Quantum Oscillations Can Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology

Felix Finster, Regensburg

Fakultät für Mathematik Universität Regensburg

Johannes-Kepler-Forschungszentrum für Mathematik, Regensburg

Talk at Workshop "Electromagnetic Spacetimes" Wolfgang-Pauli-Institut Wien, 22.11.2012

joint work with Christian Hainzl (Tübingen)

- "Quantum oscillations can prevent the big bang singularity in an Einstein-Dirac cosmology," arXiv:0809.1693 [gr-qc], Found. Phys. 40 (2010) 116-124
- "A spatially homogeneous and isotropic Einstein-Dirac cosmology," arXiv:1101.1872 [math-ph], J. Math. Phys 52, 042501 (2011)

Introduction to General Relativity

Our mathematical model of space-time is Minkowski space or, more generally, a Lorentzian manifold (M, g)

- 4-dimensional topological manifold
- metric g of signature (+--)

Tangent space T_pM is vector space with indefinite inner product

```
encodes causal structure :  \begin{cases} g(u,u) > 0 & : \quad u \text{ is timelike} \\ g(u,u) = 0 & : \quad u \text{ is lightlike} \\ g(u,u) < 0 & : \quad u \text{ is spacelike} \end{cases}
```


Introduction to General Relativity

The gravitational field is described by the curvature of *M*

∇ : covariant derivative, Levi-Civita connection,

$$\nabla_i X = \left(\partial_i X^j + \Gamma^j_{ik} X^k\right) \frac{\partial}{\partial x^j}$$

Ri_{ikl}: Riemann curvature tensor,

$$\nabla_{i}\nabla_{j}X - \nabla_{j}\nabla_{i}X = R^{I}_{ijk}X^{k}\frac{\partial}{\partial x^{I}}$$

 $R_{ij} = R^{l}_{ilj}$: Ricci tensor, $R = R^{i}_{i}$: scalar curvature

Einstein's equations:
$$R_{jk} - \frac{1}{2} R g_{jk} = 8\pi T_{jk}$$

T_{jk}: enery-momentum tensor, describes matter "matter generates curvature"

Introduction to General Relativity

vice versa:

"curvature affects the dynamics of matter"

equations of motion, depend on type of matter:

- classical point particles: geodesic equation
- dust: perfect fluid
- quantum mechanical matter: equations of wave mechanics (Dirac or Klein Gordon equation)
-

coupling Einstein equations with equations of motion yields system of nonlinear hyperbolic PDEs

Dirac spinors in Minkowski space

Relativic wave equation with spin

 $ightharpoonup \mathcal{D}$ differential operator of first order with $\mathcal{D}^2 = -\Box$

$$\mathcal{D} = i \gamma^{j} \partial_{j} \qquad \mathcal{D}^{2} = - \gamma^{j} \gamma^{k} \partial_{jk}$$

The Dirac matrices γ^j are (4×4) -matrices with

$$\gamma^j \gamma^k + \gamma^k \gamma^j = 2 g^{jk} \mathbf{1}$$

Dirac representation:

$$\gamma^0 = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix}, \qquad \gamma^i = \begin{pmatrix} \mathbf{0} & \sigma^i \\ -\sigma^i & \mathbf{0} \end{pmatrix}, \quad i = 1, 2, 3,$$

with the three Pauli matrices:

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

▶ Dirac equation is eigenvalue equation

$$\mathcal{D}\Psi = m\Psi$$

The Zitterbewegung ("trembling motion")

observed by Schrödinger (1930)

consider only time-dependence

$$i\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \partial_t \Psi = m \Psi$$

can be solved with plane waves:

$$\Psi = egin{pmatrix} \chi_+ \ e^{-imt} \ \chi_- \ e^{imt} \end{pmatrix}$$
 positive frequency, "large component" negative frequency, "small component"

