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Outline

» Dispersionless linear (meta)materials and vacuum. Find
3 components: principal part, skewon part & axion part.
» Bateman's treatment of dispersionless linear media
(1910). Seemingly first to include non-zero axion part.
» Geometrical optics results in a quartic Fresnel surface.
» Bateman relates geometrical optics and lines in real
projective space. For dispersionless linear media with no
skewon part, the Fresnel surface is a Kummer surface.
» What if the medium has non-zero skewon part? Does

the Fresnel surface still coincide with Kummer one? If
not, is Fresnel surface a K3 or a Calabi-Yau manifold?
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Dispersionless linear (meta)materials and vacuum

» EM fields: 1-form H, 2-form D, 1-form E and 2-form B.
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» EM fields: 1-form H, 2-form D, 1-form E and 2-form B.
» Dispersionless linear (meta)materials and vacuum: field
excitations H and D at a point p in space and time
related linearly to field strengths E and B at same p,

Linear media

Ha= BacEc + %(,U_l)aCdBcda
Dap = € Ec + 50, Bey .
Latin indices range from 1 to 3. Observe that €/, is

the permittivity, (171), is the inverse permeability,
while 3,¢ and %de describe magneto-electric effects.



Fresnel versus

Dispersionless linear (meta)materials and vacuum  kunmer sursces

Alberto Favaro &
Friedrich W. Hehl

» EM fields: 1-form H, 2-form D, 1-form E and 2-form B.
» Dispersionless linear (meta)materials and vacuum: field
excitations H and D at a point p in space and time
related linearly to field strengths E and B at same p,

Linear media

Ha= BaCEc + %(,U_l)aCdBcda
Db = by Ec + 30,9 Beq .

Latin indices range from 1 to 3. Observe that €/, is
the permittivity, (171), is the inverse permeability,
while 3,¢ and %de describe magneto-electric effects.

» Using 2-forms H=do AH +D and F=—do AE + B get
H=r(F), thatis,  Hag=36.4" Fuv-

Greek indices go from 0 to 3. Constitutive law in 4-dim.
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» To decompose medium response translate naﬂ’”' into:

X9 = Lo
where €779 = {41,0, —1} is the Levi-Civita symbol.
» Split x in principal part, skewon part and axion part:

Xaﬁ/w — (1)Xaﬂlw + (2)Xocﬁuv + (3)Xa5ul/‘

Note: (Dy is the symmetric-traceless component, (2)y
is the antisymmetric component and )y is the trace.

» Derive equivalent split for k. Finite axion part observed
in nature (Hehl et al. 2008). Finite skewon part not yet.
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» Harry Bateman (Manchester 1832 — New York 1946).
Students: Murnaghan (@Hopkins), Truesdell (@Caltech).

» |In a modern notation, Bateman's constitutive law reads
Linear media in

Bateman's work

F 1 v
Fop = —590‘5“ Huw,
with Fof .= %eaﬁw[_‘w_ In terms of 3-dim. fields obtain

Eab — +93b0cHC + %eabcdeCd.

Ba _ _QOaOCfHC _ %GOacdDCd’

» Bateman only requires (Preview: this means no skewon)

By — guvap

It is not demanded that fully antisymmetric part of
62PHv is zero. Preview: axion component is allowed.



Bateman: no skewon part, but axion part allowed
» Link Bateman's medium tensor 6 to inverse of x and x:

eaﬁ,uz/ —

_1 appo, —1luv _
2 Kpe ™ =

1 aﬁpcreuzme

X pm}@
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» Link Bateman's medium tensor 6 to inverse of x and x: Alberto Favaro &
Friedrich W. Hehl
afpy _ 1 afpo,—lpv _ _ 1 _afpo prnd,,—1
0 - 2 /iPU = 3¢ € Xpan@‘
> Inverse of a symmetric “matrix” is symmetric. Thereby, Linear media in
Bateman's work

goPry — grras implies Xam”’ = X‘“’O‘B.

Condition on Bateman’s 6 imposes that x is symmetric.
Skewon part vanishes: @y =0, or equivalently @x=0.
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Bateman: no skewon part, but axion part allowed = «ummer surfaces
» Link Bateman’s medium tensor 6 to inverse of x and x: Alberto Favaro &
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afpy _ 1 afpo,.—luv _ _ 1 _aBpo pvnd
0 =—3 Kog M = —3€ X o

> Inverse of a symmetric “matrix” is symmetric. Thereby, Linear media in

Bateman's work

9By — grras implies YOV — ypvaB,

Condition on Bateman’s 6 imposes that x is symmetric.
Skewon part vanishes: @y =0, or equivalently (35 =0.
» The fact that no further conditions imposed on medium
0 entails that axion part need not be zero. Bateman is
seemingly first author to allow for )y # 0 i.e. ®)k £ 0.



