
Lecture notes for Math131A: Real Analysis

Last revised November 24, 2019

Allen Gehret

Author address:

Department of Mathematics, University of California, Los Ange-
les, Los Angeles, CA 90095

E-mail address: allen@math.ucla.edu





Contents

Chapter 1. The Real Numbers and the Completeness Axiom 1
1.1. The natural numbers and induction 2
1.2. The integers and rational numbers 4
1.3. Inequalities 6
1.4. The real numbers and the completeness axiom 8
1.5. Geography of the real numbers 10
1.6. Existence of nth roots and real powers 11
1.7. The AGM Inequality 15
1.8. The extended real line R±∞ 16
1.9. Exercises 17

Chapter 2. Sequences of Real Numbers 21
2.1. Sequences and limits of sequences 21
2.2. Monotone sequences and Cauchy sequences 27
2.3. Subsequences 30
2.4. Series 32
2.5. The Exponential Function 40
2.6. Exercises 42

Chapter 3. Continuity and Continuous Functions 49
3.1. Limits of functions 49
3.2. Continuity and continuous functions 52
3.3. Uniform continuity 54
3.4. Power functions 56
3.5. Exercises 57

Chapter 4. Differentiation 61
4.1. Differentiability and derivatives 61
4.2. Differentiation rules 63
4.3. Differentiation theorems 64
4.4. The exponential function 66
4.5. Derivatives of higher order 67
4.6. Exercises 67

Chapter 5. Integration 69
5.1. Partitions, Darboux sums, and the Darboux integral 69
5.2. Properties of the Darboux integral 72
5.3. Integration theorems 77
5.4. The exponential function 81
5.5. Exercises 82

iii



iv CONTENTS

Appendix A. Formulas, Inequalities, and Identities 85
A.1. Formulas involving binomial coefficients 85
A.2. Formulas involving summations 87
A.3. Inequalities 88

Appendix B. Ordered Fields 89
B.1. Fields 89
B.2. Ordered fields 90

Bibliography 91

Index 93



Abstract

The goal of this class is to give a complete and rigorous proof of the Fundamen-
tal Theorems of Calculus (5.3.3 and 5.3.4) from scratch. We have only ten weeks to
do this! These lecture notes are largely based off of the course textbook [2], except
for the sake of time I exclude/rearrange some material and modify some proofs. I
also include some additional material on real powers and the exponential function.
I recommend you refer to these notes for learning the mathematical content of the
course, and refer to the textbook for examples, pictures, and additional exercises.

Note: these lecture notes are subject to revision, so the numbering of Lemmas,
Theorems, etc. may change throughout the course and I do not recommend you
print out too many pages beyond the section where we are in lecture. Any and all
questions, comments, and corrections are enthusiastically welcome!
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CHAPTER 1

The Real Numbers and the Completeness Axiom

You have probably encountered the following number systems before:

N = {1, 2, 3, . . .} (the natural numbers)

Z = {0, 1,−1, 2,−2, . . .} (the integers)

Q = {k/` : k, ` ∈ Z, ` 6= 0} = {all “fractions”} (the rational numbers)

and finally:

R (the set of all real numbers)

Furthermore, we know that these number systems contain one another:

N ⊆ Z ⊆ Q ⊆ R

i.e., every natural number is an integer, every integer is a rational number, and
every rational number is a real number.

The development of these number systems somewhat reflects the stages in life you
learned about them. For example:

(1) As a young child you probably first learned about the natural numbers
(or “counting numbers”), i.e., 1, 2, 3, 4, 5, . . . You also slowly learned how
to add and multiply these numbers.

(2) Later on in elementary school you learn about the numbers “0” as well
as the negative natural numbers −1,−2,−3, . . . You also learned how to
add and multiply these numbers.

(3) At some point in elementary school you also start to learn about fractions
1/2, 2/3, 3/4, . . . as well as how to add and multiply these numbers as well.

(4) Finally, later in middle school and high school, you start learning about

“real numbers” which aren’t fractions, like
√

2, π, and e. You were proba-
bly given a vague (and possibly incorrect) description of “what is the set
of real numbers R” suitable enough to learn how to do the computations
in calculus. However, you probably didn’t spend any time discussing what
R “really is”, as a mathematical object.

The first goal of the class is to provide a correct and satisfying answer to the
following question:

Question 1.0.1. What exactly is R, the collection of real numbers?

We will build towards an answer (Answer 1.4.11). First we study the main proper-
ties N. Then we look at Z and Q. Finally, we look at what distinguishes Q from R
and provide the defining property of R, the Completeness Axiom.

1
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1.1. The natural numbers and induction

In this class1, the natural numbers is the set

N = {1, 2, 3, 4, . . .}
of positive integers. We will not attempt to construct the natural numbers ax-
iomatically, instead we assume that they are already given and that we are familiar
with their basic properties, for instance, how the operations +, · and the ordering
≤ work with N. Here is an important basic property about N which we will take
for granted:

Well-Ordering Principle 1.1.1. Suppose S ⊆ N is such that S 6= ∅. Then S has
a least element, i.e., there is some a ∈ S such that for all b ∈ S, a ≤ b.

The Well-Ordering Principle of N gives us the following important proof principle
about natural numbers:

Principle of Induction 1.1.2. Suppose P (n) is a property that a natural number
n may or may not have. Suppose that

(1) P (1) holds (this is called the “base case for the induction”), and
(2) for every n ∈ N, if P (n) holds, then P (n + 1) holds (this is called the

“inductive step”).

Then P (n) holds for every natural number n ∈ N.

Proof. Define the set:

S :=
{
n ∈ N : P (n) is false

}
⊆ N.

Assume towards a contradiction that P (n) does not hold for every natural number
n ∈ N. Thus S 6= ∅. By the Well-Ordering Principle, the set S has a least element
a. Since P (1) holds by assumption, we know that 1 < a (so a− 1 ∈ N). Since a is
the least element of S, then the natural number a− 1 6∈ S, so P (a− 1) holds. By
assumption (2), this implies P (a) holds, a contradiction. �

Warning 1.1.3. In part (2) of the Principle of Induction, it does not say you have
to prove P (n+ 1) is true. It says you have to prove that the following implication
holds: (

P (n) is true
)

=⇒
(
P (n+ 1) is true

)
Notation 1.1.4. Suppose M,N ∈ Z are integers such that M ≤ N and suppose
we are given numbers aM , aM+1, . . . , aN indexed by all integers between M and N .
Then we denote the finite summation of the integers aM , . . . , aN by

N∑
k=M

ak := aM + aM+1 + · · ·+ aN .

The “k” in the expression
∑N
k=M ak is referred to as the index of summation

and it is a dummy variable, i.e., a variable which only exists and takes value
inside the summation. This is analogous to the control variable of a for-loop in

1In other textbooks, sometimes the natural numbers include zero, i.e., N = {0, 1, 2, 3, 4, . . .}.
Also sometimes people might write N0 = {0, 1, 2, 3, . . .}. We won’t do this here, but it’s good

to know about it. The important thing is that when you are communicating about the natural
numbers with someone else, you are always on the same page about whether you are including 0

or not.
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a computer program. Accordingly, the index of summation can be changed to any
other variable which is not being used and the meaning will stay the same, i.e.,

N∑
k=M

ak =

N∑
`=M

a` =

N∑
j=M

aj = · · ·

We now arrive at the very first example of a proof by induction. It is the canonical
“first proof by induction that everybody should know” and it involves the so-called
triangular numbers2:

Example 1.1.5. The equality
n∑
k=1

k =
n(n+ 1)

2

holds for all n ∈ N.

Note: recall that by Notation 1.1.4,
∑n
k=1 k = 1 + 2 + · · ·+ n.

Proof. Let P (n) be the assertion:

P (n) : “
∑n
k=1 k = n(n+ 1)/2 is true.”

We will show that P (n) holds for all n ∈ N by induction on n.
First, we show that P (1) holds outright. This is easy because P (1) says “1 =

1
2 · 1 · 2”, which is obviously true.

Next, we will show that P (n) implies P (n+ 1). Suppose P (n) holds, i.e.,
n∑
k=1

k =
1

2
n(n+ 1).

We must now show that P (n+ 1) also holds. Note that:

n+1∑
k=1

k =

n∑
k=1

k + (n+ 1)

=
1

2
n(n+ 1) + (n+ 1) since P (n) is assumed to be true

= (n/2 + 1)(n+ 1)

=
1

2
(n+ 2)(n+ 1)

=
1

2
(n+ 1)

(
(n+ 1) + 1

)
.

Thus P (n+ 1) holds as well. �

We also have the following variant of the Principle of Induction, which starts at
some natural number (or integer!) other than 1:

Corollary 1.1.6 (Principle of Induction starting at N). Let N ∈ Z and suppose
P (n) is a property that an integer n ≥ N may or may not have. Suppose that

(1) P (N) holds.
(2) for every n ≥ N , if P (n) holds, then P (n+ 1) holds.

Then P (n) holds for every integer n ≥ N .

2https://en.wikipedia.org/wiki/Triangular_number

https://en.wikipedia.org/wiki/Triangular_number
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Proof. We will prove this by reducing it to the original Induction Principle by
shifting. Let Q(n) be the statement:

Q(n) : “P (n+N − 1) holds.”

Then (1) implies that Q(1) holds. Also, (2) implies that for every n ≥ 1, Q(n) ⇒
Q(n + 1). Thus Q(n) is true for all n ≥ 1 by the Principle of Induction. In other
words, P (n) is true for all n ≥ N . �

Usually, but not always, proofs by induction start at N = 1, but starting at N = 0
is also common. The next example shows an induction proof starting at N = 10:

Example 1.1.7. 2n > n3 for all n ≥ 10.

Proof. Let P (n) be the assertion:

P (n) : “2n > n3”

First, we check that P (10) holds outright. Note that 210 = 1024 > 1000 = 103.
Next, we will show that for n ≥ 10, the implication P (n) ⇒ P (n + 1) holds.

So assume that P (n) is true for some n ≥ 10, i.e., 2n > n3. We need to use this to
show 2n+1 > (n+ 1)3. Note that

(n+ 1)3 = n3 + 3n2 + 3n+ 1.

Now, 2n > n3 implies 2n ≥ n3 + 1 (since 2n and n3 are natural numbers), so

2n+1 ≥ 2(n3 + 1) = 2n3 + 2.

Thus, it suffices to show that

2n3 + 2 ≥ (n+ 1)3 + 1 = n3 + 3n2 + 3n+ 2.

However, this is equivalent to

n3 ≥ 3n2 + 3n = 3n(n+ 1)

which is equivalent to
n2 ≥ 3(n+ 1).

However, n ≥ 10 implies n ≥ 4 ≥ 3, so

n2 ≥ 4n ≥ 3n+ 3 = 3(n+ 1),

as required. �

1.2. The integers and rational numbers

The natural numbers N have some natural defects as a number system. First and
foremost is that we cannot always solve linear equations of the form:

x+m = n for given m,n ∈ N
To remedy this, we introduce the integers:

Z = {0,±1,±2,±3, . . .}
However, the integers have a similar defect, i.e., you cannot solve arbitrary linear
equations:

ax+ b = c (a, b, c ∈ Z, a 6= 0).

To remedy this, we further enlarge Z to the rational numbers:

Q =

{
k

`
: k, ` ∈ Z, ` 6= 0

}



1.2. THE INTEGERS AND RATIONAL NUMBERS 5

Here are some nice features of Q:

(1) Linear equations with rational coefficients can be solved over Q. More
generally, most of linear algebra can be done using only rational numbers.
The main exception to this is that the eigenvalues of a rational matrix
might not be themselves rational numbers.

(2) Rational numbers are very concrete: you can easily represent a rational
number with infinite precision as a fraction k/` of integers. Arithmetic
operations with rational numbers also behave quite nicely.

However, Q still has some defects. In a certain vague sense, the rational numbers
are incomplete, i.e., there are many theoretical numbers that ought to exist, but
don’t exist as rational numbers. The best instance of this is the well-known fact
that many polynomial equations

anx
n + an−1x

n−1 + · · ·+ a0 = 0 (ai ∈ Q)

do not have solutions in Q. In fact, even the equation

x2 − 2 = 0

cannot be solved in Q. We show now that there are no rational solutions to the
equation x2 − 2 = 0:

Proposition 1.2.1 (“
√

2” is irrational). There is no rational number c ∈ Q with
the property that c2 = 2.

The proof of Proposition 1.2.1 assumes two basic facts3 about the integers and
rational numbers:

(i) Each rational number c can be expressed as c = m/n, where m and n are
integers and m or n is odd (an integer m is odd if there exists an integer k
such that m = 2k + 1).

(ii) An integer n is even if its square n2 is even (an integer n is even if there
exists an integer k such that n = 2k).

Proof of Proposition 1.2.1. Suppose towards a contradiction that there is a
rational number c ∈ Q such that c2 = 2. Then by (i) there are integers m,n ∈ Z
such that m or n is odd and c = m/n. Then m2/n2 = 2, so m2 = 2n2. Thus m2 is
even, so by (ii), m is even. Take k ∈ Z such that m = 2k. Then m2 = 2n2 implies
4k2 = 2n2. Dividing by 2 shows 2k2 = n2. Thus n2 is also even and by (ii) again,
n is even. Thus both m and n are even, a contradiction. �

You may already have heard about the existence of certain real numbers (±
√

2 ∈
R \ Q) which are solutions to the equation x2 − 2 = 0. However, at this point
you should forget about this and instead adopt a skeptical point of view that real
numbers only exist if we can prove they exist, and we haven’t proven “

√
2” exists

yet so it doesn’t make sense to talk about it yet (the existence of such a number

“
√

2” will follow from the more general Existence of nth roots 1.6.2 below).

3Properties (i) and (ii) should be very believable, although to prove them rigorously would re-
quire a small detour into the realm of elementary number theory including establishing a fragment

of prime factorization.
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1.3. Inequalities

Recall that the basic operations on the real numbers are addition +, multiplication
·. The real numbers also come equipped with an ordering ≤. We assume we are
familiar with the basic properties of these operations. Here are some useful facts
to keep in mind:

Facts 1.3.1. Suppose a, b, c ∈ R. Then

(1) if a ≤ b, then a+ c ≤ b+ c,
(2) if a ≤ b and 0 ≤ c, then ac ≤ bc,
(3) if a ≤ b, then −b ≤ −a,
(4) if a ≤ b and c ≤ 0, then ac ≥ bc,
(5) if a 6= 0, then a2 > 0; in particular, 1 > 0,
(6) if a > 0, then a−1 > 0,
(7) if 0 < a < b, then 0 < b−1 < a−1.

Definition 1.3.2. For each a ∈ R we define the absolute value |a| of a by

|a| :=

{
a if a ≥ 0,

−a if a < 0.

Remark 1.3.3. Observe that if a, b ∈ R are such that b ≥ 0, then

|a| ≤ b if and only if − b ≤ a ≤ b.

This will be useful for showing inequalities of the form “|a| ≤ b”.

Here are the basic properties of the absolute value:

Proposition 1.3.4. Suppose a, b ∈ R. Then

(1) |a| ≥ 0
(2) |a · b| = |a| · |b|

Proof. (1) If a ≥ 0, then |a| = a ≥ 0, and if a < 0, then |a| = −a > 0.
(2) (Case 1: a ≥ 0 and b ≥ 0) Then a · b ≥ 0, so |a · b| = a · b = |a| · |b|.
(Case 2: a < 0 and b < 0) Then −a,−b > 0, so

a · b = (−a) · (−b) > 0

hence |a · b| = a · b = |a| · |b|.
(Case 3: a ≥ 0 and b < 0) Then −b ≥ 0, and a · (−b) ≥ 0, hence

|a| · |b| = a · (−b) = −(a · b) = |a · b|.

(Case 4: a < 0 and b ≥ 0) This is similar to Case 3. �

The following inequality is perhaps the most important and fundamental inequality
in analysis. It will be used frequently, sometimes without explicit mention.

Triangle Inequality 1.3.5. For every a, b ∈ R:

|a+ b| ≤ |a|+ |b|

Proof. We have

−|a| ≤ a ≤ |a| and − |b| ≤ b ≤ |b|.
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Applying 1.3.1(1) four times gives

(−|a|) + (−|b|) ≤ a+ (−|b|)
≤ a+ b

≤ |a|+ b

≤ |a|+ |b|,

or in other words:

−(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|.

