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Abstract
Viscoelasticity is the response of materials like rubber, clay, and various polymers or metals
exhibiting both elastic and viscous behavior with respect to the action of external forces. The
interplay between the solid-like behavior of elasticity and the fluid-like one of viscosity allows
to model several phenomena in continuum mechanics and has originated rich and interesting
mathematical theories.

This dissertation aims at investigating recent developments in variational nonlinear models
for the evolution of viscoelastic materials at finite-strain and focuses on two main aspects. On
the one hand, we study the Poynting-Thomson model at large strains: We show the existence of
solutions in a suitable weak sense without resorting to regularizing second-order terms whose
physical interpretation is disputed. In addition, we perform rigorous linearization and prove
that the classical small-strain model is recovered. On the other hand, we consider the interplay
of viscoelastic effects with accretive growth, as occurs in crystallization, swelling of polymer
gels, and solidification processes. We show the existence of solutions to the associated coupled
problem for different models: We focus on diffused- and sharp-interface two-phase materials
and on solids accumulating residual stresses during growth.
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1 Introduction
1.1 Motivation: Continuum mechanics and viscoelasticity

To provide a comprehensive description of material behavior is the aim of continuum mechan-
ics, which lies at the intersection between physics and mathematics [51]. Over the past decades,
the field has undergone significant development, driven by both theoretical advances and practi-
cal applications. New mathematical techniques and tools have been developed stemming from
the rich collection of phenomena like elasticity, viscosity, plasticity, and cracks and damage
formation. In particular, this dissertation focuses on viscoelastic media. These materials ex-
hibit both elastic and viscous properties when undergoing deformations. Namely, elasticity is
the characteristic of solids like springs or rubber to return to their original configuration in the
small-deformation regime after an applied force is no longer active [17]. Conversely, viscosity
is a liquid-like property that expresses the rate-dependent resistance to flow, dissipating me-
chanical energy along the motion. It can be distinctively observed in thick fluids like honey or
syrup. Most materials, however, like polymers, metals, and clay [92], do not display a specific
behavior but present a complex and multifaceted combination of the before-mentioned charac-
teristics. They are hence said to be viscoelastic. For such materials, when an external loading
is applied and then removed, the body dissipates energy as it goes back to its original shape
[84]. There is thus a delay between the moment the force is deactivated - or, correspondingly,
activated - and the response of the medium; the state of the system, hence, depends also on its
history. Moreover, the dissipated energy may be rate-dependent, i.e., may depend on how fast
the loading and unloading are enacted [92].

As a result, the mathematical description of viscoelasticity offers a wide variety of problems
and poses several interesting analytical challenges. In this thesis, we focus on two specific
aspects of this broad theory:

1. A finite-strain Poynting-Thomson model, expanding the linear theory of viscoelastic rhe-
ologies. In Chapter 2, we focus on the existence of suitably weak solutions without
resorting to second-gradient regularizing terms, and we show a rigorous linearization
result.

2. The interplay between growth and viscoelastic response of the medium in the nonlinear
setting. Chapter 3 and 4 are devoted to two models for accretive phase-transition and
accretive growth, respectively.

We introduce the equations and basic notions of linear elasticity in Section 1.1.1, building up
for the finite-strain setting of the following chapters in Section 1.1.2. We then provide some
background on different notions of solutions for viscoelastic systems in Section 1.1.3. Finally,
in Section 1.2, we summarize the thesis’s main results.

1.1.1 Linear viscoelasticity
We begin by discussing viscoelasticity in the linear setting. Let Ω be a nonempty, bounded,
and connected open subset of Rd denoting the reference configuration of the material. In the
simplest possible framework, we can consider two idealized mathematical elements represent-
ing elastic and viscoelastic response, respectively [51, Chap. 6], see Figure 1.1. The first is
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1 Introduction

ϵ=∇sw

C σ=Cϵ

(a) Purely elastic element

ϵ=∇sv

D
σ=Dϵ̇

(b) Purely viscous element

Figure 1.1: Schematic representation of the two basic linear rheological models, depicting elas-
ticity and viscosity, respectively.

usually illustrated with a spring (Figure 1.1a) and is called Hooke element. We denote by
w : Ω → Rd the elastic displacement map, where the actual configuration of the medium is
given by (id + w)(Ω). The small-strain or linearized strain tensor ϵ : Ω→ Rd×d

sym is given by

ϵ := ∇sw =
1

2

(
∇w +∇w⊤).

The constitutive equation for a linear (purely) elastic material, which relates the strain with the
stress tensor σ : Ω→ Rd×d

sym , reads
σ = Cϵ. (1.1.1)

Here, C : Ω → Rd×d×d×d is the 4-tensor specifying the elastic moduli of the medium. In the
following, we assume C to be elliptic, namely

∑d
i,j,k,ℓ=1 ξijCijkℓξkℓ ≥ c

∑d
i,j=1 ξ

2
ij for every

ξ ∈ Rd×d, for some constant c > 0. Equation (1.1.1) is known as Hooke’s law, where the stress
is proportional to the strain. Ignoring any frictional effects, the equilibrium equations of the
system under the action of an external forces with density f : Ω→ Rd are [17, Chap. 3]

− div σ
(1.1.1)
= − divCϵ = − divC∇sw = f on Ω.

They express the local balance between the external forces and the elastic response of the
medium. Notice that for f ≡ 0 the unique solution for homogeneous Dirichlet boundary con-
ditions is w ≡ 0, and hence the material is in its original configuration, as expected. Moreover,
if the loading term is bounded, i.e., ∥f∥L∞(Ω) ≤ c, then also w and, in turn, the actual configu-
ration (id + w)(Ω) are.

The purely viscous element, on the other hand, is usually represented by a dashpot (Figure
1.1b) and is often labeled Stokes element. If v : Ω → Rd is the viscous displacement map and
its linearized stress tensor is ϵ := ∇sv, analogously as above the constitutive equation reads

σ = Dϵ̇, (1.1.2)

where ϵ̇ denotes the time derivative of the strain tensor, and D ∈ Rd×d×d×d is the viscous moduli
tensor. Here, the stress is proportional to the strain rate. The equilibrium equations, neglecting
inertia, then read [51]

− div σ
(1.1.2)
= − divDϵ̇ = − divD∇sv̇ = f on [0, T ]× Ω,

where T > 0 is some fixed final time. In this case, if f is bounded, then so is v̇, ∥v̇∥L∞([0,T ]×Ω) ≤
c. Hence, the best bound that can be expected on v itself is of the form ∥v(t)∥L∞(Ω) ≤ c(1+ t).
In contrast to the purely elastic case, the configuration may escape any fixed compact set for
t large enough. This behavior is a characteristic of fluid-like materials, which can present

2



1.1 Motivation: Continuum mechanics and viscoelasticity

C

ϵ=∇su

∇sw=∇sv

D
σ=Cϵ+Dϵ̇

(a) Kelvin-Voigt solid rheology

∇sw

ϵ=∇su

C

∇sv

D
σ

(b) Maxwell fluidic rheology

Figure 1.2: Schematic representation of combination in parallel and in series of elastic and
viscous rheological elements.

arbitrarily large deformations under the action of bounded loadings, e.g., honey flowing under
the effect of gravity.

As stated above, the purely elastic and viscous elements are too elementary to describe most
materials already in the small-strain setting. However, they are the abstract building blocks used
in the theory of rheological models to depict more complex media. The simplest representations
for viscoelastic materials are the Kelvin-Voigt and Maxwell rheologies [51] illustrated in Figure
1.2. The latter is made of an elastic and a viscous element combined in series. Mathematically,
this means that the total displacement u : Ω→ Rd is the sum of the elastic and the viscous one,
u = w + v. The strain ϵ is thus also given by the additive decomposition ϵ = ∇sw + ∇sv.
On the other hand, the total strain σ is the same on the two elements, i.e., σ = σel = σvi. The
Maxwell model is, analogously to the Stokes one, of fluid type.

In this dissertation, we focus on viscoelastic solids instead and concentrate on the Kelvin-
Voigt rheology, which is made of an elastic and a viscous element combined in parallel. Here,
the total displacement u coincides with the elastic and the viscous one, and thus the total strain
is ϵ = ∇sw = ∇sv. Instead, the total stress σ is additively decomposed as

σ = σel + σvi = Cϵ+ Dϵ̇ (1.1.3)

and the equilibrium equations are given by

− div σ
(1.1.3)
= − div(Cϵ+ Dϵ̇) = − div(C∇su+ D∇su̇) = f on [0, T ]× Ω. (1.1.4)

In the present thesis, we aim at studying evolution problems of this form in the finite-strain
setting, which we will describe in Section 1.1.2, through the lens of the calculus of variations.
In particular, we will interpret (1.1.4) as the dissipative evolution equation associated with
suitable energy and dissipation. Let us introduce this framework first for the linear case. Let u
be a solution to (1.1.4). Multiplying (1.1.4) by u̇ and integrating over [0, t]× Ω, t ∈ (0, T ], we
get the energy balance

1

2

∫
Ω

C∇su(t):∇su(t) dx− 1

2

∫
Ω

C∇su(0):∇su(0) dx+

∫ t

0

∫
Ω

D∇su̇(s):∇su̇(s) dxds

=

∫
Ω

f ·u(t)dx−
∫
Ω

f ·u(0)dx

by the divergence theorem and the chain rule. Defining the total complementary energy E0 : H1(Ω;Rd)→
R and the instantaneous dissipationR0 : H1(Ω;Rd)→ R of the system as

E0(u) := 1

2

∫
Ω

C∇su:∇su− f ·u dx, R0(u̇) :=
1

2

∫
Ω

D∇su̇:∇su̇ dx, (1.1.5)

3



1 Introduction

respectively, we can rewrite the energy balance as

E0(u(t)) + 2

∫ t

0

R0(u̇(s)) ds = E0(u(0)) for every t ∈ (0, T ]. (1.1.6)

Namely, the energy of the solution at time t equals the initial energy minus the energy dissi-
pated along the evolution [68]. Hence, (1.1.4) can be seen as the dissipative evolution equation
associated with E0 and R0. In Section 1.1.3, we will recall the basic notions of gradient flows
and clarify this statement, as well as specify the weak notions of solutions we consider.

Before discussing the nonlinear description of viscoelasticity, we remark that also the Kelvin-
Voigt rheology is still not sophisticated enough for the applications. This leads to the introduc-
tion of the so-called Standard solid models for the Poynting-Thomson-Zener materials [51, Sec.
6.5], see Figure 2.1. We anticipate that we will study a finite-strain version of such models in
Chapter 2.

1.1.2 Finite strain viscoelasticity
The linear picture presented in the previous section is usually a good approximation for de-
formations y : Ω → Rd×d with strains ∇y being close to the identity. In such regimes, the
displacement u := y − id is used to characterize the system. However, this description fails
for large deformations, and new finite-strain theories are needed to accurately depict material
behavior, in contrast to the small- or infinitesimal-strain ones introduced above.

Let us start the discussion on finite-strain viscoelasticity by presenting the equilibrium equa-
tions for a nonlinear Kelvin-Voigt rheology [4, 5, 58, 75]. In analogy to the linear case (1.1.4)
and neglecting inertial effects, we consider the system

− div (DW (∇y) + ∂∇ẏR(∇y,∇ẏ)) = f on [0, T ]× Ω. (1.1.7)

Here, W : Rd×d → [0,∞] is the elastic energy density, whereas R : Rd×d × Rd×d → [0,∞)
is the instantaneous viscous dissipation potential density. The term DW (∇y) is the elastic
part of the Piola-Kirchhoff stress tensor. Notice that equations (1.1.7) reduce to the linear
case (1.1.4) if the energy and dissipation densities are quadratic, namely W (F ) = 1

2
CF :F

and R(F, Ḟ ) = 1
2
DḞ :Ḟ , so that their derivatives are linear in F and Ḟ , respectively. This is

however not acceptable from the mechanical standpoint.
In general, proving the existence of solutions to (1.1.7) is challenging since nonlinearities do

not behave well under weak convergence. Indeed, variational existence theories hinge on the
construction of suitable minimizing sequences, for which only weak compactness is available,
to certain time-discretized functionals (see Section 1.1.3 for more details). It is thus customary
to consider the case of nonsimple materials [4, 32, 72], where the energy is assumed to depend
also on the deformation’s second gradient ∇2y. The system of equations (1.1.7) then takes the
form

− div
(
DW (∇y)− div(DH(∇2y)) + ∂∇ẏR(∇y,∇ẏ)

)
= f on [0, T ]× Ω. (1.1.8)

Here, the density H : Rd×d×d → [0,∞) introduces a second-order term and provides more
compactness to the model. The prototype for this term is H(G) = |G|p, where p > d. We
remark that the introduction of such regularization is debatable due to their uncertain physical
interpretation, despite being necessary for showing the existence of suitably strong solutions
and being widely used in the mathematical literature [4, 32, 51, 75]. In Chapter 3 and 4,
we will resort to the standard theory of nonsimple materials to study the accretive growth of
viscoelastic materials. In Chapter 2, conversely, we investigate the existence of a weaker notion

4



1.1 Motivation: Continuum mechanics and viscoelasticity

of solutions to a finite-strain Poynting-Thomson model without resorting to second gradients,
analyzing a possible strategy to avoid them in the analysis.

The finite-strain theory for nonsimple materials reduces to the linear one of Section 1.1.1
for small deformations [4, 21, 33, 54]. Indeed, in regimes where the deformation y is close to
being the identity, we can write define the displacement uε := (y − id)/ε for ε > 0, so that
y = id + εuε. Assuming sufficient regularity of the energy densities and L∞ bounds on y and
its gradient and Hessian, we can write the energy by Taylor expansion as

E(id + εuε) =

∫
Ω

W (I) + εDW (I):∇u+ ε2

2
D2W (I)∇u:∇u dx

+

∫
Ω

H(0) + εDH(0)
...∇2u+

ε2

2
D2H(0)∇2u

...∇2u dx+ o(ε2),

Let us assume minW = W (I) = 0, so that DW (I) = 0, meaning that the reference con-
figuration satisfies elastic equilibrium, and that H = | · |p, p > min{d, 2}, so that H(0) = 0,
DH = 0, and D2H = 0. Dividing by ε2 and sending ε→ 0, we formally recover (1.1.5), where
C := D2W (I). The calculations for the dissipation potential are analogous. For the rigorous
linearization procedure of a thermoviscoelastic Kelvin-Voigt rheology, we refer to [4, 5, 33]. In
Section 2.4.4, we show an analogous result for the Poynting-Thomson rheological model.

x

y

y

y

y

y(x)
det∇y(x) > 1

y(x)
det∇y(x) < 1

y(x)
det∇y(x) < 0

y(x)
det∇y(x) = 0

Figure 1.3: Local volumetric behavior of a neighborhood of y(x) depending on the values of
det∇y(x): expansion for det∇y(x) > 1, compression for det∇y(x) < 1, vanish-
ing to a point for det∇y(x) = 0, and orientation inversion for det∇y(x) < 0.

Let us now record some physical requirements of the mathematical model. First, rigid mo-
tions should not change the system’s energy level, i.e., the description should be invariant under
rotations and translations of the body or, equivalently, of the observer’s frame of reference. No-
tice that translational invariance is automatically satisfied since W , H , and R are functions of
the deformation gradient ∇y and the Hessian ∇2y. Rotational indifference, on the other hand,
reads as

W (QF ) = W (F ), H(QG) = H(G), R(QF,QḞ ) = R(F, Ḟ ),

for every F, Ḟ ∈ Rd×d and every rotation Q ∈ SO(d). These conditions are called frame
indifference and are usually assumed to hold for physical relevance. It has been observed [3]
that the frame-indifference of the dissipation R implies that it must be a function of the right
Cauchy stress tensor ∇y⊤∇y and its time derivative∇ẏ⊤∇y +∇y⊤∇ẏ, namely

R(F, Ḟ ) = R̃(C, Ċ) for every F, Ḟ ∈ Rd×d,

5



1 Introduction

for some R̃ : Rd×d × Rd×d → [0,∞), where C = F⊤F and Ċ = Ḟ⊤F + F⊤Ḟ .
Moreover, the deformation y should avoid self-interpenetration and should not map sets of

positive measures into null sets. This physical constraint can be locally expressed by requiring
the determinant of the deformation gradient to be positive almost everywhere, det∇y > 0.
Indeed, det∇y measures (local) volumetric change: det∇y = 1 encodes incompressibility,
det∇y > 1 corresponds to the expansion of the medium, 0 < det∇y < 1 to compression (to
a set of measure zero for det∇y = 0), whereas det∇y < 0 means that the orientation of the
body has been reversed (see Figure 1.3). The positivity of the determinant is usually enforced
in the analytical model by assuming the following growth condition from below on the energy

W (F ) ≳

{
1

|detF |q if detF > 0

+∞ else,
(1.1.9)

up to multiplicative and additive constants. Here, q > 1 is a suitable exponent depending
on the dimension and the growth conditions on H (see (3.2.5) below for the precise formula-
tion). For nonsimple materials, this condition guarantees that weak solutions to (1.1.8) have
positive determinants almost everywhere and for almost every time [49]. Notice that the con-
straint det∇y > 0 amounts to a local requirement. In [48], conditions for global non-self-
interpenetration are studied instead. In general, injectivity of the deformation in Ω can be
enforced through the so-called Ciarlet-Nečas condition [18]

|Ω| =
∫
Ω

det∇y dx = |y(Ω)|.

Self-touching of y(∂Ω) can still occur, resulting in a reaction traction term on the corresponding
portion of the boundary [13, 14, 48, 83].

Another noteworthy consequence of the growth condition (1.1.9) is that the energy density
W cannot be convex since the space of invertible matrices with positive determinant GL+(d) is
not. Indeed, let us assume for the sake of contradiction that W satisfies (1.1.9) and is convex,
and fix d = 2. The identity matrix I and −I have determinant one, but

+∞ = W (0) = W

(
1

2
I +

1

2
(−I)

)
≤ 1

2
W (I) +

1

2
W (−I).

Hence, finite-strain theories for (visco)elasticity are bound to consider nonconvex energy den-
sities, which pose several challenges to the analysis: As we will clarify in Section 1.1.3, varia-
tional existence theories hinge on the possibility of passing to the limit in the equations where
suitable sequences (yn)n converge weakly in some suitable Sobolev space. Weak convergence,
however, is little informative when composed with nonlinear functions. Notice that the presence
of the second-order term H allows to avoid this issue since weak convergence in W 2,p(Ω;Rd)
implies strong convergence of the gradients by Sobolev embedding, for p > d. When consid-
ering simple materials, on the other hand, there is a rich theory of weaker notions of convexity
that can be considered, like quasiconvexity and polyconvexity [20], which still allow passing to
lower limits [69]. We will follow this path in Chapter 2, cf. (E2).

1.1.3 Variational notion of solutions for viscoelasticity
In general, due to the nonlinear and nonconvex nature of finite-strain viscoelasticity, the exis-
tence of strong solutions to (1.1.8), i.e., solving the system almost everywhere, cannot be as-
certained. This leads to the introduction of weaker notions of solutions, which we will present
in this section.

6



1.1 Motivation: Continuum mechanics and viscoelasticity

First, we consider weak or distributional solutions. Let us pair the system (1.1.8) with bound-
ary and initial conditions. For the sake of simplicity, we consider Dirichlet boundary conditions
on y and the natural homogeneous condition on the hyperstress DH(∇2y), i.e.,

y = id on [0, T ]× ∂Ω,
DH(∇2y):(ν ⊗ ν) = 0 on [0, T ]× ∂Ω,
y(0, ·) = y0(·) on Ω, (1.1.10)

where ν is the outer unit normal to ∂Ω. By (scalar) multiplying (1.1.8) by a smooth test function
z ∈ C∞

0 (Ω;Rd), integrating over [0, T ]× Ω, and the divergence theorem, we find∫ T

0

∫
Ω

DW (∇y):∇z +DH(∇2y)
...∇2z + ∂∇ẏR(∇y,∇ẏ):∇z − f ·z dx = 0 (1.1.11)

for every z ∈ C∞
0 (Ω;Rd). The identity (1.1.11) defines the usual notion of solution considered

in finite-strain theories [4, 5, 13, 14, 33, 75].
Analogously and in the linear setting of Section 1.1.1, the system of equations (1.1.8) can

also be formally interpreted as the dissipative evolution equation

δE(y) + δẏR(y, ẏ) = 0. (1.1.12)

Here, the elastic energy E : W 2,p(Ω;Rd) → [0,∞] and the instantaneous viscous dissipation
R : H1(Ω;Rd)×H1(Ω;Rd)→ [0,∞) are defined as

E(y) :=
∫
Ω

W (∇y) +H(∇2y)− f ·y dx, R(y, ẏ) :=
∫
Ω

R(∇y,∇ẏ) dx,

respectively, and δ denotes a variational derivative, to be suitably defined. At least on the formal
level, by multiplying by ẏ and by applying the chain rule, (1.1.12) can be stated as

d

dt
E(y) = −δẏR(y, ẏ):∇ẏ.

If R = R(F, Ḟ ) is convex in Ḟ , then ∂ḞR(F, Ḟ ):Ḟ ≥ 0 for every F, Ḟ ∈ Rd×d, so that
the right-hand side is nonpositive and the energy decreases along the viscoelastic evolution.
This interpretation provides a natural strategy, the minimizing movement scheme, to show the
existence of weak solutions to (1.1.8) through the implicit Euler scheme. The time interval
[0, T ] is uniformly discretized, {0 = t0 < · · · < ti = iτ < . . . Nττ = T}, where τ = T/Nτ >
0 is the mesh size of the discretization, for some Nτ ∈ N \ {0}. The sequence (yiτ )

Nτ
i=0 ⊂

W 2,p(Ω;Rd) is iteratively defined as solutions to the incremental minimization problems

yiτ ∈ argmin
y∈A

{
E(y) + τR

(
yi−1
τ ,

y − yi−1
τ

τ

)}
, i = 1, . . . , Nτ , (1.1.13)

where A is the set of admissible deformation, encoding the boundary conditions and other
constraints like the positivity of the determinant of the deformation gradient. Weak solutions
to (1.1.8) are then obtained by passing to the limit as the mesh size τ goes to zero. Indeed, by
minimality yiτ satisfies the discrete Euler-Lagrange equations∫

Ω

DW (∇yiτ ):∇z +DH(∇2yiτ )
...∇2z − f ·z dx+ τ

∫
Ω

∂∇ẏR

(
yi−1
τ ,

yiτ − yi−1
τ

τ

)
:∇z dx = 0
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1 Introduction

for every admissible z ∈ C∞
0 (Ω;Rd). This, integrated over [0, T ], formally correspond to

(1.1.11) at the time-discretized level. We will perform the above-sketched argument in detail
for the problems we study in Chapters 3 and 4 in Sections 3.4 and 4.4, respectively. This
passage to the limit procedure hinges on suitable compactness estimates on y and its time
derivative ẏ in time and space. These are obtained through the following energetic estimates:
By minimality, at every time step ti, i = 1, . . . , Nτ , the energy level of yiτ is lower than the one
of yi−1

τ , namely.

E(yiτ ) + τR
(
yi−1
τ ,

yiτ − yi−1
τ

τ

)
≤ E(yi−1

τ )

where we assumed that R(·, 0) = 0, i.e., no dissipation when there is no time evolution. Sum-
ming over i = 1, . . . , n ≤ Nτ and telescoping, one finds

E(ynτ ) + τ

n∑
i=1

R
(
yi−1
τ ,

yiτ − yi−1
τ

τ

)
≤ E(y0). (1.1.14)

Assuming suitable bounds from below on the energy and dissipation densities, the uniform
estimates on (yiτ )

Nτ
i=0 and its time-interpolants then follow.

Up to now, we have considered weak solutions. The interpretation of (1.1.8) as the dissipative
evolution equation (1.1.12) and the energy inequality (1.1.14), however, hint to another possible
notion of solution based on the theory of gradient flows [2]. For the sake of simplicity, let us
assume in the following thatR(F, Ḟ ) = 1

2
D(C)Ċ:Ċ for every F, Ḟ ∈ Rd×d, where D : Rd×d →

[0,∞), and we recall that C = F⊤F and Ċ = Ḟ⊤F +F⊤Ḟ . Assuming as in [70] the existence
of a global distance D : Rd×d × Rd×d → [0,∞) such that R(F, Ḟ ) = limτ→0

1
τ2
(D(F, F +

τ Ḟ ))2, the incremental minimization problem (1.1.13) can be rewritten as

yiτ ∈ argmin
y∈A

{
E(y) + 1

2τ
d2
(
yiτ , y

i−1
τ

)}
, i = 1, . . . , Nτ ,

where the distance d : H1(Ω;Rd)×H1(Ω;Rd)→ [0,∞) is defined as

d2(u, v) :=

∫
Ω

(D(∇u,∇v))2 dx.

The viscoelastic evolution can be thus interpreted as the gradient flow of the energy E with
respect to the dissipation distance d.

Assuming the time derivative ẏ of a solution to (1.1.11) to be an admissible test function, the
choice of z = ẏ in (1.1.11) entails the validity of the energy-dissipation balance

E(y(t)) + 2

∫ t

0

R(y(s), ẏ(s)) ds = E(y0) for every t ∈ (0, T ] (1.1.15)

in analogy to the linear case, cf. (1.1.6). For smooth energy and dissipation densities, the
converse is also true. Thus, the energy equality (1.1.15) and (1.1.11) are equivalent. The
equivalence holds also for nonsmooth energies provided that they satisfy the chain rule [70]

d

dt
E(y(t)) = ⟨Ξ(t), ẏ(t)⟩ for every Ξ(t) ∈ ∂E(y(t)) and almost every t ∈ (0, T ). (1.1.16)

Here, ∂E denotes the subdifferential of E , a generalization of the concept of derivative for non-
smooth functionals [20, Sec. 2.3.6]. Thanks to this equivalence, also called energy-dissipation
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1.2 Outline and main results

principle (EDP) [68], the energy-dissipation balance (1.1.15) can be used to define the no-
tion of Energy-dissipation balance (EDB) solutions to (1.1.8) [70]. The advantage of EDB
solutions is that, in contrast to (1.1.11), (1.1.15) makes sense even for nonsmooth energy and
dissipation densities. Moreover, notice that the discrete energy inequality (1.1.14) considered
above represents the discrete counterpart of (1.1.15), up to a multiplicative factor 2 in front of
the dissipation R. Indeed, the energy-dissipation balance (1.1.15) represents an improvement
of the simpler energy inequality E(y(t)) +

∫ t
0
R(y(s), ẏ(s)) ds = E(y0), and can be obtained

similarly to (1.1.14) with a more accurate choice of a test function ỹiτ , see [2, Sec. 3.2]. We
perform the proof of the energy-dissipation inequality, see below, following this strategy for the
Poynting-Thomson rheological model in Section 2.6.2. In Section 3.3, conversely, we show it
for a viscoelastic accretive model making use of the generalized chain rule.

In numerous situations, however, e.g., for simple materials, the balance (1.1.15) is often
beyond the reach of the current mathematical theories. Without the additional compactness
granted by the regularizing second-order terms, it is in general only possible to pass to the
lim inf in the energy and dissipation under weak convergence [69]. This leads to considering a
weaker notion of solution with respect to EDB ones, namely satisfying the energy-dissipation
inequality (EDI)

E(y(t2)) + 2

∫ t2

t1

R(y(s), ẏ(s)) ds ≤ E(y(t1)) for almost every 0 ≤ t1 < t2 ≤ T. (1.1.17)

The deformations y for which (1.1.17) holds are called EDI solutions, and they coincide with
EDB solutions and weak solutions when the chain rule (1.1.16) holds [72]. We show the exis-
tence of EDI-type solutions for a simple material Poynting-Thomson model in Chapter 2.

Weak solutions
(1.1.11)

Chapter 3-4

EDB solutions
(1.1.15)

Chapter 3

EDI solutions
(1.1.17)

Chapter 2

==========⇒
Chain Rule (1.1.16)
⇐==========

==========⇒
Chain Rule (1.1.16)
⇐==========

Figure 1.4: Schematic representation of the relations between the different notions of solutions
used in the different chapters.

1.2 Outline and main results

In this section, we summarize the main results and outline the structure of the thesis. We refer to
the corresponding introductory sections of each chapter for a detailed discussion of the setting
and the state of the art.

In Chapter 2, we show the existence of EDI-type solutions to a Poynting-Thomson rheolog-
ical model for finite-strain simple materials. We additionally perform linearization and recover
the small-strain counterpart of the nonlinear description. This chapter consists of my paper [15]
with MARTIN KRÚŽIK and ULISSE STEFANELLI that appeared in the journal Mathematics and
Mechanics of Solids.

Chapter 3 is devoted to showing the existence of weak/viscosity solutions to a bi-phase vis-
coelastic medium, in which one phase grows by accretion at the expense of the other. We
consider both a sharp and a diffuse interface model and show that the solutions satisfy the
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1 Introduction

energy-dissipation balance. This chapter consists of my paper [16] with ULISSE STEFANELLI,
which appeared in the journal Zeitschrift für angewandte Mathematik und Physik.

In chapter 4, we focus on an accretive growth model for viscoelastic solids, where the mate-
rial is unstressed at the time and place of deposition. We prove the existence of weak/viscosity
solutions to the system, assuming the presence of a highly compliant Ersatzmaterial surround-
ing the growing body. This chapter is based on a paper with ULISSE STEFANELLI, which is
currently in preparation.

1.2.1 Chapter 2: Finite-strain Poynting-Thomson model
In [15], we consider a finite-strain Poynting-Thomson model for viscoelastic solids. As re-
marked in Section 1.1.1, the Kelvin-Voigt rheology is not sophisticated enough to model many
physical situations correctly. In particular, under so-called hard-device loading, i.e., when the
deformation is prescribed independently of what force is required to realize it, such model fea-
tures unbounded and hence unphysical stress response when there is a jump in the strain, see
[48, Chap. 6.4 and Fig. 6.9]. Consequently, more complex rheological models are considered,
namely the Poynting-Thomson and Zener ones. These are made of an elastic element combined
in series with a Kelvin-Voigt one or in parallel with a Maxwell one, respectively, see Figure
1.5. Since the two models are equivalent in the linear setting [51, Chap. 6.5], we focus on the
Poynting-Thomson one.

Cel

Cvi

ϵ=∇su
∇s(u− v) ∇sv

D
σ

(a) Poynting-Thomson standard solid rheology

∇s(ũ− ṽ)
ϵ=∇sũ

C̃vi

∇sṽ

D̃ σ

C̃el

(b) Zener standard solid rheology

Figure 1.5: Schematic representation of the linear Poynting-Thomson and Zener rheological
models

Let u : Ω→ Rd be the total displacement. As described above for the combination in series,
the total strain ϵ = ∇su is additively decomposed as

ϵ = ∇sv +∇s(u− v), (1.2.1)

where v : Ω→ Rd is the displacement of the Kelvin-Voigt element, whereas (u−v) =: w : Ω→
Rd is the elastic displacement of the Hooke one. The total stress σ, on the other hand, coincides
with the ones of the two components so that

σ = Cel∇s(u− v) = D∇sv̇ + Cvi∇sv,

and the equilibrium equation − div σ = f can be equivalently written as

− div(Cel∇s(u− v)) = f, or − div(D∇sv̇ + Cvi∇sv) = f. (1.2.2)

In the finite-strain setting, it is natural [55, 101] to consider a multiplicative decomposition
for the total strain instead of the additive one: Letting y : Ω → Rd be the total deformation,
consider∇y to be of the form

∇y = FelFvi, (1.2.3)

10



1.2 Outline and main results

where Fel and Fvi are the elastic and viscous (actually viscoelastic) strain tensors, respectively.
Such decomposition is standard in finite-strain elastoplasticity [50, 55, 96], where it is called
Kröner-Lee decomposition. In [15], we additionally assume that the viscous strain is compat-
ible, namely, that there exists yvi : Ω → Rd such that Fvi = ∇yvi. In particular, from (1.2.3)
follows that also the elastic strain is compatible, Fel = ∇yel for some yel : yvi(Ω)→ Rd. Thus,
(1.2.3) corresponds to the composition of maps

y = yel ◦ yvi : Ω
yvi−→ yvi(Ω)

yel−→ Rd, (1.2.4)

which offers a nonlinear analog to the additive decomposition (1.2.1). Here, yvi(Ω) represents a
(mathematical) intermediate configuration between the reference Ω and actual one y(Ω). In this
Section, and correspondingly in Chapter 2, we denote by X ∈ Ω the Lagrangian variable in the
reference configuration Ω and by ξ ∈ yvi(Ω) the Eulerian one in the intermediate configuration
yvi(Ω).

The composition structure (1.2.4) of the total deformation y indeed leads to considering a
mixed Lagrangian-Eulerian problem where the stored elastic energy and the work of external
forces are

E(t, yel, yvi) :=
∫
yvi(Ω)

Wel(∇yel(ξ)) dξ +
∫
Ω

Wvi(∇yvi(X))− f(t,X)·yel(yvi(X)) dX,

for some suitable energy densities Wel and Wvi, cf. (E1)–(E2) and (L1)–(L6). As remarked in
Section 1.1.2 for simple materials, we assume Wel and Wvi to be polyconvex, see (E2). Due
to the Eulerian nature of the first term, we will assume local incompressibility of the viscous
deformation, det∇yvi = 1. Indeed, we will often resort to the change of variable formula∫
yvi(Ω)

Wel(∇yel) dξ =
∫
Ω
Wel(∇y(∇yvi)−1) det∇yvi dX to transform integrals over the inter-

mediate configuration yvi(Ω) into integrals over the fixed reference one Ω. The incompressibil-
ity of yvi simplifies the above expression and allows us to show the existence of solutions in the
weak setting we consider.

