Variational methods in material sciences: the data-driven approach

Andrea Chiesa

PDE Afternoon

12/01/2022

Andrea Chiesa (Universität Wien)

The data-driven approach

12/01/2022 1/26

- S. Conti, S. Müller, and M. Ortiz. "Data-Driven Problems in Elasticity". In: Archive for Rational Mechanics and Analysis 229.1 (2018), pp. 79–123. DOI: 10.1007/s00205-017-1214-0.
- [2] T. Kirchdoerfer and M. Ortiz. "Data-driven computational mechanics". In: Computer Methods in Applied Mechanics and Engineering 304 (June 2016), pp. 81–101. ISSN: 0045-7825. DOI: 10.1016/j.cma.2016.02.001.

Why the data-driven approach?

Andrea Chiesa (Universität Wien)

The data-driven approach

12/01/2022 4/26

4 A N

Material sciences problems

prototypical problem in materials sciences two core elements

constitutive relations provide "universal" equilibrium and compatibility conditions

constitutive relations

provide "universal" equilibrium and compatibility conditions

empirical data

+ about the material, obtained through measurements

+

╢

constitutive relations

provide "universal" equilibrium and compatibility conditions

empirical data

about the material, obtained through measurements

well-established bridge in between: inference of material laws from the empirical data

+

╢

constitutive relations

provide "universal" equilibrium and compatibility conditions

empirical data

about the material, obtained through measurements

well-established bridge in between: inference of material laws from the empirical data

∜

boundary value problems

+

╢

constitutive relations

provide "universal" equilibrium and compatibility conditions

empirical data

about the material, obtained through measurements

well-established bridge in between: inference of material laws from the empirical data

boundary value problems

minimum problems

Andrea Chiesa (Universität Wien)

The data-driven approach

12/01/2022 5/26

 $u: \Omega \to \mathbb{R}^n$ the displacement

 $u: \Omega \to \mathbb{R}^n$ the displacement

$$\epsilon = e(u) = \frac{1}{2} \left(\nabla u + \nabla u^t \right)$$
 the strain

 $u: \Omega \to \mathbb{R}^n$ the displacement

$$\epsilon = e(u) = \frac{1}{2} \left(\nabla u + \nabla u^t \right)$$
 the strain

σ the stress satisfying the constitutive relation of the equilibrium of internal and external forces

 $u: \Omega \to \mathbb{R}^n$ the displacement

$$\epsilon = e(u) = \frac{1}{2} \left(\nabla u + \nabla u^t \right)$$
 the strain

σ the stress satisfying the constitutive relation of the equilibrium of internal and external forces

$$\begin{cases} \operatorname{div} \sigma(x) + f(x) = 0, & \text{ in } \Omega \\ \mathsf{B.C.} \end{cases}$$

f body forces

 $u: \Omega \to \mathbb{R}^n$ the displacement

$$\epsilon = e(u) = \frac{1}{2} \left(\nabla u + \nabla u^t \right)$$
 the strain

 σ the stress satisfying the constitutive relation of the equilibrium of internal and external forces

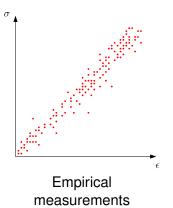
$$\begin{cases} \operatorname{div} \sigma(x) + f(x) = 0, & \text{ in } \Omega \\ \mathsf{B.C.} \end{cases}$$

f body forces

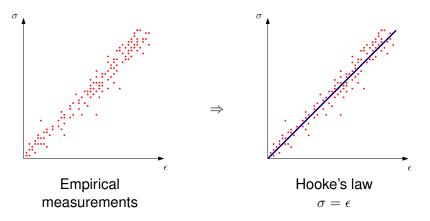
B.C. specify forces applied on the boundary

empirical data provides a relation between the strain ϵ and the stress σ

empirical data provides a relation between the strain ϵ and the stress σ



empirical data provides a relation between the strain ϵ and the stress σ



$$\begin{cases} \operatorname{div} \sigma + f = 0 & \text{in } \Omega \\ \text{B.C.} \end{cases}$$