By Remark 1.3.3 it follows that

|a+ b| ≤ |a|+ |b|. �

Related to the triangle inequality is the so-called reverse triangle inequality :

Reverse Triangle Inequality 1.3.6. For every a, b ∈ R:

|a− b| ≥
∣∣|a| − |b|∣∣

Proof. This is Exercise 1.9.6. �

The following lemma is rather useful:

Power Inequality 1.3.7. For every n ∈ N and for all x, y ∈ R, if 0 ≤ x < y, then
0 ≤ xn < yn.

Proof. We begin with proving a variant of Fact 1.3.1(4):

Claim. Suppose a, b, c ∈ R. If a < b and 0 < c, then ac < bc.

Proof of Claim. Fact 1.3.1(4) implies that ac ≤ bc. Assume towards a contra-
diction that ac = bc. Then bc ≤ ac. Since c > 0, we have c−1 > 0 by Fact 1.3.1(6).
Applying 1.3.1(4) now to bc ≤ ac and 0 ≤ c−1 yields b = bcc−1 ≤ acc−1 = a, which
contradicts a < b. We conclude that ac < bc. �

We now proceed to prove the lemma by induction on n. Let P (n) be the
assertion:

P (n) : “for all x, y ∈ R, if 0 ≤ x < y, then xn < yn.”

First, we note that that the base case P (1) is obviously true, since 0 ≤ x < y
implies 0 ≤ x1 < y1.

Next, we will show that P (n) implies P (n + 1). Suppose P (n) holds, i.e., for
every x, y ∈ R, if 0 ≤ x < y, then 0 ≤ xn < yn. We must show that P (n+ 1) holds.
Let x, y ∈ R be arbitrary. Assume 0 ≤ x < y. Then

xn+1 = xnx ≤ xny by 1.3.1(4), using x ≤ y and 0 ≤ xn

< yny by above Claim, using xn < yn and 0 < y

= yn+1.

We conclude that xn+1 < yn+1. Finally, since 0 ≤ xn and 0 ≤ x, we conclude that
0 ≤ xn+1 by 1.3.1(4). �
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1.4. The real numbers and the completeness axiom

Definition 1.4.1. Let S ⊆ R, S 6= ∅.
(1) The largest element of S (if there is one) is called the maximum of S,

denoted by maxS.
(2) The least element of S (if there is one) is called the minimum of S,

denoted by minS.

Example 1.4.2. (1) Every finite nonempty subset of R has a maximum and
minimum.

(2) Let a, b with a < b. Then the closed interval

[a, b] := {x ∈ R : a ≤ x ≤ b}
has min[a, b] = a and max[a, b] = b. The open interval

(a, b) := {x ∈ R : a < x < b}
has neither a minimum nor a maximum. Note that both closed and open
intervals are infinite sets.

(3) The sets Z and Q do not have a minimum or a maximum. The set N has
minN = 1, but no maximum.

(4) (Assume temporarily that we know
√

2 exists). The set

{r ∈ Q : r2 ≤ 2} =
[
−
√

2,
√

2
]
∩Q

has neither a minimum nor a maximum since
√

2 6∈ Q.

Definition 1.4.3. Let S ⊆ R, S 6= ∅.
(1) We call M ∈ R an upper bound for S if M ≥ s for all s ∈ S. If such an

upper bound exists, then we say that S is bounded from above.
(2) We call m ∈ R a lower bound for S if m ≤ s for all s ∈ S. If such a

lower bound exists, then we say that S is bounded from below.
(3) We say that S is bounded if it bounded from above and from below. In

this case:

S ⊆ [−M,M ] for some M ∈ R such that M > 0.

Example 1.4.4. (1) The maximum of a set (if it exists) is an upper bound.
The minimum of a set (if it exists) is a lower bound.

(2) Let a < b ∈ R. Then a is a lower bound for both [a, b] and (a, b), while b
is an upper bound for [a, b] and (a, b). In fact, in each case a is the largest
lower bound and b is the smallest upper bound.

(3) Neither Z nor Q are bounded from below or above.

(4) The least upper bound of {r ∈ Q : r2 ≤ 2} is
√

2, and the greatest lower

bound is −
√

2.

Definition 1.4.5. Let S ⊆ R such that S 6= ∅.
(1) If S is bounded from above and has a least upper bound s0, then we call

s0 the supremum4 of S, written: s0 = supS.
(2) If S is bounded from below and has a great lower bound s1, then we call

s1 the infimum5 of S, written: s1 = inf S.

4“Sup” is pronounced like the word soup.
5“Infimum” is pronounced like in-fee-mum.
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Remark 1.4.6. (1) Every S ⊆ R such that S 6= ∅, can have at most one
supremum and one infimum.

(2) If S ⊆ R has a maximum, then maxS = supS. If S has a minimum, then
minS = inf S.

(3) The following are equivalent:
(a) s0 = supS,
(b) (i) s0 ≥ s for all s ∈ S, and

(ii) if s1 ≥ s for all s ∈ S, then s1 ≥ s0
(c) (i) s0 ≥ s for all s ∈ S, and

(ii’) if s1 < s0, then s1 < s for some s ∈ S
In practice, to prove something like (a), it is easier to prove (i) and (ii) of
(b), or (i) and (ii’) of (c) depending on the situation.

Example 1.4.7. (1) For a < b in R:

sup[a, b] = sup(a, b) = b

inf[a, b] = inf(a, b) = a

(2) Assume we know already about
√

2, then

sup{r ∈ Q : r2 ≤ 2} =
√

2

inf{r ∈ Q : r2 ≤ 2} = −
√

2

The following is the characteristic property of R:

Completeness Axiom 1.4.8. Every non-empty subset of R which is bounded from
above has a least upper bound. In other words, given S ⊆ R, if S 6= ∅ and S has at
least one upper bound, then supS exists.

The Completness Axiom 1.4.8 as stated concerns what happens at the top of sets.
There is also an equivalent “infimum version” which involves what happens below
the set. First, a definition: given a set S ⊆ R, we define −S to be the reflection of
S about the origin, i.e.,

−S := {−s : s ∈ S}.
For example, −(1, 2] = [−2,−1). Note that −(−S) = S. The following allows us
to relate results involving supremums with results involving infimums:

Sup-Inf Symmetry 1.4.9. Suppose S ⊆ R is nonempty.

(1) If S is bounded above, then −S is bounded below and supS = − inf(−S)
(2) If S is bounded below, then −S is bounded above and inf S = − sup(−S)

Proof. See Exercise 1.9.11. �

Completeness Axiom 1.4.10 (Infimum version). Every nonempty subset S of R
which is bounded from below has a greatest lower bound inf S.

Proof. Suppose S ⊆ R is nonempty and bounded below. Then −S is nonempty
and bounded above, by Sup-Inf Symmetry 1.4.9(1). In particular, sup(−S) ∈ R
exists by the Completeness Axiom 1.4.8. Then − sup(−S) = inf(S) by Sup-Inf
Symmetry 1.4.9(2). In particular, inf(S) ∈ R exists. �

We now provide our answer to Question 1.0.1:
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Answer 1.4.11. R is a number system6 which contains Q and satisfies the Com-
pleteness Axiom.

Why is 1.4.11 a good answer to 1.0.1? Because it tells you everything you need to
know about the real numbers in order to deduce all other properties about the real
numbers. For the rest of the course, we will only need to know the basic properties
of +, ·,≤ for the real numbers, as well as the Completeness Axiom. Everything else
will follow.

1.5. Geography of the real numbers

In this section we include a few results on the big picture “landscape” of the real
number line, i.e., where can you find what types of numbers. These may seem
obvious, but they really require us to use the Completeness Axiom to establish
rigorously.

Archimedean Property 1.5.1. The following properties about real numbers hold:

(1) For every positive real number a > 0, there is a natural number n such
that n > a.

(2) For every two positive real numbers a, b > 0, there is a natural number n
such that na > b.

(3) For every positive real number ε > 0, there is a natural number n such
that 1/n < ε.

Proof. We first prove (1). Assume towards a contradiction that there is a positive
real number a > 0 such that a ≥ n for every natural number n. Thus a is an upper
bound for the set N of natural numbers. By the Completeness Axiom, we can take
b := sup(N). As b is the least upper bound of N, the number b − 1/2 is not an
upper bound of N. In particular, there is a natural number n such that n > b−1/2.
Adding 1 yields

n+ 1 > (b− 1/2) + 1 > b.

Thus n + 1 is a natural number which is larger than b, contradicting that b is an
upper bound of N. Thus for every a > 0 there is a natural number n such that
a < n.

Now that we know (1) is true, we will use it to prove (2). Suppose a, b > 0 are
positive real numbers, in particular, b/a > 0. By (1) there is a natural number n
such that n > b/a. Multiplying through by a we get na > b.

Finally, we will prove (3). Suppose ε > 0 is a positive real number. Then
1/ε > 0 is also a positive real number. By (1) there is a natural number n such that
n > 1/ε. Multiplying both sides by the positive number ε/n then yields ε > 1/n. �

The following says that if there is a large enough gap between two real numbers,
you can always find an integer:

6Technically, R is a so-called ordered field. See Appendix B for an explanation of what it

means. Essentially it means that +, · and ≤ satisfy a certain list of axiom which we are already
familiar with. Also, it technically is redundant to say “R contains Q”, since every ordered field

automatically contains a copy of Q: you just consider the subset which is generated by 0, 1 and

closed under addition, subtraction, multiplication and division. In abstract algebra terms, we
would express this as “all ordered fields are characteristic 0 so their prime subfield is isomorphic

to the field Q.”
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Distribution of Integers 1.5.2. Suppose a < b are real numbers such that b−a >
1. Then there is an integer m such that a < m < b.

Proof. By the Archimedean Property, there is a natural number k > max
(
|a|, |b|

)
such that

−k < a < b < k.

Then the sets K = {j ∈ Z : −k ≤ j ≤ k} and {j ∈ K : a < j} are finite,
and nonempty since they contain k. Define m = min{j ∈ K : a < j}. Then
−k < a < m. As m > −k, we get m− 1 ∈ K, so

m− 1 ≤ a < a+ 1 < b

by the definition of m and assumption that b− a > 1. Adding 1 yields m < b, and
thus a < m < b. �

Between any two real numbers, no matter how tiny the gap, you can always find a
rational number:

Denseness of Q 1.5.3. Suppose a, b ∈ R are such that a < b. Then there is a
rational number r ∈ Q such that a < r < b.

Proof. We need to find integers m,n such that n > 0 and

a <
m

n
< b

(then r = m/n is the desired rational number we seek). Multiplying through by n,
it suffices to find a natural number n > 0 and an integer m such that

an < m < bn.

We need to arrange that the gap between an and bn is large enough to contain an
integer. By the Archimedean Property, there is a natural number n > 0 such that
n(b−a) > 1, and thus bn−an > 1. By Distribution of integers (applied to the real
numbers an < bn), we can find an integer m such that an < m < bn. �

1.6. Existence of nth roots and real powers

In this section we study an important and useful operation in the real numbers:
taking arbitrary real powers of a fixed base number. As motivation, fix a positive
real number b > 0. Then we can initially define the power function of base b to
be the function p0 : Z→ R defined by:

(†) p0(k) :=



b× · · · × b︸ ︷︷ ︸
k times

if k > 0

1 if k = 0

b−1 × · · · × b−1︸ ︷︷ ︸
−k times

if k < 0

In other words, p0 is the power function “bk”. Note that at this point we only
have defined this function to have domain Z. As is customary, we will denote p(k)
instead as bk. This function has the following well-known properties:

(P1) (Exponent rule) For every k, ` ∈ Z, bk+` = bkb`.
(P2) (Monotonicity) For every k, ` ∈ Z such that k < `:

(a) if b > 1, then bk < b`

(b) if b = 1, then bk = b` = 1
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(c) if b < 1, then bk > b`

One tempting question to ask at this point is the following:

Question 1.6.1. Is it possible to extend the function bk : Z → R to a function
bx : R→ R (whose domain is all of R) in such a way that the new function bx still
has properties (P1) and (P2) for all k, ` ∈ R? If it is possible, how many different
ways are there to define such a function?

Ideally, it ought to be possible to define such a function “bx” and moreover there
should be only one function that has properties (P1) and (P2). This will indeed be
the case. However, you should first convince yourself that it is far from obvious how
to define such a function. Clearly, we cannot extend definition (†) to non-integers,
so we have to do something else. As a warmup, we first show how to define “b1/n”
for natural numbers n. Our treatment is based on [3, 1.21] and will illustrate the
power of the Completeness Axiom.

Existence and Uniqueness of nth roots 1.6.2. Fix a real number b > 0, a
natural number n, and define the set

E := {t ∈ R : tn < b}
Then:

(1) E is nonempty and bounded above.
(2) (Existence) The number y := supE has the property yn = b.
(3) (Uniqueness) If z ∈ R is such that z > 0 and zn = b, then y = z.
(4) (Inequality) If b > 1, then for every n:

0 < b1/n − 1 ≤ b− 1

n

We will write the number y above as b1/n or n
√
b. The Uniqueness tells us that

no other positive real number deserves the name “nth root of b”. There is also a
similar Inequality (4) for the case 0 < b < 1, but we won’t need it since below we
only consider the case b > 1 (for simplicity).

Proof. (1) We will prove E is nonempty and bounded above:

• Clearly 0 ∈ E and so E 6= ∅. However, we will need to know below that
E contains a positive element. Set t := b/(1 + b). Then 0 < t < min(1, b),
so tn ≤ t < b, which implies that t ∈ E.

• We claim that 1 + b is an upper bound for E. Indeed, if s > 1 + b, then
sn ≥ s > b, so s 6∈ E.

• This permits us to define y := supE by the Completeness Axiom. Note
that since 0 < b/(1 + b) ∈ E, we know that y > 0.

(2) Now we will prove yn = b, by getting two contradictions:

• Assume towards a contradiction that yn < b. We will show that then
there is a tiny h > 0 such that (y + h)n < b, contradicting that y is an
upper bound of E since y + h ∈ E. Choose h small enough such that
0 < h < 1 and

h <
b− yn

n(y + 1)n−1
.

Then by the Difference of Powers Inequality A.2.3 and choice of h we have

(y + h)n − yn < hn(h+ h)n−1 < hn(y + 1)n−1 < b− yn,
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and so (y + h)n < b, a contradiction.
• Now assume towards a contradiction that yn > b. Then we will show there

is a tiny k > 0 such that y− k is also an upper bound of E, contradicting
that y is the least upper bound of E. Set

k :=
yn − b
nyn−1

> 0 (using y > 0 for the denominator)

Also, since −b < 0 ≤ (n − 1)yn, it follows that k < y. Now, suppose
t ≥ y − k is arbitrary. Then by the Difference of Powers Inequality again
we have,

yn − tn ≤ yn − (y − k)n < knyn−1 = yn − b

and so tn > b, so t 6∈ E. Thus y−k is an upper bound of E, a contradiction.

(3) Assume towards a contradiction that y 6= z, i.e., that either z < y or y < z.
Then by the Power Inequality 1.3.7 zn < yn = b or yn = b < zn, contradicting the
assumption that zn = yn = b.
(4) Setting x := b1/n − 1 > 0 in Bernoulli’s Inequality A.3.1 we get

(1 + b1/n − 1)n ≥ 1 + n(b1/n − 1)

which we can rewrite as

b1/n − 1 ≤ b− 1

n
. �

The following shows that we can distribute 1/nth powers the same way as integer
powers. This actually requires a subtle argument involving the Uniqueness part
of 1.6.2.

Corollary 1.6.3. Given a, b ∈ R such that a, b > 0 and n ∈ N, we have

(ab)1/n = a1/nb1/n.

Proof. Define the following numbers:

α := (ab)1/n

β := a1/n

γ := b1/n

Note that since n ∈ N, the laws of exponents for integers imply

(βγ)n = βnγn = (a1/n)n(b1/n)n = ab.

Thus the real number βγ is also a positive nth root of ab. Since α is the only
positive nth root of ab according to 1.6.2, we must conclude that these numbers
are the same, i.e., that α = βγ. In other words:

(ab)1/n = a1/nb1/n �

We now continue with our mission to define and make sense of “bx”. For simplicity,
we will assume that b > 1. The next order of business is to now extend the power
function bk : Z → R to a sensible function bq : Q → R. This is the content of the
next theorem:

Rational Power Theorem 1.6.4. Fix b ∈ R such that b > 1.



14 1. THE REAL NUMBERS AND THE COMPLETENESS AXIOM

(1) Define the two-variable function p1 : Z × N → R by p1(m,n) := (bm)1/n.
Then given m, k ∈ Z and n, ` ∈ N:

if m/n = k/`, then p1(m,n) = p1(k, `)

(2) (Existence) Define the function p2 : Q→ R by

p2(q) := p1(m,n) = (bm)1/n for any m,n ∈ Z such that n > 0 and q = m/n.

