. Lett., 78 (1997))

I When λ = 0, the above system models a mixture of
Bose-Einstein condensates consisting of two different
hyperfine states of Rubidium atoms confined in the same
harmonic trap. By applying a weak magnetic (driven) field
with the Rabi frequency λ, the two components are coupled in
the overlap region. This coupling realizes a Josephson-type
junction and gives rise to nonlinear oscillations in the relative
populations.(J.Williams et. al, Phys.Rev.A,59(1999))
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Physical literature

I question: will two-component BEC with one repulsive and one
attractive component collapse or may it reach a stable state?

I a stabilization method for the single Bose-Einstein condensate
→ controle the scattering length using the
Feshbach-resonance;
Phys. Rev. A 67 (2003), 013605;
Phys. Rev. Lett 90 (2003) 040403.

I for the two-component BEC Saito et. al. proposed to use the
Rabi oscillations in order to achieve oscillations of the
scattering lengths and consequently stabilize the Bose-
Einstein condensate.
Phys. Rev. A 76 (2007) 053619
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Motivation

I Does two-component NLS-system with focusing and
defocusing nonlinearities in the presence of the Rabi frequency
blow-up or exist globally?

I Does the Rabi term influence the long time behavior of the
system, thus can it avoid blow-up?

I Numerical experiments suggest the fact that the Rabi
frequency may affect the long time behavior of the system
Math. Models Methods Appl. Sci. (2013) A.Jüngel, R.W.

I It will make sense to deal with the case of great Rabi
frequencies ⇒ we are interested in asymptotics when
|λ| → ∞.
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Some Definitions I

Definition

For functions Ψ = (ψ1, ψ2)T : RN × [0,T ]→ C2, we define the
norms, where ‖ψj(t)‖Lp(RN) is the standard Lp-norm:

‖Ψ(t)‖p =


(∑2

j=1 ‖ψj(t)‖p
Lp(RN)

)1/p
for 1 ≤ p <∞∑2

j=1 ‖ψj(t)‖L∞(RN)

‖Ψ‖q,p =
∥∥∥‖Ψ(t)‖Lp(RN)

∥∥∥
Lq(0,T )

with the corresponding Banach spaces Lp(RN) and
Lq((0,T ), Lp(RN)).
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Some Definitions II

We introduce the energy-type space

Σ(RN) := {u ∈ H1(RN) : |xu| ∈ L2(RN)}.

We remind the definition of an admissible pair (q, r):

2

q
= N

(
1

2
− 1

r

)
.

with 2 ≤ r ≤ 2N
N−2 (2 ≤ r ≤ ∞ if N = 1, and 2 ≤ r <∞ if N = 2)

(q′, r ′) denote the Hölder dual exponents of an admissible pair.
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Local Existence

Let ϕ := (ϕ1, ϕ2) ∈ Σ(RN), then there exists a unique, maximal
solution Ψ ∈ C([0,Tmax),Σ(RN)) of (1).
The blow-up alternative holds true, i.e. Tmax <∞ if and only if

‖Ψ(t)‖H1 →∞

as t → T−max . Moreover for any admissible pair (q, r), we have

Ψ,∇Ψ, | · |Ψ ∈ Lq((0,Tmax); Lr (RN)).
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Conserved quantities

Total mass:

M(t) = M1(t) + M2(t) =

∫
RN

|ψ1(x , t)|2dx +

∫
RN

|ψ2(x , t)|2dx

Total energy:

E (t) =

∫
RN

[ 2∑
j=1

(1

2
|∇ψj |2 +

γ2

2
|x |2|ψj |2 +

βjj
2
|ψj |4

)
+β12|ψ1|2|ψ2|2 + 2λ<(ψ∗1ψ2)

]
(x , t)dx ,

M(t) = M(0) and E (t) = E (0) for all t ≥ 0.
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Global Existence I