$$\begin{cases} \operatorname{div} \sigma + f = 0 & \text{in } \Omega \implies \\ \mathsf{B.C.} \end{cases} \begin{cases} \operatorname{div} \epsilon + f = \operatorname{div} e(u) + f = 0 & \text{in } \Omega \\ \mathsf{B.C.} \end{cases}$$

$$\begin{cases} \operatorname{div} \sigma + f = 0 & \text{in } \Omega \\ \text{B.C.} \end{cases} \Rightarrow \begin{cases} \operatorname{div} \epsilon + f = \operatorname{div} e(u) + f = 0 & \text{in } \Omega \\ \text{B.C.} \end{cases}$$

∜

$$\begin{cases} \operatorname{div} \sigma + f = 0 & \text{in } \Omega \\ \text{B.C.} \end{cases} \Rightarrow \begin{cases} \operatorname{div} \epsilon + f = \operatorname{div} e(u) + f = 0 & \text{in } \Omega \\ \text{B.C.} \end{cases}$$

∜

$$\inf_{u \in u_0 + H_0^1} \left\{ I(u) := \frac{1}{4} \int_{\Omega} e(u)^2 \, dx + \text{ terms given by } f \text{ and } B.C. \right\}$$

Andrea Chiesa (Universität Wien)

W inferred also from the empirical measurements

W inferred also from the empirical measurements

Drawbacks:

W inferred also from the empirical measurements

Drawbacks:

• assuming more structure than we have

W inferred also from the empirical measurements

Drawbacks:

- assuming more structure than we have
- error and uncertainty because of possible noisy or incomplete data

W inferred also from the empirical measurements

Drawbacks:

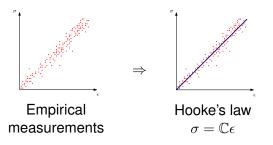
- assuming more structure than we have
- error and uncertainty because of possible noisy or incomplete data

Empirical measurements

W inferred also from the empirical measurements

Drawbacks:

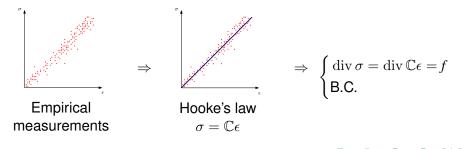
- assuming more structure than we have
- error and uncertainty because of possible noisy or incomplete data



W inferred also from the empirical measurements

Drawbacks:

- assuming more structure than we have
- error and uncertainty because of possible noisy or incomplete data



General data-driven setting

Andrea Chiesa (Universität Wien)

The data-driven approach

12/01/2022 10/26

In a phase space

$$Z := L^2(\Omega; A) \times L^2(\Omega; A),$$

with *A* a suitable subspace of \mathbb{R}^N , we consider the two sets

In a phase space

$$Z := L^2(\Omega; A) \times L^2(\Omega; A),$$

with *A* a suitable subspace of \mathbb{R}^N , we consider the two sets

• $\mathcal{E} \Rightarrow$ equilibrium and compatibility conditions

In a phase space

$$Z := L^2(\Omega; A) \times L^2(\Omega; A),$$

with *A* a suitable subspace of \mathbb{R}^N , we consider the two sets

- $\mathcal{E} \quad \Rightarrow \quad \text{equilibrium and compatibility conditions}$
 - $\bullet \ \mathcal{D} \quad \Rightarrow \quad \text{available information on the material}$

In a phase space

$$Z := L^2(\Omega; A) \times L^2(\Omega; A),$$

with *A* a suitable subspace of \mathbb{R}^N , we consider the two sets

E ⇒ equilibrium and compatibility conditions
D ⇒ available information on the material Given through local measurements *D*_{loc} ⊂ *A* as

$$\mathcal{D} := \{ (\epsilon, \sigma) \in Z \mid (\epsilon(x), \sigma(x)) \in \mathcal{D}_{loc} \text{ a.e. in } \Omega \}$$