Then
(a) for every k ∈ Z, p2(k) = p0(k) (i.e., this candidate power function

defined for rational powers agrees with the existing definition of in-
teger powers)

(b) for every q, r ∈ Q, p2(q + r) = p2(q)p2(r)
(c) for every q, r ∈ Q, if q < r, then p2(q) < p2(r)

(3) (Uniqueness) Given any function p̃ : Q → R which satisfies (a) and (b)
above with p̃ in place of p2, then p2(q) = p̃(q) for every q ∈ Q.

Proof. (1) and (2) follow from Exercise 1.9.12.
(3) is an application of Exercise 1.9.5. �

The Uniqueness in 1.6.4 above permits us to define for rational q ∈ Q, the power bq

to be the value p2(q) = (bm)1/n where m/n = q. Thus we now have a well-defined
and sensible power function

q 7→ bq : Q→ R
which extends the integer power function k 7→ bk : Z→ R. Note that (1) is necessary
to establish in order for us to know that the definition in (2) does not depend on the
choice of how we represent q has a fraction m/n. Note also that (2)(c) is not needed
for the proof of Uniqueness in (3), but it is necessary to establish for Uniqueness
in the Real Power Theorem below:

Real Power Theorem 1.6.5. Fix b > 1 and for each x ∈ R define the set

B(x) := {bq : q ∈ Q and q ≤ x} = {p2(q) : q ∈ Q and q ≤ x}
(1) B(x) is nonempty and bounded above.
(2) (Existence) Define the function p3 : R→ R by

p3(x) := supB(x)

Then
(a) for every q ∈ Q, p3(q) = p2(q) (i.e., this candidate power function

defined for real powers agrees with the existing definition of rational
powers)

(b) for every x, y ∈ R, p3(x+ y) = p3(x)p3(y)
(c) for every x, y ∈ R, if x < y, then p3(x) < p3(y).

(3) (Uniqueness) For any function p̃ : R→ R which satisfies (a), (b), and (c)
above with p̃ in place of p3, then p3(x) = p̃(x) for every x ∈ R.

Proof. Parts (1) and (2) are done in Exercise 1.9.18.
Part (3) will be done later as Proposition 3.4.1. �

By the Uniqueness in 1.6.5, we are permitted to define bx : R→ R to be the function
p3(x) defined in the theorem. This answers our Question 1.6.1:

Answer 1.6.6. The function bx : R → R defined in Theorem 1.6.5 is the only
function that extends bk : Z→ R and has properties (P1) and (P2) for all k, ` ∈ R.
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1.7. The AGM Inequality

In this section we provide an application of nth roots, the celebrated Arithmetic
and Geometric Mean Inequality (abbreviated AGM Inequality). Given real numbers
a1, . . . , an, we define their arithmetic mean to be

a1 + · · ·+ an
n

=
1

n

n∑
k=1

ak

and if each ai > 0, then we define their geometric mean to be

(a1 · · · an)1/n =

(
n∏
k=1

ak

)1/n

.

The AGM Inequality states that the geometric mean is always less than or equal
to the arithmetic mean, and moreover, the only way the two means can be equal is
if all the ai’s are equal. The AGM Inequality has a very beautiful proof that uses
a rare form of induction attributed to Cauchy, our treatment is from [1].

AGM Inequality 1.7.1. For n ≥ 2, and positive real numbers a1, . . . , an ∈ R,

(a1 · · · an)1/n ≤ a1 + · · ·+ an
n

,

with equality iff a1 = a2 = · · · = an.

Proof. For n ≥ 2, let P (n) be the statement:

P (n) : “for all positive a1, . . . , an ∈ R, a1 · · · an ≤
(
a1 + · · ·+ an

n

)n
with equality iff a1 = a2 = · · · = an”

First for our base case of P (2), we note that

a1a2 ≤
(
a1 + a2

2

)2

⇐⇒ (a1 − a2)2 ≥ 0,

which is always true, and we have equality iff a1 − a2 = 0.
Next, we will prove two different inductive steps:

(A) for n ≥ 3, if P (n) holds, then P (n− 1) holds
(B) for n ≥ 2, if P (n) holds, then P (2n) holds.

If we can establish both (A) and (B), then it follows that P (n) is true for all natural
numbers n ≥ 2 (see Exercise 1.9.14).

For (A), let a1, . . . , an−1 be n−1 positive real numbers. Define an nth positive

real number A :=
∑n−1
k=1 ak/(n− 1). Then(

n−1∏
k=1

ak

)
A ≤

(∑n−1
k=1 ak +A

n

)n
by P (n)

with equality iff a1 = · · · = an−1

=

(
(n− 1)A+A

n

)n
= An.
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For (B), let a1, . . . , an, an+1, . . . , a2n be 2n positive numbers. Then

2n∏
k=1

ak =

(
n∏
k=1

ak

)(
2n∏

k=n+1

ak

)

≤

(
n∑
k=1

ak
n

)n( 2n∑
k=n+1

ak
n

)n
using P (n) twice

with equality iff a1 = · · · = an and an+1 = · · · = a2n

=

[(
n∑
k=1

ak
n

)(
2n∑

k=n+1

ak
n

)]n

≤

(∑2n
k=1

ak
n

2

)2
n using P (2)

with equality iff
∑n
k=1

ak
n =

∑2n
k=n+1

ak
n , iff a1 = · · · = a2n

=

(∑2n
k=1 ak
2n

)2n

. �

1.8. The extended real line R±∞
We now adjoin two new symbols −∞ and +∞ to R:

Definition 1.8.1. Define R±∞ := R ∪ {−∞,+∞}. We extend the ordering on R
to all of R±∞ by declaring:

−∞ ≤ a ≤ +∞ for every a ∈ R±∞.

We also define the following unbounded intervals. For a, b ∈ R we set:

[a,+∞) := {x ∈ R : a ≤ x}
(a,+∞) := {x ∈ R : a < x}
(−∞, b] := {x ∈ R : x ≤ b}
(−∞, b) := {x ∈ R : x < b}.

We also extend the meaning of inf and sup to this context:

Definition 1.8.2. For S ⊆ R, S 6= ∅, if S is not bounded from above, then we
declare

supS := +∞,
and if S is not bounded from below, then we declare

inf S := −∞.

Remark 1.8.3. There is not supposed to be anything super deep or special about
adjoining ±∞ to our real line. We primarily introduce it because it makes certain
commonly occurring statements and expressions shorter. For example:

(1) Writing “(−∞, a)” is shorter than writing “{x ∈ R : x < a}”,
(2) Writing “inf S = −∞” is shorter than writing “for every x ∈ R, there is

s ∈ S such that s < x”,
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(3) (Using knowledge of Chapter 2 below) Writing “limn→∞ an = ∞” is
shorter than writing “For every M ∈ R there exists N ∈ N such that
for all n ≥ N , an > M .”

In other words, ±∞ are not numbers, they are just artificial endpoints we attached
to the real line to simplify certain expressions. Any expression involving these new
points ±∞ is really just shorthand for a longer statement which does not refer to
±∞. Unless we state otherwise, we do not extend the arithmetic operations +, · on
R to include ±∞.

1.9. Exercises

Exercise 1.9.1. Use induction to prove the Sum of Squares Formula

12 + 22 + · · ·+ n2 =

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

for all positive integers n.

Exercise 1.9.2. Use induction to show that
2n∑
k=1

1

k
≥ 1 +

n

2

for every integer n ≥ 0.

Exercise 1.9.3 (Abel’s formula). Suppose a1, a2, a3, . . . and b1, b2, b3, . . . are real

numbers. For each natural number k define the sum Ak :=
∑k
i=1 ai. Prove for

every natural number n ≥ 1 that

n∑
i=1

aibi = Anbn −
n−1∑
i=1

Ai(bi+1 − bi).

Exercise 1.9.4. This exercise derives the basic number-theoretic facts used in the
proof that there is no rational solution to the equation x2 − 2 = 0.

(1) Prove that if n is a natural number, then 2n > n.
(2) Prove that if n is a natural number, then

n = 2k0`0

for some odd natural number `0 and some nonnegative integer k0. (Hint:
consider the set A = {k ∈ N ∪ {0} : n = 2k` for some ` in N}, what does
part (1) tell you about the set A?)

(3) Prove that each rational number x can be expressed as x = m/n, where
m,n ∈ Z and m or n is odd.

(4) Prove that an integer n is even if its square n2 is even.

Exercise 1.9.5. Suppose f, g : R→ R are two functions that satisfy:

(a) f(x+ y) = f(x)f(y) for all x, y ∈ R,
(b) g(x+ y) = g(x)g(y) for all x, y ∈ R, and
(c) f(1) = g(1).

Prove the following:

(1) f(n) = g(n) for every n ∈ N,
(2) f(k) = g(k) for every k ∈ Z, and
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(3) f(q) = g(q) for every q ∈ Q.

In other words, properties (a), (b) and (c) imply that the functions f and g are
“almost equal” in the sense that they agree on the dense set Q. Must it always
be the case that f(r) = g(r) for all r ∈ R? (This last question is not part of the
exercise, just something to think about.)

Exercise 1.9.6. Prove the Reverse Triangle Inequality : For every a, b ∈ R:

|a− b| ≥
∣∣|a| − |b|∣∣

Exercise 1.9.7. This exercise extends the Triangle Inequality to finite sums.

(1) Prove |a+ b+ c| ≤ |a|+ |b|+ |c| for all a, b, c ∈ R by applying the triangle
inequality twice.

(2) Use induction to prove

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an|
for n numbers a1, a2, . . . , an ∈ R.

Exercise 1.9.8. Suppose α, β ∈ R are real numbers with the property:

For every n ∈ N, |α− β| < 1/n.

Show that then α = β. [This is basically a fancy way of showing that two real num-
bers are the same. We will use this fact quite often, sometimes without mention.]

Exercise 1.9.9 (Cauchy’s Inequality). Prove that for any numbers a, b ∈ R:

ab ≤ 1

2
(a2 + b2)

Exercise 1.9.10. Let n ∈ N. Suppose 0 ≤ x ≤ 2/n2. Then

1− nx+
n(n− 3)

2
x2 ≤ (1− x)n ≤ 1− nx+

n(n− 1)

2
x2.

[This inequality is like a “second order” version of Bernoulli’s Inequality.]

Exercise 1.9.11. Prove Sup-Inf Symmetry : Suppose S ⊆ R is nonempty.

(1) If S is bounded above, then −S is bounded below and supS = − inf(−S)
(2) If S is bounded below, then −S is bounded above and inf S = − sup(−S)

Exercise 1.9.12. In this exercise we prove part of the Rational Power Theo-
rem 1.6.4: Fix b ∈ R such that b > 1.

(1) Define the two-variable function p1 : Z × N → R by p1(m,n) := (bm)1/n.
Then givenm, k ∈ Z and n, ` ∈ N show that ifm/n = k/`, then p1(m,n) =
p1(k, `).

Define the function p2 : Q→ R by

p2(q) := p1(m,n) = (bm)1/n for any m,n ∈ Z such that n > 0 and q = m/n

Then

(2) for every k ∈ Z, p2(k) = p0(k) (i.e., this candidate power function defined
for rational powers agrees with the existing definition of integer powers)

(3) for every q, r ∈ Q, p2(q + r) = p2(q)p2(r)
(4) for every q, r ∈ Q, if q < r, then p2(q) < p2(r)

Exercise 1.9.13. Prove the Principle of Strong Induction: Suppose P (n) is a
property that a natural number n may or may not have. Suppose that
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(1) P (1) holds, and
(2) For every n ≥ 1, if P (k) holds for k = 1, . . . , n, then P (n+ 1) holds.

Then P (n) holds for every natural number n ≥ 2. [Hint: Use the Principle of
Induction with an appropriate inductive hypothesis.]

Exercise 1.9.14. Carefully prove the Principle of Cauchy Induction: Suppose
P (n) is a property that a natural number n may or may not have. Suppose that

(a) P (2) holds,
(b) For every n ≥ 2, if P (n) holds, then P (2n) holds, and
(c) For every n ≥ 3, if P (n) holds, then P (n− 1) holds.

Then P (n) holds for every natural number n ≥ 2.

Exercise 1.9.15. Define the Fibonacci numbers recursively as follows:

F1 = F2 := 1 and Fn+1 := Fn + Fn−1 for n ≥ 1.

Prove Binet’s formula for the Fibonacci numbers:

Fn =
αn − βn√

5
where α :=

1 +
√

5

2
, β :=

1−
√

5

2
.

Exercise 1.9.16. Consider the polynomial

P (X) = Xd + ad−1X
d−1 + · · ·+ a1X + a0,

where d ≥ 1 and a0, . . . , ad−1 ∈ R. Define the number

M := 1 + |ad−1|+ · · ·+ |a1|+ |a0|.
Prove the following:

(1) For every x ∈ R such that |x| ≥M ,∣∣∣ad−1
x

+
ad−2
x2

+ · · ·+ a1
xd−1

+
a0
xd

∣∣∣ < 1.

(2) For every x ∈ R such that |x| ≥M , P (x) = xd(1 + ε) for some ε ∈ R such
that |ε| < 1.

(3) For every x ∈ R such that |x| ≥M , P (x) 6= 0.

Thus all real zeros of P must lie in the interval (−M,M).

Exercise 1.9.17. Prove for all natural numbers n ≥ 2:

n! <

(
n+ 1

2

)n
[Hint: the AGM Inequality might be useful.]

Exercise 1.9.18. In this exercise we prove part of the Real Power Theorem 1.6.5:
Fix b > 1 and for each x ∈ R define the set

B(x) := {bq : q ∈ Q and q ≤ x}
(1) B(x) is nonempty and bounded above.

Define the function p3 : R→ R by

p3(x) := supB(x)

Then

(2) for every q ∈ Q, p3(q) = p2(q) (i.e., this candidate power function defined
for real powers agrees with the existing definition of rational powers)
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(3) for every x, y ∈ R, p3(x+ y) = p3(x)p3(y)
(4) for every x, y ∈ R, if x < y, then p3(x) < p3(y).

Exercise 1.9.19. For each of the sets below, do the following things:

(i) Give three upper bounds for the set (no proof needed), or show the set is not
bounded above (proof needed).

(ii) Give three lower bounds for the set (no proof needed), or show the set is not
bounded below (proof needed).

(iii) Determine the supremum of the set, or show that it does not have one. (Proof
needed for either)

(iv) Determine the infimum of the set, or show that it does not have one. (Proof
needed for either)

Here are the sets:

(1) {1− 1/3n : n ∈ N}
(2)

⋂∞
n=1(1− 1/n, 1 + 1/n)

(3) {x ∈ R : x3 < 8}
[Hint: you might find the Archimedean Property to be useful for some of these]

Exercise 1.9.20. Let S ⊆ R be nonempty and bounded. For a fixed c > 0, define
cS := {cs : s ∈ S}. Show that sup(cS) = c · sup(S), and inf(cS) = c · inf(S).

Exercise 1.9.21. Suppose S, T ⊆ R are nonempty subsets of R such that S ≤ T ,
i.e., for every s ∈ S and t ∈ T , s ≤ t. Show that supS ≤ inf T .

Exercise 1.9.22. Suppose r ∈ Q\{0} and x ∈ R\Q is irrational. Show that r+x
and rx are also irrational.

Exercise 1.9.23. Suppose A,B ⊆ R are nonempty sets bounded below which
satisfy the property:

• For every a∗ ∈ A and ε > 0, there are a ∈ A and b ∈ B such that a ≤ a∗

and |a− b| < ε.

Prove that inf A ≥ inf B.

Exercise 1.9.24. Suppose that A ⊆ R is a nonempty bounded set. Show that:

supA− inf A = inf{b− a : a, b ∈ R and a ≤ A ≤ b}

Exercise 1.9.25. Write the following sets in interval notation in the extended real
line R±∞:

(1) {x ∈ R : x < 0}
(2) {x ∈ R : x5 ≤ 32}
(3) {x2 : x ∈ R}
(4) {x ∈ R : x4 < 3}

In each part, provide justification (i.e., a proof) that the set equals the interval that
you claim it equals.



CHAPTER 2

Sequences of Real Numbers

Sequences are a fundamental concept of utmost importance in analysis. Convergent
sequences give us a systematic way of talking about particular real numbers which
otherwise might be hard to describe.

2.1. Sequences and limits of sequences

Definition 2.1.1. A sequence in R is a function

s : {n ∈ Z : n ≥ m} → R (for some m ∈ Z).