Bateman: no skewon part, but axion part allowed
» Link Bateman's medium tensor 6 to inverse of x and x:

afpy _ 1 afpo,—lpv _ _ 1 _afpo prnd,,—1
0 = —3¢ Kog M = —3€ X o

> Inverse of a symmetric “matrix” is symmetric. Thereby,

9By — grras implies YOV — ypvaB,

Condition on Bateman’s 6 imposes that x is symmetric.
Skewon part vanishes: @y =0, or equivalently (35 =0.
» The fact that no further conditions imposed on medium
0 entails that axion part need not be zero. Bateman is
seemingly first author to allow for )y # 0 i.e. ®)k £ 0.

> “These conditions [constitutive laws] may not correspond to
anything occurring in nature; nevertheless, their investigation
was thought to be of some mathematical interest on account
of the connection which is established between line geometry
and the theory of partial differential equations”, ibid. (1910).
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> 4-dimensional Maxwell's equations with exterior calculus riedrich 1. e

dH = J, dF = 0.

> Below, current density 3-form J is zero. Geometrical
optics describes the propagation of fast varying fields. Geometrical optics

» Have two equivalent approaches to geometrical optics,

e via Hadamard's method: consider discontinuous fields.
e via characteristic polynomial: approximate plane-waves.

First approach, see Hehl and Obukhov (2003). Second
approach, see Schuller et al. (2010) or Perlick (2011).

» Geometrical optics says amplitude 2-forms {h, f} obey
gnf=0, gANh=0.

Here, g=—wdo + k is wave-covector. Replacement
d— g similar to 0; — —iw and V — ik with Fourier tr.
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Geometrical optics

& G

» Geom. optics laws g A f =0 and g A h=0 equivalent to
fAf=0, hAf=0, hAh=0.

» Assume dispersionless linear (meta)material or vacuum.

Fresnel surface governing light propagation is given by

Cantanas B s X PP X 2PP0\3THV g g, q.q, =0,

that is, by a quartic equation in g, = (—w, k;), see
Rubilar (2002). Usually plot the inverse phase velocity
ki/w. Above, Fresnel s. of biaxial crystal (Dahl 2012).



Fresnel surfaces of two other biaxial materials
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More on geometric optics: Tamm-Rubilar tensor

» From quartic generating Fresnel surface extract tensor:

G(q) ==6"""Yq,9,9-q, = 0,

1, A
GPoTY . Heaa1a2a3eﬁﬁ1ﬁzﬂ3xaalﬁﬁl Xaz(ﬂa|ﬁ2Xa3|Tv)ﬁ3 )
Note (...) is index mixing: GP°7" is symmetric under

every index swap and has 35 independent components.
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More on geometric optics: Tamm-Rubilar tensor

» From quartic generating Fresnel surface extract tensor:

G(q) ==6"""Yq,9,9-q, = 0,

1, ”
GPoTY . Efaoqaz% £58,6,55 Xaalﬁﬁl Xaz(ﬂtﬂﬁz on3|7'v)ﬁ3 )

Note (...) is index mixing: GP°7" is symmetric under
every index swap and has 35 independent components.

» Name: Tamm (proposed 1925) - Rubilar (derived 2002).
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More on geometric optics: Tamm-Rubilar tensor

» From quartic generating Fresnel surface extract tensor:

g(q) = ngTquqUQTqv =0,
1

pOTU ._ T A 2
g : €aaionaz€BB1B28: X

— E a1 Xaz(pﬂlﬁz XOé3|TU)ﬁ3 )

Note (...) is index mixing: GP°7" is symmetric under
every index swap and has 35 independent components.

» Name: Tamm (proposed 1925) - Rubilar (derived 2002).

» Principal, skewon and axion parts affect light propag. as:

Grom = G[Wy Py 4 W yulolvio g 76 v)

G[Mx]#o™ is Tamm-Rubilar based on principal part.

v

Skewon field $,7 is another representation of (Z)K(w“ .
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More on geometric optics: Tamm-Rubilar tensor

» From quartic generating Fresnel surface extract tensor:

g(q) = ngTquqcquqv =0,
1

pOTU ._ T A 2
g : €aaionaz€BB1B28: X

— E a1 Xaz(pﬂlﬁz XOé3|TU)ﬁ3 )

Note (...) is index mixing: GP°7" is symmetric under
every index swap and has 35 independent components.