In a phase space

$$Z := L^2(\Omega; A) \times L^2(\Omega; A),$$

with *A* a suitable subspace of \mathbb{R}^N , we consider the two sets

E ⇒ equilibrium and compatibility conditions
D ⇒ available information on the material Given through local measurements *D*_{loc} ⊂ *A* as

$$\mathcal{D} := \{(\epsilon, \sigma) \in Z \mid (\epsilon(x), \sigma(x)) \in \mathcal{D}_{loc} \text{ a.e. in } \Omega\}$$

$$\inf_{z \in \mathcal{E}} \{ d(z, \mathcal{D}) \}$$
(MP)

where $d(\cdot, \cdot)$ is a suitable metric on *Z*.

$$\inf_{z\in\mathcal{E}}\{d(z,\mathcal{D})\}$$

where $d(\cdot, \cdot)$ is a suitable metric on *Z*.

Problems:

$$\inf_{z\in\mathcal{E}}\{d(z,\mathcal{D})\}$$

where $d(\cdot, \cdot)$ is a suitable metric on *Z*.

Problems:

well-posedness

$$\inf_{z\in\mathcal{E}}\{d(z,\mathcal{D})\}$$

where $d(\cdot, \cdot)$ is a suitable metric on *Z*.

Problems:

- well-posedness
- existence of minimizers

$$\inf_{z\in\mathcal{E}}\{d(z,\mathcal{D})\}$$

(MP)

where $d(\cdot, \cdot)$ is a suitable metric on *Z*.

Problems:

- well-posedness
- existence of minimizers
- relation with the corresponding classical problem.

The case of linear elasticity

Andrea Chiesa (Universität Wien)

The data-driven approach

12/01/2022 13/26

A 🕨

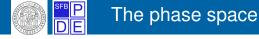
We give the example of a simple problem in the context of elasticity following the layout of the paper "*Data-Driven Problems in Elasticity*" by S. Conti, S. Müller and M. Ortiz [1].

The phase space

We give the example of a simple problem in the context of elasticity following the layout of the paper "*Data-Driven Problems in Elasticity*" by S. Conti, S. Müller and M. Ortiz [1].

Given $\Omega \subset \mathbb{R}^n$ a bounded connected Lipschitz set, we consider the phase space

$$Z = L^{2}(\Omega; \mathbb{R}^{n \times n}_{sym}) \times L^{2}(\Omega; \mathbb{R}^{n \times n}_{sym})$$



We give the example of a simple problem in the context of elasticity following the layout of the paper "*Data-Driven Problems in Elasticity*" by S. Conti, S. Müller and M. Ortiz [1].

Given $\Omega \subset \mathbb{R}^n$ a bounded connected Lipschitz set, we consider the phase space

$$Z = L^{2}(\Omega; \mathbb{R}^{n \times n}_{sym}) \times L^{2}(\Omega; \mathbb{R}^{n \times n}_{sym})$$

equipped with the following norm

$$||z|| = ||(\epsilon, \sigma)|| = \left(\int_{\Omega} \left(\frac{1}{2}\mathbb{C}\epsilon \cdot \epsilon + \frac{1}{2}\mathbb{C}^{-1}\sigma \cdot \sigma\right)dx\right)^{1/2}$$

with $\mathbb{C} \in \mathcal{L}(\mathbb{R}^{n \times n}_{sym})$ a nominal elasticity tensor which is self adjoint and positive.



The state of the elastic body is described by the displacement field $u: \Omega \to \mathbb{R}^n$ whose compatibility and equilibrium laws are

$$\begin{cases} \epsilon(x) = \frac{1}{2} \left(\nabla u(x) + \nabla u^{t}(x) \right) & \text{ in } \Omega \\ u(x) = g(x) & \text{ on } \Gamma_{D}, \end{cases}$$
(1)

$$\begin{cases} \operatorname{div} \sigma(x) + f(x) = 0, & \text{in } \Omega\\ \sigma(x)\nu(x) = h(x), & \text{on } \Gamma_N. \end{cases}$$
(2)