Usually we denote such a sequence by

s = (sn)∞n=m = (sn)n≥m = (sm, sm+1, . . .),

where sn = s(n). If m = 1, then we also write

s = (sn)n∈N = (s1, s2, . . .).

If the domain of s is clear from the context, then we also just write s = (sn).

Example 2.1.2. (1) sn = 1/n2, n ≥ 1 is the sequence:(
1,

1

4
,

1

9
,

1

16
,

1

25
, . . .

)
(2) an = (−1)n, n ≥ 0 gives the sequence:

(1,−1, 1,−1, . . .)

(3) an = n
√
n, n ∈ N gives the sequence:

(1,
√

2,
3
√

3,
4
√

4, . . .)

A computation on a computer shows that a1,000 ≈ 1.0069 . . ., and in
general, an seems to be getting closer and closer to 1 as n increases.

(4) bn = (1 + 1/n)n, n ∈ N gives the sequence

(2, 2.25, 2.3704, 2.4414, . . .)

which gets closer and closer to 2.71 . . .
(5) We can also define sequences recursively, for instance:

(fn) = (1, 1, 2, 3, 5, 8, 13, . . .)

is defined by initial conditions f1 = f2 = 1 and the rule fn+2 = fn+1 +fn.

Definition 2.1.3. Let (sn)n≥m be a sequence, s ∈ R. We say that (sn)n≥m
converges to s if for each ε > 0 there is some number N ≥ m such that |sn−s| < ε
for every natural number n ≥ N .

If sn converges to s, we write this as s = limn→∞ sn or sn → s, and we call s
the limit of (sn).

21
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If there is no s ∈ R such that sn → s, then we say that (sn) diverges.
[Note, in the definition of sn → s, the numbers n,m are natural numbers, but

N does not need to be in N.]

Sanity Check 2.1.4. The following things are true about sequences:

(1) (Limits are unique) Given a sequence (sn) and s, s′ ∈ R, if sn → s and
sn → s′, then s = s′.

(2) (Constant sequences converge to the constant) If (sn)n≥m is a constant
sequence, i.e., there is s ∈ R such that sn = s for all n ≥ m, then sn → s.

Proof. (1) Let ε > 0 be arbitrary. Since sn → s and sn → s′, there is N ∈ N such
that

|sn − s| <
ε

2
and |sn − s′| <

ε

2
for every n ≥ N (to get such an N , just take the maximum of the two N ’s which
work for sn → s and sn → s′ separately). Then

|s− s′| =
∣∣(s− sn)− (s′ − sn)

∣∣
≤ |sn − s|+ |sn − s′| by Triangle Inequality

<
ε

2
+
ε

2
= ε.

We have just shown that |s− s′| < ε for every ε > 0. Thus s = s′ by Exercise 1.9.8.
(2) Let ε > 0 be given. We need to find N ≥ m such that |sn− s| < ε for every

n ≥ N . But
|sn − s| = |s− s| = 0 < ε for all n ≥ m

so we can take N := m (or even let N be any integer ≥ m). �

Example 2.1.5. 1/
√
n→ 0.

Proof. Let ε > 0 be given. We need to find N ≥ 1 such that∣∣∣∣ 1√
n
− 0

∣∣∣∣ < ε for every n ≥ N,

In other words, we want to know how large n must be so that

1√
n

< ε,

which is equivalent to

n >
1

ε2
.

Thus we can let N be any natural number such that N > 1/ε2. Indeed, if n ≥ N ,
then n > 1/ε2, so |1/

√
n− 0| < ε. �

Example 2.1.6.
(
(−1)n

)
n≥1 diverges.

Proof. Suppose towards a contradiction that there is a ∈ R such that (−1)n → a.
Then either 1 or −1 will have distance ≥ 1 from a (since a will either be positive,
negative or 0), so ∣∣(−1)n − a

∣∣ < 1

will not hold for all large n.
In other words, let ε = 1 and take N such that∣∣(−1)n − a

∣∣ < 1 for all n ≥ N,



2.1. SEQUENCES AND LIMITS OF SEQUENCES 23

which we can do since we are assuming (−1)n → a. Then

|1− a|, |1 + a| < 1,

so

2 =
∣∣(1− a) + (1 + a)

∣∣ ≤ |1− a|+ |1 + a| < 1 + 1 = 2,

a contradiction. �

We want to get more intuition for convergent sequences. The following is a property
that a sequence may or may not enjoy:

Definition 2.1.7. A sequence (sn)n≥m is said to be bounded if the set

{sn : n ≥ m} ⊆ R

is bounded.

It should come as no surprise that convergent sequences are bounded:

Proposition 2.1.8. Every convergent sequence is bounded.

Proof. Let (sn)n≥m be a convergent sequence, say sn → s ∈ R. We will find a
bound for (sn).

Let ε := 1 and take N ≥ m such that

|sn − s| < 1 for n ≥ N .

Then for n ≥ N :

|sn| =
∣∣(sn − s) + s

∣∣
≤ |sn − s|+ |s| (by Triangle Inequality)

< 1 + |s|.

Now put

M := max
{
|sm|, . . . , |sN−1|, 1 + |s|

}
.

Then |sn| ≤M for all n ≥ m. �

Note that the converse to Proposition 2.1.8 does not hold.

Limit Laws for Sequences 2.1.9. Let (sn), (tn) be sequences in R such that
sn → s and tn → t. Then

(1) sn + tn → s+ t
(2) sn · tn → s · t
(3) if tn 6= 0 for all n and t 6= 0, then

sn
tn
→ s

t
.

Proof. (1) Let ε > 0. [The idea here is that the two terms |s − sn| and |t − tn|
below will “share the ε”, i.e., that we will make each one separately smaller than
ε/2. This “ε sharing” is a common trick.] Take N1, N2 such that

n ≥ N1 =⇒ |s− sn| <
ε

2

n ≥ N2 =⇒ |t− tn| <
ε

2
.
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Then with N := max{N1, N2} we get∣∣(s+ t)− (sn + tn)
∣∣ ≤ |s− sn|+ |t− tn| by the Triangle Inequality

<
ε

2
+
ε

2
= ε.

(2) The idea here is to use the following inequalities:

|sntn − st| = |sntn − snt+ snt− st|
≤
∣∣sn(tn − t)

∣∣+
∣∣(sn − s)t∣∣

= |sn| · |tn − t|+ |sn − s| · |t|.

Note that the expression |sntn − st| which we want to make arbitrary small is
bounded by the last expression. There, the term |sn| is bounded, the terms |tn− t|
and |sn − s| can be made arbitrary small, and |t| is some constant.

Now, let ε > 0. By Proposition 2.1.8, there is M > 0 such that

|sn| ≤ M for all n.

Now take N1 such that

|tn − t| <
ε

2M
for all n ≥ N1

and take N2 such that

|sn − s| <
ε

2
(
|t|+ 1

) for all n ≥ N2.

[Note: we have to use “|t| + 1” in the denominator instead of “|t|” to take into
account the case where |t| = 0. The “2’s” in the denominators are there because
we are doing an ε-sharing trick here.] Let N := max{N1, N2} and note that for
n ≥ N :

|sntn − st| ≤ |sn| · |tn − t|+ |t| · |sn − s|

≤ M · ε

2M
+ |t| ε

2
(
|t|+ 1

)
<

ε

2
+
ε

2
= ε.

(3) By (2), it is enough to show that if tn 6= 0 for all n and t 6= 0, then
1/tn → 1/t. The idea is the following: note that∣∣∣∣ 1

tn
− 1

t

∣∣∣∣ =

∣∣∣∣ t− tntnt

∣∣∣∣
so we need to be able to make the numerator t − tn small, and the denominator
tn · t large.

Claim. There is some r > 0 such that |tn| ≥ r for all n.

Proof of Claim. Put ε := 1
2 |t| > 0, and take N such that

|tn − t| ≤ ε =
1

2
|t| for all n ≥ N .
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Then for n ≥ N we have |tn| ≥ |t|/2, because otherwise if we assume towards a
contradiction that |tn| < |t|/2 for some n ≥ N we get

|t| =
∣∣(t− tn) + tn

∣∣
≤ |t− tn|+ |tn| by Triangle Inequality

<
1

2
|t|+ 1

2
|t| = |t|,

a contradiction. Now we put

r := min
{
|t1|, . . . , |tN−1|, |t|/2

}
> 0.

Then clearly |tn| ≥ r > 0 for all n. �

Now we take r > 0 as in the claim. Then∣∣∣∣ 1

tn
− 1

t

∣∣∣∣ ≤ |t− tn|
r|t|

for all n.

Let ε > 0. Take N such that

|tn − t| < εr|t| for all n ≥ N .

Then ∣∣∣∣ 1

tn
− 1

t

∣∣∣∣ ≤ |t− tn|
r|t|

<
εr|t|
r|t|

= ε for n ≥ N . �

The following is an indispensable tool for computing limits of complicated se-
quences. Usually (sn)n≥m below will be some complicated sequence, and (tn)n≥m
will be some simpler sequence that we already know converges to 0.

Squeeze Lemma for Sequences 2.1.10. Suppose (sn)n≥m and (tn)n≥m are se-
quences such that tn → 0 and for some N ≥ m we have 0 ≤ sn ≤ tn for all n ≥ N .
Then sn → 0.

Proof. This is Exercise 2.6.1. �

The following example shows how to compute some limits that are a little more
complicated:

Example 2.1.11. Here are some basic limits:

(1) limn→∞
n
√
n = 1.

(2) limn→∞
1
np = 0 for all p ∈ R such that p > 0,

(3) limn→∞ an = 0 for |a| < 1,
(4) limn→∞

n
√
a = 1 for a > 0.

Proof. (1) Apply the AGM Inequality 1.7.1 to the n numbers

1, . . . , 1︸ ︷︷ ︸
n− 1 of these

,
√
n

to get

1 < n1/2n <
n− 1 +

√
n

n︸ ︷︷ ︸
AGM Inequality

< 1 +
1√
n
.

Squaring the first, second and fourth parts yield

1 < n1/n < 1 +
2√
n

+
1

n
.
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Next, by the Limit Laws 2.1.9(1) and (2) and Example 2.1.5 (or (2) below) we have

lim
n→∞

1 +
2√
n

+
1

n
= 1,

so by the Squeeze Theorem 2.1.10 we conclude that limn→∞ n1/n = 1.
(2) Let ε > 0, and let N be an integer such that

N >

(
1

ε

)1/p

.

Then

n ≥ N =⇒ np ≥ Np >
1

ε

=⇒
∣∣∣∣ 1

np
− 0

∣∣∣∣ =
1

np
< ε.

(3) We may assume that a 6= 0. Then

|a| =
1

1 + b
for some b > 0.

Then by Bernoulli’s Inequality,

(1 + b)n ≥ 1 + nb > nb

which implies

|an − 0| = |a|n =

(
1

1 + b

)n
<

1

nb
.

However, since 1/nb→ 0, the Squeeze Theorem for Sequences tells us that |an| → 0,
and thus also an → 0 (using Squeeze Theorem again and the observation that
−|an| ≤ an ≤ |an|).

(4) Suppose first that a ≥ 1. Then for n ≥ a we have

1 ≤ a1/n ≤ n1/n → 1.

Thus a1/n → 1 by the Squeeze Theorem for Limits. Next, suppose that 0 < a <
1. Then 1/a > 1, so (1/a)1/n → 1. Thus a1/n = 1/(1/a)1/n → 1 by Limit
Law 2.1.9(3). �

Finally, we extend our definition of limit to include the case where the sequence
“blows up to infinity”. This is technically an instance of a divergent sequence
(albeit, a very special type of divergence), but the notion can still be useful in
computing the convergence of sequences, e.g., see Lemma 2.1.16.

Definition 2.1.12. Let (sn)n≥m be a sequence. Then we define limn→∞ sn = +∞
if for each M ∈ R, there is N ≥ m such that sn ≥M for all n ≥ N .

In this case we say that (sn) diverges to +∞. We also define limn→∞ sn =
−∞ to mean limn→∞(−sn) = +∞.

We say that (sn) has a limit or that the limit of (sn) exists if either

(1) (sn) converges (to a limit L in R), or
(2) (sn) diverges to +∞ or −∞.

Example 2.1.13. (1) limn→∞ n2 = limn→∞ 2n = +∞.
(2) limn→∞(−1)nn does not exist.
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Lemma 2.1.14. Let (sn), (tn) be sequences, and suppose

lim
n→∞

sn = +∞ and lim
n→∞

tn ∈ R>0 ∪ {+∞}.

Then limn→∞ sn · tn = +∞.

Proof. Let M ∈ R be given; we need to find N such that

sntn ≥ M for n ≥ N .

Since limn→∞ tn > 0, we can take a real number m such that 0 < m < limn→∞ tn.
Then we can take N1 such that tn ≥ m for all n ≥ N1 (using either the m = r from
the Claim in the proof of Proposition 2.1.9(3) in the case that limn→∞ tn ∈ R, or
else we use the definition of limn→∞ tn = +∞ in the case that limn→∞ tn = +∞).
Since limn→∞ sn = +∞, we can take N2 such that

sn ≥
M

m
for n ≥ N2.

So for n ≥ max{N1, N2} we get sntn ≥ M
m ·m = M . �

Example 2.1.15. (n2 + 1)/(n− 1)→ +∞. To see this, note that for n ≥ 2

n2 + 1

n− 1
=

n+ 1
n

1− 1
n

=

(
n+

1

n

)
︸ ︷︷ ︸

sn

·
(

1

1− 1
n

)
︸ ︷︷ ︸

tn

and it is easy to show sn → +∞ directly from the definition, and tn → 1 using
Proposition 2.1.9 several times. Thus sn · tn → +∞ by Lemma 2.1.14.

Lemma 2.1.16. Let (sn) be a sequence where sn > 0 for each n. Then,

lim
n→∞

sn = +∞ ⇐⇒ lim
n→∞

1

sn
= 0.

Proof. (⇒) Suppose limn→∞ sn = +∞. Let ε > 0 be given. Since limn→∞ sn =
+∞, we can take N such that sn > 1/ε for all n ≥ N . Thus for n ≥ N :∣∣∣∣ 1

sn
− 0

∣∣∣∣ =
1

sn
< ε.

In other words, 1/sn → 0.
(⇐) Suppose limn→∞ 1/sn = 0. Let M ∈ R>0 be given. Take N such that∣∣∣∣ 1

sn
− 0

∣∣∣∣ < 1

M
for n ≥ N .

Then sn > M for n ≥ N . �

2.2. Monotone sequences and Cauchy sequences

Recall that in the definition of a sequence (sn) converging, we need to specify L
which it converges to. In this section we will show two theorems that allow us to
conclude that certain sequences converge without knowing their limit L in advance
(or at all).

Definition 2.2.1. We say that a sequence (sn) is

(1) increasing if sn ≤ sn+1 for all n,
(2) decreasing if sn ≥ sn+1 for all n,
(3) monotone if it is increasing or decreasing.
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Monotone Convergence Theorem 2.2.2. Every bounded monotone sequence
converges.

Proof. Suppose (sn)n≥1 is bounded and increasing. Let

S := {sn : n ∈ N}.
Then S is bounded from above, so s := supS ∈ R exists.

Claim. s = limn→∞ sn.

Proof of claim. Let ε > 0 be given. Then s− ε is not an upper bound for S; so
there is some N such that

s− ε < sN .

Since (sn) is increasing, for all n ≥ N we have

s− ε < sN ≤ sN+1 ≤ · · · ≤ sn ≤ sn+1 ≤ · · · ≤ s
and so

s− ε < sn ≤ s for all n ≥ N.
This implies |s− sn| < ε for all n ≥ N . �

Likewise, if (sn) is bounded an decreasing, then

lim
n→∞

sn = inf{sn : n ∈ N}. �

The following example is the only time we will say anything about decimal expan-
sions for real numbers. You do not need to know it for any homework or exam.

Example 2.2.3 (Decimal expansions). We may view an infinite decimal expansion
as a limit of a certain sequence. Consider the infinite decimal expansion:

s = K.d1d2d3 · · · (K ∈ Z≥0, di ∈ {0, 1, . . . , 9})
This may be approximated by

sn = K +
d1
10

+
d2
102

+ · · ·+ dn
10n

The sequence (sn) is increasing and bounded by K + 1. By the Monotone Con-
vergence Theorem 2.2.2, it has a limit: s = limn→∞ sn. In some sense, the real
number s is defined to be this limit.

Proposition 2.2.4. Suppose (sn) is unbounded. Then

(1) if (sn) is increasing, then limn→∞ sn = +∞, and
(2) if (sn) is decreasing, then limn→∞ sn = −∞.