» Name: Tamm (proposed 1925) - Rubilar (derived 2002).

» Principal, skewon and axion parts affect light propag. as:
GPoTV — g[(l)X} poTU | (1)Xu(p|V\U$MT$Vv).

G[Mx]#o™ is Tamm-Rubilar based on principal part.
Skewon field $,7 is another representation of (2)/%[5’“/.

» Axion part does not enter geometrical optics (except at

interfaces). Zero (M x implies zero Tamm-Rubilar tensor.

Fresnel versus
Kummer surfaces

Alberto Favaro &
Friedrich W. Hehl

Geometrical optics



Bateman'’s insight on geometrical optics

0
AT R4f{0}
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» Bateman: for media with @k = 0, the Fresnel surface
coincides exactly with a Kummer surface. Just relate

geometrical optics and lines in the real projective space.

» To define the real projective space RP3 consider as
identical every two points u® and v® in R*—{0} that
are located on same line: u®=MAv® for non-zero AeR.
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Bateman's insight on geometrical optics (contd.)

» First step to prove that Fresnel=Kummer is to examine
geometric optics eqgs. for skewon-free medium h=rx(f):

fAf=0, FfAK(f)=0, «k(f)AR(f)=0.

Can identify each equation with a statement in RP3.
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» First step to prove that Fresnel=Kummer is to examine
geometric optics eqgs. for skewon-free medium h=rx(f):

fAf=0, FfAK(f)=0, «k(f)AR(f)=0.

Can identify each equation with a statement in RP3.

Geometrical optics
in Bateman’s work

» f A f=0: can regard 2-form f as a line in RP3. Indeed
f=gq A a is the line specified by points (1-forms) {q, a}.



Bateman's insight on geometrical optics (contd.)

» First step to prove that Fresnel=Kummer is to examine
geometric optics egs. for skewon-free medium h=r(f):

fAf=0, FfAK(f)=0, «k(f)AR(f)=0.

Can identify each equation with a statement in RP3.
» f A f=0: can regard 2-form f as a line in RP3. Indeed

f=gq A a is the line specified by points (1-forms) {q, a}.
» fAk(f)=0: line f belongs to quadratic complex given

by medium x. Quadratic complex is “metric” for lines:

FAR(F)=0, &  IyoBwgaf, —o
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Bateman's insight on geometrical optics (contd.)

» First step to prove that Fresnel=Kummer is to examine
geometric optics egs. for skewon-free medium h=r(f):

fAf=0, FfAK(f)=0, «k(f)AR(f)=0.

Can identify each equation with a statement in RP3.
» f A f=0: can regard 2-form f as a line in RP3. Indeed
f=gq A a is the line specified by points (1-forms) {q, a}.

» fAk(f)=0: line f belongs to quadratic complex given
by medium x. Quadratic complex is “metric” for lines:

FAR(F)=0, &  IyoBwgaf, —o

» k() A k(f)=0: identify 2-form f with singular line of
quadratic complex. Wave-covector g is singular point.
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Bateman's insight on geometrical optics (contd.)

» First step to prove that Fresnel=Kummer is to examine
geometric optics egs. for skewon-free medium h=r(f):

fAf=0, FfAK(f)=0, «k(f)AR(f)=0.

Can identify each equation with a statement in RP3.
» f A f=0: can regard 2-form f as a line in RP3. Indeed

f=gq A a is the line specified by points (1-forms) {q, a}.
» fAk(f)=0: line f belongs to quadratic complex given

by medium x. Quadratic complex is “metric” for lines:

FAR(F)=0, &  IyoBwgaf, —o

» k() A k(f)=0: identify 2-form f with singular line of
quadratic complex. Wave-covector g is singular point.

» Singular lines are tangent to Fresnel=Kummer surface.
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Bateman's insight on geometrical optics (contd.)

» First step to prove that Fresnel=Kummer is to examine
geometric optics egs. for skewon-free medium h=r(f):

fAf=0, FfAK(f)=0, «k(f)AR(f)=0.

Can identify each equation with a statement in RP3.
» f A f=0: can regard 2-form f as a line in RP3. Indeed

f=gq A a is the line specified by points (1-forms) {q, a}.
» fAk(f)=0: line f belongs to quadratic complex given

by medium x. Quadratic complex is “metric” for lines:

FAR(F)=0, &  IyoBwgaf, —o

» k() A k(f)=0: identify 2-form f with singular line of
quadratic complex. Wave-covector g is singular point.

» Singular lines are tangent to Fresnel=Kummer surface.
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An example of Kummer (Fresnel) surface. ..