The (instantaneous) dissipation instead is defined as

Ψ(yvi, ẏvi) :=

∫
Ω

ψ(∇ẏvi(∇yvi)−1) dX,

whereψ is a suitable density, cf. (E4)–(E6) and (L8)–(L10). Most notably, ψ is pψ-homogeneous
for some pψ ≥ 2, i.e., ψ(λF ) = λpψψ(F ) for every F ∈ Rd×d, λ ≥ 0, see (E6). This is a cru-
cial assumption to show the (sharp)-energy inequality (1.2.5). Moreover, let us remark that
the dissipation we consider does not satisfy frame-indifference as it would be desirable [3] as
observed in 1.1.2. However, we believe this to be not necessarily problematic, as the viscous
deformation takes values in the intermediate, purely mathematical, configuration yvi(Ω), where
this physical constraint can be neglected.

The formal equilibrium equations for the finite-strain Poynting-Thomson model we are con-
sidering take the form (2.2.6) below, corresponding to the linear equations (1.2.2), up to the
incompressibility. See (2.2.2) and the associated discussion for more details. Notice that we
contemplate the case of simple materials without considering second gradient regularization
terms, cf. 1.1.7. Hence, as already observed in Section 1.1.3, we resort to EDI-type solutions.
We define approximable solutions in Definition 2.4.1 as trajectories (yel, yvi) : t ∈ [0, T ] 7→
W 1,pel(yvi(t,Ω);Rd)×W 1,pvi(Ω;Rd), for some pel, pvi > d, with given initial datum (yel,0, yvi,0)
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satisfying, for every t ∈ [0, T ], the energy-dissipation inequality, cf. (1.1.17),

E(t, yel(t), yvi(t)) + pψ

∫ t

0

Ψ(yvi(s), ẏvi(s)) ds

≤ E(0, yel,0, yvi,0)−
∫ t

0

∫
Ω

∂sf(s)·y(s) dXds, (1.2.5)

as well as the (elastic) semistability

E(t, yel(t), yvi(t)) ≤ E(t, ỹel, yvi(t)) for every ỹel such that (ỹel, yvi(t, ·)) is admissible,

and approximability, i.e., the trajectories (yel, yvi) can be obtained as limits of the piecewise-
in-time interpolants of the solutions to the incremental minimization problems (2.2.9) below,
cf. (1.1.13). Semistability specifies that the elastic deformation minimizes the elastic energy at
all times. The approximability condition allows to better characterizes the solutions. Indeed,
the energy inequality and semistability alone do not exclude the unphysical constant-in-time
solutions (yel(t), yvi(t)) ≡ (yel,0, yvi,0) when for example the external force does not depend on
time. Instead, approximability ensures that viscous dissipation occurs even when no external
loading is applied, see Section 2.4.2 and Figure 2.2. Furthermore, notice that the energy-
dissipation inequality (1.2.5) is sharp, since the dissipation is multiplied by the correct prefactor
pψ, which is related to the pψ-homogeneity of the dissipation density ψ: When ψ is quadratic as
in Section 1.1.3, then pψ = 2 and (1.2.5) reduces to (1.1.17), up to the work of time-dependent
external forces. The proof of (1.2.5) heavily relies on the metric interpretation of gradient flows
[2] in order to properly characterize the dissipated energy and obtain the energy inequality in
its sharp version, see Section 2.6 and in particular Subsection 2.6.2 for the detailed argument.

Finally, in Section 2.7, we consider the linearization of the finite-strain model and show that
we recover the classical linear Poynting-Thomson model. Let us formally define the linearized
energy and instantaneous dissipation as E0(u, v) :=

∫
Ω
W 0(∇u,∇v) − f ·u dX and Ψ0(v) :=∫

Ω
ψ0(∇v,∇v̇) dX , respectively, where

W 0(F, Fvi) := lim
ε→0

1

ε2
W ε(F, Fvi), W ε(F, Fvi) := Wel

(
(I+εF )(I+εFel)

−1
)
+Wvi(I+εFvi),

ψ0(Fvi, Ḟvi) := lim
ε→0

1

ε2
ψε(Fvi, Ḟvi), ψε(Fvi, Ḟvi) := ψ

(
εḞvi(I+Fvi)

−1
)
.

As described above, for every ε > 0 there exist approximable solutions (yel,ε, yvi,ε) to the
dissipative evolution associated to the rescaled energy Eε = 1

ε2
E (where we consider with

abuse of notation f ε = εf ) and dissipation Ψε = 1
ε2
Ψ. Letting

uε :=
yε − idΩ

ε
and vε :=

yvi,ε − idΩ

ε
,

we make rigorous the Taylor expansion argument of Section 1.1.2 and show that, up to sub-
sequences, (uε, vε) converge weakly in H1(Ω;Rd) × H1(Ω;Rd) for every time t ∈ [0, T ] to
(u, v) : [0, T ] → H1(Ω;Rd) × H1(Ω;Rd). The limit (u, v) satisfies the linearized energy in-
equality

E0(t, u(t), v(t)) + 2

∫ t

0

Ψ0(v̇(s)) ds ≤ E0(0, u0, v0)−
∫ t

0

ḟ(s)·u(s) ds

and semistability

E0(t, u(t), v(t)) ≤ E0(t, û, v(t)) for every admissible û.
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As a consequence of the EDI-type solution at the finite-strain setting, (u, v) are EDI-type so-
lutions in the linear setting, where the existence of solutions is known. In particular, thanks to
semistability, for given viscoelastic evolution v, the elastic one u is unique. However, the lin-
earized energy inequality is insufficient to determine v uniquely. It would be possible to recover
the existence of the classical unique solution to the linear system considering a second-gradient
regularization for the finite-strain model, which disappears in the limit [33].

1.2.2 Chapter 3: Viscoelasticity and accretive phase-change at finite strains
In [16], we analyze the interplay between viscoelasticity and accretive growth for a two-phase
material. More precisely, we consider a viscoelastic medium with reference configuration U ⊂
Rd made up of two components, whose reference configurations at time t ∈ [0, T ] are Ω(t) ⊂⊂
U and U \ Ω(t), respectively, see Figure 3.1.

Ω(t)x(t)

γν(x(t))

U \ Ω(t)

Figure 1.6: Accretive growth of the reference configuration Ω(t).

The map t 7→ Ω(t) specifies the evolution of the corresponding phase, which we assume
to grow accretively at the expense of the other one. By accretive growth, we mean an expan-
sion that can be observed in numerous applications, like plant and shell growth, as well as
solidification and 3D printing (see Section 3.1 for more examples and the relevant references),
and which takes place in the normal direction. A point x(t) ∈ ∂Ω(t) on the boundary of the
growing reference configuration Ω(t) at time t ∈ [0, T ] then moves according to the ODE flow

d

dt
x(t) = γν(x(t)), (1.2.6)

where ν(x(t)) denotes the outer unit normal to Ω(t) at x(t) and γ > 0 is the growth rate. The
strict positivity of the growth rate γ ensures that the material can only grow and does not shrink
or halt the evolution. As clarified later, the growth rate γ is assumed to be a function of the
deformation y.

1/cγ 1/Cγ

UΩ0

Ω(s)

s

Ω(T )

T

receding
phase

growing
phase

x

t

Figure 1.7: Time-space diagram of the growing and receding phase for d = 1.
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In [16], we postulate that the growing reference configuration Ω(t) is the sublevel set of a
suitable function. Namely, we assume there exists a function θ : U → [0,∞) such that

Ω(t) := {x ∈ U | θ(x) ≤ t}, for all t ∈ [0, T ]. (1.2.7)

The map θ is called time-of-attachment function and expresses the time θ(x) at which the ma-
terial point x is added to Ω(t), i.e. θ(x(t)) = t. Assuming the smoothness of the involved
quantities, by differentiating this identity with respect to time, we find

1 = ∇θ(x(t))· d
dt
x(t) = γ∇θ(x(t))·ν(x(t)) = γ∇θ(x(t))· ∇θ(x(t))

|∇θ(x(t))|
= γ|∇θ(x(t))|,

where we used the flow rule (1.2.6) and the fact that the normal ν to Ω(t), which is a sublevel
set of θ, is given by∇θ(x(t))/|∇θ(x(t))|. We have thus obtained that θ satisfies a (generalized)
eikonal equation. More precisely, given the viscoelastic deformation evolution y : [0, T ]×U →
Rd, θ satisfies {

γ
(
y(θ(x), x),∇y(θ(x), x)

)
|∇θ(x)| = 1 in U \ Ω0

θ = 0 in Ω0 ⊂⊂ U,
(1.2.8)

where Ω0 is the given initial reference configuration of the accretive phase. The growth rate γ
depends on the position of the body through y, modeling the effects of the presence of nutrients
or catalysts, and on the strain through ∇y, since the local mechanical state of the body may
indeed influence its growth [38]. Moreover, notice that the unknown θ appears in the eikonal
equation (1.2.8) inside the coefficient γ through its dependence on the values of y and ∇y
traced on the hypersurface {(t, x) ∈ [0, T ]× U | t = θ(x)}.

ε = 0

V a

V r

Ω(t) U\Ω(t) x

W

θ(x)=t

ε > 0

V a

V r

x

W

t− ε
2<θ(x)<t+ ε

2

Figure 1.8: Illustration of the 1-dimensional sharp (ε = 0) and diffused (ε > 0) interpolation
of the energy densities V a and V r.

Thus, the growth model depends on the viscoelastic evolution y of the medium, for which we
assume that the two phases are finite-strain nonsimple Kelvin-Voigt materials. The equilibrium
equation, cf. (1.1.8), is

− div
(
∂∇yWε(θ(x)−t,∇y)+∂∇ẏRε(θ(x)−t,∇y,∇ẏ)−divDH(∇2y)

)
=f(θ(x)−t,x) (1.2.9)

in [0, T ]×U . Here, the value θ(x)−t determines the phase: At time t ∈ [0, T ], by the definition
of Ω(t) as the t-sublevel set of θ, if θ(x) − t < 0 or θ(x) − t > 0 then x ∈ U belongs to the
accreting set Ω(t) or the receding U \Ω(t) one, respectively. The dependence of f on θ(x)−t is
meant to cover the case of the gravitational force, which depends on the material properties of
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the phases, namely, on their densities. The energy and dissipation densities Wε : R× Rd×d →
[0,∞] and Rε : R× Rd×d × Rd×d → [0,∞) are defined as

Wε(σ, F ) := (1− hε(σ))V a(F ) + hε(σ)V
r(F ) + V J(F )

Rε(σ, F, Ḟ ) := (1− hε(σ))Ra(F, Ḟ ) + hε(σ)R
r(F, Ḟ ), Ri(F, Ḟ ) :=

1

2
Da(C)Ċ:C, i = a, r,

where h0 is the discontinuous Heaviside-like function defined as h0(σ) = 0 if σ < 0 and
h0(σ) = 1 if σ ≥ 0,

hε(σ) =

{
0 if σ ≤ −ε/2,
1 if σ ≥ ε/2,

with hε → h0 in R \ {0} as ε→ 0,

and V a, V r, V J , Da, Dr are specified in Section 3.2. Here, σ is a placeholder for the value
θ(x) − t, and hε defines the transition between the energy and dissipation densities V a + V J

and Ra of the accreting phase and the ones V r+V J and Rr of the receding phase, respectively.
For ε = 0, we consider a sharp-interface model, where the energy and dissipation densities
jump from one phase to the other, whereas, for ε > 0, hε interpolates between the two values
and mixing of the two phases is allowed in a tubular neighborhood of width of order ε of the
interface giving a diffuse-interface model, see Figure 1.8. Notice that we are considering the
case of nonsimple materials with a second-order term H in (1.2.9), which we assume to be
independent of the phase. Thus, the viscoelastic deformation y(t) belongs for almost all times
to the Sobolev space W 2,p(Ω;Rd), for some p > d, cf. (3.2.9), and, by Sobolev embedding,
to C1(Ω;Rd). The sharp-interface terminology is, hence, to be understood as referring to the
energy and dissipation densities rather than to the deformations.

In Sections 3.4 and 3.5, we show that the coupled problem (1.2.8)–(1.2.9) equipped with the
boundary and initial conditions, cf. (1.1.10),

y = id on [0, T ]× ΓD,

DH(∇2y):(ν ⊗ ν) = 0 on [0, T ]× ∂U,
(∂∇yW (θ(x)−t,∇y)+∂∇ẏRε(θ(x)−t,∇y,∇ẏ)) ν
− divS (DH(∇2y)ν) = 0 on [0, T ]× ΓN ,

y(0, ·) = y0 on U

admits solutions in the weak/viscosity sense, see Definition 3.2.1, for both the diffuse- (ε > 0)
and the sharp-interface case (ε = 0). Namely, we consider (1.2.9) to be solved weakly, as in
(1.1.11) in Section 1.1.3. On the other hand, for the generalized eikonal equation (1.2.8), we
consider the case of viscosity solutions. Indeed, eikonal-type equations admit an overabun-
dance of solutions in the almost-everywhere sense [7], whereas (nonnegative) viscosity solu-
tions are unique in Rd \Ω0, see Proposition 3.4.2. The proof of the existence of weak/viscosity
solutions for ε ≥ 0 hinges on an iterative procedure: First, (1.2.8) and (1.2.9) are solved sepa-
rately for given y and θ in Proposition 3.4.2 and 3.4.1, respectively. Thus, solving alternately
the two problems provides a sequence (yk, θk), which we show to converge to a solution to the
coupled problem, see Section 3.4. Moreover, it also holds that sequences (yε, θε)ε>0 of solu-
tions to the diffuse-interface model converge uniformly, up to subsequences, to a solution (y, θ)
to the sharp-interface one, see Section 3.5.

In Section 3.3, we prove that the weak/viscosity solutions additionally satisfy the energy-
dissipation balance for the diffuse- and sharp-interface case, thanks to the validity of a suit-
able chain rule, cf. (1.1.16). For ε ≥ 0, let us define the energy Eε : C0,1([0, T ] × Ω) ×
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W 2,p(U ;Rd) → R and instantaneous dissipation Rε : C
0,1([0, T ] × Ω) ×H1(U) ×H1(U) →

[0,∞) as

Eε(σ, y) :=
∫
U

Wε(σ,∇y) +H(∇2y)− f(σ)·y dx,

Rε(σ, y, ẏ) :=

∫
U

Rε(σ,∇y,∇ẏ) dx.

The energy-dissipation balance for ε > 0 is

Eε(θ−t, y) + 2

∫ t

0

Rε(θ−s, y(s), ẏ(s)) ds

= Eε(θ, y0)−
∫ t

0

∫
U

∂σf(θ−s)·y(s) dx ds−
∫ t

0

∫
U

∂σWε(θ−s,∇y(s)) dx ds, (1.2.10)

whereas, for ε = 0, takes the form

E0(θ−t, y) + 2

∫ t

0

R0(θ−s, y(s), ẏ(s)) ds

= E0(θ, y0)−
∫ t

0

∫
U

∂σf(θ−s)·y(s) dx ds−
∫ t

0

∫
{θ=s}

V r(∇y(s))−V a(∇y(s))
|∇θ|

dHd−1ds.

(1.2.11)

In the identities above, cf. (1.1.15), the second term of the right-hand side is the work of the
external (varying in time) forces. The third characterizes the energy stored or dissipated by
the growth along the evolution. In particular, considering the sharp-interface case ε = 0, if
V a ≤ V r, i.e., the accretive phase is softer than the receding one, then −(V r − V a) ≤ 0 and
the third term in the right-hand side encodes the expected energy dissipated by the material
as it relaxes, thanks to the growth of the soft phase into the stiffer one. On the other hand, if
V a ≥ V r, then some energy is stored in the system due to the accretion of the stiffer phase.

1.2.3 Chapter 4: Viscoelastic surface growth at finite strains with Ersatzmaterial
In Chapter 4, we revise a model proposed by [108] and for which an existence theory in the
setting of linearized elasticity has been proposed in [24].

We focus on the evolution of a viscoelastic solid with reference configuration Ω(t) at time
t ∈ [0, T ] growing by accretive growth. As in Chapter 3, we assume the existence of a time-of-
attachment function θ : Rd → [0,∞) such that Ω(t) is the t-sublevel set of θ, see (1.2.7), and θ
satisfies the generalized eikonal equation{

γ
(
y(θ(x), x),∇y(θ(x), x)

)
|∇θ(x)| = 1 in U \ Ω0

θ = 0 in Ω0 ⊂⊂ U,
(1.2.12)

Regarding the material, we study a finite-strain nonsimple Kelvin-Voigt medium with energy
density W : Rd×d → [0,∞], higher-order density H : Rd×d×d → [0,∞), and dissipation den-
sity R : Rd×d×Rd×d → [0,∞). We further regularize the problem by additionally considering
the presence of a (highly compliant) Ersatzmaterial with reference configuration U \Ω(t) sur-
rounding the body. The open, connected, and bounded set U ⊂ Rd is assumed to be large
enough so that Ω(T ) ⊂⊂ U , cf. (H15) and (4.4.4). The Ersatzmaterial is assumed to have
elastic energy and instantaneous dissipation densities to be a small rescaling of the accreting
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material ones, namely δ
1+δ

W and δ
1+δ

R, respectively, where δ ∈ (0, 1). Defining h : R→ [0, 1]

as h(σ) = 1 if σ ≤ 0 and h(σ) = δ
1+δ

if σ > 0, the viscoelastic equilibrium takes the form

− div
(
h(θ(x)−t)DW (∇yA−1)A−⊤+V J(∇y)+h(θ(x)−t)∂∇ẏR(∇y,∇ẏ)−divDH(∇2y)

)
= h(θ(x)−t)f(t,x) (1.2.13)

in [0, T ] × U . Analogously to (1.2.9), the second-order term H is assumed to be the same for
both the medium and the Ersatzmaterial. This is also the case for the term V J : Rd×d → [0,∞],
which satisfies a growth condition of the form (1.1.9) and penalizes self-interpenetration of the
material.

The viscoelastic equilibrium (1.2.9) features the backstrain tensor A : [0, T ] × U → Rd×d

defined as

A(t, x) :=


A0 if x ∈ Ω0,

∇y(θ(x), x) if x ∈ Ω(t) \ Ω0,

I if x ∈ U \ Ω(t).
(1.2.14)

As already remarked in Section 1.2.2 in the energy-dissipation balance equations (1.2.10) and
(1.2.11), growth contributes at dissipating energy along the evolution. Its effects are, how-
ever, usually also visible in the material, where residual stresses accumulate due to accretion
[90, 93, 108]. Hence, the elastic energy density of a deformation y at a point x ∈ Ω(t)
is W (∇y(x)A−1), where A ∈ Rd×d encodes the effect of the corresponding accumulated
strains and depends in general on y itself. As in [24], we follow [108] and assume that
A(x) = ∇y(θ(x), x) for t ∈ [0, T ] and x ∈ Ω(t), so that the material is unstressed at the
time and place of deposition, i.e., W (∇y(θ(x), x)A−1) = W (I). For x ∈ U \ Ω(t), instead,
we define A as the identity since the presence of nontrivial backstrain is related to growth. For
x ∈ U \ Ω0 we set it to be some given initial backstrain A0 ∈ L∞(Ω0), cf. (1.2.14).

In Section 4.4, we show that the system of equations (1.2.12)–(1.2.13) admits weak/viscosity
solution, similarly as in Chapter 3. Here, we consider the natural boundary condition on the
hyperstress and initial condition

DH(∇2y):(ν ⊗ ν) = 0 on [0, T ]× ∂U,
y(0, ·) = y0 on U (1.2.15)

Notice that we do not assume Dirichlet nor Neumann boundary conditions, though this would
be possible, since they concern ∂U , the external boundary of the artificial Ersatzmaterial. On
the other hand, we fix the position of the material along the evolution on a portion of the starting
configuration Ω0, however, imposing the docking condition [24]

y ≡ id on [0, T ]× ω, (1.2.16)

where ω ⊂⊂ Ω0. This condition implies the validity of the following Poincaré-type inequality

∥y∥W 2,p(U ;Rd) ≤ c
(
1 + ∥∇2y∥Lp(U ;Rd×d×d)

)
∀y ∈ W 2,p

ω (U ;Rd),

which is crucial in the existence proof to compensate for the loss of compactness due to the
presence of the backstrain. The existence proof provided in Section 4.4 then follows the itera-
tive strategy illustrated in the previous section.
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1.3 Notation

We devote this section to introduce the notation used in the following chapters. We denote by
Rd×d the Euclidean space of d × d real matrices, d ≥ 2, by Rd×d

sym the subspace of symmetric
matrices, and by I the identity matrix. Given A ∈ Rd×d we indicate its transpose by A⊤ and its
Frobenius norm by |A|2 := A:A, where the contraction product between 2-tensors is defined
as A:B := AijBij (we use the summation convention over repeated indices). Analogously, let
Rd×d×d be the set of real 3-tensors, and define their contraction product as A

...B := AijkBijk

for A,B ∈ Rd×d×d. A 4-tensor C ∈ Rd×d×d×d is said to be major symmetric if Cijkℓ =
Ckℓij and minor symmetric if Cijkℓ = Cijℓk = Cjikℓ. Given a major and minor symmetric
positive definite 4-tensor C ∈ Rd×d×d×d and the matrix A ∈ Rd×d we indicate by CA ∈ Rd×d

and AC ∈ Rd×d the matrices given in components by (CA)ij = CijkℓAkℓ and (AC)ij =
AkℓCkℓij , respectively. Moreover, given a symmetric positive definite 4-tensor C ∈ Rd×d×d×d,
the corresponding induced matrix norm is defined as |A|2C := CA : A/2. We denote byA sym :=
(A+ A⊤)/2 the symmetric part of a matrix A ∈ Rd×d. We shall use the following matrix sets

SL(d) := {A ∈ Rd×d | detA = 1},
SO(d) := {A ∈ SL(d) | AA⊤ = I},
GL(d) := {A ∈ Rd×d | detA ̸= 0},
GL+(d) := {A ∈ Rd×d | detA > 0}.

The scalar product of two vectors a, b ∈ Rd is classically indicated by a·b. The symbol
BRd×d
r (A) ⊂ Rd×d denotes the open ball of radius r > 0 and center A ∈ Rd×d, whereas

BR ⊂ Rd denotes the open ball of radius R > 0 and center 0 ∈ Rd. We make use of the
function spaces

H1
♯ (Ω;Rd) :=

{
u ∈ H1(Ω;Rd)

∣∣∣ ∫
Ω

udX = 0
}
,

H1
Γ(Ω;Rd) := {u ∈ H1(Ω;Rd) | u = 0 on Γ ⊂ ∂Ω},

where Γ is nonempty, open in the relative topology of ∂Ω, and a measurable subset of ∂Ω.
Moreover, we denote by Hd−1 the (d − 1)-dimensional Hausdorff measure, by |ω| the d-

dimensional Lebesgue measure of the measurable set ω, and by 1ω the corresponding char-
acteristic function, namely, 1ω(x) = 1 for x ∈ ω and 1ω(x) = 0 otherwise. For E ⊂ Rd

nonempty and x ∈ Rd we define dist(x,E) := infe∈E |x−e|. We define x∧y := min{x; y} for
all x , y ∈ R. In the following, we use the symbol u̇ for the partial time derivative of the generic
time-dependent function u, whereas d

dt
stands for the total time derivative, in case u depends

on time only.
Finally, we henceforth indicate by c a generic positive constant possibly depending on data

but independent of the discretization step τ . Note that the value of c may change even within
the same line.
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2 Finite-strain Poynting-Thomsonmodel
This chapter consists of my paper [15] with MARTIN KRÚŽIK and ULISSE STEFANELLI.

Abstract
We analyze the finite-strain Poynting-Thomson viscoelastic model. In its linearized small-
deformation limit, this corresponds to the serial connection of an elastic spring and a Kelvin-
Voigt viscoelastic element. In the finite-strain case, the total deformation of the body results
from the composition of two maps, describing the deformation of the viscoelastic element and
the elastic one, respectively. We prove the existence of suitably weak solutions by a time-
discretization approach based on incremental minimization. Moreover, we prove a rigorous
linearization result, showing that the corresponding small-strain model is indeed recovered in
the small-loading limit.

2.1 Introduction

Viscoelastic solids appear ubiquitously in applications. Polymers, rubber, biomaterials, wood,
clay, and soft solids, including metals at close-to-melting temperatures, behave viscoelastically.
The mechanical response of viscoelastic solids is governed by the interplay between elastic and
viscous dynamics: by applying stresses both strains and strain rates ensue [84]. This is at the
basis of different effects, from viscoelastic creep, to viscous relaxation, to rate-dependence in
material response, to dissipation of mechanical energy [92].

The modelization of viscoelastic solid response dates back to the early days of Continuum
Mechanics. In the linearized, infinitesimal-strain setting of the standard-solid rheology, two
basic models are the Maxwell and the Kelvin-Voigt one, where an elastic spring is connected
to a viscous dashpot in series or in parallel, respectively. These models offer only a simplified
description of actual viscoelastic behavior. More accurate descriptions necessarily call for more
complex models. A first option in this direction is the Poynting-Thomson model, resulting
from the combination in series of an elastic and a Kelvin-Voigt component, see Figure 2.1. A
second option would be the Zener model, which consists of an elastic and a Maxwell element
in parallel. Note however, that Poynting-Thomson and Zener can be proved to be equivalent in
the linearized setting, see [51, Remark 6.5.4].

The aim of this paper is to investigate the Poynting-Thomson model in the finite-strain set-
ting. From the modeling viewpoint, extending the model beyond the small-strain case is crucial,
for viscoelastic materials commonly experience large deformations. In fact, finite-strain ver-
sions of the Poynting-Thomson model have already been considered. The reader is referred
to [54], where a comparison between Poynting-Thomson and Zener models at finite strains is
discussed, and to [64], focusing on the anisothermal version the Poynting-Thomson model.

To the best of our knowledge, mathematical results on the finite-strain Poynting-Thomson
model are still not available. The focus of this paper is to fill this gap by presenting

• an existence theory for solutions of the finite-strain Poynting-Thomson model, as well
as a convergence result for time-discretizations (Theorem 2.4.1);
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2 Finite-strain Poynting-Thomson model

• a rigorous linearization result, proving that finite-strain solutions converge (up to sub-
sequences) to solutions of the linearized system in the limit of small loadings and, corre-
spondingly, small strains (Theorem 2.4.2).

Our analysis is variational in nature. The convergence result provides a rigorous counterpart
to the classical heuristic arguments based on Taylor expansions [54].

We postpone to Section 2.2 both the detailed discussion of the model and a first presentation
of our main results. We anticipate however here that the theory requires no second-gradient
terms but rather relies on a decomposition of the total deformation in terms of an elastic and
a viscous deformation, see (2.2.3) below. Correspondingly, the variational formulation of the
problem features both Lagrangian and Eulerian terms. Note moreover that the viscous dissipa-
tion is here assumed to be pψ-homogeneous, with superlinear homogeneity pψ ≥ 2.

Our notion of solution (see Definition 2.4.1) hinges on the validity of an energy inequality,
an elastic semistability inequality, and an approximability property via time-discrete problems.
Albeit very weak, this notion replicates the important features of viscoelastic evolution, includ-
ing elastic equilibrium, energy dissipation, and viscous relaxation.

Before moving on, let us put our results in context with respect to the available literature. In
the purely PDE setting, existence results for viscoelastic dissipative systems are classical. The
reader is referred to the recent monograph [51] for a comprehensive collection of references.
As it is well known, the PDE setting is local in nature and, as such, does not allow consider-
ing global constraints such as injectivity of deformations, i.e., noninterpenetration of matter.
Variational theories for viscoelastic evolution offer a remedy in this respect. By making use
of the underlying gradient-flow structure of viscoelastic evolution, existence results for varia-
tional solutions have been obtained in the one-dimensional [70] and in the multi-dimensional
case [33]. The latter paper also delivers a rigorous evolutive Γ-convergence linearization result.
See also [48] for the case of self-contact and [4, 75] for some extension to nonisothermal situ-
ations. With respect to these contributions, we deal here with an internal-variable formulation,
where the elastic variable does not dissipate. From the technical viewpoint, the novelty of our
approach resides in avoiding the second-gradient theory by virtue of the composition assump-
tion (2.2.3). This impacts on the functional setting, as well as on the required mathematical
techniques.

In the different but related frame of activated inelastic deformations, the closest contributions
to ours are [72] and [86], both dealing with rate-dependent viscoplasticity (pψ > 1) under the
multiplicative-decomposition setting. In both papers, existence of solutions is discussed, by
taking into account additional gradient-type terms for the viscous strain. In particular, the full
gradient is considered in [72], whereas in [86] only its curl is penalized. The approach in [86]
analogous to ours in terms of solution notion, despite the differences in the model. In contrast
with these papers, viscous evolution is here not activated. In addition, by not considering here
additional gradient terms, we avoid introducing a second length scale in the model and thus
tackle so-called simple materials. Moreover, we investigate here linearization, which was not
discussed in [72, 86].

In the fully rate-independent setting pψ = 1 of activated elastoplasticity, the papers [50,
96] and [77], contribute an existence and linearization theory which is parallel the current
viscoelastic one. More precisely, [50, 96] deal with a decomposition of deformations in the
same spirit of (2.2.3) below, avoiding the use of second gradients, whereas [77] features no
gradients, but is a pure convergence result, in a setting where existence is not known. With
respect to these contributions, the superlinear, non activated nature of the dissipation of the
viscous setting calls for using a different set of analytical tools from gradient-flow theory [71].
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Note that, also in the rate-independent setting, by including a gradient term of the plastic strain,
hence resorting to so-called strain-gradient finite plasticity, one obtains stronger results. In
particular, the existence of energetic solutions in strain-gradient finite plasticity is in [59] and
the linearization in some symmetrized case is in [40]. Under the mere penalization of the curl
of the gradient of the plastic strain, existence of incremental solutions is proved in [69] and
linearization is in [89].

The paper is organized as follows. In Section 2.2, we provide an illustration of the finite-
strain Poynting-Thomson model under consideration, as well as an introduction to our main
results. Some preliminary material and comment on the functional setting is provided in Sec-
tion 2.3. In particular, we discuss the set of admissible deformations in Subsection 2.3.1. In
Subsections 2.4.1 and 2.4.3 we list and comment the assumptions, whereas the statements of
our main results, Theorem 2.4.1 and Theorem 2.4.2 are presented in Subsections 2.4.2 and
2.4.4, respectively. The solvability of the time-discrete incremental problems is discussed in
Section 2.5, whereas the proofs of Theorems 2.4.1 and 2.4.2 are given in Sections 2.6 and 2.7,
respectively.

2.2 The finite-strain Poynting-Thomson model

∇su

∇s(u− v) ∇sv

Cel

Cvi

D

σ

Figure 2.1: The Poynting-Thomson rheological model (linearized setting).

In order to illustrate our results, we start by recalling the classical Poynting-Thomson in
the linearized setting of infinitesimal strains. By indicating by u : Ω → Rd the infinitesimal
displacement from the reference configuration Ω ⊂ Rd, the total strain ∇su (here ∇s denotes
the symmetrized gradient ∇su = (∇u +∇u⊤)/2) is additively decomposed in its elastic and
its viscous parts as ∇su = C−1

el σ + ∇sv. In its quasistatic approximation, the evolution of
the body results from the combination of the equilibrium system and the constitutive relation,
namely,

− div (Cel∇s(u− v)) = f in Ω× (0, T ),

D∇sv̇ + (Cvi+Cel)∇sv = Cel∇su in Ω× (0, T ),

where f stands for a given body force and v̇ denotes the time-derivative of v. The reader is re-
ferred to the monographs [28, 51, 101] for a comprehensive collection of analytical results. Let
us remark that in this paper we will specifically consider the case of incompressible viscosity,
i.e., in the linearized setting tr v = 0. Hence, the evolution of the system considered is actually
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determined by the following equations

− div (Cel∇s(u− v)) = f in Ω× (0, T ), (2.2.1)
D∇sv̇ + (Cvi+Cel)∇sv = dev(Cel∇su) in Ω× (0, T ), (2.2.2)

where dev denotes the deviatoric part of a tensor. Restricting to the incompressible case would
call for accordingly specifying the rheological diagram from Figure 2.1 by distinguishing the
volumetric and the deviatoric components.

In the finite-strain Poynting-Thomson model [54, 64], the state of the viscoelastic system is
specified in terms of its deformation y : Ω → Rd. As it is common in finite-strain theories
[55], the deformation gradient ∇y is multiplicatively decomposed as ∇y = FelFvi, where Fel

and Fvi are the elastic and viscous strain tensors, representing the elastic and viscous response
of the medium, respectively.

A distinctive feature of our approach is that we assume the viscous strain to be compatible:
we identify Fvi with the gradient ∇yvi of a viscous deformation yvi : Ω → y vi(Ω) ⊂ Rd,
mapping the reference configuration Ω to the intermediate one yvi(Ω). Correspondingly, the
elastic strain is compatible as well and there exists an elastic deformation yel : yvi(Ω) → Rd

with F el = ∇yel mapping the intermediate configuration to the actual one. As such, the multi-
plicative decomposition ∇y = FelFvi ensues from an application of the classical chain rule to
the composition

y := yel ◦ yvi : Ω→ Rd. (2.2.3)

Moving from this position, the state of the medium is described by the pair (yvi, yel), effectively
distinguishing viscous and elastic responses.

Before moving on, let us stress that the compatibility assumption on Fvi, whence the compo-
sition assumption (2.2.3), realistically describes a variety of viscoelastic evolution settings and
refer to [50, 96] for some parallel theory in the frame of finite-strain plasticity. In particular,
position (2.2.3) is flexible enough to cover both limiting cases of a purely elastic (yvi = id)
and of a plain Kelvin-Voigt (yel = id) materials. In the linearized setting, these would formally
correspond to the cases Cvi → ∞ and Cel → ∞, respectively. Let us note that by choosing
Cvi = 0 the linearized system (2.2.1)-(2.2.2) reduces to the Maxwell fluidic rheological model.
By assuming (2.2.3) we exclude the onset of defects, such as dislocations and disclinations.
Albeit this could limit the application of the theory in some specific cases, it is to remark that
viscous materials are often amorphous, so that the relevance of strictly crystallographic de-
scriptions may be questionable. From the more analytical viewpoint, assumption (2.2.3) allows
us to present a comprehensive mathematical theory within the setting of so-called simple ma-
terials, i.e., without resorting to second-gradient theories. The alternative path of including
second-order deformation gradients, is also viable and, as far as existence is concerned, has
been considered in [72] in the activated case of viscoplasticity.