Proof. (1) Suppose (sn) is increasing and unbounded. Then

S := {sn : n ∈ N}
is unbounded from above. Hence for each M there is N such that sN ≥ M . Since
(sn) is increasing, sn ≥ sN ≥M for all n ≥ N .

(2) is similar and left as an exercise. �

Corollary 2.2.5. For a monotone sequence (sn), either

(1) (sn) converges, or
(2) (sn) diverges to ±∞,

and so in either case limn→∞ sn ∈ R ∪ {±∞} exists.
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We now define the important notion of a Cauchy sequence:

Definition 2.2.6. A sequence (sn)n≥m in R is called a Cauchy1 sequence if for
every ε > 0 there is N ≥ m such that |sn − sn′ | < ε for all n, n′ ≥ N .

A Cauchy sequence is basically a sequence that behaves like it ought to converge
to something. Note that the definition only refers to elements of the sequence (sn),
and does not mention any limit s (in contrast with the definition of convergent
sequence). We will show eventually that for sequences in R, “Cauchy=convergent”
(Theorem 2.3.8), although this will take some work. One direction is easy though:

Lemma 2.2.7. If (sn) is convergent, then (sn) is Cauchy.

Proof. Suppose (sn) is a sequence in R such that sn → s ∈ R. By the Triangle
Inequality we have for all n, n′:

|sn − s′n| =
∣∣(sn − s) + (s− sn′)

∣∣ ≤ |sn − s|+ |s− sn′ |.

Let ε > 0 be given and take N such that

|sn − s| <
ε

2
for all n ≥ N.

Thus if n, n′ ≥ N , then

|sn − s|, |sn′ − s| < ε

2
.

Hence |sn − sn′ | < ε/2 + ε/2 = ε. �

We can’t yet directly show that Cauchy sequences are convergent, but at least we
can show that Cauchy sequences are bounded, which is a necessary property if they
are going to be convergent (by Proposition 2.1.8).

Lemma 2.2.8. If (sn) is Cauchy, then (sn) is bounded.

Proof. Let ε := 1 and take N such that

|sn − sn′ | < ε for all n, n′ ≥ N.

Then |sn − sN | < 1 for all n ≥ N , so for all n ≥ N we have

|sn| =
∣∣(sn − sN ) + sN

∣∣
≤ |sn − sN |+ |sN |
< 1 + |sN |.

Now, put

M := max
{
|sm|, |sm+1|, . . . , |sN−1|, 1 + |sN |

}
.

Then |sn| ≤M for all n ≥ m. �

To summarize so far, we have

convergent =⇒ Cauchy =⇒ bounded.

Our goal is to show that

Cauchy =⇒ convergent.

This will take a little work.

1“Cauchy” is pronounced like coh-shee, coh as in the word coach, and shee as in the word
she. See also https://www.youtube.com/watch?v=eHsmDFKLpZU.

https://www.youtube.com/watch?v=eHsmDFKLpZU
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2.3. Subsequences

Sometimes if you have a poorly behaved sequence (sn), it might have a better
behaved subsequence, and dealing with the subsequence may be useful in dealing
with the original sequence.

Definition 2.3.1. Let (sn)n∈N be a sequence in R. A subsequence of (sn) is a
sequence of the form (snk

)k∈N where (nk)k∈N is a strictly increasing sequence in N:

1 ≤ n1 < n2 < · · · < nk < nk+1 < · · · .

Of course, every sequence is a subsequence of itself (just take nk = k).

Example 2.3.2. (1) The constant sequences (−1) and (1) are subsequences
of ((−1)n)n∈N. Just take nk = 2k + 1 and nk = 2k, respectively, to get
each of the two subsequences

(2) Given the sequence (sn) = (1/n), then (1/2k)k∈N is a subsequence (use
nk = 2k).

Remark 2.3.3. Since (nk)k∈N is a strictly increasing sequence in N, a proof by
induction shows that

nk ≥ k for all k ∈ N.

Lemma 2.3.4. Suppose sn → s ∈ R. Then snk
→ s for every subsequence (snk

)
of (sn).

Proof. Let ε > 0. Take N such that

|sn − s| < ε for every n ≥ N.
Suppose k ≥ N . Then nk ≥ k ≥ N , so

|snk
− s| < ε for every k > N.

Thus snk
→ s. �

In general we think of a non-convergent sequence as possibly being rather chaotic.
The next lemma says that a sequence has a subsequence which converges to s iff
there is always enough “chaos” from the original sequence happening sufficiently
close to s.

Lemma 2.3.5 (Extracting a convergent subsequence). Let (sn) be a sequence and
s ∈ R. Then there is a subsequence of (sn) converging to s iff for all ε > 0,{
n : |sn − s| < ε

}
is infinite.

Proof. (⇒) This direction is clear, since if (snk
) is a subsequence of (sn) which

converges to s, then some infinite “tail” of (snk
) will be within distance ε of s.

Formally: Suppose snk
→ s as k → ∞. Let ε > 0. Then there is N such that for

every k ≥ N , |snk
− s| < ε. Thus

{n : |sn − s| < ε} ⊇ {nk : k ≥ N}
is infinite.

(⇐) By induction on k we construct a sequence of natural numbers

1 ≤ n1 < n2 < · · · < nk < nk+1 < · · ·
such that |snk

− s| < 1/2k for all k ∈ N. If we can accomplish this, then (snk
) will

be a subsequence which converges to s.
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For the base case k = 1, take any n1 such that |sn1
− s| < 1/2.

For the inductive step, assume we have constructed already n1, . . . , nk as de-
sired. By assumption the set {

n : |sn − s| < 1/2k+1
}

is infinite, so {
n : |sn − s| < 1/2k+1 and n > nk

}
is also infinite. Let nk+1 be any element from this last set.

It is easily checked that snk
→ s as k →∞. �

Nested Intervals Lemma 2.3.6. Let In = [an, bn], where an, bn ∈ R, an < bn
are such that

In ⊇ In+1 for all n.

Then there is some s ∈ R such that s ∈ In for all n. Moreover, if bn − an → 0,
then there is a unique s ∈ R such that s ∈ In for all n.

Proof. Consider the set of left endpoints:

S := {an : n ∈ N}

The set S is bounded from above: every bn is an upper bound of S since

In ⊇ In+1 means an ≤ an+1 ≤ bn+1 ≤ bn.

Put s := supS ∈ R. Then an ≤ s ≤ bn for all n.
In the case that bn − an → 0, suppose t ∈ R is also such that t ∈ In for every

n. Then an ≤ s, t ≤ bn, so 0 ≤ |s− t| ≤ bn − an → 0 so s = t. �

Bolzano-Weierstrass Theorem 2.3.7. Every bounded sequence has a convergent
subsequence.

Proof. The proof will proceed by a standard “bisection” argument.
Let (sn) be a bounded sequence. Take M such that |sn| ≤ M for all n. We

will construct a sequence of nested intervals

I1 ⊇ I2 ⊇ I3 ⊇ · · ·

such that for each k:

(1) Ik = [ak, bk] and bk − ak = M · 22−k, and
(2) {n : sn ∈ Ik} is infinite.

Let I1 := [−M,M ]. Suppose we have already constructed Ik. Consider the mid-
point ck = (ak + bk)/2. Then each of the intervals [ak, ck], [ck, bk] has length
M · 22−(k+1). Furthermore, at least one of the sets{

n : sn ∈ [ak, ck]
}

or
{
n : sn ∈ [ck, bk]

}
is infinite (since their union {n : sn ∈ Ik} is infinite). If the first set is infinite, then
we set Ik+1 := [ak, ck]. Otherwise, we set Ik+1 := [ck, bk]. By the Nested Intervals
Lemma 2.3.6, there is some s ∈ R such that

s ∈ Ik for every k.

Claim. Some subsequence of (sn) converges to s.
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Proof of claim. By 2.3.5, it is enough to show that for all ε > 0,{
n : |sn − s| < ε

}
is infinite.

To see this, let ε > 0 be given, and choose k0 such that M · 22−k0 < ε. Then for
infinitely many many n, we have sn ∈ Ik0 , as well as s ∈ Ik0 . So

|s− sn| ≤ length of Ik0 = M · 22−k0 < ε,

for infinitely many n. �

This finishes the proof of the Bolzano-Weierstrass Theorem. �

The next theorem shows how we can check whether a sequence converges without
having to know its limit. We call the theorem the “Cauchy Completeness Theo-
rem” because it asserts that no Cauchy sequence is missing a limit (just like the
Completeness Axiom asserts that no nonempty bounded-above set is missing a
supremum).

Cauchy Completeness Theorem 2.3.8. Let (sn) be a sequence. Then (sn) is
Cauchy iff (sn) is convergent.

Proof. (⇐) This is Lemma 2.2.7.
(⇒) Suppose (sn) is Cauchy. Then (sn) is bounded by 2.2.8, thus (sn) has a

convergent subsequence by the Bolzano-Weierstrass Theorem 2.3.7. Let (snk
) be

this convergent subsequence and s ∈ R such that snk
→ s. Then it suffices to show

Claim. (sn) also converges to s.

Proof of claim. Let ε > 0 be given. Take N0 such that |sn − sn′ | < ε/2 for all
n, n′ ≥ N0 (since (sn) is Cauchy). Next, take k0 large enough such that

(i) |s− snk
| < ε/2 for k ≥ k0, and

(ii) nk0 ≥ N0.

Then for n ≥ nk0 we have:

|s− sn| =
∣∣(s− snk0

) + (snk0
− sn)

∣∣
= |s− snk0

|+ |snk0
− sn|

<
ε

2
+
ε

2
= ε. �

This concludes the proof of 2.3.8. �

2.4. Series

Series (aka “infinite sums”) are really just a special case of sequences. Suppose we
are given a sequence (an)n≥m in R. Our goal is to try to assign, if possible, some
mathematical meaning to the infinite sum:

am + am+1 + am+2 + · · ·

For N ≥ m we define

sN :=

N∑
n=m

an = am + am+1 + · · ·+ aN .
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We call (sN )N≥m the sequence of partial sums associated to (an). We say that
the infinite series

∞∑
n=m

an

converges if the sequence (sN ) of partial sums converges to a real number S, i.e.,
if

S = lim
N→∞

N∑
n=m

an = lim
N→∞

sN .

In this case, we write
∞∑
n=m

an := S.

An infinite sum which does not converge is said to diverge.
If (sN ) diverges to +∞ (resp., −∞), then we say that

∑∞
n=m an diverges to

+∞ (resp., to −∞), and we write
∞∑
n=m

an = +∞ (resp.,−∞)

Remark 2.4.1. If an ≥ 0 for all n ≥ m, then the sequence (sN )N≥m of partial
sums is increasing, hence

∑∞
n=m an either converges, or diverges to +∞.

In particular,
∑∞
n=m |an| either converges or diverges to +∞ for any sequence

(an)n≥m.

Definition 2.4.2. An infinite series
∑∞
n=m an is said to be absolutely conver-

gent if
∞∑
n=m

|an|

converges.

Example 2.4.3 (Geometric series). Suppose m = 0, an = rn (r ∈ R, r 6= 1). Then
for N ≥ 0,

N∑
n=0

rn =
1− rN+1

1− r

For |r| < 1, we have limN→∞ rN+1 = 0 by 2.1.11(3), and so
∞∑
n=0

rn = lim
N→∞

(
1− rN+1

1− r

)
=

1

1− r
.

In fact, when |r| < 1, we have shown that
∑∞
n=0 r

n converges absolutely.

Definition 2.4.4. We say that an infinite series
∞∑
n=m

an

satisfies the Cauchy criterion if the sequence (sN )N≥m of partial sums is a Cauchy
sequence: {

for each ε > 0 there is N0 ≥ m such that

|sN − sN ′ | < ε for all N,N ′ ≥ N0
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In this definition, we may also assume N > N ′. Then

sN − sN ′ = aN ′+1 + aN ′+2 + · · ·+ aN ,

so this definition now reads:{
for each ε > 0 there is N0 ≥ m such that

|aN ′+1 + aN ′+2 + · · ·+ aN | < ε for all N > N ′ ≥ N0.

Taking N ′ + 1 instead of N ′, we get:

(∗)

{
for each ε > 0 there is N0 ≥ m such that

|aN ′ + aN ′+1 + · · ·+ aN | < ε for all N ≥ N ′ > N0.

Corollary 2.4.5.
∑∞
n=m an converges iff it satisfies the Cauchy criterion.

Proof. This is an application of Theorem 2.3.8 to series. �

When dealing with infinite series, the first question you want to ask is “does this
series converge or diverge?”. To handle this question, we have various “tests” for
convergence/divergence.

Divergence Test 2.4.6. If
∑∞
n=m an converges, then limn→∞ an = 0.

Proof. Take N = N ′ in (∗). �

The Comparison Test is basically like the Squeeze Lemma but for series, and you
use it the same way: given a complicated series, you try to find a simpler series to
compare it to.

Comparison Test 2.4.7. Let
∑∞
n=m an be an infinite series where an ≥ 0 for all

n ≥ m.

(1) if
∑
an converges, and |bn| ≤ an for all n, then

∑
bn and

∑
|bn| con-

verges.
(2) if

∑
an = +∞ and bn ≥ an for all n, then

∑
bn = +∞.

Proof. (1) For N ′ ≥ N > m we have by the Triangle Inequality∣∣∣∣∣∣
N ′∑
n=N

bn

∣∣∣∣∣∣ ≤
N ′∑
n=N

|bn| ≤
N ′∑
n=N

an.

Since
∑
an satisfies the Cauchy criterion, so does

∑
bn and

∑
|bn|.

(2) Note that
∑N
n=m bn ≥

∑N
n=m an and that

∑N
n=m an → +∞. �

Corollary 2.4.8. If
∑
bn is absolutely convergent, then it is convergent.

Proof. Suppose
∑
bn is absolutely convergent. In other words,

∑
an is conver-

gent, for an := |bn|. Since we have |bn| ≤ an for every n, by the Comparison
Test 2.4.7(1),

∑
bn converges. �

Comparing a given series with a convergent geometric series with the Comparison
Test is very useful. It is so useful, in fact, that it has been codified into a test of its
own: The Root Test. The formulation of the root test we give here is more general
than the one given in calculus because we do not require lim |an|1/n to exist.

Root Test 2.4.9. Suppose (an) is a sequence in R.
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(1) If there is α < 1 and N such that for every n ≥ N ,

|an|1/n ≤ α,

then
∑
an converges absolutely.

(2) If |an| ≥ 1 for infinitely many n, then
∑
an diverges.

(3) If neither (1) nor (2) hold, then the test is inconclusive.

In particular, if ` = limn→∞ |an|1/n exists and ` < 1, then (1) holds, and if ` > 1,
then (2) holds.

Proof. (1) Let N be such that for every n ≥ N , |an|1/n ≤ α. Then |an| < αn

for every n ≥ N . By Example 2.4.3, we know that
∑∞
k=N α

k converges, since
|α| < 1. By the Comparison Test 2.4.7(1),

∑∞
k=N |ak| also converges. Thus

∑
|ak|

converges, so
∑
ak converges absolutely.

(2) Suppose |an| ≥ 1 infinitely often. Then an 6→ 0, and so
∑
an is divergent

by the Divergence Test 2.4.6.
(3) To show that the root test is inconclusive if we are not in case (1) or (2), we

just need to demonstrate examples of convergent series and divergent series which
fall under this case. This will be the next example. �

Example 2.4.10. The Root Test is inconclusive for the following two series:

(1) The harmonic series
∑∞
k=1 1/k diverges. To see this, recall that in

Exercise 1.9.2 we shows that
2n∑
k=1

1

k
≥ 1 +

n

2
,

in particular, since 1 +n/2→ +∞ as n→∞, it follows that
∑∞
k=1 1/k =

+∞. Note also that since n1/n → 1, we also have 1/n1/n = (1/n)1/n → 1,
and (1/n)1/n < 1 for all n. Thus this series does not fall into either case
(1) of case (2) of the Root Test.

(2) Next consider the series
∑∞
k=1

1
n2 . Exercise 2.6.6 we have

∞∑
k=2

1

k(k − 1)
= 1.

So by the Comparison Test we conclude that
∑∞
k=2

1
k2 converges since

1/k2 ≤ 1/k(k−1) for all k ≥ 2. Thus
∑∞
k=1 1/k2 also converges. However,

since (1/n2)1/n = (1/n)1/n(1/n)1/n → 1 and (1/n2)1/n < 1 for all n ≥ 2,
this series does not fall into either case (1) or case (2) of the Root Test.