Theorem

Let N ≤ 3 and set β = max{(−β11)+, (−β22)+}. Then there
exists a global-in-time solution to in the following cases:

I all βij ≥ 0 with i , j = 1, 2

I at least one βij < 0

1. β11, β22 > 0 and β2
12 < β11β22

2. N = 1
3. N = 2 and

I M(0) < 2/(C2|β12|), if β12 < 0
I M(0) < 1/(C2β), if min{β11, β22} < 0
I M(0) < 4/(C2(2β + |β12|)), if min{β11, β22} < 0 and β12 < 0
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Global Existence II

4. N = 3, ‖∇Ψ(0)‖2
2 ≤ 2(E (0) + |λ|M(0)), and

I M(0)(E(0) + |λ|M(0)) < 8
27C2

3 β
2
12
, if β12 < 0

I M(0)(E(0) + |λ|M(0)) < 2
27C2

3 β
2 , if min{β11, β22} < 0

I M(0)(E(0) + |λ|M(0)) < 8
27C2

3 (2β+|β12|)2 , if min{β11, β22} < 0

and β12 < 0

where CN is the best constant in the Gagliardo-Nirenberg
inequality:

‖Ψ‖4
4 ≤ CN‖∇Ψ‖N2 ‖Ψ‖4−N

2 Ψ ∈ H1(RN)

Math. Models Methods Appl. Sci. (2013) A.Jüngel, R.W.
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Blow-up of the system I

Theorem

Let ϕ := (ϕ1, ϕ2) ∈ Σ(RN) and denote by
I (t) :=

∫
RN |x |2(|ψ1|2 + |ψ2|2)dx. If one of the conditions

E (0) + |λ|M(0) <
γ2

2
I (0), or

I ′(0) < 0, E (0) + |λ|M(0) < −γ
2

I ′(0)

is satisfied, the solution Ψ = (ψ1, ψ2) to the system blows up at
time t∗ ≤ π/(2γ) or t∗ ≤ π/(4γ), respectively, i.e.

lim
t→t∗

‖∇Ψ‖2 = +∞,
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Blow-up of the system II

if the additional conditions on N are fulfilled- in the (mass) critical
or super critical case:

1. N = 2 and at least one βij < 0, with i , j = 1, 2

2. N = 3 β11 < 0, β22 < 0; if β12 > 0 we should have
additionally β12 ≤

√
|β11β22|

Math. Models Methods Appl. Sci. (2013) A.Jüngel, R.W.
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Sharp threshold for N = 2

In Phys. Lett. A 374 (2010) 2133–2136, Zhongxue and Zuhan
showed that for βij < 0 for i , j = 1, 2 and for |β12| <

√
|β11β22|

the system:

∆v1 − v1 − (β11|v1|2 + β12|v2|2)v1 = 0

∆v2 − v2 − (β12|v1|2 + β22|v2|2)v2 = 0

has a ground state solution V := (v1, v2). All vi , i = 1, 2 must be
positive, radially symmetric and strictly decreasing.
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Sharp threshold for N = 2

If (ϕ1, ϕ2) ∈ Σ(R2) (remember M(0) = ‖ϕ1‖2
2 + ‖ϕ2‖2

2) and

M(0) <
1

2
‖V ‖2

2

then the corresponding solution Ψ = (ψ1, ψ2) exists globally in
time.
At the same time, for arbitrary positive µ and complex c satisfying

|c | ≥
√

1+λ2

2 if we take initial data ϕ1 = cµv1(µx) and

ϕ2 = cµv2(µx), then

M(0) ≥ 1

2
‖V ‖2

2,

and the corresponding solution Ψ = (ψ1, ψ2) blows up in finite
time.
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In East Asian J. Appl. Math. 1, no.1 (2011), 49-81 W. Bao and Y.
Cai showed existence of the ground state (φg1 , φ

g
2 )T if at least one

of the conditions holds:

I N = 1

I N = 2 and β11 ≥ −1/C2, β22 ≥ −1/C2,
β12 ≥ −1/C2 −

√
1/C2 + β11

√
1/C2 + β22

I N = 3 either all βij ≥ 0, or β11 ≥ 0 and β2
12 ≤ β11β22

In addition (e iθ1 |φg1 |, e iθ2 |φg2 |), with θ1 − θ2 = π for λ > 0 and
θ1 − θ2 = 0 for λ < 0, respectively. Furthermore if β11 ≥ 0 and
β2

12 ≤ β11β22, and one of the parameters λ, γ are nonzero, then
the ground state is (|φg1 |,−sign(λ)|φg2 |)T is unique.
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Example: one focusing, one defocusing nonlinearity

Let β11 < 0 and β22, β12 ≥ 0 and N = 2. If the initial mass is not
smaller than the critical mass M(0) < 1/(C2|β11|), and the

sufficient condition for blow-up E (0) + |λ|M(0) < γ2

2 I (0) is not
satisfied, we cannot say anything on the long time behavior of the
system

i∂tψ1 = −1

2
∆ψ1 +

γ2

2
|x |2ψ1 − |ψ1|2ψ1 + λψ2

i∂tψ2 = −1

2
∆ψ2 +

γ2

2
|x |2ψ2 + |ψ2|2ψ2 + λψ1

ψ1(x , 0) = ϕ1(x), ψ2(x , 0) = ϕ2(x)

Numerical simulations suggests that the system may blow-up or
”exist globally” depending on λ.
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The effect of the external driven field

Remember:

M1(t) =

∫
RN

|ψ1(x , t)|2dx , M2(t) =

∫
RN

|ψ2(x , t)|2dx .

The total mass equals M = M1 + M2 is conserved. We also define

M12(t) = =
∫
RN

ψ1(x , t)ψ∗2(x , t)dx ,

Lemma

M2 and M12 satisfy the following differential equations:

∂tM2 = −2λM12, ∂tM12 = λM(0)− 2λM2 − Q(t), t > 0, where

Q(t) = <
∫
RN

ψ1ψ
∗
2

(
β11|ψ1|2 − β22|ψ2|2 − β12(|ψ1|2 − |ψ2|2)

)
(x , t)dx .
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The functions M2(t) and M12(t) can be computed explicitly from
the ODE system. Then M1(t) = −M2(t) + M(0). The solution
reads as

M1(t) = − sin(2λt)M12(0) + cos(2λt)M1(0) + 1
2 (1− cos(2λt))M(0)

+
∫ t

0 sin(2λ(t − s))Q(s)ds,

M2(t) = sin(2λt)M12(0) + cos(2λt)M2(0) + 1
2 (1− cos(2λt))M(0)

−
∫ t

0 sin(2λ(t − s))Q(s)ds.

→ the components exchange their mass periodically.
In the special case β11 = β22 = β12, this exchange occurs actually
with the frequency 2λ.
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The Transformed System

We first perform the following transformation:

φ1(x , t) = exp (iλt)√
2

(ψ1(x , t) + ψ2(x , t))

φ2(x , t) = exp (−iλt)√
2

(ψ1(x , t)− ψ2(x , t))

Let us denote by H := −1
2 ∆ + γ2

2 |x |
2
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Nonautonomous System

We obtain the non-autonomous system:

i∂tφ1 = Hφ1 + σ1|φ1|2φ1 + σ2|φ2|2φ1 + σ3(λt)|φ1|2φ2

+σ4(λt)|φ2|2φ2 + σ5(λt)φ∗1φ
2
2 + σ6(λt)φ2

1φ
∗
2

(2)

i∂tφ2 = Hφ2 + σ1|φ2|2φ2 + σ2|φ1|2φ2 + σ∗3(λt)|φ2|2φ1

+σ∗4(λt)|φ1|2φ1 + σ∗5(λt)φ∗2φ
2
1 + σ∗6(λt)φ2

2φ
∗
1

φ1(x , 0) = ϕ1(x) + ϕ2(x);φ2(x , 0) = ϕ1(x)− ϕ2(x).