The state of the elastic body is described by the displacement field $u: \Omega \to \mathbb{R}^n$ whose compatibility and equilibrium laws are

$$\begin{cases} \epsilon(x) = \frac{1}{2} \left(\nabla u(x) + \nabla u^{t}(x) \right) & \text{ in } \Omega \\ u(x) = g(x) & \text{ on } \Gamma_{D}, \end{cases}$$
(1)

$$\begin{cases} \operatorname{div} \sigma(x) + f(x) = 0, & \text{in } \Omega\\ \sigma(x)\nu(x) = h(x), & \text{on } \Gamma_N. \end{cases}$$

They are encoded in the set

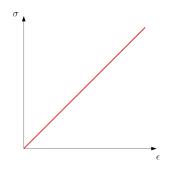
$$\mathcal{E} = \{ (\epsilon, \sigma) \in Z \mid (1) \text{ and } (2) \}.$$

(2)



The data set corresponding to linear elasticity is

$$\mathcal{D} = \{ (\epsilon, \sigma) \in Z \mid \sigma = \mathbb{C}\epsilon \text{ a.e } \},\$$



Let $\Omega \subset \mathbb{R}^n$ be open, bounded and Lipschitz and let \mathcal{D} and \mathcal{E} as above. Let Γ_D, Γ_N be disjoint open subsets of $\partial\Omega$ such that $\Gamma_D \neq \emptyset$, $\overline{\Gamma}_D \cup \overline{\Gamma}_N = \partial\Omega$ and $\mathcal{H}^{n-1}(\overline{\Gamma}_D \setminus \Gamma_N) = \mathcal{H}^{n-1}(\overline{\Gamma}_N \setminus \Gamma_D) = 0$. Assume

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and Lipschitz and let \mathcal{D} and \mathcal{E} as above. Let Γ_D, Γ_N be disjoint open subsets of $\partial\Omega$ such that $\Gamma_D \neq \emptyset$, $\overline{\Gamma}_D \cup \overline{\Gamma}_N = \partial\Omega$ and $\mathcal{H}^{n-1}(\overline{\Gamma}_D \setminus \Gamma_N) = \mathcal{H}^{n-1}(\overline{\Gamma}_N \setminus \Gamma_D) = 0$. Assume $\bigcirc \mathbb{C} \in \mathcal{L}(\mathbb{R}^{n \times n}_{sym}), \mathbb{C}^T = \mathbb{C}, \mathbb{C} > 0;$

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and Lipschitz and let \mathcal{D} and \mathcal{E} as above. Let Γ_D, Γ_N be disjoint open subsets of $\partial\Omega$ such that $\Gamma_D \neq \emptyset$, $\overline{\Gamma}_D \cup \overline{\Gamma}_N = \partial\Omega$ and $\mathcal{H}^{n-1}(\overline{\Gamma}_D \setminus \Gamma_N) = \mathcal{H}^{n-1}(\overline{\Gamma}_N \setminus \Gamma_D) = 0$. Assume $\mathbb{C} \in \mathcal{L}(\mathbb{R}^{n \times n}_{sym}), \mathbb{C}^T = \mathbb{C}, \mathbb{C} > 0;$ $f \in L^2(\Omega; \mathbb{R}^n), g \in H^{1/2}(\partial\Omega; \mathbb{R}^n), h \in H^{-1/2}(\partial\Omega; \mathbb{R}^n).$

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and Lipschitz and let \mathcal{D} and \mathcal{E} as above. Let Γ_D, Γ_N be disjoint open subsets of $\partial\Omega$ such that $\Gamma_D \neq \emptyset$, $\overline{\Gamma}_D \cup \overline{\Gamma}_N = \partial\Omega$ and $\mathcal{H}^{n-1}(\overline{\Gamma}_D \setminus \Gamma_N) = \mathcal{H}^{n-1}(\overline{\Gamma}_N \setminus \Gamma_D) = 0$. Assume $\mathfrak{O} \subset \mathcal{L} \left(\mathbb{R}^{n \times n}_{sym} \right), \mathbb{C}^T = \mathbb{C}, \mathbb{C} > 0;$ $\mathfrak{O} f \in L^2(\Omega; \mathbb{R}^n), g \in H^{1/2}(\partial\Omega; \mathbb{R}^n), h \in H^{-1/2}(\partial\Omega; \mathbb{R}^n).$ Then, the data-Driven problem (MP) admits a unique solution.