A first consequence of the composition (2.2.3) is that the elastic deformation yel is defined on
the a-priori unknown intermediate configuration yvi(Ω), making the analysis delicate. In par-
ticular, the variational description of the viscoelastic behavior results in a mixed Lagrangian-
Eulerian variational problem. This mixed nature of the problem will be tamed by means of
change-of-variables techniques, which in turn ask for some specification on the class of admis-
sible intermediate configurations. Let us anticipate that yvi will be required to be an incom-
pressible (det∇yvi = 1) homeomorphism throughout. We refer to [41, 103] for models of
incompressible viscoelastic solids. As it is mentioned in [25], incompressibility is a somewhat
standard assumption in the setting of biological applications. See also [10] for modeling of
brain tissues. Our interest in the incompressible case is also motivated by the prospects of de-
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vising a sound existence theory. Assuming incompressibility has the net effect of simplifying
change-of-variable formulas, ultimately allowing the mathematical treatment.

The stored energy of the medium is assumed to be of the form

W(yel, yvi) :=

∫
yvi(Ω)

Wel(∇yel(ξ))dξ +
∫
Ω

Wvi(∇yvi(X))dX. (2.2.4)

Here and in the following, we indicate by X the variable in the reference configuration Ω and
by ξ the variable in the intermediate configuration yvi(Ω). The first integral above corresponds
to the stored elastic energy and the given function W el is the stored elastic energy density. Its
argument ∇yel(ξ) can be equivalently rewritten in Lagrangian variables as the usual product
∇y(X)∇y−1

vi (X). By comparing these two expressions, the advantage of working in Eulerian
variables is apparent, for ∇yel(ξ) is linear in yel. The function Wvi is the stored viscous energy
density instead and the corresponding integral is Lagrangian.

The instantaneous dissipation of the system is given by

Ψ(yvi, ẏvi) :=

∫
Ω

ψ(∇ẏvi(∇yvi)−1)dX (2.2.5)

where ψ(·) models the instantaneous dissipation density and is assumed to be pψ-positively
homogeneous for pψ ≥ 2.

By formally taking variations of the above introduced functionals, we obtain the quasistatic
equilibrium system [74]

− divDWel (∇y el) = f ◦ y−1
vi in y vi(Ω)× (0, T )

DWel (∇yel(yvi) : D2yel (yvi)) + divDWvi (∇yvi)
−∇yel(yvi)⊤f = − div

(
Dψ (∇ẏ vi(∇yvi))−1 (∇y vi)

−⊤) in Ω× (0, T ). (2.2.6)

The highly nonlinear character of this system, combined with the absence of higher-order gra-
dients in the viscous variable, forces us to consider a suitable weak-solution notion.

Inspired by [21, Def. 2.12] and [86, Def. 2.2], in our first main result, Theorem 2.4.1, we
prove the existence of approximable solutions (see Definition 2.4.1). These are everywhere
defined trajectories (yel, y vi) : [0, T ]→ W 1,pel(y vi(Ω);Rd)×W 1,pvi(Ω;Rd) starting from some
given initial datum (yel,0, y vi,0) and satisfying for all t ∈ [0, T ]
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2 Finite-strain Poynting-Thomson model

Energy inequality:∫
yvi(t,Ω)

Wel(∇yel(t, ξ))dξ +
∫
Ω

Wvi(∇yvi(t,X))dX −
∫
Ω

f(t,X) · yel(t, y vi(t,X))dX

+ pψ

∫ t

0

∫
Ω

ψ(∇ẏ vi(s,X)(∇yvi(s,X))−1)dXds

≤
∫
yvi,0(Ω)

Wel(∇yel,0(ξ))dξ +
∫
Ω

Wvi(∇yvi,0(X))dX −
∫
Ω

f(0, X) · yel,0(y vi,0(X))dX

−
∫ t

0

∫
Ω

∂sf(s,X) · yel(s, y vi(s,X))dXds (2.2.7)

Semistability condition:∫
yvi(t,Ω)

Wel(∇yel(t, ξ))dξ −
∫
Ω

f(t,X) · yel(t, y vi(t,X))dX

≤
∫
yvi(t,Ω)

Wel(∇ỹel(ξ))dξ −
∫
Ω

f(t,X) · ỹel(y vi(t,X))dX

∀ỹel with (ỹel, y vi(t, ·)) ∈ A (2.2.8)

where A is the set of admissible deformations, introduced in Section 2.3.1 below. The first
line of inequality (2.2.7) corresponds to the total energy of the medium at time t and state
(y el(t, ·), y vi(t, ·)). In particular, the term −

∫
Ω
f · (y el ◦ y vi)dX is the work of the (external)

force f (later, a boundary traction will be considered, as well). Solutions t 7→ (yel(t), yvi(t))
are moreover required to be approximable, namely, to ensue as limit of time discretizations. In
this respect, we consider the incremental minimization problems, for i = 1, . . . , N ,

min
(yel,yvi)∈A

{∫
yvi(Ω)

Wel(∇yel(ξ))dξ +
∫
Ω

Wvi(∇yvi(X))dX −
∫
Ω

f(iτ,X)·yel(y vi(X))dX

+ τ

∫
Ω

ψ

(
∇y vi(X)−∇yi−1

vi (X)

τ
(∇yi−1

vi (X))−1

)
dX

}
for yi−1

vi given

(2.2.9)

on a given uniform time-partition {0 = t0 < t1 < · · · < tN = T}, where the set of admissible
states A is defined in Subsection 2.3.1 below.

The notion of approximable solution is capable of reproducing the main features of vis-
coelastic evolution. First of all, the semistability condition (2.2.8) implies that yel solves the
elastic equilibrium at all times, given the viscous-state evolution. Correspondingly, the descrip-
tion of the purely elastic response of the material is complete. Secondly, the energy inequality
(2.2.7) is sharp, in the sense that it may indeed hold as equality in specific smooth situations.
In other words, all dissipative contributions are correctly taken into account in (2.2.7). Note in
this respect the presence of the factor pψ multiplying the dissipation term in (2.2.7). Eventually,
the approximation property ensures that viscous evolution actually occurs, even in absence of
applied loads. We give an illustration of this fact in Section 2.4.2 below, see Figure 2.2.

Under suitable assumptions, the incremental minimization problems (2.2.9) are proved to
admit solutions in Proposition 2.4.1 below. These time-discrete solutions fulfill a discrete en-
ergy inequality and a discrete semistability inequality. The existence of approximable solutions
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(Theorem 2.4.1) follows by passing to the limit in the time-discrete problems. In order to pass
from the time-discrete to the time-continuous energy inequality (2.2.7), lower semicontinuity
of the energy and dissipation functionals is necessary, which translates in our setting in asking
for the polyconvexity of the respective densities. In order to obtain the specific form (2.2.7) we
need to resort to the notion of De Giorgi variational interpolant [2, Def. 3.2.1, p. 66], and adapt
this tool from its original metric-space application to the current one.

For establishing the elastic semistability (2.2.8), a suitable recovery-sequence construction is
required. This calls for the extension of the elastic deformations from the intermediate config-
urations to the whole Rd. The possibility of performing this extension requires some regularity
of the boundary of the intermediate configurations, which we ask to be Jones domains (see
Definition 2.3.1).

The second main focus of the paper is on the rigorous linearization of the system through
evolutionary Γ-convergence [76] in the case of quadratic dissipations, namely for pψ = 2.
Moving from the seminal paper [22] in the stationary, hyperelastic case, the application of Γ-
convergence to inelastic evolutive problems has been started in [77] and has been applied to
different settings. In particular, linearization in the incompressible case has been discussed
in [45, 60, 61]. The goal is to provide a rigorous formalization of heuristic Taylor expansion
arguments which for the finite-strain Poynting-Thomson model were already presented in [54].
At first, let us review this heuristic by assuming sufficient regularity of all ingredients. Consider
the functions u, v, w defined as

u :=
y − idΩ

ε
, v :=

yvi − idΩ

ε
, and w :=

yel − idyvi(Ω)

ε
,

so that u, v, w actually correspond to the ε-rescaled displacements of y, yvi, yel, respectively.
To compute the linearization it will be more convenient to work with the pair (u, v) correspond-
ing to the total and viscous deformations (y, yvi). In particular, we replace ∇y = I+ε∇u and
∇y vi = I+ε∇v in the stored energy and ∇ẏ vi = ε∇v̇ in the dissipation. By formally Taylor
expanding the (rescaled) energy terms and taking ε→ 0 we find

1

ε2

∫
Ω

W el
(
(I+ε∇u)(I+ε∇v)−1

)
dX =

∫
Ω

1

2
D2Wel(I)∇(u−v) : ∇(u−v)dX + o(ε)

→ 1

2

∫
Ω

∇(u−v) : C el∇(u−v)dX,

1

ε2

∫
Ω

W vi(I+ε∇v)dX =

∫
Ω

1

2
D2Wvi(I)∇v : ∇vdX + o(ε)→ 1

2

∫
Ω

∇v : Cvi∇vdX,

1

ε2

∫
Ω

ψ
(
ε∇v̇(I+ε∇v)−1

)
dX =

∫
Ω

1

2
D2ψ(0)∇v̇ : ∇v̇dX + o(ε)→ 1

2

∫
Ω

D∇v̇ : ∇v̇dX.

Here, we have assumed W el(I) = Wvi(I) = 0, DW el(I) = DWvi(I) = 0, and have defined
Cel := D2Wel(I), Cvi := D2Wvi(I), and D := D2ψ(0). Moreover, we assume that the force f
is small, i.e., f = f ε = εf 0. Hence, by neglecting the term f 0 · idΩ, which is independent of
the displacement, the rescaled loading term reads

− 1

ε2

∫
Ω

f ε · y el ◦ yvidX = − 1

ε2

∫
Ω

εf 0 · εudX = −
∫
Ω

f 0 · udX.

The above pointwise convergences are the classical heuristic linearization procedure. Still,
one is left with actually checking that the finite-strain trajectories indeed converge to a solution
of the linearized system. This is the aim of our second main result, Theorem 2.4.2, where
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2 Finite-strain Poynting-Thomson model

we prove that, given a sequence of approximable solutions (y vi,ε, yel,ε)ε and upon defining
yε = yel,ε ◦ y vi,ε and the corresponding rescaled displacements uε = (yε− idΩ)/ε and vε =
(y vi,ε− idΩ)/ε, the sequence (uε, vε)ε converges pointwise in time (up to subsequences) to
(u, v) : [0, T ]→ H1(Ω;Rd)×H1(Ω;Rd) with (u(0), v(0)) = (u0,v0) := limε→0(uε(0), vε(0))
and satisfying, for all t ∈ [0, T ],

Linearized energy inequality:

1

2

∫
Ω

∇(u(t)−v(t)) : C el∇(u(t)−v(t))dX +
1

2

∫
Ω

∇v(t) : Cvi∇v(t)dX −
∫
Ω

f 0(t) · u(t)dX

+

∫ t

0

∫
Ω

D∇v̇(s) : ∇v̇(s)dXds

≤ 1

2

∫
Ω

∇(u0−v0) : C el∇(u0−v0)dX +
1

2

∫
Ω

∇v0 : Cvi∇v0dX −
∫
Ω

f 0(0) · u0dX

−
∫ t

0

∫
Ω

∂sf
0(s) · u(s) dXds, (2.2.10)

Linearized semistability:

1

2

∫
Ω

∇(u(t)−v(t)) : C el∇(u(t)−v(t))dX −
∫
Ω

f 0(t) · u(t)dX

≤ 1

2

∫
Ω

∇(û−v(t)) : C el∇(û−v(t))dX −
∫
Ω

f 0(t) · ûdX ∀û admissible. (2.2.11)

The linearized energy inequality and the linearized semistability deliver a weak notion of
solution for the linearized problem (2.2.1)-(2.2.2). Albeit (2.2.10)-(2.2.11) are too weak to
fully characterize the unique solution of linearized Poynting-Thomson system (2.2.1)-(2.2.2),
the equilibrium system (2.2.1) is fully recovered. In particular, u is uniquely determined at all
times, given v. Moreover, the linearized energy equality (2.2.10) is sharp and turns out to be an
equality in specific cases.

To conclude, let us note that one could alternatively perform the linearization at the time-
discrete level and then pass to the time-continuous limit. This way one recovers the unique
strong solution of the linearized Poynting-Thomson system (2.2.1)- (2.2.2). This fact provides
some additional justification of the finite-strain model. Still, we do not follow hier this alter-
native path, which could be easily treated along the lines of the analysis in of Sections 2.6 and
2.7.

2.3 Preliminaries

We devote this section to presenting some preliminary results.

2.3.1 Deformations and admissible states
Let fix the reference configuration Ω of the body to be a nonempty, open, bounded, and con-
nected Lipschitz subset of Rd. We assume without loss of generality that Ω is such that∫
Ω
XdX = 0. We let ΓD,ΓN be open subsets of ∂Ω (in the relative topology of ∂Ω) such

that ΓD ∪ ΓN = ∂Ω, Γ̊D ∩ Γ̊N = ∅, andHd−1(ΓD) > 0.
The viscous deformation is required to fulfill

yvi ∈ W 1,pvi(Ω;Rd) for some pvi > d(d− 1)
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and to be locally volume-preserving, i.e., det∇yvi = 1 almost everywhere in Ω. In the
following, yvi is tacitly identified with its Hölder-continuous representative. More precisely,
yvi ∈ C0,1−d/pvi(Ω;Rd) and is almost everywhere differentiable (see [30]). In addition, since
we will use the change-of-variables formula to pass from Lagrangian to Eulerian variables,
we require yvi to be injective almost everywhere. Equivalently, we ask for the Ciarlet-Nečas
condition [18]

|Ω| =
∫
Ω

det∇yvidX = |yvi(Ω)| (2.3.1)

to hold. As a consequence we have the change-of-variables formula∫
ω

φ(yvi(X))dX =

∫
yvi(ω)

φ(ξ)dξ

for every measurable set ω ⊆ Ω and every measurable function φ : yvi(ω) → Rd. Note that
yvi ∈ W 1,p(Ω;Rd) has distortion K := |∇yvi|d/ det∇yvi = |∇y vi|d ∈ Lpvi/d(Ω;R), since it is
locally volume preserving. As pvi/d > d− 1, this bound on the distortion K implies that yvi is
either constant or open [43, Theorem 3.4]. By the Ciarlet- Nečas condition (2.3.1), yvi cannot
be constant, and hence yvi is open. In particular yvi(Ω) is an open set. Moreover, we also have
that yvi is (globally) injective [39, Lemma 3.3], and that yvi is actually a homeomorphism with
inverse y−1

vi ∈ W 1,pvi/(d−1)(yvi(Ω);Rd) (see [30]).
In order to make the statement of the model precise, we need to require some regularity of

the intermediate configuration y vi(Ω). We recall the following definition.

Definition 2.3.1 ((η1, η2)-Jones domain [46]). Let η1, η2 > 0. A bounded open set ω ⊂ Rd

is said to be a (η1, η2)-Jones domain, if for every x, y ∈ ω with |x − y| < η2 there exists a
Lipschitz curve γ ∈ W 1,∞([0, 1];ω) with γ(0) = x and γ(1) = y satisfying the following two
conditions:

l(γ) :=

∫ 1

0

|γ̇(s)|ds ≤ 1

η1
|x− y|

and

d(γ(t), ∂ω) ≥ η1
|x− γ(t)||γ(t)− y|

|x− y|
for every t ∈ [0, 1].

The set of (η1, η2)-Jones domains will be denoted by Jη1,η2 .

In the following, we will exploit the fact that (η1, η2)-Jones domains are Sobolev extension
domains: for all η1, η2 > 0, p ∈ [1,∞), and all ω ∈ Jη1,η2 there exists a positive constant C =
C(η1, η2, p, ω, d) and a linear operator E : W 1,p(ω;Rd)→ W 1,p(Rd;Rd) such that Ey = y on
ω and

∥Ey∥W 1,p(Rd) ≤ C∥y∥W 1,p(ω) for every y ∈ W 1,p(ω;Rd).

Note that the class of (η1, η2)-Jones domains is closed under Hausdorff convergence [50]. In
the following, we will need to consider extensions and we then ask for the regularity

yvi(Ω) ∈ Jη1,η2 .

Finally, since the problem will be formulated only in terms of the gradient of yvi, we impose
the normalisation condition ∫

Ω

yvidX = 0. (2.3.2)
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2 Finite-strain Poynting-Thomson model

Given a viscous deformation yvi, we assume the elastic deformation to fulfill

yel ∈ W 1,pel(yvi(Ω);Rd) for some pel > d

and we tacitly identify yel with its Hölder-continuous representative.
For all given viscous deformation yvi : Ω→ Rd and elastic deformation yel : yvi(Ω)◦ → Rd,

we define the total deformation as the composition of the two, i.e.,

y := yel ◦ yvi : Ω→ Rd.

We assume that y satisfies a Dirichlet boundary condition on ΓD, namely,

y = id on ΓD. (2.3.3)

Since yvi is invertible and both yvi and yel are almost everywhere differentiable, the following
chain rule

∇y(X) = ∇yel(yvi(X))∇yvi(X)

holds for almost every X ∈ Ω. Hence, y satisfies

∥∇y∥Lq(Ω) ≤ ∥∇yel∥Lpel (yvi(Ω))∥∇yvi∥Lpvi (Ω) where
1

q
:=

1

pel
+

1

pvi
,

as can be readily checked by a change of variables and by the Hölder inequality. In particular,
the boundary condition (2.3.3) should be understood in the classical trace sense.

To sum up, the set of admissible states is defined as

A :=

{
(yel, yvi) ∈ W 1,pel(yvi(Ω);Rd)×W 1,pvi(Ω;Rd)

∣∣∣∣∣ det∇yvi = 1 a.e. in Ω,

∫
Ω

yvidX = 0, |Ω| = |yvi(Ω)|, yvi(Ω) ∈ Jη1,η2 , y = yel ◦ yvi = id on ΓD

}
.

Viscoelastic states are naturally depending on time. From now on, we are hence interested in
trajectories (yel, yvi) : [0, T ]→ A in the set of admissible states.

2.4 Main results

We devote this section to the statements of our assumptions and our main results.

2.4.1 Assumptions for the existence theory
In this section we specify the assumptions needed for the existence results, namely, Proposition
2.4.1 and Theorem 2.4.1.

The total energy of the system at time t ∈ [0, T ] and state (yel, yvi) ∈ A is given by

E(t, yel, yvi) :=W(yel, yvi)− ⟨ℓ(t), yel ◦ yvi⟩,

where W(yel, yvi) is the stored energy and the pairing ⟨ℓ(t), y el ◦ yvi⟩ represents the work of
external mechanical actions.

More precisely, the stored energy is defined as

W(yel, yvi) :=

∫
yvi(Ω)

Wel(∇yel(ξ))dξ +
∫
Ω

Wvi(∇yvi(X))dX

where Wel : Rd×d → R and Wvi : Rd×d → R ∪ {∞} are the stored elastic and the stored
viscous energy densities, respectively. On the energy densities we assume that:
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(E1) there exist positive constants c1, c2 such that

c1|A|pel ≤ Wel(A) ≤
1

c1
(1 + |A|pel) for every A ∈ GL(d), (2.4.1)

Wvi(A) ≥

{
c2|A|pvi − 1

c2
for every A ∈ SL(d)

∞ otherwise,
(2.4.2)

for pel > d and pvi > d(d− 1).

(E2) Wel,Wvi are polyconvex, i.e., there exist two convex functions Ŵel, Ŵvi : Rζ(d) → R ∪
{∞} such that

Wel(A) = Ŵel(T (A)) and Wvi(A) = Ŵvi(T (A))

where the minors T (A) of A are given by T : Rd×d → Rζ(d)

T (A) := (A, adj2A, · · · , adjdA).

Here, adjsA denotes the matrix of all minors s × s of the matrix A ∈ Rd×d, for s =

2, · · · , d and ζ(d) :=
∑d

s=1

(
s
d

)2.

Notice that, since pvi > d, the mapping yvi 7→ adjs∇yvi is (W 1,pvi , Lpvi/s)-weakly sequen-
tially continuous. Hence, given yvi,n ⇀ yvi in W 1,pvi(Ω;Rd) with det∇yvi,n = 1 almost
everywhere in Ω, we have that

1 = det∇yvi,n ⇀ det∇yvi = 1 in Lpvi/d(Ω).

As ∇yvi(X) ∈ SL(d) a.e. in Ω, we have that∫
Ω

Wvi(∇yvi(X))dX ≤ lim inf
n

∫
Ω

Wvi(∇yvi,n(X))dX

by polyconvexity of Wvi. In particular, yvi 7→
∫
Ω
Wvi(∇yvi(X))dX is weakly lower semicon-

tinuous in W 1,pvi(Ω;Rd).
The growth condition (2.4.2) ensures that all viscous deformations yvi of finite energy are

incompressible. Local elastic incompressibility det∇yel = 1 or even the weaker det∇yel > 0
cannot be required, however. This is due to the fact that we later need to consider the Sobolev
extension of yel from the moving domain yvi(Ω) to Rd in order to compute the limit of an
infimizing sequence. As it is well-known, such extensions may not preserve the positivity of
det∇yel.

On the other hand, our assumptions on the elastic energy density are compatible with frame
indifference. In particular, we could ask Wel(RA) = Wel(A) for every rotation R ∈ SO(d)
and every A ∈ Rd×d. Note nonetheless that this property, although fundamental from the me-
chanical standpoint, is actually not needed for the analysis. The above assumptions would be
compatible with requiring that Wvi is invariant by left multiplication with special rotations, as
well. Still, such an invariance would be little relevant from the modeling viewpoint, for the vis-
cous energy density is defined on viscous deformations, which take values in the intermediate
configuration.

Eventually, the work of external mechanical actions is assumed to result from a given time-
dependent body force f : [0, T ] × Ω → Rd and a given time-dependent boundary traction
g : [0, T ]× ΓN → Rd as follows

⟨ℓ(t), y⟩ :=
∫
Ω

f(t,X) · y(X)dX +

∫
ΓN

g(t,X) · y(X)DHd−1(X). (2.4.3)

We assume
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2 Finite-strain Poynting-Thomson model

(E3) f ∈ W 1,∞(0, T ;L(q∗)′(Ω;Rd)) and g ∈ W 1,∞(0, T ;L(q#)′(ΓN ;Rd)) where q∗ and q# are
the Sobolev and trace exponent related to W 1,q(Ω;Rd), respectively (see [88]) and the
prime denotes conjugation.

Consequently, we have
ℓ ∈ W 1,∞(0, T ; (W 1,q(Ω;Rd))∗

)
,

where (W 1,q(Ω;Rd))∗ is the dual space of W 1,q(Ω;Rd).
Given a time-dependent viscous trajectory y vi : [0, T ] → W 1,pvi(Ω;Rd), we define the total

instantaneous dissipation of the system [72] as

Ψ(yvi, ẏvi) :=

∫
Ω

ψ(∇ẏvi(∇yvi)−1)dX. (2.4.4)

Here and in the following, the dot represent a partial derivative with respect to time. Above,
the dissipation density ψ : Rd×d → [0,∞) is assumed to be:

(E4) convex and differentiable at 0 with ψ(0) = 0;

(E5) fulfilling
ψ(A) ≥ c3|A|pψ for every A ∈ Rd×d (2.4.5)

for some positive constant c3;

(E6) positively pψ-homogeneous, namely

ψ(λA) = λpψψ(A) for every A ∈ Rd×d, λ ≥ 0. (2.4.6)

The form of the instantaneous dissipation is parallel to the analogous definition in elastoplastic-
ity, where nonetheless ψ is assumed to be positively 1-homogeneous, namely pψ = 1 [66, 67].
In particular, let us explicitly point out that it does not fall within the frame-indifferent setting
from [3]. Indeed, in this case viscous deformations take values in the intermediate configuration
only and frame-indifference should not necessarily be imposed there.

In the following, we ask

pψ ≥ 2 ≥ d(d− 1)

d(d− 1)− 1
(2.4.7)

where we have used d ≥ 2. In particular, we have that p′ψ < pψ and, by defining pr by
1/pr := 1/pψ + 1/pvi, one has that pr > 1. Again by Hölder’s Inequality, this entails that

∥∇ẏvi∥Lpr (Ω) ≤ ∥∇ẏvi(∇yvi)−1∥Lpψ (Ω)∥∇yvi∥Lpvi (Ω) ≤ cΨ(yvi, ẏvi)
(
W(yel, yvi)

1/pvi + 1
)
.

In particular, ∇ẏvi belongs to Lpr(Ω;Rd×d) with pr > 1 whenever energy and dissipation are
finite.

Here and in the following, the symbol c denotes a generic positive constant, possibly de-
pending on data and changing from line to line.

2.4.2 Existence results
Before presenting the statements of our main results, we make the notion of solution to the
problem precise. To this aim, let Πτ := {0 = t0 < t1 < ... < tN = T} denote the uniform
partition of the time interval [0, T ] with time step ti − ti−1 = τ > 0 for every i = 1, . . . , Nτ :=
T/τ . From now on, let (yel,0, yvi,0) be a compatible initial condition, i.e.,

(y el,0, yvi,0) ∈ A with E(0, yel,0, yvi,0) <∞. (2.4.8)
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Given (y0el, y
0
vi) := (y el,0, yvi,0), for all i = 1, ..., N we define the incremental minimization

problems

min
(yel,yvi)∈A

{
E(ti, yel, yvi) + τΨ

(
yi−1
vi ,

yvi − yi−1
vi

τ

)}
. (2.4.9)

We call a sequence of minimizers (yiel, y
i
vi)

N
i=0 of (2.4.9) an incremental solution of the problem

corresponding to time step τ .
Note that incremental solutions exist. In particular, we have the following.

Proposition 2.4.1 (Existence of incremental solutions). Under assumptions (E1), (E2), (E3),
(E4), and (E5) of Section 2.4.1 and (2.4.8) the incremental minimization problem (2.4.9)
admits an incremental solution (yiel, y

i
vi)

N
i=0 ⊂ A.

The proof of Proposition 2.4.1 is given in Section 2.5.
In the following, we make use of the following notation for interpolations. Given a vector

(u0, ..., uN), we define its backward-constant interpolant uτ , its forward-constant interpolant
uτ , and its piecewise-affine interpolant ûτ on the partition Πτ as

uτ (0) := u0, uτ (t) := ui if t ∈ (ti−1, ti] for i = 1, . . . , N,

uτ (T ) := uN , uτ (t) := ui−1 if t ∈ [ti−1, ti) for i = 1, . . . , N,

ûτ (0) := u0, ûτ (t) :=
ui − ui−1

ti − ti−1

(t− ti−1) + ui−1 if t ∈ (ti−1, ti] for i = 1, . . . , N.

We are now in the position of introducing our notion of solution to the large-strain Poynting-
Thomson model.

Definition 2.4.1 (Approximable solution). We call (yel, yvi) : [0, T ] → A an approximable
solution if there exist a sequence of uniform partitions of the interval [0, T ] with mesh size
τ → 0, corresponding incremental solutions (yiel, y

i
vi)

N
i=0, and a nondecreasing function δ :

[0, T ]→ [0,∞) such that, for every 0 ≤ s ≤ t ≤ T ,

Approximation:

(y el,τ (t), y vi,τ (t))⇀ (yel(t), y vi(t)) in W 1,pel
loc (yvi(t,Ω);Rd)×W 1,pvi(Ω;Rd),∫ t

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
→ δ(t),∫ t

s

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
≤ δ(t)− δ(s),

Energy inequality:

E(t, yel, yvi) + pψδ(t) ≤ E(0, yel,0, yvi,0)−
∫ t

0

⟨ℓ̇(s), y⟩, (2.4.10)

Semistability:

E (t, yel(t), yvi(t)) ≤ E (t, ỹel, yvi(t)) ∀ỹel with (ỹel, yvi(t)) ∈ A. (2.4.11)

Our first main result concerns the existence of approximable solutions.

Theorem 2.4.1 (Existence of approximable solutions). Under the assumptions (E1), (E2),
(E3), (E4), (E5), and (E6) of Section 2.4.1 and (2.4.8) there exists an approximable solution
(yel, yvi) : [0, T ]→ A.
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2 Finite-strain Poynting-Thomson model

Figure 2.2: Evolution of the viscous strain t ∈ [0, 3] 7→ Fvi(t) in the limit τ → 0 from problem
(2.4.12), starting from F 0

vi = 1.5.

The proof of Theorem 2.4.1 is detailed in Section 2.6.
As already mentioned in the introduction, the fact that solutions are approximable ensures

that viscous evolution actually occurs, even in absence of applied loads. We show this fact
by resorting to the simplest, scalar model at a single material point. We consider the energy
densities, the dissipation to be quadratic, and that no loading is present. More precisely, we
let F ∈ R and Fvi > 0 represent the total and viscous (scalar) strains, respectively, we define
Wel(Fel) = Wel(FF

−1
vi ) :=

1
2
|FF−1

vi − 1|2, Wvi(F vi) :=
1
2
|Fvi− 1|2, ψ(ḞviF

−1
vi ) :=

1
2
|ḞviF

−1
vi |2,

and we let ℓ(t) ≡ 0 for every t ∈ [0, T ]. In this setting, the discrete incremental problem (2.4.9)
is specified as

min
F∈R,Fvi>0

(
1

2

∣∣FF−1
vi −1

∣∣2 + 1

2
|Fvi−1|2 +

1

2τ

∣∣(Fvi−F i−1
vi )(F i−1

vi )−1
∣∣2) for i = 1, . . . , N,

(2.4.12)
Take now initial values (F 0, F 0

vi) with F 0
vi ̸= 1, so that some nonvanishing viscous stress present

at time 0. In this case, it is easy to check that the constant in time solution (F 0, F 0
vi) satisfies the

energy inequality and semistability, but it is not approximable. This implies that the viscous
strain Fvi corresponding to an approximable solution must evolve with time, see Figure 2.2. In
this simple setting, asking the solution of the continuous problem to be approximable indeed
implies uniqueness, as all discrete trajectories converge to the unique solution of the limiting
differential problem.

2.4.3 Assumptions for the linearization theory
In addition to the assumptions stated in Section 2.4.1, we will require the following conditions
in order to prove the linearization result.

On the stored elastic energy density Wel we assume that:

(L1) Wel is locally Lipschitz;

(L2) Wel satisfies the growth condition

Wel(A) ≥ c4 dist
2(A, SO(d)) (2.4.13)

for some c4 > 0;
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(L3) there exists a positive definite tensor Cel such that, for every δ > 0, there exists cel(δ) > 0
satisfying ∣∣Wel(I + A)− |A|2Cel

∣∣ ≤ δ|A|2Cel
for every A ∈ BRd×d

cel(δ)
(0). (2.4.14)

In particular these conditions imply that Cel is symmetric and

c4|A sym|2 ≤ |A|2Cel
for every A ∈ Rd×d.

We can also equivalently state inequality (2.4.14) as follows:

(1− δ)|A|2Cel
≤ Wel(I + A) ≤ (1 + δ)|A|2Cel

for every A ∈ BRd×d
cel(δ)

(0). (2.4.15)

Concerning the viscous stored energy density Wvi we ask that

(L4)

Wvi(A) =

{
W̃vi(A) if A ∈ K
∞ otherwise,

where K ⊂⊂ SL(d) contains a neighbourhood of the identity;

(L5) W̃vi is locally Lipschitz continuous in a neighbourhood of the identity and

W̃vi(I + A) ≥ c5|A|2 for every A ∈ Rd×d with I + A ∈ K (2.4.16)

for some c5 > 0;

(L6) there exists a positive definite tensor Cvi such that, for every δ > 0, there exists cvi(δ) > 0
satisfying ∣∣∣W̃vi(I + A)− |A|2Cvi

∣∣∣ ≤ δ|A|2Cvi
for every A ∈ BRd×d

cvi(δ)
(0),

or, equivalently,

(1− δ)|A|2Cvi
≤ W̃vi(I + A) ≤ (1 + δ)|A|2Cvi

for every A ∈ BRd×d
cvi(δ)

(0). (2.4.17)

As above we have that

c5|A sym|2 ≤ |A|2Cvi
for every A ∈ Rd×d.

Moreover, there exists a constant cK > 0 (depending only on the compact set K) such that

|A|+ |A−1| ≤ cK for every A ∈ K (2.4.18)

and
|A− I| ≥ 1

cK
for every A ∈ SL(d) \K.

These last two inequalities will provide L∞-bounds on the terms ε∇v and (I + ε∇v)−1 later
on. Note however that the effect of the constraint K will disappear as ε→ 0. In particular, the
limiting linearized problem is independent of K.

On the forcing term ℓ0 we assume that
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2 Finite-strain Poynting-Thomson model

(L7) ℓ0 ∈ W 1,1
(
0, T ; (H1(Ω;Rd))∗

)
.

Finally, on the dissipation density ψ we assume that

(L8) ψ satisfies the growth condition

ψ(A) ≥ c6|A|2 for every A ∈ Rd×d (2.4.19)

for some c6 > 0;

(L9) there exists a positive definite tensor D such that, for every δ > 0, there exists cψ(δ) > 0
satisfying ∣∣ψ(A)− |A|2D∣∣ ≤ δ|A|2D for every A ∈ BRd×d

cψ(δ)
(0); (2.4.20)

(L10) ψ is positively 2-homogeneous, i.e.,

ψ(λA) = λ2ψ(A) for every A ∈ Rd×d, λ ≥ 0.

The specification pψ = 2 of assumption (L10) (compare with the more general pψ ≥ 2
from (E6)) is just needed in the linearization setting to recover the linearized energy inequality
(2.4.24) below.