For the single nonlinear Schrödinger equation with a periodic
coefficient there is a rigorous result by Cazenave and Scialom
Revista Matématica Complutense, 23, 2(2010), 321–339
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With the coefficients:

σ1 =
β11 + 2β12 + β22

4
;

σ2 =
β11 + β22

2
;

σ3(λt) =
β11 − β22

2
exp (2iλt);

σ4(λt) =
β11 − β22

4
exp (2iλt);

σ5(λt) =
β11 − 2β12 + β22

4
exp (4iλt);

σ6(λt) =
β11 − β22

4
exp (−2iλt).
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Remark Note that for β11 = β22 = β12 = β the system (2) does
not depend on λ:

i∂tφ1 = −1
2 ∆φ1 + γ2

2 |x |
2φ1 + β|φ1|2φ1 + β|φ2|2φ1

i∂tφ2 = −1
2 ∆φ2 + γ2

2 |x |
2φ2 + β|φ2|2φ2 + β|φ1|2φ2
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Formal Limit

We expect the coefficients of the nonlinearities to go to their
average in time:

σ̄j =
1

2π

∫ 2π

0
σj(t)dt = 0 for j = 3, 4 . . . 6.

and the solution (φ1, φ2) to converges locally in time for |λ| → ∞
to the solution U = (u1, u2) of:

i∂tu1 = −1
2 ∆u1 + γ2

2 |x |
2u1 + σ1|u1|2u1 + σ2|u2|2u1

i∂tu2 = −1
2 ∆u2 + γ2

2 |x |
2u2 + σ1|u2|2u2 + σ2|u1|2u2

u1(x , 0) = ϕ1(x) + ϕ2(x); u2(x , 0) = ϕ1(x)− ϕ2(x)
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Main Result I

Theorem

Let ϕ := (ϕ1, ϕ2) ∈ Σ(RN) be a fixed initial value. Given λ ∈ R,
let Φλ denote the maximal solution of (2). Let U be the maximal
solution of

i∂tu1 = −1
2 ∆u1 + γ2

2 |x |
2u1 + σ1|u1|2u1 + σ2|u2|2u1

i∂tu2 = −1
2 ∆u2 + γ2

2 |x |
2u2 + σ1|u2|2u2 + σ2|u1|2u2

u1(x , 0) = ϕ1(x) + ϕ2(x); u2(x , 0) = ϕ1(x)− ϕ2(x)

defined on the maximal interval [0, Smax).
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Main Result II

I Given any 0 < T < Smax the solution Φλ exists on [0,T ]
provided that |λ| is sufficiently large.

I And we have convergence

 Φλ

∇Φλ

| · |Φλ

→
 U
∇U
| · |U

 in

Lq((0,T ), Lr (RN)) as |λ| → ∞ , for all admissible pairs (q, r)
and all 0 < T < Smax . In particular, we have

Φλ → U in C([0,T ]; H1(RN)) ∀0 < T < Smax .
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Main Result III

Where

σ1 =
β11 + 2β12 + β22

4
,

σ2 =
β11 + β22

2
.
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I With the standard techniques it follows that the Cauchy
problems for Ψ,Φλ,U are locally well-posed.

I The same result stated in the above Theorem for solution Ψ
holds true also for solutions Φλ of the non-autonomous
system.