Kummer discovered his surfaces by considering ray tracing in
optical instruments (1864). Note: two sheets=birefringence.
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What is to learn in optics from link to RP3?

» Singularities of the Kummer surfaces are well studied
(Hudson 1905). Singularities of the Fresnel surface
(optical axes) usually examined in simple cases only.
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What is to learn in optics from link to RP3?

» Singularities of the Kummer surfaces are well studied
(Hudson 1905). Singularities of the Fresnel surface
(optical axes) usually examined in simple cases only.

> In real projective space, points are dual to planes. In
spacetime, constant phase hypersurfaces are dual to

propagation direction. Understand better interplay of:

wave-covector — ray-vector.

Fresnel versus
Kummer surfaces

Alberto Favaro &
Friedrich W. Hehl

Geometrical optics
in Bateman’s work



What is to learn in optics from link to RP3?

» Singularities of the Kummer surfaces are well studied
(Hudson 1905). Singularities of the Fresnel surface
(optical axes) usually examined in simple cases only.

> In real projective space, points are dual to planes. In
spacetime, constant phase hypersurfaces are dual to
propagation direction. Understand better interplay of:

wave-covector — ray-vector.

» Use RP3 for geometrical picture of light propagation.

Good complement to algebraic methods often employed.
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What is to learn in optics from link to RP3?

» Singularities of the Kummer surfaces are well studied
(Hudson 1905). Singularities of the Fresnel surface
(optical axes) usually examined in simple cases only.

> In real projective space, points are dual to planes. In
spacetime, constant phase hypersurfaces are dual to
propagation direction. Understand better interplay of:

wave-covector — ray-vector.

» Use RP3 for geometrical picture of light propagation.

Good complement to algebraic methods often employed.

Algebraic methods are still remarkable. . .
In the literature on Kummer surface apparently no sign of

the algebraic compact formula known for the Fresnel surface:

gaa1a2a36ﬁ51ﬁ263XaalﬁﬁlXaZpﬁZUXa3Tﬁ3vqpqaqTqU =0.
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Skewonic media

» Bateman's proof that Fresnel=Kummer assumes zero
skewon part. If medium has finite skewon contribution:

GPoTV — g[(l)X] poTU | (1)Xu(p|V|0$MT$Vv)‘

» Effect of skewon (2" term) appears simpler than that of
principal (1%t term). But can yield holes in Fresnel surf!
» Above: biaxial medium with £?° = diag(2.4, 14.8, 54)sq

and skewon $;1 = $,>=833=-18,"= 0.25(c0/ 1102



Skewon: Fresnel=Kummer still true? (contd.) G e
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Skewonic media

> Is the Fresnel surface of a medium with finite skewon
part still a Kummer surface? If not, it is more general.
> Look at surfaces types of which Kummer is a subcase:

e K3 surfaces: named after Kummer, Kihler and Kodaira.
e Calabi-Yau manifolds: used in superstring theory to
compactify 6 spatial dimensions and retrieve 10 —6 = 4.

» Plot above and in the previous slide: Tertychniy (2004).



Conclusions (Batemania!)

> Dispersionless linear (meta)materials & vacuum: """

Decompose this tensor in principal+skewon-+axion part.
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> Already in 1910, constitutive law of similar kind found in
Bateman. Seemingly first to have non-zero axion part.
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Decompose this tensor in principal+skewon-+axion part.
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» Fresnel surface describes light propagation in geometric
optics. Generated by quartic equation (Tamm-Rubilar).
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> Dispersionless linear (meta)materials & vacuum: """

Decompose this tensor in principal+skewon-+axion part.
> Already in 1910, constitutive law of similar kind found in
Bateman. Seemingly first to have non-zero axion part.

» Fresnel surface describes light propagation in geometric
optics. Generated by quartic equation (Tamm-Rubilar).

» Bateman: if medium has zero skewon, Fresnel surface is
a Kummer surface. The natural electromagnetic space
of geometrical optics is the real projective space RP3.
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Conclusions (Batemania!)

> Dispersionless linear (meta)materials & vacuum: """

Decompose this tensor in principal+skewon-+axion part.

> Already in 1910, constitutive law of similar kind found in
Bateman. Seemingly first to have non-zero axion part.

» Fresnel surface describes light propagation in geometric
optics. Generated by quartic equation (Tamm-Rubilar).

» Bateman: if medium has zero skewon, Fresnel surface is
a Kummer surface. The natural electromagnetic space
of geometrical optics is the real projective space RP3.

» What if medium has finite skewon? Is Fresnel surface a
K3 surface? or is it more general Calabi-Yau manifold?
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Thank-you!
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