2.4.4 Linearization result
Before moving on, let us reformulate the setting and the existence results of Proposition 2.4.1
and Theorem 2.4.1 in terms of the linearization variables u and v. For all ε > 0 fixed, the
admissible set A is equivalently rewritten as

Ãε :=

{
(u, v) ∈ W 1,q(Ω;Rd)×W 1,p vi(Ω;Rd)

∣∣∣∣∣ u = 0 on ΓD, det(I + ε∇v) = 1,

∫
Ω

v dX = 0, |Ω| = |(id+εv)(Ω)|, (id+εv)(Ω) ∈ Jη1,η2

}
,

where we recall that Ω is chosen to be such that
∫
Ω
XdX = 0 so that

0
(2.3.2)
=

∫
Ω

yvidX =

∫
Ω

(id+εv)dX = ε

∫
Ω

vdX.

We use the following notation for the rescaled energies and dissipation

Wε
el(u, v) :=

1

ε2

∫
Ω

W el
(
(I+ε∇u)(I+ε∇v)−1

)
,

Wε
vi(v) :=

1

ε2

∫
Ω

W vi(I+ε∇v),

Ψε(v, v̇) :=
1

ε2

∫
Ω

ψ
(
ε∇v̇(I+ε∇v)−1

)
.

Their corresponding linearized counterparts read

W0
el(u, v) :=

1

2

∫
Ω

∇(u−v) : C el∇(u−v),

W0
vi(v) :=

1

2

∫
Ω

∇v : Cvi∇v,

Ψ0(v̇) :=
1

2

∫
Ω

D∇v̇ : ∇v̇.
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We also define for brevity

Eε(u, v) :=Wε
vi(v) +Wε

el(u, v)− ⟨ℓ0, u⟩ and E0(u, v) :=W0
vi(v) +W0

el(u, v)− ⟨ℓ0, u⟩.

Finally, let (u0ε, v
0
ε) ∈ Ãε be a well-prepared sequence of initial data, namely

(u0ε, v
0
ε)⇀ (u0, v0) in H1(Ω)×H1(Ω) and lim

ε→0
Eε(u0ε, v0ε) = E0(u0, v0) (2.4.21)

Proposition 2.4.1 and Theorem 2.4.1 can therefore be rewritten in terms of the new variables
(u, v) and in the presence of the rescaling prefactor 1/ε2 as follows.

Corollary 2.4.1 (Existence in terms of (uε, vε)). Under the assumptions (E1), (E2), (E3), (E4),
(E5), and (L10) of Section 2.4.1 and (2.4.21) for every ε > 0 there exist a sequence of partitions
(Πτε)τε of the interval [0, T ] with mesh size τ ε → 0 and functions (uε, vε) : [0, T ] → Ãε such
that for every t ∈ [0, T ]

Approximation:

(uτε(t), vτε(t))⇀ (uε(t), vε(t)) in W 1,q(Ω;Rd)×W 1,pvi(Ω;Rd)

Energy inequality:

Wε
vi(vε(t)) +Wε

el(uε(t), vε(t))− ⟨ℓ0, uε(t)⟩+ 2

∫ t

0

Ψε(vε, v̇ε)

≤ Wε
vi(v

0
ε) +Wε

el(u
0
ε, v

0
ε)−

∫ t

0

⟨ℓ̇0, uε⟩ (2.4.22)

Semistability:

Wε
el(uε(t), vε(t))−⟨ℓε(t), uε(t)⟩ ≤ Wε

el(ũε, vε(t))−⟨ℓε(t), ũε(t)⟩
∀ũε with (ũε, vε(t)) ∈ Ãε. (2.4.23)

In the following result, we show that a sequence (uε, vε)ε of approximable solutions at level
ε converges weakly to (u, v) satisfying the linearized energy and the linearized semistability
inequalities.

Theorem 2.4.2 (Linearization). For every ε > 0 let (uε, vε) be an approximable solutions
given as in Corollary 2.4.1. Then, under the assumptions (L1), (L2), (L3), (L4), (L5), (L6),
(L7), (L8), (L9), and (L10) of Section 2.4.3 and (2.4.21) there exist functions (u, v) : [0, T ]→
H1

ΓD
(Ω;Rd)×H1

♯ (Ω;Rd) such that, for every t ∈ [0, T ], up to a not relabeled subsequence,

uε(t)⇀ u(t), vε(t)⇀ v(t) weakly in H1(Ω;Rd),

∇v̇ε(t)⇀ ∇v̇(t) weakly in L2(Ω;Rd×d).

Moreover, for every t ∈ [0, T ], we have

Linearized energy inequality:

W0
vi(v(t)) +W0

el(u(t), v(t))− ⟨ℓ0(t), u(t)⟩+ 2

∫ t

0

Ψ0(v̇(s))

≤ W0
vi(v

0) +W0
el(u

0, v0)− ⟨ℓ0(0), u0⟩ −
∫ t

0

⟨ℓ̇0(s), u(s)⟩, (2.4.24)

Linearized semistability:

W0
el(u(t), v(t))− ⟨ℓ0(t), u(t)⟩ ≤ W0

el(û, v(t))− ⟨ℓ0(t), û⟩ ∀û ∈ H1
ΓD

(Ω;Rd). (2.4.25)

35



2 Finite-strain Poynting-Thomson model

The proof of Theorem 2.4.2 is to be found in Section 2.7 below.
Before moving on, let us remark that the linearized energy inequality (2.4.24) and the lin-

earized semistability (2.4.25) cannot be expected to uniquely determine solutions of the lin-
earized problem (2.2.1)-(2.2.2). On the other hand, inequalities (2.4.24)-(2.4.25) would uniquely
characterize solutions (u, v) to (2.2.1)-(2.2.2) if in addition one assumes that (u, v) are approx-
imable, namely, are limits of time discretizations of (2.2.1)-(2.2.2). Although the trajectories
(u, v) are limits of approximable solutions (uε, vε), we are not able to prove that (u, v) are ap-
proximable themselves, for the property of being approximable seems not guaranteed to pass
to the linearization limit.

2.5 Time-discretization scheme: Proof of Proposition 2.4.1

To start with, notice that the infimum in the incremental problems (2.4.9) is finite for every
i = 1, . . . , Nτ . Indeed, since the initial condition satisfies E(0, y0el, y0vi) < ∞, by arguing by
induction and choosing (yel, yvi) = (yi−1

el , yi−1
vi ), we get that

E(ti, yel, yvi) + τΨ

(
yi−1
vi ,

yvi − yi−1
vi

τ

)
= E(ti, yi−1

el , yi−1
vi ) <∞.

Fix now 1 ≤ i ≤ N and let (yiel,m, y
i
vi,m)m∈N = (yel,m, yvi,m)m∈N ⊂ A be an infimizing

sequence for problem (2.4.9) at time step i.

2.5.1 Coercivity
Let us first show that (yel,m, yvi,m)m∈N is bounded in W 1,pel(yvi,m(Ω);Rd) × W 1,pvi(Ω;Rd).
This requires some care since yel,m is defined on the moving domain yvi,m(Ω). Since the infi-
mum is finite, we have by (2.4.1) and (2.4.2)

c1

∫
yvi,m(Ω)

|∇yel,m|pel + c2

∫
Ω

|∇yvi,m|pvi −
|Ω|
c2
≤ W(yel,m, yvi,m) ≤ c− ⟨ℓ(ti), ym⟩

where we have posed ym := yel,m ◦ yvi,m. The loading term can be controlled as follows

|⟨ℓ(ti), ym⟩| ≤ ∥ℓ(ti)∥(W 1,q(Ω))∗∥ym∥W 1,q(Ω) ≤ c∥ℓ(ti)∥(W 1,q(Ω))∗∥∇ym∥Lq(Ω)

Hölder
≤ c∥ℓ(ti)∥(W 1,q(Ω))∗∥∇yel,m∥Lpel (yvi,m(Ω))∥∇yvi,m∥Lpvi (Ω)

Young
≤ c∥ℓ(ti)∥1/q

′

(W 1,q(Ω))∗ +
c1
2
∥∇yel,m∥pelLpel (yvi,m(Ω)) +

c2
2
∥∇yvi,m∥pviLpvi (Ω).

This entails that
∥∇yel,m∥pelLpel (yvi,m(Ω)) + ∥∇yvi,m∥

pvi
Lpvi (Ω) ≤ c,

which in turn guarantees that
∥∇ym∥qLq(Ω) ≤ c.

Now, using the growth condition (2.4.2) and the Poincaré-Wirtinger inequality, recalling that
yvi has zero mean, we have that

∥yvi,m∥W 1,pvi (Ω) ≤ c.

Recalling that ym satisfies the Dirichlet boundary condition (2.3.3), by the Poincaré inequal-
ity we obtain

∥ym∥W 1,q(Ω) ≤ c.
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A change of variables ensures that∫
yvi,m(Ω)

|yel,m|qdξ =
∫
Ω

|ym|qdX ≤ c

so that ∥yel,m∥Lq(yvi,m(Ω)) ≤ c, as well. Again the Poincaré inequality guarantees that

∥yel,m∥W 1,pel (y vi,m(Ω)) ≤ c. (2.5.1)

Up to a not relabeled subsequence we hence have that

yvi,m = yivi,m ⇀ yivi in W 1,pvi(Ω;Rd) (2.5.2)

ym = yim = yivi,m ◦ yiel,m ⇀ yi in W 1,q(Ω;Rd).

We now want to extract a converging subsequence from the elastic deformations yel,m, which
are however defined on the moving domains yvi,m(Ω). Consider the trivial extensions yel,m and
∇yel,m on the whole Rd by setting yel,m and ∇yel,m to be zero on Rd \ yvi,m(Ω), respectively.
Recalling the bound (2.5.1), we have (up to a subsequence)

yel,m ⇀ yiel in Lpel(Rd;Rd)

∇yel,m ⇀ G in Lpel(Rd;Rd×d). (2.5.3)

We want to show that G = ∇yiel on the limiting set yivi(Ω). By Sobolev embedding, possibly by
extracting a further subsequence, we have that y vi,m → yivi uniformly. Letting ω ⊂⊂ yivi(Ω),
for m large enough we eventually have that ω ⊂⊂ yvi,m(Ω). By uniqueness of the limit we
have yel,m ⇀ yiel in Lpel(ω;Rd) and ∇yel,m ⇀ ∇yiel = G in Lpel(ω;Rd×d). Hence G = ∇yiel in
every ω ⊂⊂ yivi(Ω). An exhaustion argument ensures that G = ∇yiel in yivi(Ω).

2.5.2 Closure of the set of admissible deformations
Let us now check that the weak limit (yiel, y

i
vi) belongs to the admissible set A. First of all,

since pvi > d we have that

1 = det∇yivi,m ⇀ det∇yivi in Lpvi/d(Ω)

and hence det∇yivi = 1 almost everywhere. On the other hand, [50, Lemmas 3.1-3.2] imply
that yivi(Ω) ∈ Jη1,η2 . By the linearity of the mean and trace operators and by the weak conver-
gence of yivi,m, we find

∫
Ω
yividX = 0 and yi = id on ΓD. Moreover, by [39, Lemma 5.2 (i)]

we have that
|yivi,m(Ω)∆yivi(Ω)| → 0,

where the symbol ∆ denotes the symmetric difference, and, for every ω ⊂ Ω, that 1yivi,m(ω) →
1yivi(ω)

almost everywhere in Ω. This implies that yivi satisfies the Ciarlet-Nečas condition, since

|Ω| = |yivi,m(Ω)| → |yivi(Ω)|.

It remains to show that yi = yiel ◦ yivi. Let us take any measurable ω ⊂ Ω and consider, by
changing variables,∫

ω

yi(X)dX ←
∫
ω

ym(X)dX =

∫
ω

yel,m(yvi,m(X))dX =

∫
yvi,m(ω)

yel,m(ξ)dξ

=

∫
Rd
yel,m(ξ)1yvi,m(ω)(ξ)dξ →

∫
Rd
yiel(ξ)1yivi(ω)(ξ)dξ =

∫
ω

yiel(y
i
vi(X))dX,

where in the last limit we used the weak convergence of yel,m and the strong convergence of
1yivi(ω)

. Since ω ⊂ Ω is arbitrary we conclude that yi = yiel ◦ yivi. In particular, we have that
(yiel, y

i
vi) ∈ A.
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2.5.3 Weak lower semicontinuity
We aim to show that the functional in (2.4.9) is weakly lower semicontinuous with respect to
the above convergences.

By polyconvexity of the viscous energy density Wvi and (2.5.2), we have∫
Ω

Wvi(∇yivi)dX ≤ lim inf
m→∞

∫
Ω

Wvi(∇yvi,m)dX.

For what concerns the dissipation, from the weak convergence of yvi,m in W 1,pvi(Ω), we also
have

∇(yvi,m − yi−1
vi )

τ
(∇yi−1

vi )−1 ⇀
∇(yivi − yi−1

vi )

τ
(∇yi−1

vi )−1 in Lpψ(Ω;Rd×d).

Hence, by the weak lower semicontinuity of Ψ, it follows that

Ψ

(
yi−1
vi ,

yivi − yi−1
vi

τ

)
≤ lim inf

m→∞
Ψ

(
yi−1
vi ,

yvi,m − yi−1
vi

τ

)
.

As the loading term is linear, we have

⟨ℓ(ti), yi⟩ = lim
m→∞

⟨ℓ(ti), ym⟩

by weak convergence of ym.
Finally, for any ω ⊂⊂ yivi(Ω) we can treat the elastic energy as follows∫

ω

Wel(∇yiel)dξ ≤ lim inf
m→∞

∫
ω

Wel(∇yel,m)dξ
(2.4.1)
≤ lim inf

m→∞

∫
yvi,m(Ω)

Wel(∇yel,m)dξ,

where we have used the polyconvexity of Wel and convergence (2.5.3). Taking the supremum
over ω ⊂⊂ yivi(Ω) we conclude via an exhaustion argument that∫

yvi,m(Ω)

Wel(∇yel)dξ ≤ lim inf
m→∞

∫
yvi,m(Ω)

Wel(∇yel,m)dξ.

All in all, we have proved that (yiel, y
i
vi) ∈ A and

E(ti, yiel, yivi) + τΨ

(
yi−1
vi ,

yivi − yi−1
vi

τ

)
= min

(yel,yvi)∈A

{
E(ti, yel, yvi) + τΨ

(
yi−1
vi ,

yvi − yi−1
vi

τ

)}
so that the assertion of Proposition 2.4.1 follows.

2.6 Existence of approximable solutions: Proof of Theorem 2.4.1

We split the proof in subsequent steps. The basic energy estimate and its consequences are
presented in Subsection 2.6.1. The energy estimate is then sharpened in Subsection 2.6.2,
leading to the discrete energy inequality. By taking limits as the time step τ goes to 0, the
time-continuous energy inequality (2.4.10) and the time-continuous semistability (2.4.11) are
proved in Subsections 2.6.3 and 2.6.4, respectively.
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2.6.1 Energy estimate and its consequences
Let (yiely

i
vi)

N
i=0 be a solution to (2.4.9). By minimality we have, for every i = 1, ..., N ,

E(ti, yiel, yivi) + τΨ

(
yi−1
vi ,

yivi − yi−1
vi

τ

)
≤ E(ti, yi−1

el , yi−1
vi )

= E(ti−1, y
i−1
el , yi−1

vi )−
∫ ti

ti−1

⟨ℓ̇, yi−1⟩.

Summing up over i = 1, ..., n ≤ N we get

E(tn, ynel, ynvi) +
n∑
i=1

τΨ

(
yi−1
vi ,

yivi − yi−1
vi

τ

)
≤ E(0, yel,0, yvi,0)−

n∑
i=1

∫ ti

ti−1

⟨ℓ̇, yi−1⟩. (2.6.1)

By using the notation for the interpolants, we have, for all t ∈ [0, T ],

E(tτ (t), yel,τ (t), yvi,τ (t)) +
∫ tτ (t)

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
≤ E(0, yel,0, yvi,0)−

∫ tτ (t)

0

⟨ℓ̇, y
τ
⟩

≤ E(0, yel,0, yvi,0) +
∫ tτ (t)

0

∥ℓ̇∥(W 1,q(Ω))∗∥yτ∥W 1,q(Ω)

Poincaré
≤ E(0, yel,0, yvi,0) + c

∫ tτ (t)

0

∥ℓ̇∥(W 1,q(Ω))∗∥∇yτ∥Lq(Ω)

≤ E(0, yel,0, yvi,0) + c

∫ tτ

0

∥∇y
el,τ
∥Lpel (y

vi,τ
(t,Ω))∥∇yvi,τ∥Lpvi (Ω).

On the other hand, by the growth assumptions (2.4.1), (2.4.2), and (2.4.5), we also have

E(tτ (t),yel,τ (t), yvi,τ (t)) +
∫ tτ (t)

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
≥ c∥∇yvi,τ (t)∥

pvi
Lpvi (Ω)

+ c∥∇yel,τ (t)∥
pel
Lpel (yvi,τ (t,Ω)) + c

∫ tτ (t)

0

∥∇ ˙̂yvi,τ (∇y vi,τ
)−1∥pψ

L
pψ (Ω)

− c. (2.6.2)

In particular, combining the two inequalities above we get

c∥∇yvi,τ (t)∥
pvi
Lpvi (Ω) + c∥∇yel,τ (t)∥

pel
Lpel (yvi,τ (t,Ω)) +

∫ tτ (t)

0

∥∇ ˙̂yvi,τ (∇yvi,τ )
−1∥pψ

L
pψ (Ω)

≤ E(0, yel,0, yvi,0) + c

∫ tτ (t)

0

∥∇y
el,τ
∥Lpel (y

vi,τ
(t,Ω))∥∇yvi,τ∥Lpvi (Ω) + c

≤ c+ c

∫ tτ (t)

0

(
∥∇y

el,τ
∥pelLpel (y

vi,τ
(Ω)) + ∥∇yvi,τ∥

pvi
Lpvi (Ω)

)
.

We can apply the Discrete Gronwall Lemma [51, (C.2.6), p. 534] to find

∥∇yvi,τ (t)∥Lpvi (Ω) + ∥∇yel,τ (t)∥Lpel (yvi,τ (Ω)) ≤ c.

Thus, for every t ∈ [0, T ] we have

∥yvi,τ (t)∥W 1,pvi (Ω) ≤ c and ∥∇yel,τ (t)∥Lpel (yvi,τ (t,Ω)) ≤ c.
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2 Finite-strain Poynting-Thomson model

Then, using Poincaré inequality on the total deformation, we find ∥yτ (t)∥W 1,q(Ω) ≤ c and hence,
as before, for every t ∈ [0, T ]

∥yel,τ (t)∥W 1,pel (yvi,τ (t,Ω)) ≤ c.

Moreover, thanks to (2.6.2), we also have for every t ∈ [0, T ]∫ tτ (t)

0

∥∇ ˙̂yvi,τ (∇yvi,τ )
−1∥pψ

L
pψ (Ω)

≤ c. (2.6.3)

By recalling that 1/pr = 1/pψ + 1/pvi this implies that∫ T

0

∥∇ ˙̂yvi,τ∥Lpr (Ω) ≤
∫ T

0

∥∇ ˙̂yvi,τ (∇yvi,τ )
−1∥Lpψ (Ω)∥∇yvi,τ∥Lpvi (Ω) ≤ c.

2.6.2 Energy inequality, sharp version
In the previous section, we have found the energy estimate (2.6.1), which features the dissipa-
tion with a prefactor 1. In order to prove the sharp version of the energy inequality (2.4.10)
with the prefactor pψ, we need a finer argument, mutated from [2].

First, we introduce some notation. Let

V =
{
yvi ∈ W 1,pvi(Ω;Rd)

∣∣∣ det∇yvi = 1 a.e. in Ω
}

and, for all i = 1, . . . , N , define the functionals Φi : [0, T ]× V ×A → R as

Φi(τ ; yold, yel, yvi) := E(ti, yel, yvi) + τΨ

(
yold,

yvi − yold
τ

)
.

Recall that, by definition (2.4.4) of Ψ and by the pψ-homogeneity (2.4.6), we have

τΨ

(
yold,

yvi − yold
τ

)
=

1

τ pψ−1

∫
Ω

ψ
(
(∇yold)−1(∇yvi −∇yold)

)
. (2.6.4)

For all (t, yold) ∈ [0, T ]× V we also define the minimal value of the latter functional as

ϕiτ (yold) := inf
(yel,y vi)∈A

Φi(τ ; yold, yel, yvi)

and denote the set of minimizers by J iτ (yold) := argmin{Φi(τ ; yold, yel, yvi) | (yel, yvi) ∈ A},
which is nonempty by Proposition 2.4.1. Finally, introduce

Ψ+,i
τ (yold) := sup

(yel,τ ,yvi,τ )∈Jiτ (yold)

∫
Ω

ψ

(
(∇yold)−1 (∇yvi,τ −∇yold)

τ

)
,

Ψ−,i
τ (yold) := inf

(yel,τ ,yvi,τ )∈Jiτ (yold)

∫
Ω

ψ

(
(∇yold)−1 (∇yvi,τ −∇yold)

τ

)
.

We start by stating an auxiliary result, providing the continuity property of the map τ 7→
ϕiτ (yold) in 0 and the monotonicity of τ 7→ Ψ(yold, y vi,τ−yold).
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Lemma 2.6.1. For every i = 1, . . . , N and every yold ∈ V , we have

lim
τ↘0

ϕiτ (yold) = E(ti, yel, yold) (2.6.5)

where yel ∈ argmin{E(ti, ỹel, yold) | ỹel ∈ W 1,pel(yold(Ω);Rd)}.
Moreover, if 0 < τ0 < τ1, then

Ψ(yold, yvi,τ0−yold) ≤ Ψ(yold, yvi,τ1−yold) for every (yel,τj , yvi,τj) ∈ J iτj(yold), j = 0, 1.
(2.6.6)

Proof. We start by proving the continuity property of τ 7→ ϕiτ (yold). Let (yel,τ , y vi,τ ) ∈
J iτ (yold). By the growth condition (2.4.5), the pψ-homogeneity (2.4.6), and coercivity, we have

∥(∇yold)−1(∇yvi,τ−∇yold)∥Lpvi (Ω) ≤ cΨ(yold, yvi,τ−yold) = cτ pψΨ

(
yold,

yvi,τ−yold
τ

)
≤ cτ pψ−1.

The proves that ∇yvi,τ → ∇yold in Lpvi(Ω;Rd×d) as τ → 0. Moreover, by (2.5.1), we have
yel,τ ⇀ yel weakly in W 1,pel(Ω;Rd). Thus, by weak lower semicontinuity, we have

lim
τ↘0

ϕiτ (yold) = lim
τ↘0

Φi(τ ; yold, yel,τ , yvi,τ ) ≥ lim inf
τ↘0

E(ti, yel,τ , yvi,τ ) ≥ E(ti, yel, yold).

On the other hand, from minimality we get E(ti, yel, yold) ≥ ϕiτ (yold). This implies that

lim
τ↘0

ϕiτ (yold) = E(ti, yel, yold).

The fact that yel ∈ argmin{E(ti, ỹel, yold) | ỹel ∈ W 1,pel(yold(Ω);Rd)} follows from minimality
since

E(ti, yel, yold) = lim
τ↘0

ϕiτ (yold) ≤ lim
τ↘0

Φi(τ ; yold, ỹel, yold) = E(ti, ỹel, yold)

for every ỹel ∈ W 1,pel(yold(Ω);Rd).
Let us now prove the monotonicity of τ 7→ Ψ(yold, yvi,τ−yold). Let 0 < τ0 < τ1 and

yel,τj , yvi,τj ∈ J iτj(yold), j = 0, 1. From minimality, we have that

ϕiτ0 = E(ti, yel,τ0 , yvi,τ0) +
1

τ
pψ−1
0

Ψ(yold, yel,τ0 − yold)

≤ E(ti, yel,τ1 , yvi,τ1) +
1

τ
pψ−1
0

Ψ(yold, yel,τ1 − yold)

= E(ti, yel,τ1 , yvi,τ1) +
1

τ
pψ−1
1

Ψ(yold, yel,τ1 − yold) +

(
1

τ
pψ−1
0

− 1

τ
pψ−1
1

)
Ψ(yold, yel,τ1 − yold)

≤ E(ti, yel,τ0 , yvi,τ0) +
1

τ
pψ−1
1

Ψ(yold, yel,τ0 − yold) +

(
1

τ
pψ−1
0

− 1

τ
pψ−1
1

)
Ψ(yold, yel,τ1 − yold) .

This implies that(
1

τ
pψ−1
0

− 1

τ
pψ−1
1

)
Ψ(yold, yel,τ1 − yold) ≤

(
1

τ
pψ−1
0

− 1

τ
pψ−1
1

)
Ψ(yold, yel,τ1 − yold) ,

which concludes the proof.
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2 Finite-strain Poynting-Thomson model

In the following Lemma, we calculate the derivative with respect to τ of the minimal incre-
mental energy ϕiτ and provide a crucial estimate.

Lemma 2.6.2. For every yold ∈ V and i = 1, . . . N , the map τ 7→ ϕiτ (yold) is locally Lipschitz
on (0, 1). Moreover, we have

d

dτ
ϕiτ (yold) = −(pψ − 1)Ψ±,i

τ (yold) (2.6.7)

for almost every τ ∈ (0, 1). In particular, for almost every τ ∈ (0, 1) we have

τΨ

(
yold,

yvi,τ − yold
τ

)
+(pψ−1)

∫ τ

0

Ψ±,i
r (yold)dr = E(ti, yel, yold)−E(ti, yel,τ , yvi,τ ) (2.6.8)

for every (yel,τ , yvi,τ ) ∈ J iτ (yold), for some yel = argmin{E(ti, ỹel, yold) | ỹel ∈ W 1,pel(yold(Ω);Rd)}.

Proof. For every τ0 ̸= τ1 and (yel,τj , yvi,τj) ∈ J iτj(yold), j = 0, 1, by minimality we have

ϕτ0(yold)− ϕτ1(yold) ≤ Φi(τ0; yold, yel,τ1 , yvi,τ1)− Φi(τ1; yold, yel,τ1 , yvi,τ1)

=
1

τ
pψ−1
0

Ψ(yold, yvi,τ1 − yold)−
1

τ
pψ−1
1

Ψ(yold, yvi,τ1 − yold)

=
τ
pψ−1
1 − τ pψ−1

0

(τ1τ0)pψ−1

∫
Ω

ψ
(
(∇yold)−1(∇yvi,τ1 −∇yold)

)
,

where we used (2.6.4). We can perform an analogous calculation for

ϕτ0(yold)− ϕτ1(yold) ≥ Φi(τ0; yold, yel,τ0 , yvi,τ0)− Φi(τ1; yold, yel,τ0 , yvi,τ0)

so that, by combining the two above inequalities, for τ0 < τ1 we find

τ
pψ−1
1 − τ pψ−1

0

(τ1τ0)pψ−1(τ1 − τ0)

∫
Ω

ψ
(
(∇yold)−1(∇yvi,τ0 −∇yold)

)
≤ ϕτ0(yold)− ϕτ1(yold)

τ1 − τ0

≤ τ
pψ−1
1 − τ pψ−1

0

(τ1τ0)pψ−1(τ1 − τ0)

∫
Ω

ψ
(
(∇yold)−1(∇yvi,τ1 −∇yold)

)
.

Taking the supremum over (yel,τ0 , yvi,τ0) ∈ J iτ0(yold) in the left-hand side and the infimum over
(yel,τ1 , yvi,τ1) ∈ J iτ1(yold) in the right hand side, we find

τ0(τ
pψ−1
1 − τ pψ−1

0 )

τ
pψ−1
1 (τ1 − τ0)

Ψ+,i
τ0

(yold) ≤
ϕτ0(yold)− ϕτ1(yold)

τ1 − τ0
≤ τ1(τ

pψ−1
1 − τ pψ−1

0 )

τ
pψ−1
0 (τ1 − τ0)

Ψ−,i
τ1

(yold),

which implies that τ 7→ ϕiτ (yold) is locally Lipschitz. Then, passing to the limit for τ1↘τ and
τ0↗τ , we get (2.6.7).

Integrating (2.6.7) from τ0 > 0 to τ , we have

ϕiτ (yold)− ϕiτ0(yold) = −(pψ − 1)

∫ τ

τ0

Ψ±,i
r (yold)dr.

Letting τ0↘0, recalling (2.6.5), and the definition of (yel,τ , yvi,τ ) ∈ J iτ (yold), we get (2.6.8).
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We now state the definition of De Giorgi variational interpolation [2, Definition 3.2.1],
which in our setting refers to the viscous deformation yvi only.

Definition 2.6.1 (De Giorgi variational interpolation). Let (yiel,τ , y
i
vi,τ )

N
i=0 be an incremental

solution of the problem of (2.4.9). We call De Giorgi variational interpolation of (yivi,τ )
N
i=0 any

interpolation ỹ vi,τ of the discrete values with (yel,τ , ỹ vi,τ ) : [0, T ]→ A that satisfies

ỹvi,τ (t) = ỹvi,τ (ti−1 + r) ∈ Jr(ỹi−1
vi,τ ) if ti−1 + r ∈ (ti−1, ti]

for every i = 1, . . . , N .

The following Proposition provides the sharp energy estimate on the discrete level, providing
an equality instead of an inequality.

Proposition 2.6.1 (Discrete energy equality). Let (yiel,τ , y
i
vi,τ )

N
i=0 be an incremental solution of

the problem of (2.4.9). Then, for every 1 ≤ n ≤ N we have

τ

n∑
i=1

ψ
((
∇yi−1

vi,τ

)−1 (∇yivi,τ −∇yi−1
vi,τ

))
+ (pψ − 1)

n∑
i=1

∫ ti

ti−1

G
pψ
τ (r)dr + E

(
ti, y

n
el,τ , y

n
vi,τ

)
= E (0, yel,0, yvi,0)−

n∑
i=1

∫ ti

ti−1

⟨ℓ̇, yi−1
el,τ ◦ y

i−1
el,τ ⟩

(2.6.9)

where
Gτ (t) :=

(
Ψ±,i
r (yi−1

vi,τ )
)1/pψ for t = ti−1 + r ∈ (ti−1, ti].

Proof. By (2.6.8) for yold = yi−1
vi,τ , yvi,τ = yivi,τ , and yel,τ = yiel,τ , we find

τΨ

(
yi−1
vi,τ ,

yivi,τ − yi−1
vi,τ

τ

)
+ (pψ − 1)

∫ τ

0

|Gτ (r)|pψdr + E(ti, yiel,τ , yivi,τ ) = E(ti, yi−1
el,τ , y

i−1
vi,τ )

= E(ti−1, y
i−1
el,τ , y

i−1
vi,τ )−

∫ ti

ti−1

⟨ℓ̇, yi−1
el,τ ◦ y

i−1
el,τ ⟩,

where we used the definition of Gτ and of De Giorgi variational interpolation. Then, summing
from i = 1 to i = n we get (2.6.9).

Before passing to the limit for τ → 0 in the energy equality (2.6.9), we need to characterize
the limit of the De Giorgi variational interpolation. In the following Lemma we show that such
limit coincides with that of the backward interpolants.

Lemma 2.6.3. If yvi,τ (t)⇀ yvi(t) in W 1,pvi(Ω;Rd), then ỹvi,τ (t)⇀ yvi(t) in W 1,pvi(Ω;Rd).

Proof. First, let us show that, for τ > 0 and t ∈ (tτi−1, t
τ
i ] fixed, ∥ỹvi,τ (t) − yvi,τ (t)∥L1(Ω) ≤

cτ pψ−1. We have, by definition of∇yvi,τ and Hölder inequality,

∥∇ỹvi,τ (t)−∇yvi,τ (t)∥L1(Ω) ≤ ∥∇yi−1
vi,τ (∇yi−1

vi,τ )
−1
(
∇ỹvi,τ (t)−∇yivi,τ

)
∥L1(Ω)

≤ ∥∇yi−1
vi,τ∥

p′ψ

L
p′
ψ (Ω)
∥(∇yi−1

vi,τ )
−1
(
∇ỹvi,τ (t)−∇yivi,τ

)
∥pψ
L
pψ (Ω)

.
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2 Finite-strain Poynting-Thomson model

Since pψ ≥ 2 by (2.4.7) we have that p′ψ ≤ pψ. Hence, by the boundedness of ∇yi−1
vi,τ in

Lpψ(Ω;Rd×d) and the fact that Ω is bounded, we have that ∥∇yi−1
vi,τ∥

p′ψ

L
p′
ψ (Ω)
≤ c uniformly in i

and τ . Thus, by growth condition (2.4.5), we have

∥∇ỹvi,τ (t)−∇yvi,τ (t)∥L1(Ω) ≤ c∥(∇yi−1
vi,τ )

−1
(
∇yivi,τ −∇yi−1

vi,τ

)
∥pψ
L
pψ (Ω)

+ c∥(∇yi−1
vi,τ )

−1
(
∇ỹvi,τ (t)−∇yi−1

vi,τ

)
∥pψ
L
pψ (Ω)

≤ cΨ
(
yi−1
vi,τ , y

i
vi,τ − yi−1

vi,τ

)
+ cΨ

(
yi−1
vi,τ , ỹvi,τ − yi−1

vi,τ

)
≤ cΨ

(
yi−1
vi,τ , y

i
vi,τ − yi−1

vi,τ

)
,

where in the last inequality we used the definition of ỹvi,τ and the monotonicity property (2.6.6).
Using the pψ-homogeneity (2.4.6) and the boundedness of the dissipation, we get

∥∇ỹvi,τ (t)−∇yvi,τ (t)∥L1(Ω) ≤ cτ pψΨ

(
yi−1
vi,τ ,

yivi,τ − yi−1
vi,τ

τ

)
≤ cτ pψ−1.

Then ∥ỹvi,τ (t)− yvi,τ (t)∥L1(Ω) ≤ cτ pψ−1 follows since ỹvi,τ (t) and yvi,τ (t) have zero mean.
The assertion follows as Ω is bounded, by assumption yvi,τ (t)⇀ yvi(t) inW 1,pvi(Ω;Rd), and

yvi,τ (t) is bounded in W 1,pvi(Ω;Rd) by coercivity, as shown in Section 2.6.1 for yvi,τ (t).