The Root Test has a little sibling: The Ratio Test. In practice it is easier to use
than the Root Test, but it works for fewer series. In fact, the proof of the Ratio Test
will show that any time the Ratio Test shows the convergence of a series, then the
Root Test also works for the same series. However, the converse is not true: there
are series for which the Ratio Test is inconclusive but the Root Test is conclusive.

Ratio Test 2.4.11. Suppose (an) is a sequence in R.

(1) If there is α < 1 and N such that for every n ≥ N ,∣∣∣∣an+1

an

∣∣∣∣ ≤ α,

then
∑
an converges absolutely.
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(2) If there is N such that for every n ≥ N ,∣∣∣∣an+1

an

∣∣∣∣ ≥ 1,

then
∑
an diverges.

(3) If neither (1) nor (2) hold, then the test is inconclusive.

In particular, if limn→∞ |an+1/an| = ` exists and ` < 1, then (1) holds, and if
` > 1, then (2) holds.

[Note: it is implicit in the statement of (1) and (2) of the Ratio Test that for
every n ≥ N , an 6= 0, otherwise the ratio would not make sense.]

Proof. (1) Let α < 1 and N be such that for every n ≥ N , |an+1/an| ≤ α. Then
for n ≥ N we have

|an| =

∣∣∣∣ anan−1

∣∣∣∣ · ∣∣∣∣an−1an−2

∣∣∣∣ · · · ∣∣∣∣aN+1

aN

∣∣∣∣ · |aN |
≤ αn−N |aN | (formally this follows by induction on n ≥ N)

= αn|aNα−N |.

Since |aNα−N | > 0 and (α + 1)/2α > 1, there is N1 ≥ N such that for all n ≥ N1

we have

|aNα−N |1/n ≤
α+ 1

2α
,

by Example 2.1.11(4) which says that |aNα−N |1/n → 1. Now suppose n ≥ N1.
Then

|an|1/n ≤ α|aNα−N |1/n ≤
α+ 1

2
< 1.

Thus we are in case (1) of the Root Test and so
∑
an converges absolutely.

(2) Let N be such that for every n ≥ N , |an+1| ≥ |an| and an 6= 0. Then in
particular, |an| 6→ 0, so

∑
an diverges by the Divergence Test 2.4.6.

(3) To show the Ratio Test is inconclusive if we are not in case (1) or (2), simply
observe that the series in Example 2.4.10 also fall under case (3) here. �

Example 2.4.12. (1) Consider the series
∑∞
n=1

n
2n . Here an = n/2n. To

apply the Ratio Test, the relevant ratios are∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)2n

2n+1n
=
n+ 1

2n
→ 1

2
< 1.

By the Ratio Test,
∑∞
n=1 n/2

n converges.
(2) Consider the series

∞∑
n=0

2(−1)
n−n = 2 +

1

4
+

1

2
+

1

16
+

1

8
+

1

16
+ · · ·

The relevant ratios are

an+1

an
=

2(−1)
n+1−(n+1)

2(−1)n−n

= 2(−1)
n+1−(n+1)−(−1)n+n = 22(−1)

n+1−1 =

{
1
8 if n even

2 if n odd.



2.4. SERIES 37

This means the Ratio Test is not applicable here. We can use the Root
Test:

|an|1/n = |2(−1)
n−n|1/n =

{
21/n−1 if n even

2−1/n−1 if n odd.

Since a
1/n
n → 1/2 < 1, we can conclude that the series converges by the

Root Test.
(3) Now consider the series

∞∑
n=1

(−1)n+1

√
n

= 1− 1√
2

+
1√
3
− 1√

4
+ · · ·

Note that:

an+1

an
=

√
n

n+ 1
→ 1 and n

√
an =

√
n−1/n → 1,

so neither the Ratio Test nor the Root Test are applicable here.

Example 2.4.13. Fix x ∈ R and consider the sequence an := xn/n! for n ≥ 0.
Then we have ∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ xn+1n!

(n+ 1)!xn

∣∣∣∣ =
|x|
n+ 1

→ 0.

Thus by the Ratio Test we conclude that
∑∞
n=0 x

n/n! converges. We are now in a
position to define “the most important2 function in mathematics”.

Definition 2.4.14. Define the exponential function exp: R→ R by

exp(x) :=

∞∑
n=0

xn

n!

for x ∈ R.

We will return the exponential function again in these notes (how could we not?).

The Alternating Series Test is usually the best bet for alternating series where the
Root/Ratio Tests fail. It is the only test we are giving which also provides an
estimate for the sum.

Alternating Series Test 2.4.15 (Leibniz). Let (an)n≥1 be a decreasing sequence
with an ≥ 0 for all n. If limn→∞ an = 0, then s =

∑∞
n=1(−1)n+1an converges.

Furthermore, for sN =
∑N
n=1(−1)n+1an we then have

|s− sN | ≤ an for all N .

Proof. First note that the subsequence (s2n)n≥1 of (sN )N≥1 is increasing:

(1) s2n+2 − s2n = −a2n+2 + a2n+1 ≥ 0.

Similarly, (s2n−1)n≥1 is decreasing:

(2) s2n+1 − s2n−1 = a2n+1 − a2n−1 ≤ 0.

Claim. s2m ≤ s2n+1 for all m,n ∈ N (even partial sums are ≤ odd partial sums).

2According to Walter Rudin [4, pg. 1].
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Proof of claim. First note that

s2n+1 − s2n = a2n+1 ≥ 0,

so

(3) s2n+1 ≥ s2n.

Thus if m ≤ n we have

s2m ≤ s2n ≤ s2n+1

using (1) for the first inequality and (3) for the second inequality. Otherwise, if
m > n, then

s2m ≤ s2m+1 ≤ s2n+1

using (3) for the first inequality and (2) for the second inequality. �

By the Claim and the Monotone Convergence Theorem 2.2.2 we have that (s2n)
and (s2n−1) both converge, say s2n → s ∈ R and s2n+1 → t ∈ R.

Claim. s = t.

Proof of claim. Note that

t− s = lim
n→∞

s2n+1 − lim
n→∞

s2n

= lim
n→∞

(s2n+1 − s2n) (by limit laws)

= lim
n→∞

a2n+1

= 0.

By the “sequence splicing” homework exercise, we conclude that limN→∞ sN =
s. �

Finally, note that for each n we have s2n ≤ s = t ≤ s2n+1. Thus

0 ≤ s2n+1 − s ≤ s2n+1 − s2n = a2n+1,

and

0 ≤ s− s2n ≤ s2n+1 − s2n = a2n+1 ≤ a2n.

Thus |s− sN | ≤ aN for all N (regardless of whether N is odd or even). �

Example 2.4.16. The series
∑∞
n=1

(−1)n+1

√
n

and
∑∞
n=1

(−1)n
n both converge. The

second series converges to log 2 (where log 2 is the unique number y ∈ R such that
exp(y) = 2, we won’t ever talk about logarithms in this class unfortunately).

The following test says that given a nonnegative monotonically decreasing sequence
(an), the convergence of

∑
an is determined by a rather “thin” subsequence of (an):

Cauchy Condensation Test 2.4.17. Let (an)n≥1 be a decreasing sequence with
an ≥ 0. Then

∞∑
n=1

an converges ⇐⇒
∞∑
m=0

2ma2m converges.
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Proof. For each N ≥ 1 consider the partial sums SN :=
∑N
n=1 an and TN :=∑N

n=0 2na2n . Recall from Exercise 2.6.27 that for every N ≥ 1:

S2N+1−1 ≤ TN ≤ 2S2N

(⇒) Suppose
∑∞
n=1 an converges. Then (SN )N≥1 converges (by definition), so

(S2N )N≥1 converges as it is a subsequence of (SN )N≥1, so (2S2N )N≥1 converges,
which implies (TN )N≥1 converges by the Comparison Test. In other words,

∑∞
n=1 2na2n

converges.
(⇐) Suppose

∑∞
n=1 2na2n converges, i.e., that (TN )N≥1 converges. Then (S2N+1−1)N≥1

converges by the Comparison Test. Since (SN )N≥1 is a monotonically increasing
sequence (because an ≥ 0 for all n), and it has a convergent subsequence, then by
Exercise 2.6.11 we conclude that (SN )N≥1 converges. �

The Cauchy Condensation Test works for certain series which would otherwise
require the Integral Test. This is advantageous to us because we don’t want to wait
until Chapter 5 (when we do integrals) to be able to analyze the following series:

Example 2.4.18 (p-series). Suppose p ∈ R. Then

(1) If p > 1, then
∑∞
n=1

1
np converges. By the Cauchy Condensation Test, it

suffices to check the convergence of
∞∑
m=0

2m
1

(2m)p
=

∞∑
m=0

1

(2m)p−1
=

∞∑
m=0

(
1

2p−1

)m
=

1

1−
(
1
2

)p−1
which we recognize as a convergent geometric series.

(2) if 0 < p ≤ 1: Then
∑∞
n=1

1
np diverges. By the Cauchy Condensation Test,

it suffices to check the divergence of
∞∑
m=0

(
1

2p−1

)m
which we recognize as a divergence geometric series since 1/2p−1 ≥ 1.

The following gives some interesting background concerning some important series
in mathematics. You do not need to know it for any homework or exam:

Application 2.4.19. For p > 1, define the ζ(p) :=
∑∞
n=1

1
np . The function ζ is

called the Riemann ζ-function. Some known values of the ζ-function are

ζ(2) =
1

12
+

1

22
+ · · ·+ 1

32
+ · · · = π2

6

ζ(4) =
π4

90

ζ(6) =
π6

945

Computing the value of ζ(2) is known as the Basel problem3, first asked in 1644,
solved by Euler in 1734, announced in 1735, and rigorously proved in 1741. In
general there is a formula for ζ(p) when p is even, however computing the value
of ζ(p) when p is odd is hard. Here are some things which are known4 (note the
year!):

3https://en.wikipedia.org/wiki/Basel_problem
4https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function

https://en.wikipedia.org/wiki/Basel_problem
https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function
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(1) It was proved in 1978 by R. Apéry5 that ζ(3) 6∈ Q, although it is unknown
whether ζ(3)/π3 ∈ Q.

(2) It is known that infinitely many ζ(2n+1) are irrational (T. Rivoal, 2000).
(3) It is also known that at least one of ζ(5), ζ(7), ζ(9), or ζ(11) are irrational

(W. Zudilin, 2001).

2.5. The Exponential Function

We have already met one definition of the exponential function exp: R → R in
Definition 2.4.14 above. In these notes we will try to prove as much as we can
about the exponential function subject to the rule that we only allow ourselves to
use theorems taught in Math131a (so nothing about uniform convergence allowed).
Given this restriction, Definition 2.4.14 doesn’t seem to be a very useful starting
point. Instead, we will pursue the following roundabout strategy:

(1) Define a second function Φ: R→ R below.
(2) Prove a bunch of cool things about Φ.
(3) Eventually develop enough machinery to show that exp = Φ are the same

function (so the cool things we proved about Φ in (2) are automatically
true for exp).

(4) In fact, after we define e := Φ(1) > 1, we will show that the power function
ex : R→ R (from the Real Power Theorem 1.6.5 for b := e) is also the same
function as Φ and exp. (So we have only one true exponential function!)

First we need the following proposition:

Proposition 2.5.1. Fix x ∈ R. Then:

(1) For every natural number n > |x|,(
1 +

x

n

)n
<
(

1− x

n

)−n
,

(2) The sequence
(
(1 + x/n)n

)
n>|x| is increasing,

(3) The sequence
(
(1− x/n)−n

)
n>|x| is decreasing,

(4) (1− x/n)−n − (1 + x/n)n → 0 as n→∞.

Proof. (1) Suppose n > |x|. Then 0 ≤ x2/n2 < 1 and so(
1 +

x

n

)n (
1− x

n

)n
=

(
1− x2

n2

)n
< 1,

which implies (
1 +

x

n

)n
<
(

1− x

n

)−n
.

(2) Suppose n > |x| and apply the AGM Inequality 1.7.1 to the following n+ 1
numbers:

1,
(

1 +
x

n

)
, . . . ,

(
1 +

x

n

)
︸ ︷︷ ︸

n of these

5https://en.wikipedia.org/wiki/Ap%C3%A9ry%27s_constant

https://en.wikipedia.org/wiki/Ap%C3%A9ry%27s_constant
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This yields (
1 ·
(

1 +
x

n

)n) 1
n+1

≤ 1

n+ 1

[
1 + n

(
1 +

x

n

)]
=

1

n+ 1

(
1 + n+ n

x

n

)
= 1 +

x

n+ 1
.

Raising each side to the (n+ 1)st power yields(
1 +

x

n

)n
≤
(

1 +
x

n+ 1

)n+1

.

(3) Repeat the same argument as for (2) except with the numbers

1,
(

1− x

n

)
, . . . ,

(
1− x

n

)
︸ ︷︷ ︸

n of these

(4) Note that

0 <
(

1− x

n

)−n
−
(

1 +
x

n

)n
=
(

1− x

n

)−n(
1−

(
1− x2

n2

)n)
.

Then for n > |x|, Bernoulli’s Inequality A.3.1 applied to x2/n2 > −1 yields:(
1− x2

n2

)n
≥ 1− x2

n
.

Multiplying by −1 and then adding 1 to both sides yields:

1−
(

1− x2

n2

)n
≤ x2

n

In particular,

0 <
(

1− x

n

)−n
−
(

1 +
x

n

)n
≤

(
1− x

n

)−n
︸ ︷︷ ︸
decreasing, ≥ 0

x2

n︸︷︷︸
→0

→ 0,

which gives the desired convergence to 0 by the Squeeze Lemma. �

Note that by (2), (3) and (4) of Proposition 2.5.1, for n > |x|, the sequence of
intervals [(

1 +
x

n

)n
,
(

1− x

n

)−n]
is nested, and the endpoints converge to each other, so by the Nested Intervals
Lemma 2.3.6 there is a unique point in each of these intervals, i.e., the common
limit of the sequence of left endpoints and the sequence of right endpoints.. This
enables us to define the following:

Definition 2.5.2. Define the function6 Φ: R→ R by setting for each x ∈ R,

Φ(x) := lim
n→∞

(
1 +

x

n

)n
= lim

n→∞

(
1− x

n

)−n
.

6We will show later that Φ = exp, however for the time being we will pretend that Φ is a
function completely unrelated to exp.
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Note that Φ(0) = 1. We also define the number e := Φ(1). Note that by Proposi-
tion 2.5.1(1), (2) and (3) we have:

(a) for all natural numbers n > |x|,(
1 +

x

n

)n
≤ Φ(x) ≤

(
1− x

n

)−n
(b) if |x| < 1, then for all natural numbers n,

1 + x ≤
(

1 +
x

n

)n
≤ Φ(x) ≤

(
1− x

n

)−n
≤ 1

1− x
.

In particular, e ≥ (1 + 1/2)2 = 9/4 > 2.

We will get a lot of mileage out of the following:

Functional Equation 2.5.3. For all x, y ∈ R,

Φ(x)Φ(y) = Φ(x+ y).

Proof. For each natural number n ≥ 1 define

hn :=
xy

n+ x+ y
.

Then hn → 0, so for n large enough (specifically, take N such that |hn| < 1 for all
n ≥ N and assume n ≥ N), we have

1 + hn ≤
(

1 +
hn
n

)n
≤ 1

1− hn
by inequality (b) in Definition 2.5.2. Since hn → 0, by the Squeeze Lemma, we get
(1 + hn/n)n → 1, i.e.,(

1 +
xy

n(n+ x+ y)

)n
=

(
1 + x

n

)n (
1 + y

n

)n(
1 + x+y

n

)n → 1 as n→∞.

Thus Φ(x)Φ(y)/Φ(x+ y) = 1, or rather, Φ(x)Φ(y) = Φ(x+ y). �

Here are some immediate consequences of Functional Equation 2.5.3:

(1) By Exercise 1.9.5, the functions ex and Φ(x) agree on all rational numbers,
i.e., for every q ∈ Q, eq = Φ(q). We will show later that in fact ex = Φ(x)
for every x ∈ R.

(2) For all x ∈ R, Φ(−x)Φ(x) = Φ(0) = 1, so in particular, Φ(x) 6= 0 for every
x ∈ R.

(3) For all x ∈ R,
(
Φ(x/2)

)2
= Φ(x), so Φ(x) > 0.

2.6. Exercises

Exercise 2.6.1. Prove the Squeeze Lemma for Sequences 2.1.10: Suppose (sn)n≥m
and (tn)n≥m are sequences such that tn → 0 and for some N ≥ m we have 0 ≤
sn ≤ tn for all n ≥ N . Then sn → 0.

