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Introduction to General Relativity

Our mathematical model of space-time is Minkowski space or,
more generally, a Lorentzian manifold (M, g)

@ 4-dimensional topological manifold
@ metric g of signature (+ — — —)
Tangent space T,M is vector space with indefinite inner product

glu,u) >0 : uistimelike
encodes causal structure : < g(u,u) =0 :  uis lightlike
g(u,u) <0 : uisspacelike

spacelike hypersurface

| ,,,,,,,,, ffﬂligﬁtrcone
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Introduction to General Relativity

The gravitational field is described by the curvature of M

V : covariant derivative, Levi-Civita connection,
VX = (a,-xf+rf,k xk) ;Xj

R, :Riemann curvature tensor,

9

ox!

Rj = R : Riccitensor, R = Rj : scalar curvature

ViViX - V;ViX = R X

o , 1
Einstein’s equations: Ry — >

Ty - enery-momentum tensor, describes matter

R gix = 8mTi

“matter generates curvature”
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Introduction to General Relativity

vice versa:
“curvature affects the dynamics of matter”

equations of motion, depend on type of matter:
@ classical point particles: geodesic equation

@ dust: perfect fluid

@ quantum mechanical matter:
equations of wave mechanics
(Dirac or Klein Gordon equation)

coupling Einstein equations with equations of motion yields
system of nonlinear hyperbolic PDEs
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Dirac spinors in Minkowski space

Relativic wave equation with spin
» D differential operator of first order with D? = —J

D= ifyjﬁj D? = —’yj'yk(?jk
The Dirac matrices v/ are (4 x 4)-matrices with
YA+ =24
Dirac representation:
1 0 ; 0 o ,
0_ i . —
’7_<0 _Il)a v _<_O_/ 0)7 ) 132737
with the three Pauli matrices:
0 1 0 —j
1_ 2 _ 3
"‘(1 o>’ "‘(i o>’ ?

» Dirac equation is eigenvalue equation
| DU=mv |
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The Zitterbewegung (“trembling motion”)

observed by Schrodinger (1930)
» consider only time-dependence

(1 0
I<O _H)at\li:m\ll

» can be solved with plane waves:

wo [(X+ g—mt positive frequency, “large component”
—\ x_ em negative frequency, “small component”

» phases drop out of absolute value
» phases do not drop out of off-diagonal expectation values:

<lll, <S ;) \U> ~ sin(2mt), cos(2mt)
c4

for velocity operator: Zitterbewegung
more generally: quantum oscillations in observables
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Dirac spinors on a Lorentzian manifold

Let (M, g) be a Lorentzian manifold,
Dirac operator D = in/V

where Dirac matrices again satisfy the anti-commutation
relations
Yy = 2gk
and V is the metric connection on the spinor bundle
@ compatible with inner product <.|.> on spinors,

0 <V [P = (VW) |d- + <V |(VP)=-

@ curvature related to Riemann tensor by

1
Vi,V = g Rikimy' ™

| Diracequaton DV =my |
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The spherically symmetric, static ED equations

F-Smoller-Yau (1998-2000)

» spherically symmetric, static metric:

Ve 1 oge 2q02

2 _
C T A
» consider a singlet of two Dirac particles:

Wa(t,r) = et VT ( a(r) > (a=1,2)

r io" /3([’) €3

frequency w is the energy of the Dirac particle

Felix Finster, Regensburg An Einstein-Dirac cosmology



The spherically symmetric, static ED equations

Dirac equation:
VAd = 17@ _ WT+m)p
VAY = (@T-m)a - 5
Einstein equations:
rA = 1-A — 167wT? (? + 3?)
T/

2rA= = A-1 - 167w T2 (a? + 52)

+327r1? Taf + 160 mT (a2 — 5?)
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The spherically symmetric, static ED equations

Particlelike solutions

0.3r¢

o =G \QW "
-0.05¢

Total Binding Energy p — 2|m| (where p is the ADM-mass)
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The spherically symmetric, static ED equations

Nonexistence of black hole solutions

» spherical symmetry + horizon —
no flux of Dirac current across horizon

» current conservation = no Dirac current outside horizon

As a consequence, V vanishes identically outside the horizon.