- phases drop out of absolute value
- phases do **not** drop out of off-diagonal expectation values:

$$\left\langle \Psi, \begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix} \Psi \right\rangle_{\mathbb{C}^4} \sim \sin(2mt), \cos(2mt)$$

for velocity operator: Zitterbewegung more generally: quantum oscillations in observables

Dirac spinors on a Lorentzian manifold

Let (M, q) be a Lorentzian manifold,

Dirac operator
$$\mathcal{D} = i \gamma^j \nabla_j$$

where Dirac matrices again satisfy the anti-commutation relations

$$\gamma^j \gamma^k + \gamma^k \gamma^j = 2g^{jk}$$

and ∇ is the metric connection on the spinor bundle

compatible with inner product <. |.> on spinors,

$$\partial \prec\!\!\Psi|\Phi\!\!\succ = \prec\!\!(\nabla\Psi)|\Phi\!\!\succ + \prec\!\!\Psi|(\nabla\Phi)\!\!\succ$$

curvature related to Riemann tensor by

$$[\nabla_j, \nabla_k] = \frac{1}{8} R_{jklm} \gamma^l \gamma^m$$

Dirac equation $\mathcal{D}\Psi = m\Psi$

F-Smoller-Yau (1998-2000)

spherically symmetric, static metric:

$$ds^2 = \frac{1}{T(r)^2} dt^2 - \frac{1}{A(r)} dr^2 - r^2 d\Omega^2$$

consider a singlet of two Dirac particles:

$$\Psi_{a}(t,r) = e^{-i\omega t} \frac{\sqrt{T}}{r} \begin{pmatrix} \alpha(r) e_{a} \\ i\sigma^{r} \beta(r) e_{a} \end{pmatrix} \qquad (a = 1,2)$$

frequency ω is the energy of the Dirac particle

Dirac equation:

$$\sqrt{A} \alpha' = \frac{1}{r} \alpha - (\omega T + m) \beta$$

$$\sqrt{A} \beta' = (\omega T - m) \alpha - \frac{1}{r} \beta$$

Einstein equations:

$$rA' = 1 - A - 16\pi\omega T^{2} (\alpha^{2} + \beta^{2})$$

$$2rA \frac{T'}{T} = A - 1 - 16\pi\omega T^{2} (\alpha^{2} + \beta^{2})$$

$$+ 32\pi \frac{1}{r} T \alpha\beta + 16\pi mT (\alpha^{2} - \beta^{2})$$

Particlelike solutions

Total Binding Energy $\rho - 2|m|$ (where ρ is the ADM-mass)

Nonexistence of black hole solutions

- ▶ spherical symmetry + horizon ⇒ no flux of Dirac current across horizon
- ► current conservation ⇒ no Dirac current outside horizon

As a consequence, Ψ vanishes identically outside the horizon.

"The Dirac particle must fall into the black hole"

Existence results for ED solutions for small *m*:

- Eric Bird (≈ 2005 at UMich): Schauder's fixed point theorem
- Simona Rota Nodari (Paris): Relate to the Choquard equation
- John Stuart (Cambridge): Variational methods

Numerics for time-dependent ED system:

- Jason Ventrella (≈ 1998, student of Matt Choptuik)
- Benedikt Zeller (PhD thesis ETH 2009)

Non-Existence of EDYM black hole solutions:

Yann Bernard (≈ 2005 now Freiburg)

Cosmological solutions

Consider homogeneous and isotropic space-times:

$$ds^2 = dt^2 - R^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right)$$

- time coordinate t, spatial coordinates r and $\Omega \in S^2$)
- R(t) is so-called scale function
- k determines spatial geometry:

$$\begin{cases} & \text{k=0} & \text{flat universe}, r > 0, & \textit{M} \simeq \mathbb{R} \times \mathbb{R}^3 \\ & \text{k=1} & \text{closed universe}, r \in (0,1), & \textit{M} \simeq \mathbb{R} \times \textit{S}^3 \\ & \text{k=-1} & \text{open universe}, r > 0 & \textit{M} \simeq \mathbb{R} \times \textit{H}^3 \end{cases}$$

Ansatz for matter must be chosen consistently.

gives a system of nonlinear ODEs

The Friedmann solution

Simplest example:

- closed case (other cases similar)
- choose matter as dust

one gets a single ODE:
$$\dot{R}^2 + 1 = \frac{R_{\text{max}}}{R}$$

$$\dot{R}^2 + 1 = \frac{R_{\text{max}}}{R}$$

Do quantum effects prevent singularities?