2.6.3 Proof of the energy inequality
In the following, we extract further subsequences without relabeling whenever necessary.

Assume to be given a sequence of partitions (Πτ )τ with τ → 0 and denote by (yiel, y
i
vi)

N
i=0 the

corresponding incremental solutions. The estimates in Section 2.6.1 and Lemma 2.6.3 ensure
that for every t ∈ [0, T ]

yvi,τ (t)⇀ yvi(t) in W 1,pvi(Ω;Rd),

ỹvi,τ (t)⇀ yvi(t) in W 1,pvi(Ω;Rd),

yτ (t)⇀ y(t) in W 1,q(Ω;Rd).

Moreover, by Sobolev embedding we have that ŷvi,τ ⇀ yvi weakly in C([0, T ];W 1,pr(Ω;Rd)).
As regards the elastic deformation, given t ∈ [0, T ] by extracting a subsequence (τ tk)k∈N

possibly depending on t we get

yel,τ tk(t)⇀ yel(t) in W 1,pel(yvi(t,Ω);Rd).

Note that here we have to implement an exhaustion argument for dealing with the moving
domains yvi(t,Ω), exactly as in Section 2.5. Moreover, the total deformation y can be proved
to fulfill y = yel ◦ y vi by arguing as in Section 2.5.2.

We aim at passing to the limit in the energy equality (2.6.9), which can be rewritten, thanks
to the definition of Gτ (t) and of Ψ+,i

r , in the weaker form

E(tτ (t), yel,τ (t), yvi,τ (t))+
∫ tτ (t)

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
+ (pψ−1)

∫ tτ (t)

0

Ψ

(
y
vi,τ
,
ỹvi,τ−yvi,τ

τ

)

≤ E(0, yel,0, yvi,0)−
∫ tτ (t)

0

⟨ℓ̇, y
τ
⟩.

(2.6.10)
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Passing to the lim inf in the left-hand side of inequality (2.6.10), we find by lower semicon-
tinuity

E(t, yel(t), yvi(t)) ≤ lim inf
τ→0

E(tτ (t), yel,τ (t), yvi,τ (t)).

Let us now study the first dissipation term in (2.6.10). The calculations for the second one are
analogous by Lemma 2.6.3. Recalling that by definition tτ (t) ≥ t and that ψ ≥ 0, we have that

lim inf
τ→0

∫ tτ (t)

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
≥ lim inf

τ→0

∫ t

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
.

Moreover, up to a subsequence, ∇ ˙̂yvi,τ (∇yvi,τ )
−1 ⇀ l weakly in Lpψ(Ω;Rd×d) by (2.6.3). It

hence remains to identify the limit l. To this end, let us define

(t, ξ) ∈ [0, T ]× y
vi,τ

(t,Ω) 7→ vτ (t, ξ) := ˙̂yvi,τ (t, y
−1

vi,τ
(ξ)) ∈ Rd.

By a pointwise-in-time change of variables we have∫ T

0

∫
y
vi,τ

(t,Ω)

|vτ (t, ξ)|pψdξdt =
∫ T

0

∫
Ω

| ˙̂yvi,τ (t,X)|pψdXdt ≤ c.

In order to obtain a bound on the gradient∇vτ , let us consider∫ T

0

∫
y
vi,τ

(t,Ω)

|∇vτ (t, ξ)|pψdξdt =
∫ T

0

∫
Ω

∣∣∣∇ ˙̂yvi,τ (∇yvi,τ )
−1(t,X)

∣∣∣pψ dXdt

(2.4.5)
≤
∫ T

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
≤ c.

For given t0 ∈ (0, T ), let us show that ∩t∈[t0,t0+δ]yvi(t,Ω) is not empty for small δ > 0. Notice
that, by Sobolev embedding, y

vi,τ
→ yvi in C([0, T ]× Ω). Hence, for every ϵ > 0, there exists

τ = τ(ϵ) such that, for every τ ≤ τ , we have

sup
X∈Ω

∣∣∣y
vi,τ

(t,X)− yvi(t,X)
∣∣∣ ≤ ϵ

2
.

Moreover, since yvi is absolutely continuous in time, for |t − s| < ν and ν > 0 small we also
have

sup
X∈Ω
|yvi(t,X)− yvi(s,X)| ≤ ϵ

2
.

Combining these two inequalities we get

sup
X∈Ω

∣∣∣y
vi,τ

(t,X)− yvi(s,X)
∣∣∣ ≤ ϵ

for τ and ν small enough. We can hence fix ω ⊂⊂ ∩t∈[t0,t0+ν]yvi(t,Ω) and trivially extend vτ on
Rd\ω. Then, thanks to the bounds above we have that vτ ⇀ v weakly in Lpψ([0, T ];W 1,pψ(ω)).
We have to show that v = ẏvi ◦ y−1

vi . In fact, we have∫ t0+ν

t0

∫
ω

v(t, ξ)dξdt←
∫ t0+ν

t0

∫
ω

vτ (t, ξ)dξdt =

∫ t0+ν

t0

∫
y−1
vi,τ (t,ω)

˙̂yvi,τ (t,X)dXdt

=

∫ t0+ν

t0

∫
Rd

˙̂yvi,τ (t,X)1y−1
vi,τ (t,ω)

(t,X)dXdt→
∫ t0+ν

t0

∫
Rd
ẏvi(t,X)1y−1

vi (t,ω)(t,X)dXdt

=

∫ t0+ν

t0

∫
ω

ẏvi(t, y
−1
vi (t, ξ))dξdt, (2.6.11)
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where we have used that ŷvi,τ ⇀ yvi weakly in C([0, T ];W 1,pvi(Ω)), 1y−1
vi,τ (ω)

→ 1y−1
vi (ω)

strongly in L1(ω), and the fact that 1y−1
vi,τ (t,ω)

is bounded. Since in (2.6.11) t0, ν, and ω are

arbitrary, we have that v = ẏvi ◦ y−1
vi and we have hence identified l = ∇v. By weak lower

semicontinuity, we thus have that

lim inf
τ→0

∫ tτ (t)

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
= lim inf

τ→0

∫ tτ (t)

0

∫
yvi,τ (s,Ω)

ψ(∇vτ (s, ξ))dξds

≥
∫ t

0

∫
yvi(s,Ω)

ψ(∇v(s, ξ))dξds =
∫ t

0

Ψ(yvi,τ , ẏvi,τ ) .

Thanks to the boundedness and to the weak lower semicontinuity of the energy and of the
dissipation we can apply Helly’s Selection Principle [74, Thm. B.5.13, p. 611] and find a
nondecreasing function δ : [0, T ]→ [0,∞) such that∫ t

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
→ δ(t), (2.6.12a)∫ t

s

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
≤ δ(t)− δ(s) (2.6.12b)

for every s, t ∈ [0, T ]. Then, fixing t ∈ [0, T ], we have

δ(t)
(2.6.12a)
= lim

k→∞

∫ t

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
≤ lim inf

k→∞

∫ tτ (t)

0

Ψ
(
y
vi,τ
, ˙̂yvi,τ

)
.

Setting θτ (s) := −⟨ℓ̇(s), y
τ
(s)⟩, by the regularity of ℓ and the boundedness of (y

τ
(t))τ for

almost every t ∈ [0, T ] in W 1,q(Ω;Rd), we have that (θτ )τ is equiintegrable. Hence, we can
apply the Dunford-Pettis Theorem (see, e.g., [74, Thm. B.3.8, p. 598]) to find a subsequence
such that

θτ ⇀ θ in L1(0, T ).

Furthermore, thanks to the boundedness of the energy and the dissipation, we are able to find
further t-dependent subsequences (τ tk)k∈N such that

θτ tk → lim sup
τ→0

θτ (t) =: θ(t),

and, by regularity of ℓ, that

θ(t) := lim
k→∞

θτ tk = lim
k→∞
⟨ℓ̇(t), y

τ tk
(t)⟩ = ⟨ℓ̇(t), y(t)⟩.

In conclusion, passing to the lim inf in the left-hand side and to the limit in the right-hand side
of (2.6.10) we retrieve energy inequality (2.4.10).

2.6.4 Proof of the semistability condition
Fix now t ∈ [0, T ] and recall that yel,τ tk(t)⇀ yel(t) in W 1,pel(yvi(t,Ω);Rd).

By minimality of the incremental solution we have

E
(
tτ (t), y el,τ (t), yvi,τ (t)

)
≤ E

(
tτ (t), ỹel, yvi,τ (t)

)
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for every ỹel with
(
ỹel, yvi(t)

)
∈ A. Let (ỹel, yvi(t)) ∈ A be given. We want to show that one

can choose ỹel,τ with
(
ỹel,τ , y vi(t)

)
∈ A in such a way that

0 ≤ lim sup
τ→0

(
E
(
tτ (t), ỹel,τ , yvi,τ (t)

)
− E

(
tτ (t), yel,τ (t), yvi,τ (t)

) )
≤ E (t, ỹel, yvi(t))− E (t, yel(t), yvi(t)) , (2.6.13)

which would then imply (2.4.11).
Since (ỹel, yvi(t)) ∈ A, we have that yvi(Ω) ∈ Jη1,η2 and yvi(Ω) is a Sobolev extension

domain. Hence, there exists a linear and bounded extension operator E : W 1,pel(yvi(Ω);Rd)→
W 1,pel(Rd;Rd). We thus define ỹel,τ ∈ W 1,p el(yvi,τ (Ω);Rd) as the restriction to yvi,τ (Ω) of the
extension Eỹel, namely,

ỹel,τ := Eỹel

∣∣∣
yvi,τ (Ω)

.

In the following, we just concentrate our attention on the stored elastic energy part, since the
treatment of the loading term is immediate. We write∫

yvi,τ (t,Ω)

Wel(∇ỹel,τ )dξ −
∫
yvi,τ (t,Ω)

Wel(∇yel,τ )dξ =
∫
yvi,τ (t,Ω)∩yvi(t,Ω)

Wel(∇ỹel,τ )dξ

+

∫
yvi,τ (t,Ω)\yvi(t,Ω)

Wel(∇ỹel,τ )dξ −
∫
yvi,τ (t,Ω)

Wel(∇yel,τ )dξ

(2.6.14)

By the growth condition (2.4.1) on Wel and the fact that on the set yvi,τ (t,Ω) we have ỹel,τ =
ỹel,τ , which is uniformly bounded in W 1,pel(yvi,τ (t,Ω);Rd), we find∫
yvi,τ (t,Ω)\yvi(t,Ω)

Wel(∇ỹel,τ )dξ =
∫
ỹvi,τ (t,Ω)\yvi(t,Ω)

Wel(∇ỹel,τ )dξ
(2.4.1)
≤ c

∣∣yvi,τ (t,Ω) \ yvi(t,Ω)∣∣ .
Since the measure of the set y vi,τ (t,Ω) \ yvi(t,Ω) vanishes as τ goes to 0 by the uniform
convergence of yvi,τ to yvi, we have

lim
τ→0

∫
yvi,τ (t,Ω)

Wel(∇ỹel,τ )dξ =
∫
yvi(t,Ω)

Wel(∇ỹel)dξ.

We can hence pass to the lim sup in inequality (2.6.14) as τ → 0 and obtain (2.6.13), which is
nothing but the semistability (2.4.11).

2.7 Linearization: Proof of Theorem 2.4.2

We first prove in Subsection 2.7.1 some coercivity results, uniform with respect to the lineariza-
tion parameter ε, which in turn provide a priori estimates on the sequence of approximable so-
lutions (uε, vε)ε. Then, we check in Subsection 2.7.2 some Γ-lim inf inequalities for the energy
and the dissipation. Eventually, in Subsection 2.7.3 we show that the approximable solutions
(uε, vε)ε converge, up to subsequences, to solutions of the linearized problem in the sense of
Theorem 2.4.2.

In the following, we use the notation

W ε
el(A) :=

1

ε2
Wel(I + εA), W̃ ε

vi(A) :=
1

ε2
W̃vi(I + εA), ψε(A) :=

1

ε2
ψ(εA)

for the rescaled energy and dissipation densities.
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2 Finite-strain Poynting-Thomson model

2.7.1 Coercivity
We devote this subsection to the proof of the following.

Lemma 2.7.1 (Coercivity). For every (u, v) ∈ Ãε, it holds

∥u∥2H1(Ω) + ∥v∥2H1(Ω) + ∥∇v̇∥2L2(Ω) + ∥ε∇v∥L∞(Ω) ≤ c(1 +Wε
vi(v) +Wε

el(u, v) + Ψε(v)).

Notice the bound on the term ∥ε∇v∥L∞(Ω), which follows from assumption (L4). This bound
will play an important role in passing to the limit for ε→ 0.

Proof of Lemma 2.7.1. With no loss of generality we can assumeWε
vi(v)+Wε

el(u, v)+Ψε(v) <
∞

By assumption (L4) we have that I + ε∇v ∈ K ⊂⊂ SL(d) almost everywhere in Ω. By
using (2.4.18) we get that |I + ε∇v| ≤ cK , hence

∥ε∇v∥L∞(Ω) ≤ c.

Since v has zero mean by assumption, by applying the Poincaré-Wirtinger inequality and by
taking into account the growth condition (2.4.16) we get

∥v∥2H1(Ω) ≤ c∥∇v∥2L2(Ω) =
c

ε2
∥ε∇v∥2L2(Ω) ≤

c

ε2

∫
Ω

Wvi(I + ε∇v)dX = cWε
vi (v).

Using condition (2.4.19) and the fact that |I + ε∇v| is bounded in L∞ we get

∥∇v̇∥2L2(Ω) =
1

ε2

∫
Ω

|ε∇v̇|2dX ≤ 1

ε2

∫
Ω

|ε∇v̇|2|I + ε∇v|−2|I + ε∇v|2dX

≤ c

ε2

∫
Ω

ψ
(
ε∇v̇(I + ε∇v)−1

)
dX = cΨε(v).

In order to obtain the H1-bound on u, we start by fixing Q ∈ SO(d) and define Fel :=
∇y(I + ε∇v)−1, where we recall that y = id+εu. We have

|∇y −Q|2 = |∇y −Q(I + ε∇v) + εQ∇v|2 = |(Fel −Q)(I + ε∇v) + εQ∇v|2

≤ c(|Fel −Q|2|I + ε∇v|2 + ε2|∇v|2) ≤ c(|Fel −Q|2 + ε2|∇v|2).

Taking the infimum over Q ∈ SO(d) we get

dist2(∇y, SO(d)) ≤ c(dist2(Fel, SO(d)) + ε2|∇v|2).

We now integrate over Ω and, thanks to assumption (2.4.13) and the estimate on ∥v∥2H1(Ω), we
find∫

Ω

dist2(∇y, SO(d))dX ≤ c

∫
Ω

Wel(Fel)dX + cε2∥∇v∥2L2(Ω) ≤ cε2 (Wε
el(u, v) +Wε

vi(v)) .

The classical Rigidity Estimate [34, Theorem 3.1] implies that there exists a constant rotation
Q̂ ∈ SO(d) such that

∥∇y − Q̂∥2L2(Ω) ≤ c∥ dist(∇y, SO(d))∥2L2(Ω).

We hence have that
∥∇y − Q̂∥2L2(Ω) ≤ cε2 (Wε

el(u, v) +Wε
vi(v)) .
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Recalling that y = id on ΓD, by [22, (3.14)] we also deduce

∥I − Q̂∥2L2(Ω) ≤ cε2 (Wε
el(u, v) +Wε

vi(v)) .

In conclusion, we get that

∥∇u∥2L2(Ω) =
1

ε2
∥∇y − I∥2L2(Ω) ≤

2

ε2
∥∇y − Q̂∥2L2(Ω) +

2

ε2
∥Q̂− I∥2L2(Ω)

≤ c (Wε
el(u, v) +Wε

vi(v))

whence the assertion follows.

2.7.2 Γ-lim inf inequalities
In order to proceed with the linearization, we need to establish Γ-lim inf inequalities. At first,
we prove the following Lemma on the convergence of the densities.

Lemma 2.7.2 (Convergence of the densities). Assume conditions (L3), (L6), and (L9). Then,
we have

W ε
el → | · |2Cel

, W̃ ε
vi → | · |2Cvi

, ψε → | · |2D
locally uniformly. Moreover, we have

|z|2Cel
≤ inf

{
lim inf
ε→0

W ε
el(zε) | zε → z in Rd×d

}
, (2.7.1)

|z|2Cvi
≤ inf

{
lim inf
ε→0

W̃ ε
vi(zε) | zε → z in Rd×d

}
, (2.7.2)

|z|2D ≤ inf
{
lim inf
ε→0

ψε(zε) | zε → z in Rd×d
}
. (2.7.3)

Proof. Let K0 ⊂⊂ Rd×d be given. Fix δ > 0 and let cel(δ) be the corresponding constant from
assumption (2.4.15). Then, for sufficiently small ε, we have that εK0 ⊂ BRd×d

cel(δ)
(0). Hence, by

(2.4.15) we find
lim sup
ε→0

sup
K0

∣∣W ε
el(·)− | · |2Cel

∣∣ ≤ δ sup
K0

| · |2Cel
≤ δc.

Since δ is arbitrary, we get local uniform convergence for W ε
el. For W̃ ε

vi and ψε proof of con-
vergence is analogous, using the corresponding conditions (2.4.17) and (2.4.20), respectively.

For the Γ-lim inf inequalities (2.7.1)-(2.7.3), let (zε)ε ⊂ Rd×d be such that zε → z in Rd×d.
Assume without loss of generality that supεW ε

el(zε) < ∞. Then, the inequality follows from
local uniform convergence. The same applies to W̃ ε

vi and ψε.

We are now in the position of proving the Γ-lim inf inequalities for the functionals.

Lemma 2.7.3 (Γ-lim inf inequalities). For every (u, v) ∈ Ãε, we have

W0
el(u, v) +W0

vi(v) ≤ inf
{
lim inf
ε→0

(
Wε

el(uε, vε) +Wε
vi(vε)

)
∣∣ (uε, vε)⇀ (u, v) weakly in H1(Ω;Rd)2

}
,

∫ t

0

Ψ0(v̇) ≤ inf

{
lim inf
ε→0

∫ t

0

Ψε(vε, v̇ε)
∣∣ vε ⇀ v weakly in H1([0, t];L2(Ω;Rd))

}
.
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2 Finite-strain Poynting-Thomson model

Proof. Let (uε, vε)⇀ (u, v) weakly in H1(Ω;Rd)2 and assume without loss of generality that

sup
ε

(Wε
el(uε, vε) +Wε

vi(vε)) <∞.

Thanks to inequality (2.7.2) and [77, Lemma 4.2] we immediately handle the stored viscous
energy terms as∫

Ω

|∇v|2Cvi
dX ≤ lim inf

ε→0

∫
Ω

W ε
vi(∇vε)dX = lim inf

ε→0

1

ε2

∫
Ω

Wvi(I + ε∇vε)dX.

The treatment of the stored elastic energy term requires some steps. First, notice that,
since supεWε

vi(vε) < ∞, we have that I + ε∇vε ∈ K almost everywhere in Ω. Hence,
∥ε∇vε∥L∞(Ω) ≤ c uniformly in ε and (I + ε∇vε)−1 is bounded in L∞(Ω;Rd×d) by (2.4.18) as
well.

Let us then define the auxiliary tensor Zε as

Zε :=
1

ε

(
(I + ε∇vε)−1 − I + ε∇vε

)
= ε(I + ε∇vε)−1(∇vε)2

so that (I + ε∇vε)−1 = I − ε∇vε + εZε. Notice that ∥εZε∥L∞(Ω) ≤ c since ∥ε∇vε∥L∞(Ω) ≤ c.
Furthermore,

∥Zε∥L1(Ω) ≤ ε∥(I + ε∇vε)−1(∇vε)2∥L1(Ω) ≤ cε∥∇vε∥L2(Ω) ≤ cε.

Hence, Zε is bounded in L2(Ω;Rd×d) by interpolation, namely,

∥Zε∥L2(Ω) ≤ ∥εZε∥1/2L∞(Ω)

∥Zε∥1/2L1(Ω)

ε1/2
≤ c.

We therefore conclude that Zε ⇀ 0 weakly in L2(Ω;Rd×d).
Define now F ε

el := (I + ε∇uε)(I + ε∇vε)−1 and

Aε :=
F ε
el − I
ε

=
1

ε

(
(I + ε∇uε)(I + ε∇vε)−1 − I

)
.

We want to show that Aε ⇀ ∇u−∇v weakly in L2(Ω;Rd×d). Let us compute

Aε =
1

ε
((I + ε∇uε)(I − ε∇vε + εZε)− I) = ∇uε −∇vε + Zε − ε(∇uε∇vε −∇uεZε).

Since ∇uε − ∇vε ⇀ ∇u − ∇v and Zε ⇀ 0 weakly in L2(Ω;Rd×d), it remains to show that
Hε := ε(∇uε∇vε − ∇uεZε) ⇀ 0 weakly in L2(Ω;Rd×d). Notice that ∥Hε∥L2(Ω) ≤ c since
∇uε is bounded in L2(Ω;Rd×d) and ε∇vε and εZε are bounded in L∞(Ω;Rd×d). Moreover,
since ∇vε and Zε are bounded in L2(Ω;Rd×d), then ∥Hε∥L1(Ω) ≤ cε so that Hε ⇀ 0 weakly in
L2(Ω;Rd×d).

Hence, we have by (2.7.1) and [77, Lemma 4.2] that∫
Ω

|∇u−∇v|2Cel
dX ≤ lim inf

ε→0

∫
Ω

W ε
el(A

ε) dX

= lim inf
ε→0

1

ε2

∫
Ω

Wel

(
(I+ε∇uε)(I+ε∇vε)−1

)
dX.

Let (vε)ε be such that vε ⇀ v weakly in H1([0, t];L2(Ω;Rd)), and supεΨ
ε(vε, v̇ε) <∞. By

coercivity we have that (up to a non relabeled subsequence)∇v̇ε(I + ε∇vε)−1 ⇀ Y weakly in
L2(Ω). We want to identify the limit as Y = ∇v̇. First, notice that

∇v̇ε(I + ε∇vε)−1 −∇v̇ε = −ε∇v̇ε∇vε(I + ε∇vε)−1 =: Yε ⇀ 0 weakly in L2(Ω;Rd×d).

Indeed, ∥Yε∥L1(Ω) ≤ cε and ∥Yε∥L2(Ω) ≤ c. Then the Γ-lim inf inequality for the dissipation
term follows from (2.7.3) and [77, Lemma 4.2] applied on the domain [0, t]× Ω.
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2.7.3 Convergence of approximable solutions
Thanks to Lemma 2.7.1 and the energy inequality (2.4.22) we have

∥uε(t)∥2H1(Ω) ≤ c (1 + Eε(t, uε, vε)) ≤ c

(
1 + Eε(t, uε, vε) +

∫ t

0

Ψε(vε, v̇ε)

)
≤ c

(
1 + Eε(u0ε, v0ε) +

∫ t

0

⟨ℓ̇ε, uε⟩
)
. (2.7.4)

By the Gronwall Lemma [51, Lemma C.2.1, p. 534] this implies that ∥uε(t)∥H1(Ω) ≤ c for
every t ∈ [0, T ].

Concerning vε we similarly deduce from Lemma 2.7.1 that

∥vε(t)∥2H1(Ω) ≤ c (1 + Eε(t, uε, vε)) ≤ c

(
1 + Eε(u0ε, v0ε) +

∫ t

0

⟨ℓ̇ε, uε⟩
)

so that ∥vε(t)∥H1(Ω) ≤ c for every t ∈ [0, T ], as well.
Again, by Lemma 2.7.1 we have ∥∇v̇ε(t)∥2L2(Ω) ≤ cΨε(vε(t), v̇ε(t)) for every t ∈ [0, T ].

This yields ∫ t

0

∥∇v̇ε∥2L2(Ω) ≤ c

∫ t

0

Ψε(vε, v̇ε) ≤ c

(
1 + Eε(u0ε, v0ε) +

∫ t

0

⟨ℓ̇ε, uε⟩
)
,

hence, ∥∇v̇ε∥L2(0,T ;L2(Ω)) ≤ c. Therefore, up to a non relabeled subsequence, we find

vε(t)⇀ v(t) in H1(Ω;Rd), ∇v̇ε(t)⇀ ∇v̇(t) in L2(Ω;Rd×d)

for almost every t ∈ [0, T ]. Notice that, since Eε(t, uε(t), vε(t)) <∞ for every t ∈ [0, T ], from
assumption (L4) it follows I + ε∇vε ∈ K for almost every x ∈ Ω and for every t ∈ [0, T ].
In particular, ε∇vε are uniformly bounded. Since vε ∈ Aε by developing the determinant as a
third-order polynomial we get

1 = det(I + ε∇vε) = 1 + ε tr∇vε + ε2 tr(cof∇vε) + ε3 det∇vε + o(ε4).

By using ∥∇vε(t)∥L2(Ω) ≤ c and ε∥∇vε(t)∥L∞(Ω) ≤ c for a.e. t ∈ (0, T ) we hence conclude
that

∥ tr∇vε(t)∥L1(Ω) ≤ ε∥ tr(cof∇vε(t))∥L1(Ω) + ε2∥ det∇vε(t)∥L1(Ω) ≤ cε

for a.e. t ∈ (0, T ). By passing to the limit as ε→ 0, this ensures that tr∇v = 0 a.e.
Fix now t ∈ [0, T ]. By (2.7.4) we have

uε(t)⇀ u(t) in H1(Ω;Rd), (2.7.5)

where at this point the subsequence above may in general depend on t. However, we shall see
that this is not the case by uniqueness of the limit (see below).

The linearized energy inequality (2.4.24) follows immediately from the energy inequality
(2.4.22) at level ε, thanks to the lim inf-inequalities in Lemma 2.7.3 and to the continuity of ℓ̇.

The linearized semistability condition (2.4.25) on the other hand is more delicate, since it
requires passing to the lim sup on the right-hand side of the semistability condition (2.4.23)
by choosing a suitable recovery sequence ũε. In the following, we will drop the indication
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2 Finite-strain Poynting-Thomson model

of the time dependence (note that time is fixed in this statement) and simply denote uε(t) =
uε, vε(t) = vε, u(t) = u, and v(t) = v, to simplify notation.

We start by showing that, for all fixed û ∈ H1
ΓD

(Ω;Rd) one can choose a recovery sequence
(ũε)ε such that

0
(2.4.23)
≤ lim sup

ε→0
(Wε

el(ũε, vε)−Wε
el(uε, vε)) ≤ W0

el(û, v)−W0
el(u, v). (2.7.6)

With no loss of generality we can assume by density that û has the form

û := u+ ũ where ũ ∈ C∞
c (Ω;Rd).

As inequality (2.4.23) holds for every ũε such that (ũε, vε) ∈ Ãε, i.e., ũε ∈ H1
ΓD

(Ω;Rd), we
can choose

ũε := û+ uε − u = ũ+ uε.

Notice that we have

ũε − uε = ũ and ũε + uε = ũ+ 2uε ⇀ ũ+ 2u in H1(Ω;Rd). (2.7.7)

To check inequality (2.7.6) we need to show that

lim sup
ε→0

1

ε2

(∫
Ω

(
Wel((I + ε∇ũε)(I + ε∇vε)−1)−Wel((I + ε∇uε)(I + ε∇vε)−1)

)
dX

)
≤
∫
Ω

(
|∇(û− v)|2Cel

− |∇(u− v)|2Cel

)
dX. (2.7.8)

Let us first study the limiting behaviour of the arguments of these energy densities. We define
(I + ε∇ũε)(I + ε∇vε)−1 = I + εAε, namely

Aε :=
1

ε

(
(I + ε∇ũε)(I + ε∇vε)−1 − I

)
= (∇ũε −∇vε)− ε∇ũε∇vε + ε(I + ε∇ũε)(∇vε)2(I + ε∇vε)−1

= (∇ũε −∇vε)− ε∇ũε∇vε +Mε + ε∇ũεMε,

where we have set Mε := ε(∇vε)2(I + ε∇vε)−1. Similarly, we can write (I + ε∇uε)(I +
ε∇vε)−1 = I + εBε by letting

Bε :=
1

ε

(
(I + ε∇uε)(I + ε∇vε)−1 − I

)
= (∇uε −∇vε)− ε∇uε∇vε +Mε + ε∇uεMε.

Notice that by definition of Mε and the fact that I + ε∇vε ∈ K we have

∥εMε∥L∞(Ω) ≤ c, ∥Mε∥L1(Ω) ≤ cε∥(∇vε)∥L2(Ω) ≤ cε.

This implies by interpolation that Mε is also bounded in L2(Ω;Rd×d), hence Mε ⇀ 0 weakly
in L2(Ω;Rd×d). Then, we have

Aε−Bε = (∇ũε−uε)(I−ε∇vε+εMε)
(2.7.7)
= ∇ũ+∇ũ(−ε∇vε+εMε)→ ∇ũ strongly in L2(Ω;Rd×d),

since ∇ũ ∈ C∞
c (Ω;Rd×d) is bounded in L∞(Ω;Rd×d) and (−ε∇vε + εMε) → 0 strongly in

L2(Ω;Rd×d). Moreover, by recalling (2.7.7) we have that

Aε+Bε = (∇ũε+uε)(I−ε∇vε+εMε)−2(∇vε−Mε)⇀ ∇ũ+2∇u−2∇v weakly in L2(Ω;Rd×d).
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2.7 Linearization: Proof of Theorem 2.4.2

Fix now δ > 0 and let cel(δ) be as in assumption (2.4.15). Let us define the set

Ωδ
ε := {x ∈ Ω | ε|Aε|+ ε|Bε| ≤ cel(δ)}

containing all points where ε|Aε| and ε|Bε| are small. Notice that

|Ω \ Ωδ
ε| =

∫
Ω\Ωδε

1dX ≤ ε2

c2el(δ)

∫
Ω

(|Aε|+ |Bε|)2 dX ≤ c
ε2

c2el(δ)
→ 0 as ε→ 0 (2.7.9)

since Aε and Bε are bounded in L2(Ω;Rd×d). We split the integrals in the left-hand side of
(2.7.8) in the sum of the integrals on the sets Ωδ

ε and on the complementary sets Ω \ Ωδ
ε. By

using assumption (2.4.15), on the sets Ωδ
ε we have

1

ε2

∫
Ωδε

(W el(I + εAε)−W el(I + εBε)) dX

≤
∫
Ω

(
|Aε|2Cel

− |Bε|2Cel
+ δ(|Aε|2Cel

+ |Bε|2Cel
)
)
dX. (2.7.10)

The first term in the right-hand side above can be treated as follows∫
Ω

(
|Aε|2Cel

− |Bε|2Cel
)
)
dX =

1

2

∫
Ω

Cel(Aε +Bε) : (Aε −Bε))dX

→ 1

2

∫
Ω

Cel((∇û−∇v)+(∇u−∇v)):((∇û−∇v)−(∇u−∇v))dX

=

∫
Ω

(
|∇(û− v)|2Cel

− |∇(u− v)|2Cel

)
dX

by means of the strong convergence ofAε−Bε → ∇ũ and the weak convergence ofAε+Bε ⇀
∇ũ + 2∇u − 2∇v in L2(Ω;Rd×d). On the other hand, the second term in the right-hand side
of (2.7.10) satisfies ∫

Ω

δ(|Aε|2Cel
+ |Bε|2Cel

)dX ≤ δc

since Aε and Bε are bounded in L2(Ω;Rd×d).
Hence, it remains to show that the integrals in (2.7.8) on the complements Ω \ Ωδ

ε converge
to 0 as ε→ 0. In order to do so, let us define

F1 := (I + ε∇uε)(I + ε∇vε)−1 F2 := ∇ũ(I + ε∇vε)−1.

Since by definition∇ũε = ∇ũ+∇uε and W is locally Lipschitz, we can write

1

ε2

∫
Ω\Ωδε

(
Wel((I + ε∇ũε)(I + ε∇vε)−1)−Wel((I + ε∇uε)(I + ε∇vε)−1)

)
dX

=
1

ε2

∫
Ω\Ωδε
|Wel(F1 + εF2)−Wel(F1)|dX ≤

1

ε2

∫
Ω\Ωδε

ε|F2|dX

(2.7.9)
≤ c

ε2
ε2

c2el(δ)
ε→ 0,

where we used that F2 is uniformly bounded in L∞(Ω;Rd×d). This concludes the proof of
inequality (2.7.8). The check of linearized semistability (2.4.25) then follows as soon as one
passes to the limit in the loading terms, which is straightforward.
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2 Finite-strain Poynting-Thomson model

In particular, we have proved that u solves the linear minimization problem

W0
el(u(t), v(t))− ⟨ℓ0(t), u(t)⟩ = argmin

û∈H1
ΓD

(Ω;Rd)
W0

el(û, v(t))− ⟨ℓ0(t), û⟩

for given v, thanks to (2.4.25). Hence, the limit u is unique and measurable in time, since it is
the image of v through a linear operator. We also remark that this implies that subsequences in
(2.7.5) can be chosen independently of t.
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projects I4354 and P32788.

54



3 Viscoelasticity and accretive
phase-change at finite strains

This chapter consists of my publication [16] with ULISSE STEFANELLI.

Abstract
We investigate the evolution of a two-phase viscoelastic material at finite strains. The phase
evolution is assumed to be irreversible: One phase accretes in time in its normal direction, at
the expense of the other. Mechanical response depends on the phase. At the same time, growth
is influenced by the mechanical state at the boundary of the accreting phase, making the model
fully coupled. This setting is inspired by the early stage development of solid tumors, as well as
by the swelling of polymer gels. We formulate the evolution problem by coupling the balance
of momenta in weak form and the growth dynamics in the viscosity sense. Both a diffused-
and a sharp-interface variant of the model are proved to admit solutions and the sharp-interface
limit is investigated.