Exercise 2.6.2. Calculate limn→∞
√
n2 + n−n. (For us, “calculate” means “some-

how figure out what number the sequence converges to, and give a proof that your
claimed convergence is correct.”)
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Exercise 2.6.3. Fix α > 0 and x1 >
√
α. Recursively define a formula (xn)n≥1

by the formula

xn+1 :=
1

2

(
xn +

α

xn

)
.

(1) Show that (xn) is monotonically decreasing and that limn→∞ xn =
√
α.

(2) For each n ≥ 1 define εn := xn −
√
α. Show for each n ≥ 1 that

εn+1 =
ε2n

2xn
<

ε2n
2
√
α

and that if we set β := 2
√
α, then

εn+1 < β

(
ε1
β

)2n

.

(3) Set α := 3 and x1 := 2. Show that:
(a) ε5 < 4 · 10−16,
(b) ε6 < 4 · 10−32.

The virtue of this exercise is that it gives a good algorithm for approximating
√
α.

Parts (2) and (3) show that this approximation converges very rapidly.

Exercise 2.6.4. Let (tn) be a bounded sequence, i.e., there exists M > 0 such
that |tn| ≤ M for all n, and let (sn) be a sequence such that sn → 0. Prove that
sntn → 0. [Note: we are not assuming that (tn) is convergent.]

Exercise 2.6.5. Let (sn) be a sequence that converges.

(1) Show that if sn ≥ a for all but finitely many n, then limn→∞ sn ≥ a.
(2) Show that if sn ≤ b for all but finitely many n, then limn→∞ sn ≤ b.
(3) Conclude that if all but finitely many sn belong to [a, b], then limn→∞ sn

belongs to [a, b].

Exercise 2.6.6. Define the sequence (sn) by

sn :=
1

2 · 1
+

1

3 · 2
+ · · ·+ 1

(n+ 1) · n
for every n ≥ 1.

Prove that limn→∞ sn = 1.

Exercise 2.6.7. For each of the following statements, determine whether it is true
or false and justify your answer (give proof or counterexample).

(1) If the sequence (a2n) converges, then sequence (an) also converges.
(2) If the sequence (an + bn) converges, then the sequences (an) and (bn) also

converge.
(3) If the sequence (|an|) converges, then the sequence (an) also converges.

Exercise 2.6.8 (Sequence splicing). This exercise shows that the limit of a se-
quence can be computed from the limits of two subsequences which “sufficiently
cover” the original sequence. (1) is a warmup, (2) is the general case.

(1) Suppose (an)n∈N is a sequence in R and L ∈ R± is such that

lim
n→∞

a2n = lim
n→∞

a2n+1 = L

(i.e., the even subsequence and the odd subsequence both have the same
limit L). Show that an → L.
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(2) Suppose (an)n∈N is a sequence in R and L ∈ R±∞. Let (amj
)j∈N and

(ank
)k∈N be two subsequences of (an) such that

(a) limj→∞ amj = L,
(b) limk→∞ ank

= L, and
(c) there is N ∈ N such that

{n ∈ N : n ≥ N} ⊆ {mj : j ∈ N} ∪ {nk : k ∈ N}.
Show that limn→∞ an = L.

Exercise 2.6.9. Suppose (xn) is a sequence in R and x ∈ R have the property
that given any subsequence (xnk

) of (xn), there exists a subsequence (xnk`
) of (xnk

)
such that xnk`

→ x as `→∞. Show that xn → x as n→∞.

Exercise 2.6.10. For each of the following statements, determine whether it is
true or false and justify your answer:

(1) A subsequence of a bounded sequence is bounded.
(2) A subsequence of a monotone sequence is monotone.
(3) A subsequence of a convergent sequence is convergent.
(4) A sequence converges if it has a convergent subsequence.

Exercise 2.6.11. Suppose that the sequence (an) is monotone and that it has a
convergent subsequence. Show that (an) converges.

Exercise 2.6.12. Let (sn) be a sequence such that

|sn+1 − sn| < 2−n for every n ∈ N.

Prove that (sn) is a Cauchy sequence and hence a convergent sequence.

Exercise 2.6.13. For c > 0, consider the quadratic equation

x2 − x− c = 0, x > 0.

Define the sequence (xn) recursively by fixing first some x1 > 0 and then, if n is an
index for which xn has already been defined, defining

xn+1 :=
√
c+ xn.

Prove that the sequence (xn) converges monotonically to a solution of the above
equation.

Exercise 2.6.14 (Convergence of Cesaro Averages). Suppose that the sequence
(an) converges to a. Define the sequence (σn) by

σn :=
a1 + a2 + · · ·+ an

n
for each n ∈ N.

Prove that the sequence (σn) also converges to a.

Exercise 2.6.15. Suppose an → a.

(1) Show that |an| → |a|.
(2) Suppose that an ≥ 0 for every n ∈ N. Show that a ≥ 0 and

√
an →

√
a.

Exercise 2.6.16. Let (bn) be a bounded sequence of nonnegative numbers and r
be any number such that 0 ≤ r < 1. Define

sn := b1r + b2r
2 + · · ·+ bnr

n for every n ∈ N.

Prove that (sn) converges.
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Exercise 2.6.17. Suppose
∑∞
n=m an = a and

∑∞
n=m bn = b are two convergent

series. Prove:

(1)
∑∞
n=m(an + bn) = a+ b, and

(2) for r ∈ R,
∑∞
n=m r · an = r · a.

[Note: part of the proof should be justification that the series converges.]

Exercise 2.6.18. For each of the following, completely determine (with proof) for
which real numbers x ∈ R the series converges and for which real numbers x ∈ R
the series diverges:

(1)
∑∞
n=0 a

nxn where a ∈ R (your answer may depend on what a is)

(2)
∑∞
n=0 a

n2

xn where a ∈ R (your answer may depend on what a is)
(3)

∑∞
n=0 x

n!

(4)
∑∞
n=1

(−1)n
n xn(n+1)

Exercise 2.6.19. For (1) and (3) below, you need to provide justification as to
why your example has the indicated property.

(1) Give an example of a divergent series
∑
an for which

∑
a2n converges.

(2) Show that if
∑
an is a convergent series of nonnegative terms, then

∑
a2n

also converges.
(3) Give an example of a convergent series

∑
an for which

∑
a2n diverges.

Exercise 2.6.20. Suppose we have a sequence (an)n≥1 such that an > 0 for all n,
define sn := a1 + · · ·+ an, and suppose

∑
an diverges.

(1) Prove that
∑ an

1+an
diverges.

(2) Prove that for each N, k ∈ N,

aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ 1− sN

sN+k

and deduce that
∑ an

sn
diverges.

(3) Prove for each n ≥ 1 that

an
s2n
≤ 1

sn−1
− 1

sn

and deduce that
∑ an

s2n
converges.

(4) Determine the convergence/divergence of∑ an
1 + nan

and
∑ an

1 + n2an
.

The point of this exercise is to show that given any divergent series, you can always
find a series which diverges asymptotically slower.

Exercise 2.6.21. Evaluate

lim
n→∞

(
n2

[(
1 +

1

n+ 1

)n+1

−
(

1 +
1

n

)n])
.

Hint: Exercise 1.9.10 might be useful.

Exercise 2.6.22. Determine the convergence/divergence of the following:
∞∑
n=1

(n1/n − 1)
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Exercise 2.6.23. In this exercise we will compare two different methods of ap-
proximating the number e := Φ(1) (technically we don’t know yet that the numbers
exp(1) and e are the same, but it doesn’t matter for this problem). For each n ≥ 0
define the two “error terms”:

an := e−
(

1 +
1

n

)n
and bn := exp(1)−

n∑
k=0

1

k!

Determine the convergence/divergence of each of the following series:

(1)
∑∞
n=0 an

(2)
∑∞
n=0 bn

When answered correctly, this exercise shows that (an)n≥0 converges to 0 much
“slower” than (bn)n≥1, and thus the sequence of partial sums

∑n
k=0

1
k! converges to

e much “faster” than the sequence (1 + 1/n)n.

Exercise 2.6.24. Suppose (xn)n≥1 is a sequence in R such that xn → x ∈ R as
n→∞. Show that

lim
n→∞

(
1 +

xn
n

)n
= Φ(x).

[This limit is used in the proof of the Central Limit Theorem in probability]

Exercise 2.6.25. Suppose L : (0,+∞)→ R is a function which enjoys the following
properties:

(a) for every a, b ∈ (0,+∞), L(ab) = L(a) + L(b);
(b) for every a, b ∈ (0,+∞), if a < b, then L(a) < L(b).

Do the following:

(1) Show that L(n) > 0 for every n ∈ N such that n ≥ 2.
(2) Suppose b > 1. Show that L(bn) = nL(b) for every n ∈ N.
(3) Determine for which positive real numbers p > 0 the series

∞∑
n=2

1

n
(
L(n)

)p
converges.

Exercise 2.6.26. (Decimal expansion!) For any x ∈ R there is a unique integer
n, denoted [x], such that n ≤ x < n + 1. We also define (x) := x − [x], and have
0 ≤ (x) < 1. Let x ∈ R. Define two sequences (an)n≥0 and (αn)n≥0 recursively by:

a0 := [x], α0 := x− a0 = (x), an := [10αn−1], αn := (10αn−1),

for n ≥ 1. Prove:

(1) For every n ≥ 1, 0 ≤ an < 10.
(2) The sequence (bn)n≥0 where bn :=

∑n
k=0 ak10−k, converges to x as

n→∞.
(3) Show that given any sequence (cn)n≥1 such that cn ∈ {0, 1, 2, . . . , 8, 9} for

every n, that the sequence(
n∑
k=1

ck10−k

)
n≥1

converges as n→∞.
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Exercise 2.6.27. Let (an)n≥1 be a decreasing sequence with an ≥ 0. For each

N ∈ N define the partial sums SN :=
∑N
n=1 an and TN :=

∑N
n=0 2na2n . Prove for

each N ∈ N that
S2N+1−1 ≤ TN ≤ 2S2N .





CHAPTER 3

Continuity and Continuous Functions

We still owe ourselves a proof of Uniqueness in the Real Power Theorem 1.6.5.
Picking up where we left off, we have two functions p, p̃ : R→ R such that:

(1) p(q) = p̃(q) for all q ∈ Q (by the Rational Power Theorem 1.6.4)
(2) Both p(x) and p̃(x) seem to vary continuously as you vary x; specifically,

if you increase x a little bit from x to x+ ε for some tiny ε, then both p(x)
and p̃(x) increase a little bit to p(x+ε) = p(x)+ε1 and p̃(x+ε) = p̃(x)+ε2
for some other tiny ε1, ε2 > 0 (i.e., “no big jumps”).

We hope that properties (1) and (2) above should be enough to conclude:

(3) p(x) = p̃(x) for every x ∈ R.

To show this, we will essentially do the following:

(4) Pinpoint and define a magical property which both functions p and p̃ enjoy
which gets at the idea in (2) above.

(5) Show that the magical property from (4) plus item (1) above are sufficient
to prove (3). (See Proposition 3.4.1)

This magical property is continuity, the subject of this chapter.

3.1. Limits of functions

Given a set S ⊆ R, a point x0 ∈ S and a function f : S → R, we want to talk about
the function values of f(x) as x gets really close to x0. However, it also makes sense
to do this even if x0 is technically not a point in S, for instance, if S = (0, 1) is
an open interval and x0 = 0. To allow for this possibility, we make the following
flexible definition which relates a point x0 ∈ R and a set S ⊆ R (where S can be
thought of as possibly the domain of some function):

Definition 3.1.1. Suppose S ⊆ R and x0 ∈ R±∞. We say that x0 is in the
closure of S if there is at least one sequence (xn)n≥1 in S such that limn→∞ xn =
x0.

In other words, x0 is in the closure of S if it is possible to approximate x0 by
some sequence from S.

The above definition is often very easily satisfied in practice, for instance in each
of the following, x0 is in the closure of S:

(1) if S ⊆ R is any set and x0 ∈ S,
(2) if S = (a, b) and x0 = a or x0 = b,
(3) if S = R or S = (0,+∞), and x0 = +∞,
(4) if S = R \ {a}, and x0 = a, etc.

The reason for defining “x0 is in the closure of S” is because it encapsulates all
possible ways we would wish to take the limit of a function f : S → R as x→ x0 in
the following definition:

49
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Definition 3.1.2. Let f : S → R be a function with S ⊆ R, let x0 ∈ R±∞ be in
the closure of S, and let L ∈ R±∞. We say

lim
x∈S,x→x0

f(x) = L

if for every sequence (xn)n≥1 in S such that xn → x0, we have f(xn)→ L.
If instead x0 is not in the closure of S, or if x0 is in the closure of S but

there is no such L ∈ R±∞ such that limx∈S,x→x0
f(x) = L, then we say the limit

limx∈S,x→x0
f(x) does not exist.

Notation 3.1.3. Let I be an open interval, suppose a ∈ I and that g is a function
whose domain contains I \ {a}. Then we write

lim
x→a

g(x) instead of lim
x∈I\{a},x→a

g(x).

This is often referred to the two-sided limit of f at a.

Remark 3.1.4. (1) (Limits are unique) If L and L′ are from R±∞ such that

lim
x∈S,x→x0

f(x) = L and lim
x∈S,x→x0

f(x) = L′,

then L = L′.
(2) (Limits and restriction) Suppose S′ ⊆ S is such that x0 is still in the

closure of S′. Then

lim
x∈S,x→x0

f(x) = L =⇒ lim
x∈S′,x→x0

f(x) = L.

Proof. (1) Suppose (xn)n≥1 is a sequence in S such that xn → x0. Then
by Definition 3.1.2, we have f(xn)→ L and f(xn)→ L′. Thus L = L′ by
uniqueness for limits of sequences.

(2) Exercise. �

Example 3.1.5. We have

lim
x→1

x2 − 1

x− 1
= 2.

Proof. Here, the function is f(x) = (x2 − 1)/(x− 1) : R \ {1} → R. Let (xn)n≥1
be an arbitrary sequence from R \ {1} such that xn → 1. Then for all n, (x2n −
1)/(xn − 1) = xn + 1. Thus

lim
n→∞

x2n − 1

xn − 1
= lim

n→∞
xn + 1 = 2.

As (xn) was arbitrary, this shows that limx→1(x2 − 1)/(x− 1) = 2. �

Example 3.1.6. Define the function f : R→ R by

f(x) =

{
x if x ∈ Q,

0 if x 6∈ Q

for x ∈ R. Then limx→0 f(x) = 0.

Proof. Let (xn)n≥1 be an arbitrary sequence from R \ {0} such that xn → 0.
Then by definition of f ,

∣∣f(xn) − 0
∣∣ ≤ |xn|. Let ε > 0. Take N ≥ 1 such that

|xn − 0| < ε for all n ≥ N . Then
∣∣f(xn) − 0

∣∣ < ε for all n ≥ N . Thus f(xn) → 0.
As (xn) was arbitrary, this implies that limx→0 f(x) = 0. �
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Lemma 3.1.7 (Limit laws for functions). Let f1, f2 : S → R be functions, x0 is in
the closure of S, and suppose

Li = lim
x∈S,x→x0

fi(x) ∈ R (for i = 1, 2).

Then

(1) limx∈S,x→x0
(f1 + f2)(x) = L1 + L2,

(2) limx∈S,x→x0
(f1 · f2)(x) = L1 · L2,

(3) if f2(x) 6= 0 for x ∈ S, and L2 6= 0, then

lim
x∈S,x→x0

(
f1
f2

)
(x) =

L1

L2
.

Proof. These follow from the corresponding limit laws for sequences (Proposi-
tion 2.1.9).

(1) Let (xn) be an arbitrary sequence from S such that xn → x0. Then by
Proposition 2.1.9(1) we have

lim
n→∞

(f1+f2)(xn) = lim
n→∞

[
f1(xn)+f2(xn)

]
= lim

n→∞
f1(xn)+ lim

n→∞
f2(xn) = L1+L2.

(2) and (3) are similar, use instead 2.1.9(2) and 2.1.9(3). �

Proposition 3.1.8 (ε-δ definition of limit). Let f : S → R, x0, L ∈ R (not ±∞)
such that x0 is in the closure of S. Then the following are equivalent:

(1) limx∈S,x→x0
f(x) = L

(2) for every ε > 0 there is a δ > 0 such that: if x ∈ S and |x− x0| < δ, then
|f(x)− L| < ε.