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and Lipschitz and let \mathcal{D} and \mathcal{E} as above. Let Γ_D, Γ_N be disjoint open subsets of $\partial\Omega$ such that $\Gamma_D \neq \emptyset$, $\overline{\Gamma}_D \cup \overline{\Gamma}_N = \partial\Omega$ and $\mathcal{H}^{n-1}(\overline{\Gamma}_D \setminus \Gamma_N) = \mathcal{H}^{n-1}(\overline{\Gamma}_N \setminus \Gamma_D) = 0$. Assume $\mathbf{O} \quad \mathbb{C} \in \mathcal{L}(\mathbb{R}^{n \times n}_{sym}), \mathbb{C}^T = \mathbb{C}, \mathbb{C} > 0;$

 $@ f \in L^{2}\left(\Omega;\mathbb{R}^{n}\right), g \in H^{1/2}\left(\partial\Omega;\mathbb{R}^{n}\right), h \in H^{-1/2}\left(\partial\Omega;\mathbb{R}^{n}\right). \\ \end{aligned}$

Then, the data-Driven problem (*MP*) admits a unique solution. Moreover, such solution is "classical", i.e satisfies

$$\sigma = \mathbb{C}\epsilon.$$

Lemma

Given $Z = L^2(\Omega; \mathbb{R}^n) \times L^2(\Omega; \mathbb{R}^n)$ and $\mathcal{E} = \{(\epsilon, \sigma) \in Z : (1) \text{ and } (2)\}$, let

 $\mathcal{D} = \{ z \in Z \mid z(x) \in \mathcal{D}_{loc} \text{ a.e. in } \Omega \}, \quad \mathcal{D}_{loc} = \{ (\epsilon, \sigma) \in (\mathbb{R}_{sym}^{n \times n})^2 \mid \sigma = \mathbb{C}\epsilon \}.$ $\mathcal{D}_j = \{ z \in Z \mid z(x) \in \mathcal{D}_{loc,j} \text{ a.e. in } \Omega \}, \quad \mathcal{D}_{loc,j} \subset \mathbb{R}_{sym}^{n \times n} \times \mathbb{R}_{sym}^{n \times n}$

Lemma

Given $Z = L^2(\Omega; \mathbb{R}^n) \times L^2(\Omega; \mathbb{R}^n)$ and $\mathcal{E} = \{(\epsilon, \sigma) \in Z : (1) \text{ and } (2)\}$, let

 $\mathcal{D} = \{ z \in Z \mid z(x) \in \mathcal{D}_{loc} \text{ a.e. in } \Omega \}, \quad \mathcal{D}_{loc} = \{ (\epsilon, \sigma) \in (\mathbb{R}_{sym}^{n \times n})^2 \mid \sigma = \mathbb{C}\epsilon \}.$ $\mathcal{D}_j = \{ z \in Z \mid z(x) \in \mathcal{D}_{loc,j} \text{ a.e. in } \Omega \}, \quad \mathcal{D}_{loc,j} \subset \mathbb{R}_{sym}^{n \times n} \times \mathbb{R}_{sym}^{n \times n}$

and assume

• (Fine approximation): $\exists \rho_j \searrow 0$ such that, for every $\xi \in \mathcal{D}_{loc}$,

 $d(\xi, \mathcal{D}_{loc,j}) \leq \rho_j;$

2 (Uniform approximation): $\exists t_j \searrow 0$ such that, for every $\xi \in \mathcal{D}_{loc,j}$,

$$d(\xi, \mathcal{D}_{loc}) \leq t_j.$$

Lemma

Given $Z = L^2(\Omega; \mathbb{R}^n) \times L^2(\Omega; \mathbb{R}^n)$ and $\mathcal{E} = \{(\epsilon, \sigma) \in Z : (1) \text{ and } (2)\}$, let