“The Dirac particle must fall into the black hole”
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The spherically symmetric, static ED equations

Existence results for ED solutions for small m:

@ Eric Bird (=~ 2005 at UMich): Schauder’s fixed point
theorem

@ Simona Rota Nodari (Paris): Relate to the Choquard
equation

@ John Stuart (Cambridge): Variational methods

Numerics for time-dependent ED system:
@ Jason Ventrella (~ 1998, student of Matt Choptuik)
@ Benedikt Zeller (PhD thesis ETH 2009)

Non-Existence of EDYM black hole solutions:
@ Yann Bernard (=~ 2005 now Freiburg)
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Cosmological solutions

Consider and space-times:

ds® = dt? — R?(t) ar + r2dQ?
1 — kr?

@ time coordinate t, spatial coordinates r and Q € S?)
@ A(t) is so-called scale function
@ k determines spatial geometry:

k=0 flat universe,r > 0, M~TR x R3
k=1 closed universe,r € (0,1), M~R x S®
=-1 open universe,r > 0 M~TR x H®

Ansatz for matter must be chosen consistently.
» gives a system of nonlinear ODEs
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The Friedmann solution

Simplest example:
» closed case (other cases similar)

» choose matter as dust

one gets a single ODE: ~ R? +1 = Fimax

big crunch

t
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Do quantum effects prevent singularities?

Different effects discussed in physics literature:
» Wheeler-DeWitt (1967): first ideas in this direction

» Padmanabhan, Narlikar (1982):
Quantum conformal fluctuations

» Turok, Perry, Steinhardt (2004): String theory, M-Theory

» Bojowald (2008): Loop quantum gravity,
reduction to finite number of degrees of freedom,

“Once Before Time: A Whole Story of the Universe” (2010)

In all these cases, quantum effects of gravity are essential.
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An Einstein-Dirac cosmology

Here we consider a system with classical gravity,
but with quantum mechanical matter (Dirac equation)

» “quantum oscillations” can prevent singularities
R

A R

251
20
15¢
10f

05

_‘4 _‘2 0 ‘2 z‘l 6
» time-periodic solutions with infinite number of expansion
and contraction cycles
» simple equations, can be analyzed rigorously
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A homogeneous and isotropic Einstein-Dirac system

Back to homogeneous and isotropic space-time,
here only closed case:

ds? = di? — R2(t) do2,

where do? is the line element on the unit S3.
The Dirac operator becomes

, 3R(t) 1 0 D
D=y (6” 2R(t)> TR <—D33 0 > !

where Dgs is the Dirac operator on S°.
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A homogeneous and isotropic Einstein-Dirac system

» Employ the separation ansatz

s (a(t) (r, 8, 0)
v§ = R(t)2 (/g(t) w%(n&i)) ’

where wﬁ are eigenfunctions of the spatial Dirac operator,
1
Desfp=Av}, L=1... -7

» Then the Dirac equation reduces to an ODE,
id a\ m  —=AR\ [«
dt\3)  \-A/R -m ) \p3
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A homogeneous and isotropic Einstein-Dirac system

» The energy-momentum tensor:
T« = Re (I <\IJ]7(kV,)\II>)

In order to get a homogeneous and isotropic system,
occupy a whole eigenspace

X—1/4

Tk/ = Z Re <I %Wf\”}/(kV/)ng-)
=1

o thus A2 — I particles
e all wave functions have the same time dependence

in physical terms: a coherent many-particle quantum state
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A homogeneous and isotropic Einstein-Dirac system

» Putting it all together gives the Einstein-Dirac equations

I,gt (;) _ <_A”}R __)\r/nR) (g>

: m A=
R2—|—1 _ 7 (|(};|2 . |‘8‘2> _ =2 (‘[)’a—l—ﬁﬁ).

system of nonlinear ODEs
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The Bloch representation

To simplify the equations:

introduce Bloch vector V= <<a> 0 <a)>
/8 B C2

rotate Bloch vector w = Uv with U = U(R) € SO(3)

Einstein-Dirac equations in the Bloch representation:

» Similarity to movement of a :
Bloch vector w precedes around “moving rotation axis” d
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Simple limiting cases

» Limit A\ — O:

-, . : m
W=2me AW, R2+1:—ﬁw1

w;y is constant, get back to Friedmann equation for dust
» Limit m— 0:

again wjy is constant, gives Friedmann equation in
radiation dominated universe

The intermediate region is characterized by
Ry =A/m.
Here wy and thus energy-momentum tensor is oscillatory

Quantum oscillations of the energy-momentum tensor

Felix Finster, Regensburg An Einstein-Dirac cosmology



Numerical results

-1.0

Example for A = 3, m = 10.5448 and w;(Rnax) = —0.2675.