I We can easily check that |ψ1|2 + |ψ2|2 = |φ1|2 + |φ2|2 and
consequently also

‖Ψ(t)‖Σ(RN) = ‖Φλ(t)‖Σ(RN)

.
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Preliminary Results

We first need uniform in λ bounds on the H1-norm of the solution:

Proposition

Given M > 0, there exists a δ = δ(M) > 0 such that for any
ϕ := (ϕ1, ϕ2) ∈ Σ(RN), with ‖ϕ‖Σ(RN) ≤ M, there exists a unique

solution Ψ ∈ C((0, δ); Σ(RN)) for the system. In addition,

‖Ψ‖L∞((0,δ);Σ(RN)) ≤ 2‖φ‖Σ(RN).
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Lemma

For any ϕ ∈ Σ(RN) let Φλ be the maximal solution of the
non-autonomous system. Let U be the maximal solution of the
limiting system, defined on [0, Smax). Let 0 < l < Smax and
assume that Φλ exists on [0, l ] and that

lim sup
|λ|→∞

‖Φλ‖L∞((0,l);H1(RN)) <∞

Then we have

lim
|λ|→∞

‖

 1
∇
| · |

 (Φλ − U)‖Lq((0,l);Lr (RN)) = 0

for any admissible pairs (q, r). In particular Φλ → U in
L∞((0, l); H1(RN)).
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I Let us fix 0 < T < Smax and M := ‖U‖L∞((0,T );H1(RN))

I Φλ exists in [0, δ] for all λ and furthermore
supλ∈R ‖Φλ‖L∞((0,δ);H1(RN)) ≤ 2‖ϕ‖Σ.

I let 0 < l ≤ T (we can always choose l = δ) be such that
I Φλ exists in [0, l ], and
I that we have lim sup|λ|→∞ ‖Φλ‖L∞((0,l);H1(RN )) <∞

I with the Lemma we have convergence Φλ → U in
Lq((0, l); Lr (RN)) for all admissible pairs (q, r).

I In particular lim|λ|→∞ ‖Φλ(l)− U(l)‖H1(RN) = 0.

⇒ sup|λ|≥Λ ‖Φλ(l)‖H1(RN) ≤ M for Λ > 0 sufficiently large

I We can thus repeat the argument, starting at time t = l . . .

I Thus we repeat this argument to prove the result in the whole
time interval [0,T ].
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Properties of the Limiting System

I there are three conserved quantities: the mass of each
component and the energy:

‖u1(t)‖2 = ‖u1(0)‖2,

‖u2(t)‖2 = ‖u2(0)‖2,

Ẽ (t) = Ẽ (0);

where

Ẽ (t) :=
1

2

∫
RN

2∑
j=1

[
|∇uj |2 + γ2|x |2|uj |2 + σ1|uj |4

+σ2|u1|2|u2|2
]
(x , t)dx ,
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Global Existence of the limiting system I

Let U = (u1, u2) be the solution of the limiting system. Then there
exists a global-in-time solution to in the following cases:

I σ1, σ2 ≥ 0

I at least one σi < 0

1. σ1 > 0 and |σ2| < σ1

2. N = 1
3. N = 2 and

I M(0) < 2
C2|σ2|

, if σ2 < 0

I M(0) < 1
C2|σ1|

, if σ1 < 0

I M(0) < 4
C2(2|σ1|+|σ2|)

, if σ1 < 0 and σ2 < 0

4. N = 3, ‖∇U(0)‖2
2 ≤ 2Ẽ (0), and
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Global Existence of the limiting system II

I M(0)Ẽ(0) < 8
27C2

3 σ
2
2
, if σ2 < 0

I M(0)Ẽ(0) < 2
27C2

3 σ
2
1
, if σ1 < 0

I M(0)Ẽ(0) < 8
27C2

3 (2|σ1|+|σ2|)2 , if σ1 < 0 and σ2 < 0

With this we have at least for large λ different parameter regimes,
for which we expect global existence.
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Example

Case: β11 = −1, β22 = 1, β12 = 0, thus we have:

i∂tψ1 = −1

2
∆ψ1 +

γ2

2
|x |2ψ1 − |ψ1|2ψ1 + λψ2

i∂tψ2 = −1

2
∆ψ2 +

γ2

2
|x |2ψ2 + |ψ2|2ψ2 + λψ1

ψ1(x , 0) = ϕ1(x), ψ2(x , 0) = ϕ2(x)