Different effects discussed in physics literature:

- ▶ Wheeler-DeWitt (1967): first ideas in this direction
- Padmanabhan, Narlikar (1982): Quantum conformal fluctuations
- ► Turok, Perry, Steinhardt (2004): String theory, M-Theory
- Bojowald (2008): Loop quantum gravity, reduction to finite number of degrees of freedom,
 "Once Before Time: A Whole Story of the Universe" (2010)

In all these cases, quantum effects of gravity are essential.

An Einstein-Dirac cosmology

Here we consider a system with classical gravity, but with quantum mechanical matter (Dirac equation)

"quantum oscillations" can prevent singularities

- ▶ time-periodic solutions with infinite number of expansion and contraction cycles
- simple equations, can be analyzed rigorously

Back to homogeneous and isotropic space-time, here only closed case:

$$ds^2 = dt^2 - R^2(t) d\sigma_{S^3}^2 ,$$

where $d\sigma^2$ is the line element on the unit S^3 . The Dirac operator becomes

$$\mathcal{D} = i\gamma^0 \left(\partial_t + \frac{3\dot{R}(t)}{2R(t)} \right) + \frac{1}{R(t)} \begin{pmatrix} 0 & \mathcal{D}_{S^3} \\ -\mathcal{D}_{S^3} & 0 \end{pmatrix},$$

where \mathcal{D}_{S^3} is the Dirac operator on S^3 .

Employ the separation ansatz

$$\Psi_{\lambda}^{\ell} = R(t)^{-\frac{3}{2}} \begin{pmatrix} \alpha(t) \ \psi_{\lambda}^{\ell}(r, \theta, \varphi) \\ \beta(t) \ \psi_{\lambda}^{\ell}(r, \theta, \varphi) \end{pmatrix},$$

where ψ_{λ}^{ℓ} are eigenfunctions of the spatial Dirac operator,

$$\mathcal{D}_{\mathbb{S}^3} \, \psi_\lambda^\ell = \lambda \, \psi_\lambda^\ell \,, \qquad \ell = 1, \dots, \lambda^2 - \frac{1}{4}$$

▶ Then the Dirac equation reduces to an ODE,

$$i\frac{d}{dt}\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} m & -\lambda/R \\ -\lambda/R & -m \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

The energy-momentum tensor:

$$T_{kl} = \text{Re}\left(i \prec \Psi | \gamma_{(k} \nabla_{l)} \Psi \succ\right)$$

In order to get a homogeneous and isotropic system, occupy a whole eigenspace

$$T_{kl} = \sum_{\ell=1}^{\lambda^2-1/4} \operatorname{Re}\left(i \prec \Psi_{\lambda}^{\ell} | \gamma_{(k} \nabla_{l)} \Psi_{\lambda}^{\ell} \succ \right)$$

- thus $\lambda^2 \frac{1}{4}$ particles
- all wave functions have the same time dependence

in physical terms: a coherent many-particle quantum state

▶ Putting it all together gives the Einstein-Dirac equations

$$\begin{split} i\frac{d}{dt}\begin{pmatrix} \alpha \\ \beta \end{pmatrix} &= \begin{pmatrix} m & -\lambda/R \\ -\lambda/R & -m \end{pmatrix}\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \\ \dot{R}^2 + 1 &= \frac{m}{R}\left(|\alpha|^2 - |\beta|^2\right) - \frac{\lambda}{R^2}\left(\overline{\beta}\alpha + \overline{\alpha}\beta\right). \end{split}$$

system of nonlinear ODEs

The Bloch representation

To simplify the equations:

introduce Bloch vector
$$\vec{v} = \left\langle \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \vec{\sigma} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \right\rangle_{\mathbb{C}^2}$$
 rotate Bloch vector $\vec{w} = Uv$ with $U = U(R) \in SO(3)$