Numerical results
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Example for A = 3, m = 10.5448 and w; (Rmax) = —0.0608.

Felix Finster, Regensburg An Einstein-Dirac cosmology



The “approximation of instantaneous tilt”

- .2 AmR R
o _ y 5 /e 2R2 o,
w=dAw, d: 5 A2+ mPR? ey Y2 2R2R62

» Begin at t = 0, omit the second summand

L2
d==< V21 mRee,

R
gives dust approximation, solvable in closed form
» At aradius 1
2 1
A5 RQ
Riy = ——
ms

the second summand becomes dominant.
From then on neglect first summand

a L AmR E e
T )N ImR2R °
again solvable in closed form
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The “approximation of instantaneous tilt”

R()

R(®)
Rinax 10 N Eral Era II
8
03
6 dust
exact
02
4 R
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wi(t) ) wi)
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catches “bouncing effect” quite well

» allows to analyze the probability of bouncing, is about 50%
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Analytic construction of bouncing solutions

Now to rigorous analysis.
» Introduce the scaling

m—mfe, t—t/e2
R(t) = eR(t/%), X=X, w(t) — w(t/e?).

» The rescaled equations are

: 1
RR+2=— /221 meR2w,

R?
: 2 AmR
o e 202 A, _ V.
w (ER A2 + m?R2 ey X+ neRe 62>AW

Coefficients are continuous in ¢.
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Analytic construction of bouncing solutions

» In the limit € ™, 0 one gets the microscopic limit equations

. 1
R? = — — VA2 + m2R2 wy

"R

W= AmA e AW
T NI mPR? 2

» Can be solved by integration:
Let 6 be the angle between w and ey. Then

: d m
0 = 4 arctan[Rx]

R? = % VA2 + m?R? sin (arctan[R(t)%] — arctan[R,%]) :

» Use continuous dependence of solutions on ¢,
gives solution near the lower turning point.
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Analytic construction of bouncing solutions

» Prove that this solution enters classical dust regime.
Gives classical turning point at Tmax.

t

7-min
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Tmax ~ g3
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Analytic construction of bouncing solutions
THEOREM (Existence of bouncing solutions)

Given \ € {£3,+3,...} and § > 0 as well as any radius R-
and time T, there is a continuous three-parameter family of
solutions (R(t), w(t)) defined on a time interval [0, T]

with T > T~ having the following properties:

(a) Att=0andt = T, the scale function has a local maximum
larger than R-~.,

R(t)>R-, R({t)=0, R(t)<0.

(b) There is a time tyounce € (0, T) such that R is strictly
monotone on the intervals [0, thounce] @and [toounce; T-
Moreover, the scale function becomes small in the sense
that

R(tbounce) <9 R> .
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Analytic construction of time-periodic solutions

» Choose w(0) such that the solution is
symmetric under time reversals
(in particular Tmin = — Tmax and R(Trmin) = R(Tmax))

» Task: arrange that w(Tmin) = W( Tmax)-

» This involves only one phase ¢ and the condition ¢ € 27Z.
Prove that

¢p~e?

and use continuity.

>

L L
10 20
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Analytic construction of time-periodic solutions

THEOREM (Existence of time-periodic solutions)

Given \ € {£3,+3,...} and § > 0 as well as any radius R-
and time T, there is a one-parameter family of

solutions (R(t), w(t)) defined for all t € R with the following
properties:

(A) The solution is periodic, i.e.
R(t+T)=R(t), w(t+T)=w(t) foralltcR,

and every T > 0 with this property is larger than T-.
(B) iﬂry R(t) <0 R-, R. < supR(t).
R
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The energy conditions

weak energy condition: 79 > max (0, T/)
dominant energy condition: 9> |T|
strong energy condition: 79 >max 3T/, T)).

» The strong energy condition is always violated at a bounce.
» All energy conditions are violated close to a bounce
for e small enough.
R0, R (T%-T"))
A

. . b . . -
8.8 8.9 9:q 9.1 9.2

4 H

This gives consistency with Hawking-Penrose singularity theorems.

Felix Finster, Regensburg An Einstein-Dirac cosmology



Physical discussion and summary

» The “bouncing effect” relies on the fact that
all particles have the same momentum \.

» All particle wave functions are coherent (“in phase”)

spin condensation

If before the big crunch all fermions of the universe form
a coherent many-particle state (spin condensate),
then quantum oscillations can prevent the big crunch singularity.

» work with classical gravity and quantum mechanics
» simple ODE system, rigorous results
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