Remember σ1 = β11+2β12+β22
4 ; σ2 = β11+β22

2
It follows for the limiting system when |λ| → ∞:

i∂tu1 = −1
2 ∆u1 + γ2

2 |x |
2u1

i∂tu2 = −1
2 ∆u2 + γ2

2 |x |
2u2
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Alternative Transformation

We perform following transformation:

φ1 = cos(λt)ψ1 + i sin(λt)ψ2

φ2 = i sin(λt)ψ1 + cos(λt)ψ2

i∂tφ1 = −1

2
∆φ1 +

γ2

2
|x |2φ1 + f1(λt)|φ1|2φ1 + f3(λt)|φ2|2φ1

+if2(λt)|φ1|2φ2 + if4(λt)|φ2|2φ2

−2f2(λt)= (φ∗1φ2)φ1 − if5(λt)= (φ∗1φ2)φ2

i∂tφ2 = −1

2
∆φ2 +

γ2

2
|x |2φ2 + f6(λt)|φ2|2φ2 + f3(λt)|φ1|2φ2

−if2(λt)|φ1|2φ1 − if4(λt)|φ2|2φ1

−2f4(λt)= (φ∗1φ2)φ2 + if5(λt)= (φ∗1φ2)φ1

where = denotes the imaginary part, φ∗ the conjugate complex of
φ.
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The coefficients depend on λ and t.

f1(λt) = β11 cos4(λt) + β22 sin4(λt) + 2β12 cos2(λt) sin2(λt)

f6(λt) = β11 sin4(λt) + β22 cos4(λt) + 2β12 cos2(λt) sin2(λt)

f2(λt) = sin(λt) cos(λt)
[
−β11 cos2(λt) + β22 sin2(λt) + β12 cos(2λt)

]
f3(λt) = (β11 + β22) cos2(λt) sin2(λt) + β12(cos4(λt) + sin4(λt))

f4(λt) = sin(λt) cos(λt)
[
−β11 sin2(λt) + β22 cos2(λt)− β12 cos(2λt)

]
f5(λt) = 2 sin2(λt) cos2(λt) [β11 + β22 − 2β12]
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Formal Limit

i∂tu1 = −1

2
∆u1 +

γ2

2
|x |2u1 + σ1|u1|2u1 + σ3|u2|2u1

−iσ5= (u∗1u2) u2

i∂tu2 = −1

2
∆u2 +

γ2

2
|x |2u2 + σ1|u2|2u2 + σ3|u1|2u2

+iσ5= (u∗1u2) u1

with initial data u1(x , 0) = ϕ1(x) and u2(x , 0) = ϕ2(x) and

σ1 =
3β11 + 3β22 + 2β12

8
σ3 =

β11 + β22 + 6β12

8

σ5 =
β11 + β22 − 2β12

4
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This system has three conserved quantities:

˜̃E (t) =

∫
RN

[ 2∑
j=1

(
1

2
|∇uj |2 +

γ2|x |2

2
|uj |2 +

σ1

2
|uj |4

)
+σ3|u1|2|u2|2 + σ5=2(u∗1u2)

]
(x , t)dx

M(t) =

∫
RN

(
| u1|2 + |u2|2

)
(x , t)dx

R(t) = <
∫
RN

(u1u∗2)(x , t)dx

I we can show the same convergence results as before

I global existence is in the same parameter regions as before
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Conclusion

I we discussed the global existence and the blow-up alternative
of the system

I semi-explicit formula describing the mass evolution, indicating
the role of the Rabi frequency λ.

I we performed asymptotics for |λ| → ∞
I proved the convergence locally in time in appropriate

Strichartz’ spaces.

I show existence of the system on a time interval strictly
smaller than the existence interval of the limiting system. ⇒
We expect the system to behave like the limiting system for
|λ| sufficiently large.
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Thank you for your attention!
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