Einstein-Dirac equations in the Bloch representation:

$$\dot{\vec{w}} = \vec{d} \wedge \vec{w} \; , \qquad \dot{R}^2 + 1 = -\frac{1}{R^2} \sqrt{\lambda^2 + m^2 R^2} \; w_1 \; ,$$

where

$$\vec{d} := \frac{2}{R} \sqrt{\lambda^2 + m^2 R^2} \, \mathbf{e}_1 \, - \, \frac{\lambda m R}{\lambda^2 + m^2 R^2} \, \frac{\dot{R}}{R} \, \mathbf{e}_2 \, .$$

Similarity to movement of a spinning top: Bloch vector w precedes around "moving rotation axis" d

Simple limiting cases

▶ Limit $\lambda \rightarrow 0$:

$$\dot{\vec{w}} = 2m \frac{e_1}{R} \wedge \vec{w} \; , \qquad \dot{R}^2 + 1 = -\frac{m}{R} \; w_1$$

 w_1 is constant, get back to Friedmann equation for dust

▶ Limit $m \rightarrow 0$:

$$\dot{\vec{w}} = \frac{2|\lambda|}{R} \frac{\mathbf{e_1}}{R} \wedge \vec{w}$$
, $\dot{R}^2 + 1 = -\frac{|\lambda|}{R^2} w_1$

again w_1 is constant, gives Friedmann equation in radiation dominated universe

The intermediate region is characterized by

$$R_{\rm qu} = \lambda/m$$
.

Here w_1 and thus energy-momentum tensor is oscillatory

Quantum oscillations of the energy-momentum tensor

Numerical results

Numerical results

Example for $\lambda = \frac{3}{2}$, m = 10.5448 and $w_1(R_{\text{max}}) = -0.0608$.

The "approximation of instantaneous tilt"

$$\dot{\vec{w}} = \vec{d} \wedge \vec{w} \;, \qquad \vec{d} := rac{2}{R} \; \sqrt{\lambda^2 + m^2 R^2} \; rac{e_1}{\lambda^2 + m^2 R^2} \; rac{\dot{R}}{R} \; rac{e_2}{R}$$

Begin at t = 0, omit the second summand

$$\vec{d} = \frac{2}{R} \sqrt{\lambda^2 + m^2 R^2} e_1$$

gives dust approximation, solvable in closed form

At a radius

$$R_{\mathsf{tilt}} = \frac{\lambda^{\frac{2}{5}} R_{\mathsf{qu}}^{\frac{1}{5}}}{m^{\frac{4}{5}}}$$

the second summand becomes dominant. From then on neglect first summand

$$\vec{d} := -\frac{\lambda mR}{\lambda^2 + m^2R^2} \frac{\dot{R}}{R} \frac{e_2}{e_2}$$

again solvable in closed form

The "approximation of instantaneous tilt"

catches "bouncing effect" quite well

allows to analyze the probability of bouncing, is about 50%

Now to rigorous analysis.

Introduce the scaling

$$m o m/\varepsilon, \qquad t o t/\varepsilon^2, \ R(t) o \varepsilon R(t/\varepsilon^2), \qquad \lambda o \lambda, \quad \vec{w}(t) o \vec{w}(t/\varepsilon^2).$$

The rescaled equations are

$$\begin{split} \dot{R}^2 + \varepsilon^2 &= -\frac{1}{R^2} \, \sqrt{\lambda^2 + m^2 R^2} \, w_1, \\ \dot{\vec{w}} &= \left(\varepsilon \, \frac{2}{R} \, \sqrt{\lambda^2 + m^2 R^2} \, e_1 \, - \, \frac{\lambda m \dot{R}}{\lambda^2 + m^2 R^2} \, e_2 \right) \wedge \vec{w}. \end{split}$$

Coefficients are continuous in ε .