 $\mathcal{D} = \{ z \in Z \mid z(x) \in \mathcal{D}_{loc} \text{ a.e. in } \Omega \}, \quad \mathcal{D}_{loc} = \{ (\epsilon, \sigma) \in (\mathbb{R}_{sym}^{n \times n})^2 \mid \sigma = \mathbb{C}\epsilon \}.$ $\mathcal{D}_j = \{ z \in Z \mid z(x) \in \mathcal{D}_{loc,j} \text{ a.e. in } \Omega \}, \quad \mathcal{D}_{loc,j} \subset \mathbb{R}_{sym}^{n \times n} \times \mathbb{R}_{sym}^{n \times n}$

and assume

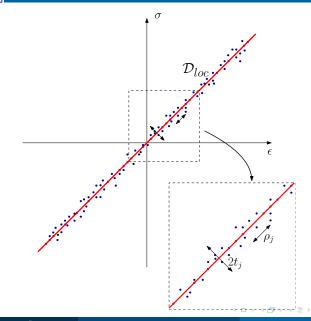
• (Fine approximation): $\exists \rho_j \searrow 0$ such that, for every $\xi \in \mathcal{D}_{loc}$,

 $d(\xi, \mathcal{D}_{loc,j}) \leq \rho_j;$

(Uniform approximation): $\exists t_j \searrow 0$ such that, for every $\xi \in \mathcal{D}_{loc,j}$,

 $d(\xi, \mathcal{D}_{loc}) \leq t_j.$

Then,
$$\mathcal{D} = M - \lim_{j} \mathcal{D}_{j}$$
.



Ρ

We have seen that the data driven problem for linear elasticity is:

- well-posed;
- consistent;
- Stable under fine and uniform approximation.

We have seen that the data driven problem for linear elasticity is:

- well-posed;
- consistent;
- Stable under fine and uniform approximation.

Theorem (Existence for weakly closed data sets)

Let *Z* be a reflexive, separable Banach space and \mathcal{E}, \mathcal{D} be weakly closed subsets of *Z*. If the equi-transversality condition holds, i.e. there exist constants c > 0 and $b \ge 0$ such that $||y - z|| \ge c (||y|| + ||z||) - b$ for every $y \in \mathcal{D}$ and $z \in \mathcal{E}$, then the data-driven problem

$$S := \operatorname*{argmin}_{z \in Z} \{ I_{\mathcal{E}}(z) + d^2(z, \mathcal{D}) \} = \operatorname*{argmin}_{z \in \mathcal{E}} \{ d^2(z, \mathcal{D}) \}$$

admits solution.

A D M A A A M M

- ∢ ∃ ▶

Existence for non-weakly closed data sets

Andrea Chiesa (Universität Wien)

The data-driven approach

12/01/2022 21/26

Let $\mathcal{E}, \mathcal{D}, \mathcal{D}_j$ be subsets of Z and $F_j : Z \times Z \to \overline{\mathbb{R}}$, $F_j(y, z) = I_{\mathcal{D}_j \times \mathcal{E}} + ||y - z||^2$. We say that $\mathcal{D} \times \mathcal{E}$ is the data-driven relaxation of the sequence $\mathcal{D}_j \times \mathcal{E}$ if:

Let $\mathcal{E}, \mathcal{D}, \mathcal{D}_j$ be subsets of Z and $F_j : Z \times Z \to \overline{\mathbb{R}}$, $F_j(y, z) = I_{\mathcal{D}_j \times \mathcal{E}} + ||y - z||^2$. We say that $\mathcal{D} \times \mathcal{E}$ is the data-driven relaxation of the sequence $\mathcal{D}_j \times \mathcal{E}$ if:

• for every sequence $((y_j, z_j))_j \subset Z \times Z$ such that $F_j(y_j, z_j) \to 0$ there exists $z \in \mathcal{D} \cap \mathcal{E}$ such that $(z, z) = \Delta - \lim_j (y_j, z_j)$;

Let $\mathcal{E}, \mathcal{D}, \mathcal{D}_j$ be subsets of Z and $F_j : Z \times Z \to \overline{\mathbb{R}}$, $F_j(y, z) = I_{\mathcal{D}_j \times \mathcal{E}} + ||y - z||^2$. We say that $\mathcal{D} \times \mathcal{E}$ is the data-driven relaxation of the sequence $\mathcal{D}_j \times \mathcal{E}$ if:

- for every sequence $((y_j, z_j))_j \subset Z \times Z$ such that $F_j(y_j, z_j) \to 0$ there exists $z \in \mathcal{D} \cap \mathcal{E}$ such that $(z, z) = \Delta \lim_j (y_j, z_j)$;
- ② for every $z \in D \cap E$ there exists a sequence $((y_j, z_j))_j \subset Z \times Z$ such that $F_j(y_j, z_j) \to 0$ and $(z, z) = \Delta \lim_j (y_j, z_j)$.

• □ > • # # > • = > •

Let $\mathcal{E}, \mathcal{D}, \mathcal{D}_j$ be subsets of Z and $F_j : Z \times Z \to \overline{\mathbb{R}}$, $F_j(y, z) = I_{\mathcal{D}_j \times \mathcal{E}} + ||y - z||^2$. We say that $\mathcal{D} \times \mathcal{E}$ is the data-driven relaxation of the sequence $\mathcal{D}_j \times \mathcal{E}$ if:

- for every sequence $((y_j, z_j))_j \subset Z \times Z$ such that $F_j(y_j, z_j) \to 0$ there exists $z \in \mathcal{D} \cap \mathcal{E}$ such that $(z, z) = \Delta \lim_j (y_j, z_j)$;
- ② for every $z \in D \cap E$ there exists a sequence $((y_j, z_j))_j \subset Z \times Z$ such that $F_j(y_j, z_j) \to 0$ and $(z, z) = \Delta \lim_j (y_j, z_j)$.

Remark

This notion of data-driven relaxation refers only to the intersection $\mathcal{D} \cap \mathcal{E}$. Suitable for cases where the existence of a classical solution is known.

Let D, (D_h) be subsets of a reflexive separable Banach space Z and \mathcal{E} be a weakly sequentially closed subset of Z. Assume:

• (data convergence): $\mathcal{D} \times \mathcal{E} = K_0(\Delta) - \lim_j (\mathcal{D}_j \times \mathcal{E});$

- (data convergence): $\mathcal{D} \times \mathcal{E} = K_0(\Delta) \lim_j (\mathcal{D}_j \times \mathcal{E});$
- 2 (Equi-transversality): $||y z|| \ge c(||y|| + ||z||) b, \forall y \in \mathcal{D}_j, z \in \mathcal{E}.$

- (data convergence): $\mathcal{D} \times \mathcal{E} = K_0(\Delta) \lim_j (\mathcal{D}_j \times \mathcal{E});$
- (2) (Equi-transversality): $||y z|| \ge c(||y|| + ||z||) b, \forall y \in \mathcal{D}_j, z \in \mathcal{E}.$
- For $(y, z) \in \mathbb{Z} \times \mathbb{Z}$, let $F_j(y, z) = I_{\mathcal{D}_j \times \mathcal{E}}(y, z) + ||y z||^2$.

- (data convergence): $\mathcal{D} \times \mathcal{E} = K_0(\Delta) \lim_j (\mathcal{D}_j \times \mathcal{E});$
- 2 (Equi-transversality): $||y z|| \ge c(||y|| + ||z||) b, \forall y \in \mathcal{D}_j, z \in \mathcal{E}.$
- For $(y, z) \in \mathbb{Z} \times \mathbb{Z}$, let $F_j(y, z) = I_{\mathcal{D}_j \times \mathcal{E}}(y, z) + ||y z||^2$. Then:
 - 1. *if* $F_{j}(y_{j}, z_{j}) \rightarrow 0$, $\exists z \in \mathcal{D} \cap \mathcal{E}$ such that $(z, z) = \Delta \lim_{j} (y_{j}, z_{j})$;

Let D, (D_h) be subsets of a reflexive separable Banach space Z and \mathcal{E} be a weakly sequentially closed subset of Z. Assume:

- (data convergence): $\mathcal{D} \times \mathcal{E} = K_0(\Delta) \lim_j (\mathcal{D}_j \times \mathcal{E});$
- 2 (Equi-transversality): $||y z|| \ge c(||y|| + ||z||) b, \forall y \in \mathcal{D}_j, z \in \mathcal{E}.$
- For $(y, z) \in \mathbb{Z} \times \mathbb{Z}$, let $F_j(y, z) = I_{\mathcal{D}_j \times \mathcal{E}}(y, z) + ||y z||^2$. Then:
 - 1. *if* $F_{j}(y_{j}, z_{j}) \rightarrow 0$, $\exists z \in \mathcal{D} \cap \mathcal{E}$ such that $(z, z) = \Delta \lim_{j} (y_{j}, z_{j})$;
 - II. if $z \in \mathcal{D} \cap \mathcal{E}$, $\exists (y_j, z_j) \subset Z \times Z$ such that $(z, z) = \Delta \lim_j (y_j, z_j)$ and $F_j(y_j, z_j) \to 0$.

< □ > < □ > < □ > < □ >

Let D, (D_h) be subsets of a reflexive separable Banach space Z and \mathcal{E} be a weakly sequentially closed subset of Z. Assume:

- (data convergence): $\mathcal{D} \times \mathcal{E} = K_0(\Delta) \lim_j (\mathcal{D}_j \times \mathcal{E});$
- 2 (Equi-transversality): $||y z|| \ge c(||y|| + ||z||) b, \forall y \in \mathcal{D}_j, z \in \mathcal{E}.$
- For $(y, z) \in \mathbb{Z} \times \mathbb{Z}$, let $F_j(y, z) = I_{\mathcal{D}_j \times \mathcal{E}}(y, z) + ||y z||^2$. Then:
 - 1. *if* $F_j(y_j, z_j) \to 0$, $\exists z \in \mathcal{D} \cap \mathcal{E}$ such that $(z, z) = \Delta \lim_j (y_j, z_j)$;
 - II. if $z \in \mathcal{D} \cap \mathcal{E}$, $\exists (y_j, z_j) \subset Z \times Z$ such that $(z, z) = \Delta \lim_j (y_j, z_j)$ and $F_j(y_j, z_j) \to 0$.

Remark

If $\liminf F_j = 0$, then we have existence of solutions.

Let D, (D_h) be subsets of a reflexive separable Banach space Z and \mathcal{E} be a weakly sequentially closed subset of Z. Assume:

- (data convergence): $\mathcal{D} \times \mathcal{E} = K_0(\Delta) \lim_j (\mathcal{D}_j \times \mathcal{E});$
- (Equi-transversality): $||y z|| \ge c(||y|| + ||z||) b, \forall y \in \mathcal{D}_j, z \in \mathcal{E}.$
- For $(y, z) \in \mathbb{Z} \times \mathbb{Z}$, let $F_j(y, z) = I_{\mathcal{D}_j \times \mathcal{E}}(y, z) + ||y z||^2$. Then:
 - 1. *if* $F_j(y_j, z_j) \to 0$, $\exists z \in \mathcal{D} \cap \mathcal{E}$ such that $(z, z) = \Delta \lim_j (y_j, z_j)$;
 - II. if $z \in \mathcal{D} \cap \mathcal{E}$, $\exists (y_j, z_j) \subset Z \times Z$ such that $(z, z) = \Delta \lim_j (y_j, z_j)$ and $F_j(y_j, z_j) \to 0$.

Remark

If $\liminf F_j = 0$, then we have existence of solutions. The interesting (and still open) problem is when the same is true if $\liminf F_j > 0$ (or not a priori known)!!

Andrea Chiesa (Universität Wien)

prove consistency without assuming that the lim inf is zero (non linearity);

- prove consistency without assuming that the lim inf is zero (non linearity);
- when a solution exists even if the lim inf is NOT zero (non linearity);

- prove consistency without assuming that the lim inf is zero (non linearity);
- when a solution exists even if the lim inf is NOT zero (non linearity);
- Extend the results to the case of plasticity, where in addition to non linearity we also have dependence on time.

Thank you for your attention