3.1 Introduction

This paper is concerned with the evolution of a viscoelastic compressible solid undergoing
phase change. We assume that the material presents two phases, of which one grows at the
expense of the other by accretion. In particular, the phase-transition front evolves in a nor-
mal direction to the accreting phase, with a growth rate depending on the deformation. This
behavior is indeed common to different material systems. It may be observed in the early stage
development of solid tumors [9, 52, 106], where the neoplastic tissue invades the healthy one.
Swelling in polymer gels also follows a similar dynamics, with the swollen phase accreting in
the dry one [57, 98] and causing a volume increase. Accretive growth can be observed in some
solidification processes [87, 102], as well.

The focus of the modelization is on describing the interplay between mechanical deformation
and accretion. On the one hand, the two phases are assumed to have a different mechanical
response, having an effect on the viscoelastic evolution of the medium. On the other hand,
the time-dependent mechanical deformation is assumed to influence the growth process, as
is indeed common in biomaterials [38], polymeric gels [107], and solidification [90]. The
mechanical and phase evolutions are thus fully coupled.

The state of the system is described by the pair (y, θ) : [0, T ]×U → Rd×[0,∞), where T > 0
is some final time and U ⊂ Rd (d ≥ 2) is the reference configuration of the body. Here, y is the
deformation of the medium while θ determines its phase. More precisely, for all t ∈ [0, T ] the
accreting (growing) phase is identified as the sublevel Ω(t) := {x ∈ U | θ(x) < t}, whereas
the receding phase corresponds to U \ Ω(t). The value θ(x) formally corresponds to the time
at which the point x ∈ U is added to the growing phase. As such, θ is usually referred to as
time-of-attachment function. An illustration of the notation is given in Figure 3.1.

As growth processes and mechanical equilibration typically occur on very different time
scales, we neglect inertial effects and assume the evolution to be viscoelastic. This calls for
specifying the stored energy density W (θ(x)−t,∇y) and the viscosity R(θ(x)−t,∇y,∇ẏ) of
the medium, as well as the applied body forces f(θ(x)−t, x). All these quantities are assumed
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3 Viscoelasticity and accretive phase-change

U\Ω(t)

Ω0

Ωt

ΓD

ΓN ΓN

ΓN

f

n

y(U\Ω(t)

ΓD

y(Ωt)

y(U)y

Figure 3.1: Illustration of the notation in the reference domain (left) and in the deformed one
(right).

to be dependent on the phase via the sign of θ(x)−t, which indeed distinguishes the two
phases, in the spirit of the celebrated level-set method [82, 91]. In addition, we include a
second-gradient regularization term in the energy of the form H(∇2y), which we take to be
phase independent, for simplicity. All in all, the viscoelastic evolution system takes the form

− div
(
∂∇yW (θ(x)−t,∇y) + ∂∇ẏR(θ(x)−t,∇y,∇ẏ)− divDH(∇2y)

)
= f(θ(x)−t, x).

(3.1.1)
This system is solved weakly, complemented by mixed boundary conditions on y and a homo-
geneous natural condition on the hyperstress DH(∇2y), namely,

y = id on [0, T ]× ΓD, (3.1.2)
DH(∇2y):(ν ⊗ ν) = 0 on [0, T ]× ∂U, (3.1.3)
(∂∇yW (θ(x)−t,∇y)+∂∇ẏRε(θ(x)−t,∇y,∇ẏ)) ν
− divS (DH(∇2y)ν) = 0 on [0, T ]× ΓN , (3.1.4)

where ν is the outer unit normal to ∂U , ΓD and ΓN are the Dirichlet and Neumann part of the
boundary ∂U , respectively, and divS denotes the surface divergence on ∂U [75].

The viscoelastic evolution system is coupled to the phase evolution by requiring that the
time-of-attachment function θ solves the generalized eikonal equation

γ
(
y(θ(x) ∧ T, x),∇y(θ(x) ∧ T, x)

)
|∇(−θ)(x)| = 1 (3.1.5)

for all x in the complement of a given initial set Ω0 ⊂⊂ U where we set θ = 0. This corre-
sponds to assuming that Ω(t) accretes in its normal direction, with growth rate γ(·) > 0. More
precisely, the evolution of the generic point x(t) on the boundary ∂Ω(t) follows the ODE flow

d

dt
x(t) = γ

(
y(t, x(t)),∇y(t, x(t))

)
ν(x(t))

where ν(x(t)) indicates the normal to ∂Ω(t) at x(t). Accretive growth is paramount to a wealth
of different biological models [97], including plants and trees [27, 31] and the formation of
hard tissues like horns or shells [78, 93, 99]. The dependence of the growth rate γ on the
actual position and strain is intended to model the possible influence of local features such
as nutrient concentrations, as well as of the local mechanical state [38]. Note that accretive
growth occurs in a variety of nonbiological systems, as well. These include crystallization
[53, 105], sedimentation of rocks [35], glacier formation, accretion of celestial bodies [12], as
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3.1 Introduction

well as technological applications, from epitaxial deposition [62], to coating, masonry, and 3D
printing [37, 56], just to mention a few.

By assuming smoothness and differentiating the equation θ(x(t)) = t in time, one obtains
the identity∇θ(x(t))· d

dt
x(t) = 1. This, together with the above flow rule for x(t) and the

expression for the normal of the θ-sublevel sets ν(x(t)) = ∇θ(x(t))/|∇θ(x(t))|, originates
the generalized eikonal equation (3.1.5). As the growth rate γ in (3.1.5) depends on the actual
deformation y(θ(x)∧T, x) and strain∇y(θ(x)∧T, x) at the growing interface, system (3.1.1)–
(3.1.5) is fully coupled.

We specify the initial conditions for the system by setting

θ = 0 on Ω0, (3.1.6)
y(0, ·) = y0 on U, (3.1.7)

where the initial deformation y0 and the initial portion of the growing phase Ω0 are given. Note
that Ω0 is not required to be connected, in order to possibly model the onset of the accreting
phase at different sites. On the other hand, the evolution described by (3.1.5) does not preserve
the topology and disconnected accreting regions may eventually coalesce over time.

The aim of this paper is to present an existence theory to the initial and boundary value
problem (3.1.1)–(3.1.7). We tackle both a sharp-interface and a diffused-interface version of
the model, by tuning the assumptions onW andR, see Sections 3.2.2–3.2.3. More precisely, in
the diffused-interface model we assume that energy and dissipation densities change smoothly
as functions of the phase indicator θ(x)−t across a region of width ε > 0, namely for −ε/2 <
θ(x)− t < ε/2. On the contrary, in the sharp-interface case material potentials are assumed to
be discontinuous across the phase-change surface {θ(x) = t}.

In both regimes, we prove that the fully coupled system (3.1.1)–(3.1.7) admits a weak/viscosity
solution, see Definition 3.2.1 below. More precisely, the viscous evolution (3.1.1)–(3.1.4) is
solved weakly, whereas the growth dynamics equation (3.1.5) is solved in the viscosity sense,
see Theorem 3.2.1. We moreover prove that solutions fulfill the energy equality, where the
energetic contribution of the phase transition is characterized, see Proposition 3.2.1. As a by-
product, solutions of the diffused-interface model for ε > 0 are proved to converge up to
subsequences to solutions of the sharp-interface model as the parameter ε converges to 0, see
Corollary 3.2.1.

Before going on, let us mention that the engineering literature on growth mechanics is vast.
Without any claim of completeness, we mention [94, 108] and [65, 79, 80, 95, 100] as examples
of linearized and finite-strain theories, respectively. On the other hand, mathematical existence
theories in growth mechanics are scant, and we refer to [6, 23, 36] for some recent results. To
the best of our knowledge, no existence result for finite-strain accretive-growth mechanics is
currently available. In the linearized case, an existence result for the model [108] has been
obtained in [24].

The paper is structured as follows. Section 3.2 is devoted to the statement of the main exis-
tence result, Theorem 3.2.1. In Section 3.3, we give the proof of the energy identity. The proof
of Theorem 3.2.1 is then split in Sections 3.4 and 3.5, respectively focusing on the diffused-
interface and the sharp-interface setting. In the diffused-interface case, the proof relies on an
iterative construction, where the mechanical and the growth problems are solved in alternation.
The existence proof for the sharp-interface model is obtained by taking the limit as ε → 0 in
the diffused-interface model.
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3 Viscoelasticity and accretive phase-change

3.2 Main results

In this section, we specify assumptions, introduce the weak/viscosity notion of solution, and
state the main results for problem (3.1.1)–(3.1.7).

3.2.1 Admissible deformations
Fix the final time T > 0 and let the reference configurationU ⊂ Rd (d ≥ 2) be nonempty, open,
connected, and bounded. We assume that the boundary ∂U is Lipschitz, with ΓD, ΓN ⊂ ∂U
disjoint and open in the topology of ∂U , ΓD ̸= ∅ and ΓD ∪ ΓN = ∂U , where the closure is
taken in the topology of ∂U . In the following, we use the short-hand notation Q := (0, T )× U
and ΣD := (0, T )× ΓD.

Deformations are assumed to belong to the affine space

W 2,p
ΓD

(U ;Rd) :=
{
y ∈ W 2,p(U ;Rd) | y = id on ΓD

}
,

for almost all times and some given
p > d.

Moreover, we impose local invertibility and orientation preservation. The set of admissible
deformations is hence defined as

A :=
{
y ∈ W 2,p

ΓD
(U ;Rd)

∣∣∣ ∇y ∈ GL+(d) a.e. in U
}
.

3.2.2 Elastic energy
Let ε ≥ 0 be given and hε ∈ C∞(R; [0, 1]) for ε > 0 be nondecreasing functions such that

hε(σ) =

{
0 if σ ≤ −ε/2,
1 if σ ≥ ε/2,

∥h′ε∥L∞(R) ≤
2

ε
. (3.2.1)

Moreover, let h0 be the discontinuous Heaviside-like function defined as h0(σ) = 0 if σ < 0
and h0(σ) = 1 if σ ≥ 0. Note that hε → h0 in R \ {0} as ε→ 0.

We define the elastic energy density Wε : R×GL+(d)→ [0,∞) of the medium
as

Wε(σ, F ) := (1− hε(σ))V a(F ) + hε(σ)V
r(F ) + V J(F ). (3.2.2)

Here, σ is a placeholder for θ(x)−t, whose 0-sublevel set {x ∈ U | θ(x) < t} represents the
accreting phase at time t > 0. In particular,Wε(σ, ·) = V a+V J for σ < −ε/2, so that V a+V J

is the elastic energy density of the accreting phase. On the other hand, Wε(σ, ·) = V r + V J for
σ > ε/2 and V r + V J is the elastic energy density of the receding phase.

On the elastic energy densities we require

V a, V r, V J ∈ C1(GL+(d); [0,∞)), (3.2.3)

∃cW > 0 : V a(F ), V r(F ) ≥ cW |F |p −
1

cW
,

V a(F )− V r(F ) ≤ 1

cW
(1 + |F |p) ∀F ∈ GL+(d), (3.2.4)

∃q > pd

p− d
: V J(F ) ≥ cW

(detF )q
. (3.2.5)
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3.2 Main results

The upper bound on V a − V r in (3.2.4) will be instrumental in order to prove a control on
the power associated with the phase transformation. In particular, if the receding phase has a
higher energy density, namely, V r ≥ V a, such upper bound trivially holds.

Although not strictly needed for the analysis we also require the frame indifference

V a(QF ) = V a(F ), V r(QF ) = V r(F ), V J(QF ) = V J(F ) ∀F ∈ GL+(d), Q ∈ SO(d).
(3.2.6)

As regards the second-order potential H we ask for

H ∈ C1(Rd×d×d; [0,∞)) convex, (3.2.7)

H(QG) = H(G) for all G ∈ Rd×d×d, Q ∈ SO(d), (3.2.8)

∃cH > 0 : cH |G|p ≤ H(G) ≤ 1

cH
(1 + |G|)p, |DH(G)| ≤ 1

cH
|G|p−1, (3.2.9)

cH |G− Ĝ|p ≤ (DH(G)−DH(Ĝ))
...(G− Ĝ) ∀G, Ĝ ∈ Rd×d×d. (3.2.10)

Again, the frame-indifference requirement (3.2.8) is not strictly needed for the analysis.
By integrating over the reference configuration U we defineWε : C(U) × A → [0,∞) and
H : A → [0,∞) as

Wε(σ, y) :=

∫
U

Wε(σ,∇y) dx and H(y) :=
∫
U

H(∇2y) dx.

3.2.3 Viscous dissipation
For ε ≥ 0 given, set the instantaneous viscous dissipation density Rε : R×GL+(d)×Rd×d →
[0,∞) as

Rε(σ, F, Ḟ ) := (1− hε(σ))Ra(F, Ḟ ) + hε(σ)R
r(F, Ḟ ) (3.2.11)

Here, Ra, Rr : GL+(d) × Rd×d → [0,∞) are the instantaneous viscous dissipation densities
of the accreting and of the receding phase, respectively. They are assumed to be quadratic in
the rate Ċ := Ḟ⊤F + F⊤Ḟ of the right Cauchy–Green tensor C := F⊤F , namely

Ra(F, Ḟ ) :=
1

2
Ċ:Da(C):Ċ, Rr(F, Ḟ ) :=

1

2
Ċ:Dr(C):Ċ ∀F ∈ GL+(d), Ḟ ∈ Rd×d.

We assume that

Da, Dr ∈ C(Rd×d
sym;Rd×d×d×d) with (Di)jkℓm = (Di)kjℓm = (Di)ℓmjk

∀j, k, ℓ, m = 1, . . . , d, for i = a, r, (3.2.12)

∃cD > 0 : cD|Ċ|2 ≤ Ċ:Di(C):Ċ ∀C, Ċ ∈ Rd×d
sym, for i = a, r. (3.2.13)

Notice that this specific choice of Rε ensures that

∂ḞRε(σ, F, Ḟ ) = 2(1−hε(σ))FDa(C):Ċ + 2hε(σ)FDr(C):Ċ

= 2(1−hε(σ))FDa(F⊤F ):(Ḟ⊤F+F⊤Ḟ ) + 2hε(σ)FDr(F⊤F ):(Ḟ⊤F+F⊤Ḟ ),

which is of course linear in Ḟ . By integrating on the reference configuration U we define
Rε : C(U)×A×H1(U ;Rd)→ [0,∞) as

Rε(σ, y, ẏ) :=

∫
U

Rε(σ,∇y,∇ẏ) dx.
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3 Viscoelasticity and accretive phase-change

3.2.4 Loading and initial data
We assume that the body force density f = f(σ, x) is (constant in time and) suitably smooth
with respect to σ, namely

f ∈ W 1,∞(R;L2(U ;Rd)), (3.2.14)

The σ-dependence of the force density f is intended to cover the case of gravitation f = ρg,
where the density ρ depends on the phase, while the acceleration field g is given.

We moreover assume that the initial deformation y0 satisfies

y0 ∈ A with
∫
U

V a(∇y0) + V r(∇y0) + V J(∇y0) +H(∇2y0) dx <∞. (3.2.15)

3.2.5 Growth
Concerning the accretive-growth model we ask for

γ ∈ C0,1(Rd ×GL+(d)) with cγ ≤ γ(·) ≤ Cγ for some 0 < cγ ≤ Cγ. (3.2.16)

Let moreover the initial location of the accreting phase be given by

∅ ≠ Ω0 ⊂⊂ U with Ω0 open and Ω0 +BCγT ⊂⊂ U. (3.2.17)

As it will be clarified later, this last requirement guarantees that the accreting phase does not
touch the boundary ∂U over the time interval [0, T ], see (3.4.25) below.

3.2.6 Main results
Assumptions (3.2.1)–(3.2.17) will be assumed throughout the remainder of the paper. We are
interested in solving (3.1.1)–(3.1.7) in the following weak/viscosity sense.

Definition 3.2.1 (Weak/viscosity solution). We say that a pair

(y, θ) ∈
(
L∞(0, T ;W 2,p(U ;Rd)) ∩H1(0, T ;H1(U ;Rd))

)
× C0,1(U)

is a weak/viscosity solution to the initial-boundary-value problem (3.1.1)–(3.1.7) if y(t, ·) ∈ A
for all t ∈ (0, T ), y(0, ·) = y0, and∫ T

0

∫
U

(
∂FWε(θ−t,∇y):∇z+∂ḞRε(θ−t,∇y,∇ẏ):∇z +DH

(
∇2y

) ...∇2z
)
dx dt

=

∫ T

0

∫
U

f(θ−t)·z dx dt ∀z ∈ C∞(Q;Rd) with z = 0 on ΣD, (3.2.18)

and θ is a viscosity solution to

γ
(
y(θ(x) ∧ T, x),∇y(θ(x) ∧ T, x)

)
|∇(−θ)(x)| = 1 in U \ Ω0, (3.2.19)

θ = 0 in Ω0. (3.2.20)

Namely, θ satisfies (3.2.20), and, for all x0 ∈ U \Ω0 and any smooth function φ : U → R with
φ(x0) = −θ(x0) and φ ≥ −θ (φ ≤ −θ, respectively) in a neighborhood of x0, it holds that
γ(y(θ(x0) ∧ T, x0),∇y(θ(x0) ∧ T, x0))|∇φ(x0))| ≤ 1(≥ 1, respectively). Moreover, we ask
that

0 <
1

Cγ
≤ |∇θ| ≤ 1

cγ
a.e. in U. (3.2.21)
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3.2 Main results

Note that this weak notion of solution in Definition 3.2.1 still entails the validity of an energy
equality. Namely, we have the following.

Proposition 3.2.1 (Energy equality). Under assumptions (3.2.1)–(3.2.17), in the diffused-interface
case ε > 0 a weak/viscosity solution (y, θ) fulfills for all t ∈ [0, T ] the energy equality∫
U

(
Wε(θ−t,∇y) +H(∇2y)− f(θ−t)·y

)
dx−

∫
U

(
Wε(θ,∇y0) +H(∇2y0)− f(θ)·y0

)
dx

= −2
∫ t

0

∫
U

Rε (θ−s,∇y,∇ẏ) dx ds−
∫ t

0

∫
U

ḟ(θ−s)·y dx ds

−
∫ t

0

∫
U

∂σWε(θ−s,∇y) dx ds. (3.2.22)

In the sharp-interface case ε = 0, for all t ∈ [0, T ], one has instead∫
U

(
W0(θ−t,∇y) +H(∇2y)− f(θ−t)·y

)
dx−

∫
U

(
W0(θ,∇y0) +H(∇2y0)− f(θ)·y0

)
dx

= −2
∫ t

0

∫
U

R0 (θ−s,∇y,∇ẏ) dx ds−
∫ t

0

∫
U

ḟ(θ−s)·y dx ds

−
∫ t

0

∫
{θ=s}

V r(∇y)− V a(∇y)
|∇θ|

dHd−1 ds. (3.2.23)

Relations (3.2.22)–(3.2.23) express the energy balance in the model. In particular, the dif-
ference between the actual and the initial complementary energies (left-hand side in (3.2.22)–
(3.2.23)) equals the sum of the total viscous dissipation, the work of external forces, and the
energy stored in the medium in connection with the phase-transition process (the three terms
in the right-hand side of (3.2.22)–(3.2.23), up to signs). Proposition 3.2.1 is proved in Section
3.3.

Our main result reads as follows.

Theorem 3.2.1 (Existence). Under assumptions (3.2.1)–(3.2.17), for all given ε ≥ 0 there
exists a weak/viscosity solution (y, θ) of problem (3.1.1)–(3.1.7).

A proof of Theorem 3.2.1 in the diffused-interface case of ε > 0 is based on an iterative
strategy: for given yk one finds a viscosity solution θk to (3.2.19)–(3.2.20) (with y replaced by
yk). Then, given θk one can find yk+1 satisfying (3.2.18) (with θ replaced by θk). Note that
such yk+1 may be nonunique. As the set of solutions y for given θ is generally not convex,
we do not proceed via a fixed-point argument for multivalued maps (see, e.g., [47]) but rather
resort in directly proving the convergence of the iterative procedure. This argument is detailed
in Section 3.4.

Eventually, the proof of Theorem 3.2.1 in the sharp-interface case ε = 0 will be obtained in
Section 3.5 by passing to the limit as ε → 0 along a subsequence of weak/viscosity solutions
(yε, θε) for ε > 0. As a by-product, we have the following.

Corollary 3.2.1 (Sharp-interface limit). Under assumptions (3.2.1)–(3.2.17), let (yε, θε) be
weak/viscosity solutions of the diffused-interface problem (3.1.1)–(3.1.7) for ε > 0. Then,
there exists a not relabeled subsequence such that (yε, θε)→ (y, θ) uniformly, where (y, θ) is a
weak/viscosity solution to the sharp-interface problem for ε = 0.
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Before moving on, let us mention that the assumptions on the energy and of the instantaneous
viscous dissipation density could be generalized by not requiring the specific forms (3.2.2) and
(3.2.11). In fact, one could directly assume to be given Wε = Wε(σ, F ) and Rε = Rε(σ, F, Ḟ )
of the form

Rε(σ, F, Ḟ ) =
1

2
Ċ:D(σ,C):Ċ

with D ∈ C(R×Rd×d
sym;Rd×d×d×d) by suitably adapting the smoothness and coercivity assump-

tions. Although the existence analysis could be carried out in this more general situation with
no difficulties, we prefer to stick to the concrete choice of (3.2.2) and (3.2.11) as it allows a
more transparent distinction of the diffused- and sharp-interface cases.

Moreover, let us point out that admissible deformations y are presently required to be solely
locally injective, by means of the constraint det∇y > 0. On the other hand, global injectivity
may also be enforced, in the spirit of [48], see also [83] in the static and [13, 14] in the dynamic
case. This however calls for keeping track of reaction forces due to a possible self contact at
the boundary ΓN . From the technical viewpoint, one would need to include an extra variable
in the state in order to model such reaction. The existence theory of Theorem 3.2.1 can be
extended to cover this case, at the price of some notational intricacies. We however prefer to
avoid discussing global injectivity here, for the sake of exposition clarity.

3.3 Proof of Proposition 3.2.1: energy equalities

We firstly consider the diffused-interface setting of ε > 0. Let (y, θ) be a weak/viscosity
solution to (3.1.1)–(3.1.7). In order to deduce the energy equality, the Euler-Lagrange equation
(3.2.18) should be tested by ẏ. This however requires some care, as ẏ is not regular enough to
use it as test function. We follow the argument of [75], based on the validity of a chain rule for
the functionalH. In particular, we start by checking that (3.2.18) can be equivalently rewritten
as

∂2Wε(θ−t, y) + ∂3Rε(θ−t, y, ẏ) + ∂H(y) ∋ f̂ in (H1
ΓD

(U ;Rd))∗, a.e. in (0, T ). (3.3.1)

Here, (H1
ΓD

(U ;Rd))∗ indicates the dual of H1
ΓD

(U ;Rd) := {z ∈ H1(U ;Rd) | z = 0 on ΓD},
the symbol ∂ denotes the (possibly partial) subdifferential from H1

ΓD
(U ;Rd) to (H1

ΓD
(U ;Rd))∗

and f̂ : (0, T )→ (H1
ΓD

(U ;Rd))∗ is given by

⟨f̂(t), z⟩ :=
∫
U

f(σ−t)·z dx ∀z ∈ H1
ΓD

(U ;Rd)

where ⟨·, ·⟩ is the duality pairing between (H1
ΓD

(U ;Rd))∗ and H1
ΓD

(U ;Rd). Indeed, owing to
the fact that ∇y ∈ L∞(Q) and ∇ẏ ∈ L2(Q) and using the regularities (3.2.3), (3.2.12), and
(3.2.14) one can check that

⟨∂2Wε(θ−t, y), z⟩ =
∫
U

∂FWε(θ−t,∇y):∇z ∀z ∈ H1
ΓD

(U ;Rd),

⟨∂3Rε(θ−t, y, ẏ), z⟩ =
∫
U

∂ḞRε(θ−t,∇y,∇ẏ):∇z ∀z ∈ H1
ΓD

(U ;Rd),

and that Σ = f̂ − ∂2Wε(θ−t, y) − ∂3Rε(θ−t, y, ẏ) ∈ L2(0, T ; (H1
ΓD

(U ;Rd))∗). On the other
hand, using equation (3.2.18), the fact that y ∈ Lp(0, T ;W 2,p(Ω;Rd)), and the convexity (3.2.7)
of H we get∫ T

0

⟨Σ, w − y⟩ dt (3.2.18)
=

∫ T

0

∫
U

DH(∇2y)
...∇2(w − y) dt ≤

∫ T

0

(
H(w)−H(y)

)
dt
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for all w ∈ Lp(0, T ;W 2,p(Ω;Rd)) ∩ L2(0, T ;H1
ΓD

(U ;Rd)). This in particular implies that
Σ ∈ ∂H(y) a.e. in (0, T ), whence the abstract equation (3.3.1) follows and the chain rule [75,
Prop. 3.6] entails thatH(y) ∈ W 1,1(0, T ) and

d

dt
H(y) = ⟨Σ, ẏ⟩ a.e. in (0, T ). (3.3.2)

Note that all terms in (3.3.1) belong to L2(0, T ; (H1
ΓD

(U ;Rd))∗). One can hence test (3.3.1) on
ẏ ∈ L2(0, T ;H1

ΓD
(U ;Rd)) and deduce that∫ t

0

∫
U

∂FWε(θ−s,∇y):∇ẏ dx ds+
∫ t

0

∫
U

∂ḞRε(θ−s,∇y,∇ẏ):∇ẏ dx ds

+

∫
U

H(∇2y(t)) dx−
∫
U

H(∇2y0) dx =

∫ t

0

∫
U

f(θ−s)·ẏ dx ds. (3.3.3)

We readily have that∫
U

Wε(θ−t,∇y) dx−
∫
U

Wε(θ,∇y0) dx =

∫ t

0

d

ds

∫
U

∂FWε(θ−s,∇y) dx ds

=

∫ t

0

∫
U

∂FWε(θ−s,∇y):∇ẏ dx ds−
∫ t

0

∫
U

∂σWε(θ−s,∇y) dx ds. (3.3.4)

Moreover, it is a standard matter to check that ∂ḞRε(σ, F, Ḟ ):Ḟ = 2Rε(σ, F, Ḟ ), so that∫ t

0

∫
U

∂ḞRε(θ−s,∇y,∇ẏ):∇ẏ dx ds = 2

∫ t

0

∫
U

Rε(θ−s,∇y,∇ẏ) dx ds, (3.3.5)

whence the energy equality (3.2.22) in the diffused-interface case ε > 0 follows from (3.3.3).
The proof of energy equality (3.2.23) for the sharp-interface case ε = 0 follows the same

strategy, as one can again establish (3.3.3) (for W0 and R0 in place of Wε and Rε) and (3.3.2).
A notable difference is however in (3.3.4), which now requires some extra care as h0 is discon-
tinuous. In particular, the energy equality (3.2.23) follows as soon as we prove that∫

U

W0(θ−t,∇y) dx−
∫
U

W0(θ,∇y0) dx

=

∫ t

0

∫
U

∂FW0(θ−s,∇y):∇ẏ dx ds−
∫ t

0

∫
{θ=s}

V r(∇y)− V a(∇y)
|∇θ|

dHd−1 ds. (3.3.6)

The remainder of this section is devoted to check (3.3.6).
To start with, let a nonnegative and even function ρ ∈ C∞(R) be given with support in [−1, 1]

and with
∫
R ρ(s) ds = 1. For ε > 0 we define ρε(t) := ρ(t/ε)/ε and ηε(t) :=

∫ t
−1
ρε(s) ds for

all t ∈ R. As ηε → h0 in R \ {0}, by letting

Gε(t) :=

∫
U

(
V a(∇y(t, x))+ηε(θ(x)−t)

(
V r(∇y(t, x))−V a(∇y(t, x))

)
+V J(∇y(t, x))

)
dx

we readily check that

lim
ε→0

Gε(t) :=

∫
U

W0(θ(x)−t,∇y(t, x)) dx (3.3.7)
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for all t ∈ [0, T ]. As Gε ∈ H1(0, T ) we can compute its time derivative at almost all times
getting

d

dt
Gε(t) =

∫
U

(
∂FV

a(∇y) + ηε(θ−t)
(
∂FV

r(∇y)−∂FV a(∇y)
)
+ ∂FV

J(∇y)
)
:∇ẏ dx

−
∫
U

ρε(θ−t)
(
V r(∇y)−V a(∇y)

)
dx.

By integrating in time, taking the limit ε→ 0, and using (3.3.7), one hence gets∫
U

W0(θ−t,∇y) dx−
∫
U

W0(θ,∇y0) dx = lim
ε→0

(
Gε(t)−Gε(0)

)
= lim

ε→0

∫ t

0

d

ds
Gε(s) ds

= lim
ε→0

∫ t

0

∫
U

(
∂FV

a(∇y) + ηε(θ−s)
(
∂FV

r(∇y)−∂FV a(∇y)
)
+ ∂FV

J(∇y)
)
:∇ẏ dx ds

− lim
ε→0

∫ t

0

∫
U

ρε(θ−s)
(
V r(∇y)−V a(∇y)

)
dx ds

=

∫ t

0

∫
U

∂FW0(θ−s,∇y):∇ẏ dx ds− lim
ε→0

∫ t

0

∫
U

ρε(θ−s)
(
V r(∇y)−V a(∇y)

)
dx ds.

In order to prove (3.3.6) it is hence sufficient to check that

lim
ε→0

∫ t

0

∫
U

ρε(θ−s)
(
V r(∇y)−V a(∇y)

)
dx ds =

∫ t

0

∫
{θ=s}

V r(∇y)−V a(∇y)
|∇θ|

dHd−1 ds.

(3.3.8)

By introducing the short-hand notation g = V r(∇y) − V a(∇y) and by using the coarea for-
mula [29, Sec. 3.2.11] (recall that θ is Lipschitz continuous and |∇θ| ≥ 1/Cγ > 0 almost
everywhere, see (3.2.21)) we can compute∫ t

0

∫
U

ρε(θ−s)
(
V r(∇y)−V a(∇y)

)
dx ds =

∫ t

0

∫
R

∫
{θ=r}

ρε(θ(x)−s)
g(s, x)

|∇θ(x)|
dHd−1(x) dr ds

=

∫ t

0

∫
R

∫
{θ=r}

ρε(r−s)
g(r, x)

|∇θ(x)|
dHd−1(x) dr ds

+

∫ t

0

∫
R

∫
{θ=r}

ρε(r−s)
g(s, x)−g(r, x)
|∇θ(x)|

dHd−1(x) dr ds. (3.3.9)

The coarea formula and the bound |∇θ| ≤ 1/cγ (see again (3.2.21)) ensure that r ∈ R 7→
m(r) := Hd−1({θ = r}) is integrable. Indeed,

∥m∥L1(R) =

∫
R
Hd−1({θ = r}) dr =

∫
U

|∇θ| dx <∞.

As g/|∇θ| is bounded, setting

r ∈ R 7→ ℓ(r) :=

∫
{θ=r}

g(r, x)

|∇θ(x)|
dHd−1(x)

one has that ℓ ∈ L1(R), as well, since

∥ℓ∥L1(R) =

∫
R

∫
θ=r

|g(r, x)|
|∇θ(x)|

dHd−1(x) dr ≤ sup
|g|
|∇θ|
∥m∥L1(R) <∞.
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Moreover, we have that∫
R

∫
{θ=r}

ρε(r−s)
g(r, x)

|∇θ(x)|
dHd−1(x) dr

=

∫
R
ρε(s−r)

(∫
{θ=r}

g(r, x)

|∇θ(x)|
dHd−1(x)

)
dr = (ρε ∗ ℓ)(s)

where we used that ρε is even and where the symbol ∗ stands for the usual convolution in R.
As ρε ∗ ℓ → ℓ strongly in L1(R) for ε → 0, one can pass to the limit in the first term on the
right-hand side of (3.3.9) and get

lim
ε→0

∫ t

0

∫
R

∫
{θ=r}

ρε(r−s)
g(r, x)

|∇θ(x)|
dHd−1(x) dr ds = lim

ε→0

∫ t

0

(ρε ∗ ℓ) ds =
∫ t

0

ℓ ds

=

∫ t

0

∫
{θ=s}

g(s, x)

|∇θ(x)|
dHd−1(x) ds =

∫ t

0

∫
{θ=s}

V r(∇y)−V a(∇y)
|∇θ|

dHd−1 ds. (3.3.10)

As regards the second term in the right-hand side of (3.3.9), notice that ρε(r−s) ̸= 0 only if
|r− s| ≤ 2ε. Hence, using the Hölder regularity of g and the boundedness of 1/|∇θ| and |∇θ|,
we conclude that

lim
ε→0

∣∣∣∣∫ t

0

∫
R

∫
{θ=r}

ρε(r−s)
g(s, x)−g(r, x)
|∇θ(x)|

dHd−1(x) dr ds

∣∣∣∣
≤ lim

ε→0
c εα

∫ t

0

∫
R
ρε(r−s)Hd−1({θ = r}) dr ds

= lim
ε→0

c εα∥ρε ∗m∥L1(R) ≤ lim
ε→0

c εα∥m∥L1(R) = 0 (3.3.11)

for some α ∈ (0, 1). Relations (3.3.10)–(3.3.11) imply that the limit (3.3.8) holds true. This in
turn proves (3.3.6) and the energy equality (3.2.23) follows.

3.4 Proof of Theorem 3.2.1: diffused-interface case

Let ε > 0 be fixed. We prove existence of a weak/viscous solution (y, θ) by an iterative
construction. We start by proving that for all given θ ∈ C(U) there exists an admissible
deformation y satisfying (3.2.18).

Proposition 3.4.1 (Existence of y given θ). Set ε > 0 and let θ ∈ C(U) be fixed with
Ω(T ) ⊂⊂ U . Under assumptions (3.2.1)–(3.2.15) there exists y ∈ L∞(0, T ;W 2,p(U ;Rd)) ∩
H1(0, T ;H1(U ;Rd)) with y(t, ·) ∈ A for every t ∈ (0, T ) satisfying (3.2.18). More precisely,
there exists a positive constant c depending on data but independent of ε and θ such that

∥y∥L∞(0,T ;W 2,p(U ;Rd))∩H1(0,T ;H1(U ;Rd)) ≤ c. (3.4.1)

Proof. The assertion follows by adapting the arguments in [4] or [48]. We proceed by time
discretization. Let the time step τ := T/Nτ with Nτ ∈ N be given and let ti := iτ , for
i = 0, . . . , Nτ be the corresponding uniform partition of the time interval [0, T ]. Within this
proof, the generic constant c is always independent of the given θ, as well.