▶ In the limit $\varepsilon \searrow 0$ one gets the microscopic limit equations

$$\dot{R}^2 = -rac{1}{R^2}\sqrt{\lambda^2 + m^2R^2} w_1$$
 $\dot{\vec{w}} = -rac{\lambda m\dot{R}}{\lambda^2 + m^2R^2} e_2 \wedge \vec{w}$

► Can be solved by integration: Let θ be the angle between \vec{w} and e_1 . Then

$$\begin{split} \dot{\theta} &= -\frac{d}{dt} \arctan[R\frac{m}{\lambda}] \\ \dot{R}^2 &= \frac{1}{R^2} \sqrt{\lambda^2 + m^2 R^2} \sin\left(\arctan[R(t)\frac{m}{\lambda}] - \arctan[R_l\frac{m}{\lambda}]\right). \end{split}$$

• Use continuous dependence of solutions on ε , gives solution near the lower turning point.

Prove that this solution enters classical dust regime. Gives classical turning point at T_{max} .

THEOREM (Existence of bouncing solutions)

Given $\lambda \in \{\pm \frac{3}{2}, \pm \frac{5}{2}, \ldots\}$ and $\delta > 0$ as well as any radius $R_>$ and time $T_>$, there is a continuous three-parameter family of solutions $(R(t), \vec{w}(t))$ defined on a time interval [0, T] with $T > T_>$ having the following properties:

(a) At t = 0 and t = T, the scale function has a local maximum larger than $R_>$,

$$R(t) > R_{>}, \qquad \dot{R}(t) = 0, \qquad \ddot{R}(t) < 0.$$

(b) There is a time $t_{bounce} \in (0, T)$ such that R is strictly monotone on the intervals $[0, t_{bounce}]$ and $[t_{bounce}, T]$. Moreover, the scale function becomes small in the sense that

$$R(t_{bounce}) < \delta R_{>}$$
.

Analytic construction of time-periodic solutions

- ► Choose $\vec{w}(0)$ such that the solution is symmetric under time reversals (in particular $T_{\min} = -T_{\max}$ and $R(T_{\min}) = R(T_{\max})$)
- ▶ Task: arrange that $\vec{w}(T_{\min}) = \vec{w}(T_{\max})$.
- ► This involves only one phase ϕ and the condition $\phi \in 2\pi \mathbb{Z}$. Prove that

$$\phi \sim \varepsilon^{-2}$$

and use continuity.

Analytic construction of time-periodic solutions

THEOREM (Existence of time-periodic solutions)

Given $\lambda \in \{\pm \frac{3}{2}, \pm \frac{5}{2}, \ldots\}$ and $\delta > 0$ as well as any radius $R_>$ and time $T_>$, there is a one-parameter family of solutions $(R(t), \vec{w}(t))$ defined for all $t \in \mathbb{R}$ with the following properties:

(A) The solution is periodic, i.e.

$$R(t+T) = R(t)$$
, $\vec{w}(t+T) = \vec{w}(t)$ for all $t \in \mathbb{R}$,

and every T > 0 with this property is larger than $T_>$.

(B)
$$\inf_{\mathbb{R}} R(t) < \delta R_>$$
, $R_> < \sup_{\mathbb{R}} R(t)$.

The energy conditions

- ► The strong energy condition is always violated at a bounce.
- All energy conditions are violated close to a bounce for ε small enough.

This gives consistency with Hawking-Penrose singularity theorems.

Physical discussion and summary

- The "bouncing effect" relies on the fact that all particles have the same momentum λ.
- All particle wave functions are coherent ("in phase")

spin condensation

If before the big crunch all fermions of the universe form a coherent many-particle state (spin condensate), then quantum oscillations can prevent the big crunch singularity.

- work with classical gravity and quantum mechanics
- simple ODE system, rigorous results

Thank you for your attention!