For i = 1, . . . , Nτ , we define yiτ ∈ A via

yiτ ∈ argmin
y∈A

{
Wε(θ−ti, y) +H(y) + τRε

(
θ−ti, yi−1

τ ,
y−yi−1

τ

τ

)
−
∫
U

f(θ−ti)·y dx
}
.
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Under the growth conditions (3.2.4)–(3.2.5), (3.2.9), and (3.2.13), and the regularity and con-
vexity assumptions (3.2.3), (3.2.7), (3.2.12), and (3.2.14), the existence of yiτ for every i =
1, . . . , Nτ follows by the Direct Method of the calculus of variations. Moreover, every mini-
mizer yiτ satisfies the time-discrete Euler–Lagrange equation

∫
U

(
∂FWε(θ−ti,∇yiτ )+∂ḞRε

(
θ−ti,∇yi−1

τ ,
∇yiτ−∇yi−1

τ

τ

))
:∇zi dx

+

∫
U

DH
(
∇2yiτ

) ...∇2zi dx =

∫
U

f(θ−ti)·z dx (3.4.2)

for every zi ∈ A.

Let us introduce the following notation for the time interpolants on the partition: Given a
vector (u0, ..., uNτ ), we define its backward-constant interpolant uτ , its forward-constant inter-
polant uτ , and its piecewise-affine interpolant ûτ on the partition (ti)

Nτ
i=0 as

uτ (0) := u0, uτ (t) := ui if t ∈ (ti−1, ti] for i = 1, . . . , Nτ ,

uτ (T ) := uNτ , uτ (t) := ui−1 if t ∈ [ti−1, ti) for i = 1, . . . , Nτ ,

ûτ (0) := u0, ûτ (t) :=
ui − ui−1

ti − ti−1

(t− ti−1) + ui−1 if t ∈ (ti−1, ti] for i = 1, . . . , Nτ .

Owing to this notation, we can take the sum in (3.4.2) for i = 1, . . . , Nτ and equivalently
rewrite the discrete Euler–Lagrange equation in the compact form

∫ T

0

∫
U

(
∂FWε(θ−tτ ,∇yτ )+∂ḞRε

(
θ−tτ ,∇yτ ,∇

˙̂yτ

))
:∇zτ dx dt

+

∫ T

0

∫
U

DH
(
∇2yτ

) ...∇2zτ dx dt =

∫ T

0

∫
U

f(θ−tτ )·zτ dx dt (3.4.3)

where zτ is the backward-constant interpolant of (zi)Nτi=1.

From the minimality of yiτ we get that

∫
U

Wε(θ−ti,∇yiτ ) dx+
∫
U

H(∇2yiτ ) dx−
∫
U

f(θ−ti)·yiτ dx

+ τ

∫
U

Rε

(
θ−ti,∇yi−1

τ ,
∇yiτ−∇yi−1

τ

τ

)
dx

≤
∫
U

Wε(θ−ti−1,∇yi−1
τ ) dx+

∫
U

H(∇2yi−1
τ ) dx−

∫
U

f(θ−ti−1)·yi−1
τ dx

−
∫
U

(
f(θ−ti)− f(θ−ti−1)

)
·yi−1
τ dx

−
∫
U

(
Wε(θ−ti−1,∇yi−1

τ )−Wε(θ−ti,∇yi−1
τ )

)
dx. (3.4.4)
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Summing over i = 1, . . . , n ≤ Nτ inequality (3.4.4) we get∫
U

Wε(θ−tn,∇ynτ ) dx+
∫
U

H(∇2ynτ ) dx−
∫
U

f(θ−tn)·ynτ dx

+
n∑
i=1

τ

∫
U

Rε

(
θ−ti,∇yi−1

τ ,
∇yiτ−∇yi−1

τ

τ

)
dx

≤
∫
U

Wε(θ,∇y0) +H(∇2y0) dx−
∫
U

f(θ)·y0 dx

−
n∑
i=1

∫
U

(f(θ−ti)−f(θ−ti−1))·yi−1
τ dx

−
n∑
i=1

∫
U

(
Wε(θ−ti−1,∇yi−1

τ )−Wε(θ−ti,∇yi−1
τ )

)
dx. (3.4.5)

By the growth conditions (3.2.4)–(3.2.5) (3.2.9), (3.2.13), and (3.2.14), we hence have that

cW∥∇ynτ ∥
p
Lp(U ;Rd×d) + cW

∥∥∥∥ 1

det∇ynτ

∥∥∥∥q
Lq(U)

+ cH∥∇2ynτ ∥
p
Lp(U ;Rd×d×d)

+ cD

n∑
i=1

τ

∫
U

∣∣∣∣(∇yiτ −∇yi−1
τ )⊤

τ
∇yi−1

τ + (∇yi−1
τ )⊤

∇yiτ −∇yi−1
τ

τ

∣∣∣∣2 dx− |U |
cW

≤
∫
U

Wε(θ−tn,∇ynτ ) dx+
∫
U

H(∇2ynτ ) dx+
n∑
i=1

τ

∫
U

Rε

(
θ−ti,∇yi−1

τ ,
∇yiτ−∇yi−1

τ

τ

)
dx

(3.4.5)
≤
∫
U

Wε(θ,∇y0) +H(∇2y0) dx−
∫
U

f(θ)·y0 dx+
∫
U

f(θ−tn)·ynτ dx

+
n∑
i=1

∫ ti

ti−1

∫
U

ḟ(θ−s)·yi−1
τ dx ds

−
n∑
i=1

∫
U

(
Wε(θ−ti−1,∇yi−1

τ )−Wε(θ−ti,∇yi−1
τ )

)
dx. (3.4.6)

In order to control the right-hand side above, we remark that

−
n∑
i=1

∫
U

(
Wε(θ−ti−1,∇yi−1

τ )−Wε(θ−ti,∇yi−1
τ )

)
dx

(3.2.2)
=

n∑
i=1

∫
U

(
hε(θ−ti−1)− hε(θ−ti)

)(
V a(∇yi−1

τ )− V r(∇yi−1
τ )

)
dx

(3.2.4)
≤ 1

cW

n∑
i=1

∫
U

(
hε(θ−ti−1)− hε(θ−ti)

)(
1 + |∇yi−1

τ |p
)
dx

where we have also used that hε(θ−ti−1) − hε(θ−ti) ≥ 0. As hε(θ−ti−1) − hε(θ−ti) = 0 on
the complement of

Ei := {x ∈ U : θ(x) ∈ [ti−1 − ε/2, ti + ε/2]},

by using ∥h′ε∥L∞(R) ≤ 2/ε (recall (3.2.1)) and the embedding L∞(U,Rd×d) ⊂ W 1,p(U,Rd×d)
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we get

−
n∑
i=1

∫
U

(
Wε(θ−ti−1,∇yi−1

τ )−Wε(θ−ti,∇yi−1
τ )

)
dx

≤ cτ

ε

n∑
i=1

|Ei|
(
1 + ∥∇yi−1

τ ∥
p
L∞(U ;Rd×d)

)
≤ cτ

ε

n∑
i=1

|Ei|
(
1 + ∥∇yi−1

τ ∥
p
Lp(U ;Rd×d) + ∥∇

2yi−1
τ ∥

p
Lp(U ;Rd×d×d)

)
.

Together with (3.2.14)–(3.2.15), this allows to deduce from inequality (3.4.6) that

cW∥∇ynτ ∥
p
Lp(U ;Rd×d) + cW

∥∥∥∥ 1

det∇ynτ

∥∥∥∥q
Lq(U)

+ cH∥∇2ynτ ∥
p
Lp(U ;Rd×d×d)

+ cD

n∑
i=1

τ

∫
U

∣∣∣∣(∇yiτ −∇yi−1
τ )⊤

τ
∇yi−1

τ (∇yi−1
τ )⊤

∇yiτ −∇yi−1
τ

τ

∣∣∣∣2 dx

≤ c+ c∥ynτ ∥L2(U ;Rd) + c
n∑
i=1

τ∥yi−1
τ ∥L2(U ;Rd)

+
cτ

ε

n∑
i=1

|Ei|
(
1 + ∥∇yi−1

τ ∥
p
Lp(U ;Rd×d) + ∥∇

2yi−1
τ ∥

p
Lp(U ;Rd×d×d)

)
. (3.4.7)

For τ < ε one has that ∪Nτi=1Ei covers Ω(T ) multiple times. In particular, we have that

Nτ∑
i=1

|Ei| ≤
(
ε+ τ

τ
+ 1

)
|Ω(T )|. (3.4.8)

Hence, by the Poincaré inequality and the Discrete Gronwall Lemma [51, (C.2.6), p. 534] we
find the bound

max
n
∥ynτ ∥

p
W 2,p(U,Rd) +

Nτ∑
i=1

τ

∥∥∥∥(∇yiτ−∇yi−1
τ )⊤

τ
∇yi−1

τ + (∇yi−1
τ )⊤

∇yiτ−∇yi−1
τ

τ

∥∥∥∥2
L2(U ;Rd×d)

≤ c exp

(
cτ

ε

Nτ∑
i=i

|Ei|

)
(3.4.8)
≤ c exp

(
cτ

ε

(
ε+ τ

τ
+ 1

)
|Ω(T )|

)
≤ c exp(cτ/ε), (3.4.9)

where we also used the fact that Ω(T ) ⊂⊂ U .
By the Sobolev embedding of W 2,p(U ;Rd) into C1−d/p(U ;Rd) and the classical result of

[42, Thm. 3.1] we get
det∇yτ ≥ cε > 0 in [0, T ]× U (3.4.10)

where the constant cε depends on the bound in (3.4.9).
By the Poincaré inequality and the generalization of Korn’s first inequality by [81] and [85,

Thm. 2.2], also using (3.4.10) we have that

∥∇ ˙̂yτ∥2L2(0,T ;L2(Q;Rd×d)) ≤ c′ε

∫ T

0

∥∇ ˙̂y
⊤
τ ∇yτ +∇y

⊤
τ
∇ ˙̂yτ∥2L2(U ;Rd×d) ds

(3.4.9)
≤ c′εc exp(cτ/ε)
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where the constant c′ε depends on the bound (3.4.9) and on the constant cε in (3.4.10). Again
by the Poincaré inequality, this time applied to ẏ, we get that

∥ŷτ∥H1(0,T ;H1(U ;Rd)) ≤ c′εc exp(cτ/ε). (3.4.11)

By using these estimates, as τ → 0, up to not relabeled subsequences we get

yτ , yτ
∗
⇀ y weakly-∗ in L∞(0, T ;W 2,p(U ;Rd)), (3.4.12)

∇ ˙̂yτ ⇀ ∇ẏ weakly in L2(Q;Rd), (3.4.13)

∇ŷτ → ∇y strongly in C0,α(Q;Rd) (3.4.14)

for some α ∈ (0, 1). In particular, from the convergences above we also get det∇yτ → det∇y
uniformly. In combination with the lower bound (3.4.10), this implies that ∇y ∈ GL+(d)
everywhere, hence y is admissible, namely, y(t, ·) ∈ A for every t ∈ (0, T ).

We now pass to the limit in the time-discrete Euler–Lagrange equation (3.4.3). Let z ∈
C∞(Q;Rd) with z = 0 on ΣD be given and let (ziτ )

Nτ
i=1 ∈ A be such that zτ → z strongly in

L∞(0, T ;W 2,p(U ;Rd)). By (3.2.14) we have∫ T

0

∫
U

f(θ−tτ )·zτ dx dt→
∫ T

0

∫
U

f(θ−t)·z dx dt. (3.4.15)

As hε(θ(x)−tτ (t)) → hε(θ(x)−t) for almost every (t, x) ∈ Q, the dissipation term goes to
the limit as follows∫ T

0

∫
U

∂ḞRε

(
θ−tτ ,∇yτ ,∇

˙̂yτ

)
:∇zτ dx dt

= 2

∫ T

0

∫
U

(1−hε(θ−tτ ))∇yτ
(
Da(∇y⊤

τ
∇y

τ
)(∇ ˙̂y

⊤
τ ∇yτ+∇y

⊤
τ
∇ ˙̂yτ )

)
:∇zτ dx dt

+ 2

∫ T

0

∫
U

hε(θ−tτ )∇yτ
(
Dr(∇y⊤

τ
∇y

τ
)(∇ ˙̂y

⊤
τ ∇yτ+∇y

⊤
τ
∇ ˙̂yτ )

)
:∇zτ dx dt

→ 2

∫ T

0

∫
U

(1−hε(θ−t))∇y
(
Da(∇y⊤∇y)(∇ẏ⊤∇y+∇y⊤∇ẏ)

)
:∇z dx dt

+ 2

∫ T

0

∫
U

hε(θ−t)∇y
(
Dr(∇y⊤∇y)(∇ẏ⊤∇y+∇y⊤∇ẏ)

)
:∇z dx dt (3.4.16)

=

∫ T

0

∫
U

∂ḞRε (θ−t,∇y,∇ẏ) :∇z dx dt (3.4.17)

where we used (3.2.12) and convergences (3.4.12)–(3.4.14). Moreover, we also have∫ T

0

∫
U

∂FWε(θ−tτ ,∇yτ ):∇zτ dx dt→
∫ T

0

∫
U

∂FWε(θ−t,∇y):∇z dx dt (3.4.18)

by (3.2.3) and convergences (3.4.12) and (3.4.14).
For the convergence of the second-gradient term we reproduce in this setting the argu-

ment from [48]. Given the limit y, let (wiτ )
Nτ
i=1 ∈ A be such that wτ → y strongly in

L∞(0, T ;W 2,p(U ;Rd)). We consider the test functions zτ := wτ − yτ in the time-discrete
Euler–Lagrange equation (3.4.3). Convergences (3.4.12)–(3.4.13) entail that zτ → 0 strongly
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in L∞(0, T ;H1(U ;Rd)) and zτ ⇀ 0 weakly-∗ in L∞(0, T ;W 2,p(U ;Rd)). Let us now compute∫ T

0

∫
U

(DH(∇2y)−DH(∇2yτ ))
...(∇2y −∇2yτ ) dx dt

=

∫ T

0

∫
U

(DH(∇2y)−DH(∇2yτ ))
...(∇2y −∇2wτ ) dx dt

+

∫ T

0

∫
U

(DH(∇2y)−DH(∇2yτ ))
...∇2zτ dx dt. (3.4.19)

As ∇2wτ → ∇2y strongly in Lp(Q;Rd×d×d) and DH(∇2yτ ) is bounded in Lp′(Q;Rd×d×d)
by (3.2.9), the first integral in the right-hand side above converges to 0 as τ → 0. Hence,
passing to the lim sup in (3.4.19), by the Euler–Lagrange equation (3.4.3) and convergences
(3.4.14)–(3.4.18) we find that

lim sup
τ→0

∫ T

0

∫
U

(DH(∇2y)−DH(∇2yτ ))
...(∇2y −∇2yτ ) dx dt

= lim sup
τ→0

∫ T

0

∫
U

(DH(∇2y)−DH(∇2yτ ))
...∇2zτ dx dt

= lim sup
τ→0

(∫ T

0

∫
U

DH(∇2y)
...∇2zτ dx dt−

∫ T

0

∫
U

f(θ−tτ )·zτ dx dt

+

∫ T

0

∫
U

(
∂FWε(θ−tτ ,∇yτ ) + ∂ḞRε

(
θ−tτ ,∇yτ ,∇

˙̂yτ

))
:∇zτ dx dt

)
= 0 (3.4.20)

The coercivity (3.2.9) then implies that

∇2yτ → ∇2y strongly in Lp(Q;Rd×d×d)

and thus
DH(∇2yτ )→ DH(∇2y) strongly in Lp

′
(Q;Rd×d×d).

Passing to the limit as τ → 0 in (3.4.3) we then find (3.2.18).
In order to prove the bound (3.4.1), we simply pass to the limit as τ → 0 in (3.4.9) and obtain

∥y∥p
L∞(0,T ;W 2,p(U ;Rd)) + ∥∇ẏ

⊤∇y +∇y⊤∇ẏ∥2L2(Q;Rd×d) ≤ c

independently of ε. Following again [42, Thm. 3.1] we have that det∇y ≥ c > 0 indepen-
dently of ε. By [81] and [85, Thm. 2.2] this ensures that

∥∇ẏ∥2L2(Q;Rd×d) ≤ c∥∇ẏ⊤∇y +∇y⊤∇ẏ∥2L2(Q;Rd×d) ≤ c

independently of ε. Hence, (3.4.1) follows by the Poincaré inequality.

Before moving to the proof of Theorem 3.2.1 in the diffused-interface case ε > 0, let us
recall a well-posedness result for the growth subproblem, see [63, Thm. 3.15].

Proposition 3.4.2 (Well-posedness of the growth problem). Assume to be given γ̂ ∈ C(Rd)
with cγ ≤ γ̂(·) ≤ Cγ for some 0 < cγ ≤ Cγ and Ω0 ⊂ Rd nonempty, open, and bounded. Then,
there exists a unique nonnegative viscosity solution to

γ̂(x)|∇(−θ)(x)| = 1 in Rd \ Ω0, (3.4.21)
θ = 0 in Ω0. (3.4.22)
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Moreover, θ ∈ C0,1(Rd) with

0 <
1

Cγ
≤ |∇θ(x)| ≤ 1

cγ
for a.e. x ∈ Rd, (3.4.23)

and we have that

dist(x,Ω0)

Cγ
≤ θ(x) ≤ dist(x,Ω0)

cγ
∀x ∈ Rd \ Ω0. (3.4.24)

We are now ready to prove Theorem 3.2.1 in the diffused-interface case ε > 0. As an-
nounced, the proof hinges on an iterative construction. To start with, let us remark that y0 from
(3.2.15) is such that ∇y0 is Hölder continuous. In particular, the mapping γ̃ : U → (0,∞)
defined by

γ̃(x) := γ(y0(x),∇y0(x)) ∀x ∈ U

is Hölder continuous, as well. Letting γ̂ be any continuous extension of γ̃ to Rd with cγ ≤
γ̂(·) ≤ Cγ , we can use Proposition 3.4.2 and find θ0 ∈ C(U) solving

γ(y0(x),∇y0(x))|∇(−θ0)(x)| = 1 in U \ Ω0,

θ0 = 0 in Ω0

in the viscosity sense, with (3.4.23) and (3.4.24) holding in U . Note that (3.4.24) in particular
implies that

Ω0(T ) = {x ∈ U | θ0(x) < T} ⊂ Ω0 +BCγT

(3.2.17)
⊂⊂ U.

By applying Proposition 3.4.1 for θ = θ0 we find y1 ∈ L∞(0, T ;W 2,p(U ;Rd))∩H1(0, T ;H1(U ;Rd)).
This can be iterated as follows: For all k ≥ 1, we define θk ∈ C(U) given yk ∈ L∞(0, T ;W 2,p(U ;Rd))
∩H1(0, T ;H1(U ;Rd)) to be a viscosity solution to

γ(yk(θk(x)∧T, x),∇yk(θk(x)∧T, x))|∇(−θk)(x)| = 1 in U \ Ω0,

θk = 0 in Ω0

with (3.4.23) and (3.4.24) holding in U . The existence of such a viscosity solution follows
again from Proposition 3.4.2 as the mapping on U defined as

x 7→ γ(yk(θk(x)∧T, x),∇yk(θk(x)∧T, x)) ∀x ∈ U

may be extended to a continuous mapping γ̂ on Rd with cγ ≤ γ̂(·) ≤ Cγ . Note again that
(3.4.24) implies that

Ωk(T ) := {x ∈ U | θk(x) < T} ⊂ Ω0 +BCγT

(3.2.17)
⊂⊂ U. (3.4.25)

Inclusion (3.4.25) in particular guarantees that the accreting phase defined by θk remains at
positive distance from the boundary ∂U , independently of ε and k.

Given such θk, we define yk+1 ∈ L∞(0, T ;W 2,p(U ;Rd)) ∩H1(0, T ;H1(U ;Rd)) by Propo-
sition 3.4.1 applied for θ = θk.

Bounds (3.4.1) and (3.4.23) ensure that the sequence (yk, θk)k∈N defined by this iterative
procedure is (possibly not unique but nonetheless) uniformly bounded in(

L∞(0, T ;W 2,p(U ;Rd)) ∩H1(0, T ;H1(U ;Rd))
)
× C0,1(U).
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As (θk)i∈N are uniformly Lipschitz continuous, by the Ascoli–Arzelà and the Banach–Alaoglu
Theorems, possibly passing to not relabeled subsequences, one can find a pair (y, θ) such that

yk
∗
⇀ y weakly-∗ in L∞(0, T ;W 2,p(U ;Rd)) ∩H1(0, T ;H1(U ;Rd)), (3.4.26)

yk → y strongly in C1,α(Q;Rd), (3.4.27)

θk → θ strongly in C(U) (3.4.28)

for some α ∈ (0, 1) and θ fulfills (3.4.23) and (3.4.24) in U . As (yk)k∈N are uniformly Hölder
continuous and γ is Lipschitz continuous, by (3.2.16) we have

|γ(yk(θk(x)∧T, x),∇yk(θk(x)∧T, x))− γ(yj(θj(x)∧T, x),∇yj(θj(x)∧T, x))|
≤ c|yk(θk(x)∧T, x)− yj(θj(x)∧T, x)|+ c|∇yk(θk(x)∧T, x)−∇yj(θj(x)∧T, x)|
≤ c|yk(θk(x)∧T, x)− yj(θk(x)∧T, x)|+ c|∇yk(θk(x)∧T, x)−∇yj(θk(x)∧T, x)|
+ c|yj(θk(x)∧T, x)− yj(θj(x)∧T, x)|+ c|∇yj(θk(x)∧T, x)−∇yj(θj(x)∧T, x)|
≤ c∥yk − yj∥C1(Q;Rd) + c∥θk − θj∥α

C(U)
∀ x ∈ U.

Together with (3.4.27)–(3.4.28), this proves that x 7→ γ(yk(θk(x)∧T, x),∇yk(θk(x)∧T, x))
converges to x 7→ γ(y(θ(x)∧T, x),∇y(θ(x)∧T, x)) uniformly in U . By the stability of the
eikonal equation with respect to the uniform convergence of the data, see, e.g., [44, Prop. 1.2],
θ satisfies (3.2.19)–(3.2.20) with coefficient x 7→ γ(y(θ(x)∧T, x),∇y(θ(x)∧T, x)). Moreover,
since bound (3.4.1) is independent of θ, following the argument of the proof of Proposition
3.4.1, we can pass to the limit in the Euler–Lagrange equation (3.2.18) and conclude the proof
of Theorem 3.2.1 in the case ε > 0.

3.5 Proof of Theorem 3.2.1: sharp-interface case

The existence of weak/viscosity solutions in the sharp-interface case ε = 0 is obtained by
passing to the limit as ε → 0 in sequences of weak/viscosity solutions (yε, θε) of the diffused-
interface problem.

Notice at first that θε are uniformly Lipschitz continuous, see (3.4.23). Bound (3.4.1) is
independent of ε and implies that there exist not relabeled subsequences such that

yε
∗
⇀ y weakly-∗ in L∞(0, T ;W 2,p(U ;Rd)) ∩H1(0, T ;H1(U ;Rd)), (3.5.1)

yε → y strongly in C1,α(Q;Rd), (3.5.2)

θε → θ strongly in C(U) (3.5.3)

for some α ∈ (0, 1).
Let us now prove that we can pass to the limit ε→ 0 in equation (3.2.18). The convergence

of the loading is straightforward. Moreover, the level sets {θ(x) = t} have Lebesgue measure
zero by (3.4.23). Hence, by the assumptions (3.2.1) on hε and the uniform convergence (3.5.3)
of (θε)ε, we have that

hε(θε(x)−t)→ h0(θ(x)−t) for a.e. (t, x) ∈ Q,

and that (t, x) 7→ hε(θε(x)−t) converges to (t, x) 7→ h0(θ(x)−t) strongly in L2(Q). On the
other hand, by (3.2.3) and convergence (3.5.2), for all (t, x) ∈ Q and i = a, r, J , we have that

|∂FV i(∇yε)| ≤ c and ∂FV
i(∇yε)→ ∂FV

i(∇y).
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Fix z ∈ C∞([0, T ] × U ;Rd) with z = 0 on ΣD. By Lebesgue’s Dominated Convergence
Theorem we get∫ T

0

∫
U

∂FWε(θε−t,∇yε):∇z dx dt

=

∫ T

0

∫
U

(
hε(θ−t)∂FV r(∇yε) + (1− hε(θ−t))∂FV a(∇yε) + ∂FV

J(∇yε)
)
:∇z dx dt

→
∫ T

0

∫
U

(
h0(θ−t)∂FV r(∇y) + (1−h0(θ−t))∂FV a(∇y) + ∂FV

J(∇y)
)
:∇z dx dt

=

∫ T

0

∫
U

∂FW0(θ−t,∇y):∇z dx dt

Furthermore, by using convergence (3.5.1), we get∫ T

0

∫
U

∂ḞRε(θε−t,∇yε,∇ẏε):∇z dx dt

→
∫ T

0

∫
U

(
h0(θ−t)∂ḞR

r(∇y,∇ẏ) + (1−h0(θ−t))∂ḞR
a(∇y,∇ẏ)

)
:∇z dx dt

=

∫ T

0

∫
U

∂ḞR0(θ−t,∇y,∇ẏ):∇z dx dt.

In order to prove the convergence of the second-order term, we set zε = y − yε and recall
that zε → 0 strongly in L∞(0, T ;H1(U ;Rd)) and zε

∗
⇀ 0 weakly-∗ in L∞(0, T ;W 2,p(U ;Rd))

in order to obtain

lim sup
τ→0

∫ T

0

∫
U

(DH(∇2y)−DH(∇2yε))
...∇2zε dx dt

= lim sup
ε→0

(∫ T

0

∫
U

DH(∇2y)
...∇2zε − f(θ−t)·zε dx dt

+

∫ T

0

∫
U

(
∂FWε(θ−t,∇yε):∇zε + ∂ḞRε (θ−t,∇yε,∇ẏε) :∇zε

)
dx dt

)
= 0

Owing to (3.2.10) this proves that ∇2yε → ∇2y strongly in Lp(Q;Rd×d×d). We hence have
that DH(∇2yε)→ DH(∇2y) strongly in Lp′(Q;Rd×d×d), as well, and we can pass to the limit
as ε→ 0 in (3.2.18).

In order to conclude the proof, we are left to check that θ is a viscosity solution to (3.2.19).
This however readily follows as x 7→ γ(yε(θε(x) ∧ T, x),∇yε(θε(x) ∧ T, x)) converges to
x 7→ γ(y(θ(x) ∧ T, x),∇y(θ(x) ∧ T, x)) uniformly and the eikonal problem is stable under
uniform convergence of the data [44, Prop. 1.2].

Before closing this section, let us explicitly remark that indeed Proposition 3.2.1 actually
holds in the case ε = 0, as well. In order to check it, one would need a slightly different, and
indeed simpler, a-priori estimate on the time-discrete solutions. Based on such result, one could
argue as in Section 3.4 by the same iterative procedure in order to obtain an alternative proof
of Theorem 3.2.1 in the sharp-interface case.
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4 Viscoelastic surface growth at
finite strains with Ersatzmaterial

This chapter consists of a publication currently in preparation with ULISSE STEFANELLI.

Abstract
We consider the accretive growth of a viscoelastic body, under the assumption that the accreted
material is deposited in an unstressed state. We revisit a model proposed in [108] and assume
that the backstrain accumulated during the evolution depends on the deformation itself. Pos-
tulating the presence of a regularizing Ersatzmaterial surrounding the growing body, we show
the existence of solutions to the coupled accretion and viscoelastic equilibrium problem.

4.1 Introduction

Numerous natural and technological systems experience growth. In particular, accretive growth
may be observed in various settings, ranging from biology, e.g., the development of plants
[27, 31], shells [78], and horns [93, 99], to material sciences, e.g. solidification of metals [90],
crystallization [53, 105], and 3D printing [37, 56], among others. Accretion may be descibed
by assuming evolution in the (outward) normal direction ν to the boundary, so that, denoting by
Ω(t) ⊂ Rd the reference configuration of the body, a point x(t) on the boundary ∂Ω(t) follows
the normal flow rule

d

dt
x(t) = γν(x(t)). (4.1.1)

Here, γ(·) > 0 is the growth rate, which will be later specified to be a positive function of
the deformation and deformation gradient. In the following, we assume that the reference
configuration of the accreting material at time t is the t-sublevel set of a suitable function
θ : Rd → [0,∞), i.e.,

Ω(t) := {x ∈ Rd | θ(x) ≤ t}.

The map θ is called time-of-attachment function, since θ(x(t)) = t for x(t) ∈ ∂Ω(t). The
deformation of the viscoelastic medium at time t ∈ [0, T ] is given by y(t) : Ω(t) → Rd. We
assume that the growth is influenced by the deformation y and the deformation gradient ∇y.
Specifically, letting γ(x) = γ(y(θ(x), x),∇y(θ(x), x)), equation (4.1.1) leads to the general-
ized eikonal equation for the time-of-attachment function θ [16, 24]

γ(y(θ(x) ∧ T, x),∇y(θ(x) ∧ T, x))|∇θ(x)| = 1 x ∈ Rd \ Ω0 (4.1.2)
θ(x) = 0 x ∈ Ω0. (4.1.3)

Here, Ω0 ⊂ Rd is the given initial reference configuration of the growing body. The growth
rate γ : Rd×Rd×d → [0,∞) is assumed to be Lipschitz and such that cγ ≤ γ(·) ≤ Cγ for some
0 < cγ ≤ Cγ .

The deformation y, on the other hand, satisfies viscoelastic equilibrium. Due to the nonlinear
finite-strain setting, we regularize the problem by introducing a (soft) viscoelastic Ersatzmate-
rial (or fictitious material) surrounding the accretive medium, with reference configuration at
time t given by U \Ω(t). The open and bounded container U ⊂ Rd is chosen in such a way that

75



4 Viscoelastic surface growth at finite strains with Ersatzmaterial

Ω(t) ⊂⊂ U for all t ∈ [0, T ], so that the accreting set never reaches its boundary, cf. assump-
tion (H15) and formula (4.4.4) below. If W : Rd×d → [0,∞) and R : Rd×d × Rd×d → [0,∞)
are the elastic energy and instantaneous dissipation density, respectively, we define the corre-
sponding Ersatzmaterial densities as δ

1+δ
W and δ

1+δ
R. The constant δ ∈ (0, 1) is considered

to be small and, correspondingly, the Ersatzmaterial to be highly compliant. The viscoelastic
equilibrium equation reads as

− div
(
h(θ(x)−t)DW (∇yA−1)A−⊤+V J(∇y)+h(θ(x)−t)∂∇ẏR(∇y,∇ẏ)−divDH(∇2y)

)
= h(θ(x)−t)f(t,x), (4.1.4)

where V J : Rd×d → [0,∞] is a term penalizing self-interpenetration of matter, i.e., V J(F ) →
∞ as detF → 0+ and V J(F ) < ∞ if and only if detF > 0, H : Rd×d×d → [0,∞) is a
second-order regularization term for nonsimple materials, A : [0, T ]× U → Rd×d with A(t, x)
invertible for every t ∈ [0, T ] and x ∈ U , and f : [0, T ]×U → Rd is the density of the external
force. Notice that the second-order potential density H and the term V J are assumed to be the
same for both the medium and the Ersatzmaterial.

In the viscoelastic model (4.1.4), we consider the effects of the backstrain tensor A, which
describes the residual strain accumulated during growth [90, 93, 108]. We follow the constitu-
tive assumption of [108] as in [24] and consider

A(t, x) = ∇y(θ(x), x) for t ∈ [0, T ], x ∈ Ω(t). (4.1.5)

This specifically entails that the accreting body is unstressed at the time and place where new
material is added, i.e.,

W (∇y(t, x)A−1(t, x)) = W (I) = 0, for x ∈ ∂Ω(t).

We prove the existence of weak/viscosity solutions to the fully coupled problem (4.1.2)–
(4.1.4), see Definition 4.3.1 and Theorem 4.3.1. More precisely, we show that y satisfies (4.1.4)
in the weak or distributional sense, cf. (4.3.1), when equipped with the boundary, docking, and
initial conditions

DH(∇2y):(ν ⊗ ν) = 0 on [0, T ]× ∂U,
y = id on [0, T ]× ω
y(0, ·) = y0 on U,

where ω ⊂⊂ Ω0. On the other hand, θ is required to be a viscosity solution to (4.1.4).
In Section 4.2, we introduce the assumptions on the model. In Section 4.3, we provide

the definition of the weak/viscosity solutions and state the existence result in Theorem 4.3.1.
Finally, we devote Section 4.4 to the proof of Theorem 4.3.1. The strategy relies on showing
the existence of θ solving (4.1.2) for given y, and of y solving (4.1.4) for given θ. The existence
of a solution for the coupled problem then follows by passing to the limit in a suitable sequence
(yk, θk)k∈N defined iteratively.

4.2 Setting

In this section, we specify the assumptions. Let us recall that in the following, we indicate by c a
generic positive constant, possibly depending on data but independent of the time discretization
step τ . In particular, here c may depend on δ > 0 from (4.2.2). Note that the value of c may
change from line to line.
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4.2 Setting

Let T > 0 be a fixed final time, the reference configuration U ⊂ Rd be nonempty, open,
connected, bounded, and Lipschitz, and Ω0 ⊂⊂ U be nonempty and open. We define Q :=
(0, T )× U .

Admissible deformations

The set of admissible deformations is defined as

A :=
{
y ∈ W 2,p

ω (U ;Rd) | ∇y ∈ GL+(d) a.e. in U
}
,

where
W 2,p
ω (U ;Rd) := {y ∈ W 2,p(U ;Rd) | y ≡ id on ω} for some fixed p > d

and ω ⊂⊂ Ω0 nonempty and open. Deformations y are locally invertible and orientation
preserving, i.e., ∇y ∈ GL+(d) almost everywhere in U , and satisfy the so-called docking
condition y ≡ id in ω for almost every t ∈ (0, T ). In particular, we remark that this latter
condition entails the validity of the following Poincaré-type inequality

∥y∥W 2,p(U ;Rd) ≤ c
(
1 + ∥∇2y∥Lp(U ;Rd×d×d)

)
∀y ∈ W 2,p

ω (U ;Rd). (4.2.1)

Mechanical energy

The elastic energy density W : Rd×d → [0,∞) of the accreting material satisfies

(H1) W ∈ C1(Rd×d);

(H2) there exists cW > 0 such that

0 = W (I) ≤ W (F ) ≤ 1

cW
(|F |p + 1) for every F ∈ Rd×d.

Even though not strictly needed for the analysis, we additionally assume

(H3) frame indifference, i.e., W (QF ) = W (F ) for all F ∈ Rd×d and Q ∈ SO(d);

(H4) isotropy, i.e., W (FQ) = W (F ) for all F ∈ Rd×d and Q ∈ SO(d).

We remark that both (H3) and (H4) are required for the model to be frame indifferent, namely
to be such that y and Qy have the same energy for every rotation Q ∈ SO(d), i.e.,

W (Q∇y(t, x)∇y−1(θ(x), x)Q⊤) = W (∇y(t, x)∇y−1(θ(x), x)).

Let the density V J : GL+(d)→ [0,∞) be such that

(H5) V J ∈ C1(GL+(d));

(H6) there exist q > pd/(p− d) and cJ > 0 such that

V J(F ) ≥ cJ
| detF |q

− 1

cJ
.
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4 Viscoelastic surface growth at finite strains with Ersatzmaterial

Finally, let δ > 0 and h : R→ [0, 1] be defined as

h(σ) =
1{σ≤0} + δ

1 + δ
=

{
1 if σ ≤ 0,
δ

1+δ
if σ > 0.

(4.2.2)

The stored elastic energyW : C(U)×A× L∞(U ; GL+(d))→ [0,∞) is hence defined as

W(σ, y;A) :=

∫
U

h(σ)W (∇yA−1) + V J(∇y)dx.

Here, A ∈ L∞(U ; GL+(d)) is a placeholder for the backstrain tensor ∇y(θ(·), ·) and σ ∈
C(U) is a placeholder for θ(·)−t, whose sublevel set {x ∈ U | θ(x) − t < 0} represents the
accreting phase at time t. In particular W + VJ is the energy of the accreting material W for
θ − t < 0, whereas, for θ − t ≥ 0, the energy density is δ

1+δ
W + Vj , where δ

1+δ
< 1. This is

meant to represent the Ersatzmaterial surrounding the growing solid, which is highly elastically
compliant for small δ.

We additionally consider a second order potentialH : W 2,p
ω (U ;Rd)→ [0,∞) given by

H(y) :=
∫
U

H(∇2y)dx

where H : Rd×d×d → [0,∞) is such that

(H7) H ∈ C1(Rd×d×d) is convex;

(H8) there exists a positive constant cH > 0 such that

cH |G|p −
1

cH
≤ H(G) ≤ 1

cH
(1 + |G|)p, |DH(G)| ≤ 1

cH
|G|p−1

for all G ∈ Rd×d×d and

cH |G−G′|p ≤ (DH(G)−DH(G′))
...(G−G′)

for every G,G′ ∈ Rd×d×d;

(H9) H(QG) = H(G) for all G ∈ Rd×d×d, Q ∈ SO(d).

Frame indifference (H9) ofH is assumed to guarantee physical consistency albeit not necessary
for the analysis.

Viscous dissipation

The dissipation potentialR : C(U)×W 2,p
ω (U ;Rd)×H1(U ;Rd)→ [0,∞) is given by

R(σ, y, ẏ) :=
∫
U

h(σ)R(∇y,∇ẏ)dx

where R : Rd×d × Rd×d → [0,∞) is defined as

R(F, Ḟ ) :=
1

2
Ċ:D(C)Ċ for every F, Ḟ ∈ Rd×d

with C := F⊤F and Ċ := Ḟ⊤F + F⊤Ḟ . We assume
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(H10) D ∈ C(Rd×d
sym;Rd×d×d×d) is such that Dijkl = Djikl = Dklij for every i, j, k, l = 1, . . . , d;

(H11) there exists a positive constant cR > 0 such that

cR|Ċ|2 ≤ Ċ:D(C)Ċ

for every C, Ċ ∈ Rd×d
sym .

Notice that by the definition of R, we have that ∂ḞR is linear in Ḟ , namely,

∂ḞR(F, Ḟ ) = 2F
(
D(C):Ċ

)
= 2FD(F⊤F ):(Ḟ⊤F+F⊤Ḟ ).

Loading and initial data

We denote by f : [0, T ]×U→Rd the body force density, and we require

(H12) f ∈ W 1,∞ (0, T ;L2(U ;Rd)
)
.

We moreover assume on the initial backstrain A0 and the initial deformation y0 that

(H13) A0 ∈ L∞(Ω0; GL+(d)), y0 ∈ A, and∫
U

W (∇y0A−1
0 )1Ω0 +W (∇y0)1U\Ω0 + V J(∇y0) +H(∇2y0)dx <∞.

Growth

The growth rate γ is assumed to satisfy the following assumption:

(H14) the growth rate γ ∈ C0,1(Rd × GL+(d); (0,∞)) is such that cγ ≤ γ(·) ≤ Cγ for some
0 < cγ ≤ Cγ .

(H15) the initial reference configuration Ω0 ⊂⊂ U of the accretive material is nonempty, open,
and such that Ω0 +BCγT ⊂⊂ U .

We remark assumption (H15) guarantees that the accreting material has positive distance from
the boundary of U in the time interval [0, T ], see (4.4.4) below.

4.3 Notion of solution and main results
4.3.1 Notion of solution
We are interested in solving (1.2.12)–(1.2.16) in the following weak/viscosity sense.

Definition 4.3.1. We say that a pair

(y, θ) ∈
(
L∞(0, T ;W 2,p(U ;Rd)) ∩H1(0, T ;H1(U ;Rd))

)
× C0,1(U)

is a weak/viscosity solution to the initial-boundary-value problem (1.2.12)–(1.2.16) if y(t, ·) ∈
A for almost every t ∈ [0, T ], y(0, ·) = y0(·) in U , and∫ T

0

∫
U

(
h(θ−t)

(
∂FW (∇yA−1)A−⊤+∂ḞR(∇y,∇ẏ)

)
+∂FV

J(∇y)
)
:∇z +DH

(
∇2y

) ...∇2zdxdt

=

∫ T

0

∫
U

h(θ−t)f · zdxdt ∀z ∈ C∞([0, T ]× U ;Rd) with z ≡ 0 on ω (4.3.1)
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4 Viscoelastic surface growth at finite strains with Ersatzmaterial

with backstrain tensor A defined as

A(t, x) :=


A0 if x ∈ Ω0,

∇y(θ(x), x) if x ∈ Ωt \ Ω0,

I if x ∈ U \ Ωt,

(4.3.2)

and θ is a viscosity solution to{
γ(y(θ(x) ∧ T, x),∇y(θ(x) ∧ T, x))|∇θ(x)| = 1 in U \ Ω0

θ(x) = 0 on Ω0.
(4.3.3)

4.3.2 Main result
Our main result is the following.

Theorem 4.3.1 (Existence). Under assumptions (H1)–(H15), there exists a weak/viscosity so-
lution (y, θ) to problem (1.2.12)–(1.2.16).

The proof of Theorem 4.3.1 is given in Section 4.4. In Proposition 4.4.2 we check that, given
θk−1, there exists a solution yk to (4.3.1). We then recall in Proposition 4.4.1 that there exists a
solution θk to (4.3.3) for given yk. This allows us to iteratively define a sequence (yk, θk)k∈N.
We prove Theorem 4.3.1 by directly passing to the limit as k →∞.

4.4 Proof of Theorem 4.3.1

We begin by recalling a well-posedness result for the growth subproblem, see [63, Thm. 3.15].

Proposition 4.4.1 (Well-posedness of the growth problem). Assume to be given γ̂ ∈ C(Rd)
with cγ ≤ γ̂(·) ≤ Cγ for some 0 < cγ ≤ Cγ and Ω0 ⊂ Rd nonempty, open, and bounded. Then,
there exists a unique nonnegative viscosity solution to

γ̂(x)|∇θ(x)| = 1 in Rd \ Ω0, (4.4.1)
θ = 0 on Ω0. (4.4.2)

Moreover, θ ∈ C0,1(Rd) with

0 <
1

Cγ
≤ |∇θ(x)| ≤ 1

cγ
for a.e. x ∈ Rd. (4.4.3)

It can also be shown that the unique nonnegative viscosity solution θ to (4.4.1)–(4.4.2) also
satisfies [63, Thm. 3.15]

dist(x,Ω0)

Cγ
≤ θ(x) ≤ dist(x,Ω0)

cγ
∀x ∈ Rd \ Ω0.

Hence, by (H15) we have

Ω(T ) := {x ∈ U | θ(x) < T} ⊂⊂ Ω0 +BCγT ⊂⊂ U, (4.4.4)

and thus the accretive phase does not touch the boundary of U over the time interval [0, T ].
Before moving to the proof of Theorem 4.3.1, let us show that, for given θ ∈ C(U), there

exists a y with y(t, ·) ∈ A for almost every t ∈ [0, T ], y(0, ·) = y0(·), and satisfying (4.3.1).
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4.4 Proof of Theorem 4.3.1

Proposition 4.4.2 (Existence of y given θ). Let θ ∈ C(U) and (H1)–(H15) hold. Then, there
exists y ∈ L∞(0, T ;W 2,p

ω (U ;Rd))∩H1(0, T ;H1(U ;Rd)) such that y(t, ·) ∈ A for almost every
t ∈ [0, T ], y(0, ·) = y0(·) in U , and satisfying (4.3.1).

Proof. The proof of the result follows the ideas of [4] or [48] and is based on a time-discretization
scheme. Let τ := T/Nτ > 0 with Nτ ∈ N given and consider the corresponding uniform parti-
tion of the time interval [0, T ] ti := iτ , for i = 0, . . . , Nτ . Moreover, setA0

τ := A01Ω0+I1U\Ω0 .
For i = 1, . . . , Nτ , we define yiτ ∈ A as

yiτ ∈ argmin
y∈A

{
W(θ−ti, y;Aiτ ) +H(y) + τR

(
θ−ti, yi−1

τ ,
y−yi−1

τ

τ

)
−
∫
U

h(θ−ti)f · ydx
}
,

where

Aiτ (x) :=


A0(x) if θ(x) = 0,

∇ykτ (x) if θ(x) ∈ (tk−1, tk] for some k = 1, . . . , i−1,
I if θ(x) > ti−1.

(4.4.5)

Notice that (H13), the definition ofA, and the fact that p > d, imply thatAiτ ∈ L∞(U ; GL+(d))
for every i = 0, . . . , Nτ .

Under the growth conditions (H6), (H8), and (H11), the regularity and convexity assumptions
(H1), (H5), (H7), (H10), and (H12), and the Poincaré inequality (4.2.1), the existence of yiτ ∈ A
for i = 1, . . . , Nτ easily follows by the Direct Method of the calculus of variations. Moreover,
every minimizer yiτ satisfies the time-discrete Euler–Lagrange equation

∫
U

h(θ−ti)
(
∂FW (∇yiτ (Aiτ )−1)(Aiτ )

−⊤+∂ḞR

(
∇yi−1

τ ,
∇yiτ−∇yi−1

τ

τ

))
:∇zidx

+

∫
U

∂FV
J(∇yiτ ):∇zidx+

∫
U

DH
(
∇2yiτ

) ...∇2zidx =

∫
U

h(θ−ti)f(ti)·zidx (4.4.6)

for every zi ∈ C∞(U ;Rd) with zi ≡ 0 on ω, and for every i = 1, . . . , Nτ .
From the minimality of yiτ we get that

∫
U

h(θ−ti)
(
W (∇yiτ (Aiτ )−1)+τR

(
∇yi−1

τ ,
∇yiτ−∇yi−1

τ

τ

)
−f(ti)·yiτ

)
+V J(∇yiτ )+H(∇2yiτ )dx

≤
∫
U

h(θ−ti)
(
W (∇yi−1

τ (Aiτ )
−1)− f(ti)·yi−1

τ

)
+ V J(∇yi−1

τ ) +H(∇2yi−1
τ )dx

=

∫
U

h(θ−ti−1)
(
W (∇yi−1

τ (Ai−1
τ )−1)− f(ti−1)·yi−1

τ

)
+ V J(∇yi−1

τ ) +H(∇2yi−1
τ )dx

+

∫
U

(h(θ−ti)−h(θ−ti−1))W (∇yi−1
τ (Ai−1

τ )−1)dx

+

∫
U

h(θ−ti)
(
W (∇yi−1

τ (Aiτ )
−1)−W (∇yi−1

τ (Ai−1
τ )−1)

)
dx

−
∫
U

(h(θ−ti)−h(θ−ti−1))f(ti)·yi−1
τ dx−

∫
U

h(θ−ti−1)(f(ti)− f(ti−1))·yi−1
τ dx.
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4 Viscoelastic surface growth at finite strains with Ersatzmaterial

Summing over i = 1, . . . , n ≤ Nτ and telescoping, we have∫
U

h(θ−tn)W (∇ynτ (Anτ )−1)+V J(∇ynτ )+H(∇2ynτ )−h(θ−tn)f(tn)·ynτ dx

+
n∑
i=1

τ

∫
U

h(θ−ti)R
(
∇yi−1

τ ,
∇yiτ−∇yi−1

τ

τ

)
dx

≤
∫
U

h(θ)W (∇y0(A0
τ )

−1) + V J(∇y0) +H(∇2y0)− h(θ)f(0)·y0dx

+
n∑
i=1

∫
U

(h(θ−ti)−h(θ−ti−1))W (∇yi−1
τ (Ai−1

τ )−1)dx

+
n∑
i=1

∫
U

h(θ−ti)
(
W (∇yi−1

τ (Aiτ )
−1)−W (∇yi−1

τ (Ai−1
τ )−1)

)
dx

−
n∑
i=1

∫
U

(h(θ−ti)−h(θ−ti−1))f(ti)·yi−1
τ +h(θ−ti−1)(f(ti)− f(ti−1))·yi−1

τ dx.

By the growth conditions (H6), (H8), and (H11), and the definition (4.2.2) of h,

cJ

∥∥∥∥ 1

det∇ynτ

∥∥∥∥q
Lq(U)

+ cH∥∇2ynτ ∥
p
Lp(U ;Rd×d×d)

+ cR
δ

δ + 1

n∑
i=1

τ

∥∥∥∥(∇yiτ −∇yi−1
τ )⊤

τ
∇yi−1

τ + (∇yi−1
τ )⊤

∇yiτ −∇yi−1
τ

τ

∥∥∥∥2
L2(U ;Rd×d)

≤
∫
U

h(θ)W (∇y0(A0
τ )

−1) + V J(∇y0) +H(∇2y0)− h(θ)f(0) · y0dx

+
n∑
i=1

∫
U

(h(θ−ti)−h(θ−ti−1))W (∇yi−1
τ (Ai−1

τ )−1)dx

+
n∑
i=1

∫
U

h(θ−ti)
(
W (∇yi−1

τ (Aiτ )
−1)−W (∇yi−1

τ (Ai−1
τ )−1)

)
dx

−
n∑
i=1

∫
U

(h(θ−ti)−h(θ−ti−1))f(ti)·yi−1
τ +h(θ−ti−1)(f(ti)− f(ti−1))·yi−1

τ dx. (4.4.7)

We now control the right-hand side above. Let us start by noticing that

n∑
i=1

∫
U

(h(θ−ti)−h(θ−ti−1))W (∇yi−1
τ (Ai−1

τ )−1)dx

(4.2.2)
=

n∑
i=1

∫
U

1{θ≤ti} − 1{θ≤ti−1}

1 + δ
W (∇yi−1

τ (Ai−1
τ )−1)dx

≤
n∑
i=1

∫
U

1{ti−1<θ≤ti}W (∇yi−1
τ (Ai−1

τ )−1)dx

=
n∑
i=1

∫
U

1{ti−1<θ≤ti}W (∇yi−1
τ )dx,
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since Ai−1
τ (x) = I if θ(x) > ti−1. By the growth condition (H2), we then have

n∑
i=1

∫
U

(h(θ−ti)−h(θ−ti−1))W (∇yi−1
τ (Ai−1

τ )−1)dx

≤
n∑
i=1

1

cW
(∥∇yi−1

τ ∥
p
L∞(U ;Rd×d) + 1)

∫
U

1{ti−1<θ≤ti}dx

≤ c

n∑
i=1

(∥∇2yi−1
τ ∥

p
Lp(U ;Rd×d) + 1)

∫
U

1{ti−1<θ≤ti}dx

where in the last line we used the continuous embedding of L∞(U) into W 1,p(U) for p > d,
and Poincaré inequality (4.2.1).

Regarding the third term in the right-hand side of (4.4.7), we notice that, for x ∈ Ω0,Aiτ (x) =
Ai−1
τ (x) = A0. For x ∈ U \ Ω0 with θ(x) ≤ ti−2, there exists k ∈ {1, . . . , i − 2} such that

θ(x) ∈ (tk−1, tk], and thus Aiτ (x) = Ai−1
τ (x) = ∇ykτ . Similarly, for x ∈ U \ Ω0 such that

θ(x) > ti−1 we have Aiτ (x) = Ai−1
τ (x) = I . Hence, the integrand is nonzero only for x ∈ U

such that ti−2 < θ(x) ≤ ti−1. For such x we have Aiτ (x) = ∇yi−1
τ and Ai−1

τ (x) = I , so that

n∑
i=1

∫
U

h(θ−ti)
(
W (∇yi−1

τ (Aiτ )
−1)−W (∇yi−1

τ (Ai−1
τ )−1)

)
dx

=
n∑
i=1

∫
U

1{ti−2<θ(x)≤ti−1}
(
W (I)−W (∇yi−1

τ )
)
dx

(H2)

≤ 0

Hence, by (H13), the Poincaré inequality (4.2.1), and the discrete Gronwall Lemma [51, (C.2.6),
p. 534] we have the bound

max
n

(
∥ynτ ∥

p
W 2,p(U ;Rd) +

∥∥∥∥ 1

det∇ynτ

∥∥∥∥q
Lq(U)

)

+
Nτ∑
i=1

τ

∥∥∥∥(∇yiτ −∇yi−1
τ )⊤

τ
∇yi−1

τ + (∇yi−1
τ )⊤

∇yiτ −∇yi−1
τ

τ

∥∥∥∥2
L2(U ;Rd×d)

≤ c exp

(
Nτ∑
i=1

(∫
U

1{ti−1<θ≤ti}dx

))
≤ c (1+|Ω(T )|) exp (|Ω(T )|). (4.4.8)

Let us now introduce the following notation for the time interpolants of a vector (u0, ..., uNτ )
over the interval [0, T ]: We define its backward-constant interpolant uτ , its forward-constant
interpolant uτ , and its piecewise-affine interpolant ûτ on the partition (ti)

Nτ
i=0 as

uτ (0) := u0, uτ (t) := ui if t ∈ (ti−1, ti] for i = 1, . . . , Nτ ,

uτ (T ) := uNτ , uτ (t) := ui−1 if t ∈ [ti−1, ti) for i = 1, . . . , Nτ ,

ûτ (0) := u0, ûτ (t) :=
ui − ui−1

ti − ti−1

(t− ti−1) + ui−1 if t ∈ (ti−1, ti] for i = 1, . . . , Nτ .

Making use of this notation, we can rewrite (4.4.8) as

∥yτ∥
p
L∞(0,T ;W 2,p(U ;Rd))+

∥∥∥∥ 1

det∇yτ

∥∥∥∥q
L∞(0,T ;Lq(U))

+

∫ T

0

∥∇ ˙̂y
⊤
τ ∇yτ+∇y

⊤
τ
∇ ˙̂yτ∥2L2(U ;Rd×d)dt ≤ c.

(4.4.9)
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By the Sobolev embedding of W 2,p(U ;Rd) into C1−d/p(U ;Rd) and the classical result of
[42, Thm. 3.1], the bound (4.4.9) implies

det∇yτ ≥ c > 0 in [0, T ]× U. (4.4.10)

Moreover, by the Poincaré inequality (4.2.1), the generalization of Korn’s first inequality by
[81] and [85, Thm. 2.2], and the positivity of the determinant (4.4.10), it follows that

∥∇ ˙̂yτ∥2L2(0,T ;L2(Q;Rd×d)) ≤ c

∫ T

0

∥∇ ˙̂y
⊤
τ ∇yτ +∇y

⊤
τ
∇ ˙̂yτ∥2L2(U ;Rd×d) ds

(4.4.9)
≤ c.

Thus, the classical Poincaré inequality applied to ẏ proves that

∥ŷτ∥H1(0,T ;H1(U ;Rd)) ≤ c. (4.4.11)

Hence, the estimates above yield

yτ , yτ
∗
⇀ y weakly-∗ in L∞(0, T ;W 2,p(U ;Rd)), (4.4.12)

∇ ˙̂yτ ⇀ ∇ẏ weakly in L2(Q;Rd), (4.4.13)

∇ŷτ → ∇y strongly in C0,α(Q;Rd) (4.4.14)

for some α ∈ (0, 1), as τ → 0, up to not relabeled subsequences. In particular, these conver-
gences imply det∇yτ → det∇y uniformly and together with the lower bound (4.4.10), that
∇y ∈
GL+(d) everywhere, i.e., y(t, ·) ∈ A for every t ∈ (0, T ).

Summing up the time-discrete Euler–Lagrange equations (4.4.6) for i = 1, . . . , Nτ and
rewriting in terms of the time interpolants, we get∫ T

0

∫
U

h(θ−tτ )
(
∂FW (∇yτ (Aτ )−1)(Aτ )

−⊤+∂ḞR
(
∇y

τ
,∇ ˙̂yτ

))
:∇zτdxdt

+

∫ T

0

∫
U

∂FV
J(∇yτ ):∇zτ +DH

(
∇2yτ

) ...∇2zτdxdt =

∫ T

0

∫
U

h(θ−tτ )f(tτ ) · zτdxdt

(4.4.15)

We now pass to the limit in (4.4.15) in order to retrieve (4.3.1). Let z ∈ C∞(Q;Rd) with z ≡ 0
on [0, T ] × ω be given and let (ziτ )

Nτ
i=1 ⊂ W 2,p(U ;Rd) be such that ∇ziτ ∈ GL+(d), ziτ ≡ 0 on

ω for every i = 1, ..., Nτ , and zτ → z strongly in L∞(0, T ;W 2,p(U ;Rd)). First, notice that, by
the coarea formula and the lipschitzianity (4.4.3) of θ,∫ ∞

0

Hd−1(∂Ω(t))dt =

∫
U

|∇θ|dx ≤ |U |
cγ

<∞.

Thus, Hd−1(∂Ω(t)) = 0 and consequently |∂Ω(t)| = 0 for almost every t ∈ [0, T ]. We hence
have

Ld+1 ({(t, x) ∈ [0, T ]× U | θ(x) = t}) =
∫ T

0

|∂Ω(t)|dt = 0,

which implies h(θ(x)−tτ (t)) → h(θ(x)−t) for almost every (t, x) ∈ Q. By (H12), it thus
follows ∫ T

0

∫
U

h(θ−tτ )f(tτ )·zτdxdt→
∫ T

0

∫
U

h(θ−t)f(t)·zdxdt.
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Similarly, for the dissipation, we find∫ T

0

∫
U

h(θ−tτ )∂ḞR
(
∇y

τ
,∇ ˙̂yτ

)
:∇zτdxdt

= 2

∫ T

0

∫
U

h(θ−tτ )∇yτ
(
D(∇y⊤

τ
∇y

τ
)(∇ ˙̂y⊤τ ∇yτ+∇y

⊤
τ
∇ ˙̂yτ )

)
:∇zτdxdt

→ 2

∫ T

0

∫
U

h(θ−t)∇y
(
D(∇y⊤∇y)(∇ẏ⊤∇y+∇y⊤∇ẏ)

)
:∇zdxdt

=

∫ T

0

∫
U

h(θ−t)∂ḞR (∇y,∇ẏ) :∇zdxdt

by the convergences (4.4.12)–(4.4.14), and (H10). By the continuity (H5) and the bound
(4.4.10), we also have∫ T

0

∫
U

∂FV
J(∇yτ ):∇zτdxdt→

∫ T

0

∫
U

∂FV
J(∇y):∇zdxdt

Moreover, notice that by (4.4.12), for almost every (t, x) ∈ Q, Aτ converges to A given by
(4.3.2). Indeed, let (t, x) ∈ Q, (tiτ )τ such that t ∈ (tiτ−1, tiτ ] for every τ > 0, and tiτ → t,
as τ → 0. Thus, Aτ (t, x) = Aiττ (x). If x ∈ Ω0, then Aiττ (x) = A0(x) = A(x), whereas if
x ∈ U \ Ωt, then θ(x) ≥ t > tiτ−i and thus, by definition (4.4.5), Aiττ (x) = I = A(x). On the
other hand, if x ∈ Ωt\Ω0, then there exists s ∈ (0, t) such that θ(x) = s and there exist kτ ∈ N,
kτ ≥ 1, for every τ > 0 such that s ∈ (tkτ−1, tkτ ]. Since s < t, we can assume tkτ ≤ tiτ−1,
so that Aiττ (x) = ∇ykττ (x) → ∇y(s, x) = ∇y(θ(x), x) = A(x), by convergence (4.4.12).
Hence, by the continuity (H1) and the bound (H2) of W , the convergences (4.4.12)–(4.4.14),
and dominated convergence, we have∫ T

0

∫
U

h(θ − tτ )∂FW (∇yτ (Aτ )−1)(Aτ )
−⊤:∇zτdxdt

→
∫ T

0

∫
U

h(θ − t)∂FW (θ−t,∇yA−1)A−⊤:∇zdxdt.

The convergence of the second-gradient term follows by the standard argument [48], which
we provide in the following for completeness. Let (wiτ )

Nτ
i=1 ⊂ A approximate the limiting

function y, namely such that wτ → y strongly in L∞(0, T ;W 2,p
ω (U ;Rd)) as τ → 0, and de-

fine zτ := wτ − yτ . By convergences (4.4.12)–(4.4.13), it follows that zτ → 0 strongly
in L∞(0, T ;H1(U ;Rd)) and zτ

∗
⇀ 0 weakly-∗ in L∞(0, T ;W 2,p(U ;Rd)). Moreover, by the

strong convergence of ∇2wτ to ∇2y in Lp(Q;Rd×d×d) and the boundedness of DH(∇2yτ ) is
in Lp′(Q;Rd×d×d) thanks to (H9), it follows

lim sup
τ→0

∫ T

0

∫
U

(DH(∇2y)−DH(∇2yτ ))
...(∇2y −∇2yτ ) dx dt

= lim sup
τ→0

∫ T

0

∫
U

(DH(∇2y)−DH(∇2yτ ))
...(∇2y −∇2wτ +∇2zτ ) dx dt

= lim sup
τ→0

∫ T

0

∫
U

(DH(∇2y)−DH(∇2yτ ))
...∇2zτ dx dt.
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Hence, the Euler–Lagrange equation (4.4.15) with test function zτ and convergences (4.4.12)–
(4.4.14) entail

lim sup
τ→0

∫ T

0

∫
U

(DH(∇2y)−DH(∇2yτ ))
...(∇2y −∇2yτ ) dx dt

= lim sup
τ→0

(∫ T

0

∫
U

DH(∇2y)
...∇2zτ + ∂FV

J(∇yτ ):∇zτ − h(θ−tτ )f(tτ )·zτ dx dt

+

∫ T

0

∫
U

h(θ−tτ )
(
∂FW (∇yτ (Aτ )−1)(Aτ )

−⊤+∂ḞR
(
∇y

τ
,∇ ˙̂yτ

))
:∇zτ dx dt

)
= 0

By the coercivity (H8), it follows that DH(∇2yτ ) → DH(∇2y) strongly in Lp′(Q;Rd×d×d)
and thus (4.3.1) follows by passing to the limit in (4.4.15) as τ → 0.

Having Propositions 4.4.1 and 4.4.2, we proceed with the proof of Theorem 4.3.1 by the
following iterative construction. We first remark that, since y0 ∈ A by (H13), ∇y0 is Hölder
continuous and, thus, so is the mapping x ∈ U 7→ γ(y0(x),∇y0(x)). Denoting by γ̂ be any
continuous extension of such mapping to Rd with cγ ≤ γ̂(·) ≤ Cγ , by Proposition 4.4.1 there
exists θ0 ∈ C(U) nonnegative viscosity solution to problem

γ(y0(x),∇y0(x))|∇θ0(x)| = 1 in U \ Ω0,

θ0 = 0 in Ω0,

satisfying (4.4.3) in U . Given θ = θ0, on the other hand, Proposition 4.4.2 provides the exis-
tence of y1 ∈ L∞(0, T ;W 2,p(U ;Rd)) ∩H1(0, T ;H1(U ;Rd)) satisfying (4.3.1).

For k ≥ 1, given yk ∈ L∞(0, T ;W 2,p(U ;Rd))∩H1(0, T ;H1(U ;Rd)), let the map x ∈ U 7→
γ(yk(θk(x)∧T, x),∇yk(θk(x)∧T, x)) is Hölder continuous. Extend it continuously to Rd as
γ̂, similarly as above, with cγ ≤ γ̂(·) ≤ Cγ . Hence, Proposition 4.4.1 and the locality of the
viscosity notion of solution guarantee the existence of a nonnegative θk ∈ C(U) solving

γ(yk(θk(x)∧T, x),∇yk(θk(x)∧T, x))|∇θk(x)| = 1 in U \ Ω0,

θk = 0 in Ω0

in the viscous sense and such that (4.4.3) holds in U .
For such θk, Proposition 4.4.2 applied for θ = θk entails the existence of a deformation

yk+1 ∈ L∞(0, T ;W 2,p(U ;Rd)) ∩H1(0, T ;H1(U ;Rd)) satisfying (4.3.1).
The sequence (yk, θk)k∈N generated by this iterative process is, although in general not

unique, uniformly bounded in(
L∞(0, T ;W 2,p(U ;Rd)) ∩H1(0, T ;H1(U ;Rd))

)
× C0,1(U)

thanks to the bounds (4.4.9), (4.4.11), and (4.4.3). Thus, up to subsequences, by the Banach–
Alaoglu and the Ascoli–Arzelà Theorems, there exists a pair (y, θ) such that, for some α ∈
(0, 1),

yk
∗
⇀ y weakly-∗ in L∞(0, T ;W 2,p(U ;Rd)) ∩H1(0, T ;H1(U ;Rd)), (4.4.16)

yk → y strongly in C1,α(Q;Rd), (4.4.17)

θk → θ strongly in C(U), (4.4.18)
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and θ fulfills (4.4.3) in U . By the uniform Lipschitz continuity of γ, (yk)k∈N, and (∇yk)k∈N, and
by convergences (4.4.17)–(4.4.18), we have that x 7→ γ(yk(θk(x)∧T, x),∇yk(θk(x)∧T, x))
converges to x 7→ γ(y(θ(x)∧T, x),∇y(θ(x)∧T, x)) uniformly in U . Since the eikonal equa-
tion is stable with respect to the uniform convergence of the data [44, Prop. 1.2], θ satisfies
(4.3.3) with coefficient x 7→ γ(y(θ(x)∧T, x),∇y(θ(x)∧T, x)). Moreover, since bounds (4.4.9)
and (4.4.11) are independent of θ, the same arguments of the proof of Proposition 4.4.2 al-
low passing to the limit in the Euler–Lagrange equation (4.3.1), thus concluding the proof of
Theorem 4.3.1.
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[75] A. Mielke, T. Roubíček. Thermoviscoelasticity in Kelvin-Voigt rheology at large strains.
Arch. Ration. Mech. Anal. 238 (2020), no. 1, 1–45.
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5 Zusammenfassung
Unter Viskoelastizität versteht man die Reaktion von Materialien wie Elastomere, Ton und
verschiedenen Polymeren oder Metallen, die sich unter Einwirkung äußerer Kräfte sowohl
elastisch als auch viskos verhalten. Das Zusammenspiel zwischen dem festkörperähnlichen
Verhalten der Elastizität und dem flüssigkeitsähnlichen der Viskosität ermöglicht die Model-
lierung verschiedener Phänomene in der Kontinuumsmechanik und hat zu reichhaltigen und
interessanten mathematischen Theorien geführt.

Diese Dissertation zielt darauf ab, neuere Entwicklungen in nichtlinearen Variationsrech-
nungsmodellen für die Entwicklung viskoelastischer Materialien bei endlicher Verzerrung zu
untersuchen und konzentriert sich auf zwei Hauptaspekte. Einerseits untersuchen wir das
Poynting-Thomson-Modell bei großen Deformationen: Wir zeigen die Existenz von Lösungen
in einem geeigneten schwachen Sinn, ohne auf regulierende Terme zweiter Ordnung zurück-
zugreifen, deren physikalische Interpretation umstritten ist. Darüber hinaus führen wir eine
rigorose Linearisierung durch und beweisen, dass das klassische Modell für kleine Deforma-
tionen wiederhergestellt wird. Andererseits betrachten wir das Zusammenspiel von viskoe-
lastischen Effekten mit akkretivem Wachstum, wie es bei der Kristallisation, der Quellung von
Polymergelen und Erstarrungsprozessen auftritt. Wir zeigen die Existenz von Lösungen für
das damit verbundene gekoppelte Problem für verschiedene Modelle: Wir konzentrieren uns
auf zweiphasige Materialien mit diffuser und scharfer Grenzfläche sowie auf Festkörper, die
während des Wachstums Eigenspannungen akkumulieren.
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