Proof. (1)⇒(2) Suppose (2) does not hold. Then we can find some ε > 0 such
that for every δ > 0, the implication

“x ∈ S and |x− x0| < δ =⇒
∣∣f(x)− L

∣∣ < ε”

fails. So for each n ≥ 1, there is some xn ∈ S with

|xn − x0| <
1

n
and

∣∣f(xn)− L
∣∣ ≥ ε.

(using the failure of the implication with δ := 1/n) In this case, we have xn → x0,
but f(xn) 6→ L. This shows (1) fails.

(2)⇒(1) Suppose (2) holds, and let (xn)n≥1 be a sequence in S with xn → x0.
It suffices to show that f(xn) → L. Let ε > 0, and take δ > 0 as in (2). Since
xn → x0, we can take N ≥ 1 such that |xn − x0| < δ for every n ≥ N . By (2),∣∣f(xn)− L

∣∣ < ε for every n ≥ N . �

Corollary 3.1.9 (Special case of ε-δ definition of limit). Let L ∈ R, I an open
interval, a ∈ I. If f : I \ {a} → R, then the following are equivalent:

(1) limx→a f(x) = L,
(2) for each ε > 0, there is a δ > 0 such that x ∈ I and 0 < |x−a| < δ implies
|f(x)− L| < ε.
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3.2. Continuity and continuous functions

Definition 3.2.1. Let f : S → R (S ⊆ R) be a function and x0 ∈ S. We say
that f is continuous at x0 if for every sequence (xn) in S, if xn → x0, then
f(xn)→ f(x0). Equivalently, f is continuous at x0 if limx∈S,x→x0 f(x) = f(x0).

If f is continuous at every x0 ∈ S, then we say that f is continuous.

Example 3.2.2. Here are some continuous functions:

(1) Every constant function x 7→ c : R→ R (where c ∈ R) is continuous.
(2) The identity function x 7→ x : R→ R is continuous.
(3) The absolute value function x 7→ |x| : R → R is continuous. This was

verified in Exercise 2.6.15(1).
(4) The square root function x 7→

√
x : [0,+∞)→ R is also continuous. This

was verified in Exercise 2.6.15(2).

Proposition 3.2.3. Let f, g : S → R be continuous at x0 ∈ S. Then the following
functions are continuous at x0:

(1) f + g : S → R,
(2) f · g : S → R
(3) f/g : {x ∈ S : g(x) 6= 0} → R, provided that g(x0) 6= 0.

Proof. (1) By definition of continuous at x0, we know that

lim
x∈S,x→x0

f(x) = f(x0) and lim
x∈S,x→x0

g(x) = g(x0).

By Lemma 3.1.7(1), it follows that

lim
x∈S,x→x0

(f + g)(x) = f(x0) + g(x0) = (f + g)(x0),

i.e., f + g is continuous at x0.
(2) This is similar and uses Lemma 3.1.7(2).
(3) This is similar and uses Lemma 3.1.7(3). �

Proposition 3.2.4 (Composition and continuity). Let f : S → R be continuous at
x0 ∈ S and g : T → R with T ⊇ f(S) be continuous at f(x0). Then g ◦ f : S → R
is continuous at x0.

Proof. Let (xn) be a sequence in S such that xn → x0. Then
(
f(xn)

)
is a sequence

in T with f(xn)→ f(x0), since f is continuous at x0. Thus g
(
f(xn)

)
→ g

(
f(x0)

)
since g is continuous at f(x0). Thus g ◦ f is continuous at x0. �

Corollary 3.2.5. If f : S → R is continuous at x0 ∈ S, then so is |f | : S → R,
given by

|f |(x) := |f(x)|, for x ∈ S.

Corollary 3.2.6 (Rational functions). Let P,Q be polynomials:

P = a0 + a1x+ · · ·+ amx
m

Q = b0 + b1x+ · · ·+ bnx
n,

where ai, bj ∈ R and am, bn 6= 0. Then the function

x 7→ P (x)

Q(x)
: S → R

is continuous, where
S :=

{
x ∈ R : Q(x) 6= 0

}
.
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The following is needed in the proof of Proposition 4.1.1 below:

Corollary 3.2.7 (Continuity at a point in an interval). Suppose I is an open
interval, f : I → R is a function and x0 ∈ I. Then the following are equivalent:

(1) f is continuous at x0,
(2) limx→x0 f(x) = f(x0).

[Note: these might appear to be literally the same statements, but the difference is
that the first one involves the limit limx∈I,x→x0

f(x0) and the second involves the
limit limx∈I\{x0},x→x0

f(x). This distinction will be used later.]

Proof. (1)⇒(2) This is clear since

lim
x∈I,x→x0

f(x) = f(x0) =⇒ lim
x→x0

f(x) = f(x0)

by Remark 3.1.4(2).
(2)⇒(1) Suppose limx→x0 f(x0) = f(x). Then by Corollary 3.1.9, for every

ε > 0 there is a δ > 0 such that for x ∈ I if 0 < |x−x0| < δ, then |f(x)−f(x0)| < ε.
However, |f(x0) − f(x0)| < ε. Thus, for every ε > 0, there is δ > 0 such that for
x ∈ I, if |x− x0| < δ, then |f(x)− f(x0)| < ε. In other words, limx∈S,x→x0

f(x) =
f(x0) by Proposition 3.1.8. �

Definition 3.2.8. We say a function f : S → R is bounded if f(S) =
{
f(x) : x ∈

S
}
⊆ R is bounded, i.e., there is M ∈ R such that |f(x)| ≤M for every x ∈ S.

Extreme Value Theorem 3.2.9. Let a < b ∈ R and suppose f : [a, b] → R is
continuous. Then f is bounded function. Moreover, f attains its maximum and
minimum values on [a, b], i.e., there are xm, xM ∈ [a, b] such that f(xm) ≤ f(x) ≤
f(xM ) for all x ∈ [a, b].

Proof. We first show that f is bounded. Suppose otherwise, then for each n ∈
N there is some xn ∈ [a, b] such that |f(xn)| > n (in particular, the sequence(
f(xn)

)
does not converge and no subsequence of it converges either). By Bolzano-

Weierstrass 2.3.7 there is a subsequence (xnk
) of (xn) converging to some x0 ∈ R.

Since [a, b] is closed and bounded, we have x0 ∈ [a, b]. Also, since f is continuous
at x0, we have

f(xn)→ f(x0).

This is a contradiction. Thus f is bounded.
Next, define

M := sup
{
f(x) : x ∈ [a, b]

}
∈ R.

For each n ∈ N take xn ∈ [a, b] such that

M − 1

n
≤ f(xn) ≤ M.

Then f(xn) → M . By Bolzano-Weierstrass 2.3.7 we take a subsequence (xnk
) of

(xn) such that xnk
→ xM ∈ [a, b]. Then f(xnk

) → f(xM ) since f is continuous
at xM . Also, f(xnk

) → M since f(xn) → M . Thus f(xM ) = M ∈ f
(
[a, b]

)
. In

particular, M = max f
(
[a, b]

)
. The proof that f

(
[a, b]

)
has a minimum is similar

and left as an exercise. �

Intermediate Value Theorem 3.2.10. Suppose f : [a, b]→ R is continuous, with
a < b ∈ R. Let y be a number strictly between f(a) and f(b), i.e.,

f(a) < y < f(b) or f(b) < y < f(a).
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Then there is x0 ∈ (a, b) such that f(x0) = y.

Proof. We will prove the case where f(a) < y < f(b) (the case f(b) < y < f(a)
is similar). Define the set

S :=
{
x ∈ [a, b] : f(x) ≤ y

}
.

Then a ∈ S, so x0 := supS ∈ [a, b] exists. For each n ∈ N, x0−1/n is not an upper
bound for S, so there is xn ∈ S with

x0 −
1

n
≤ xn ≤ x0.

Thus xn → x0, so f(xn)→ f(x0), and f(xn) ≤ y for all n, hence f(x0) ≤ y. Now,
let x∗n := min

{
b, x0 + 1/n

}
. Then x∗n → x0 and x∗n ∈ [a, b] \ S, so f(x∗n) > y for all

n. Since f(x∗n)→ f(x0), we must have f(x0) ≥ y. We conclude that f(x0) = y. �

Example 3.2.11. Let n ∈ N and suppose f : R→ R is given by f(x) = xn. Then
f is continuous, f(0) = 0, and limx→∞ f(x) = +∞. Suppose b > 0 = f(0), then
there is c > 0 such that f(c) = cn > b. By the Intermediate Value Theorem, there
is y ∈ (0, c) such that f(y) = yn = b. This gives an alternative way of showing the
existence of b1/n.

You may be asking yourself “why did we bother doing the technical proof of Exis-
tence and Uniqueness of nth roots 1.6.2 when we could just obtain b1/n easily using
the Intermediate Value Theorem?” The reason is to illustrate the following point:
one of the virtues of developing enough abstract theory is that it often enables you
avoid tedious calculations.

The Intermediate Value Theorem can be useful for showing the existence of all
sorts of points (not just intermediate values). This involves employing a standard
trick where you cook up some “auxiliary function” which you apply the Intermediate
Value Theorem to, in order to say something about the original function of interest.
For example, in the next lemma, in order to find a fixed point of f , we apply the
Intermediate Value Theorem to the auxiliary function g:

Fixed Point Lemma 3.2.12. Let f : [0, 1] → [0, 1] be continuous. Then f has a
fixed point, i.e., there is x ∈ [0, 1] such that f(x) = x

Proof. Consider the function g(x) := f(x)− x. Then

g(0) = f(0)− 0 ≥ 0, and g(1) = f(1)− 1 ≤ 0.

Thus either g(0) = 0, g(1) = 0, or else we can apply the Intermediate Value
Theorem 3.2.10 on g with y := 0. Then there is x ∈ [0, 1] such that g(x) = 0, i.e.,
f(x) = x. �

3.3. Uniform continuity

In this section, we introduce a stronger version of continuity: uniform continuity.
To motivate the definition, first recall the definition of continuity:

Given a function f : S → R, f is continuous if

for every ε > 0︸ ︷︷ ︸
A

and for every x0 ∈ S︸ ︷︷ ︸
B

, there exists δ > 0︸ ︷︷ ︸
C

such that

x ∈ S and |x− x0| < δ =⇒ |f(x)− f(x0)| < ε.
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Note that in this definition, the δ in part C depends on whatever ε and x0 are in
parts A and B.

Example 3.3.1. Consider f : R>0 → R>0 given by f(x) = 1
x . We already know

that f is continuous. We will reprove this to see what δ will look like. Suppose we
are given x0 ∈ R>0 and ε > 0. We want

ε >

∣∣∣∣ 1x − 1

x0

∣∣∣∣ =
|x− x0|
xx0

.

If |x− x0| < x0

2 , then x > x0

2 , so

1

xx0
<

2

x20
=⇒ |x− x0|

xx0
<

2

x20
|x− x0|,

so δ := min
{
x0

2 , ε
x2
0

2

}
works.

Note that in the above example, δ depends on both ε and x0. It would be better if
δ only depended on ε and the same δ worked for any x0.

Definition 3.3.2. Given a function f : S → R with S ⊆ R. We say that f is
uniformly continuous on S if

for every ε > 0︸ ︷︷ ︸
A

, there exists δ > 0︸ ︷︷ ︸
C

such that for every x0 ∈ S︸ ︷︷ ︸
B

,

x ∈ S and |x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

In other words, the definition of “uniformly continuous” is the same as “con-
tinuous” except that we switched the quantifiers (B) and (C).

Remark 3.3.3. If f : S → R is uniformly continuous, then f is continuous.

A convenient feature of uniformly continuous functions is that it “preserves Cauchy
sequences”:

Lemma 3.3.4. Let f : S → R be uniformly continuous, and let (xn) be a Cauchy
sequence in S. Then

(
f(xn)

)
is also a Cauchy sequence.

Proof. Let ε > 0, and take δ > 0 such that

x, y ∈ S and |x− y| < δ =⇒
∣∣f(x)− f(y)

∣∣ < ε.

Since (xn) is Cauchy, there is N such that

|xn − xn′ | < δ for every n, n′ ≥ N.

Then
∣∣f(xn)− f(xn′)

∣∣ < ε for every n, n′ ≥ N . Thus
(
f(xn)

)
is Cauchy. �

Remark 3.3.5. Suppose f : S → R is a continuous function but not uniformly
continuous. Then f still preserves many Cauchy sequences, just maybe not all of
them. Indeed, the definition of continuity implies that if xn → x0 where both the
sequence (xn) and the limit x0 are in S, then f(xn) → f(x0). In particular, f
preserves the Cauchy sequence (xn). The Cauchy sequences which f might not
preserve are the ones whose limits are not in S (see next example).

Lemma 3.3.4 gives us an easy method for showing that a function is not uniformly
continuous:
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Example 3.3.6. Returning to our Example 3.3.1, we have (1/n) is a Cauchy
sequence in R>0, but

(
f(1/n)

)
= (n) is not a Cauchy sequence. Thus f(x) = 1/x

is not uniformly continuous as a function R>0 → R>0.

The following shows that a large class of continuous functions are also automatically
uniformly continuous:

Proposition 3.3.7. A continuous function on a closed bounded interval

f : [a, b]→ R
is uniformly continuous.

Proof. Suppose towards a contradiction that f is not uniformly continuous. Then
(by negating the definition of “uniformly continuous”), there is an ε > 0 such that
for each δ > 0, the implication

“|x− y| < δ =⇒
∣∣f(x)− f(y)

∣∣ < ε”

fails for some x, y ∈ [a, b]. Fix such an ε. Then for each n ∈ N, there are xn, yn ∈
[a, b] such that

|xn − yn| <
1

n
but

∣∣f(xn)− f(yn)
∣∣ ≥ ε.

By Bolzano-Weierstrass 2.3.7, some subsequence (xnk
) of (xn) converges to some

x0 ∈ [a, b]. Since |xnk
− ynk

| < 1/nk, we also have ynk
→ x0 (by a homework

problem). Since f is continuous at x0,

lim
k→∞

f(xnk
) = f(x0) = lim

k→∞
f(ynk

),

and so
lim
k→∞

(
f(xnk

)− f(ynk
)
)

= 0.

This is a contradiction since
∣∣f(xnk

)− f(ynk
)
∣∣ ≥ ε for every k. �

3.4. Power functions

We now return to our investigation of the power functions bx : R→ R. We are now
able to finish the Uniqueness part of the proof of the Real Power Theorem 1.6.5.
Along the way1 we also show that bx : R→ R is continuous.

Proposition 3.4.1. Fix b > 1 and suppose p̃ : R→ R is a function such that

(1) p̃(1) = b,
(2) for every x, y ∈ R, p̃(x+ y) = p̃(x)p̃(y),
(3) for every x, y ∈ R, if x < y, then p̃(x) < p̃(y).

Then p̃ is continuous and p̃(x) = bx for every x ∈ R. In particular, bx : R → R is
continuous.

Proof. By assumptions (1) and (2) and Exercise 1.9.5, we know that bq = p̃(q)
for every q ∈ Q. By Exercise 3.5.6, it suffices to show that p̃(x) is continuous at 0.
Let ε > 0. Choose n0 ∈ N such that (b − 1)/n0 < ε. Set δ := 1/n0. Let x ∈ R be
such that |x| < δ. Suppose first that x ≥ 0. Then x < 1/n0, so

|p̃(x)− 1| ≤ |p̃(1/n0)− 1| = |b1/n0 − 1| ≤ b− 1

n0
< ε,

1Side question: Is there a proof of Uniqueness that avoids the concept of continuity? It seems
Question 1.6.1 is a good motivation for why we need to develop continuity.
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since p̃ is strictly increasing and agrees with bx on the rationals and using the
Inequality from 1.6.2. Next, suppose that x < 0. Then

|p̃(x)− 1| = | − p̃(x)|︸ ︷︷ ︸
≤1

·|p̃(−x)− 1| ≤ |p̃(−x)− 1| < ε,

using the above argument for 0 ≤ −x < δ. We conclude that p̃(x) is continuous at
0, and thus continuous everywhere. This argument also shows that bx : R → R is
continuous as well. �

In particular, the function ex : R→ R is continuous. We also observe the following:

Proposition 3.4.2. Fix b > 1. Then the function bx : R → R has the following
properties:

(1) limx→∞ bx =∞,
(2) limx→−∞ bx = 0,
(3) Range(bx) = {bx : x ∈ R} = (0,+∞).

Proof. (1) Let M > 0 be arbitrary. Since b − 1 > 0, there is n ∈ N such that
b− 1 > (M − 1)/n. Applying Bernoulli’s Inequality A.3.1 with x := b− 1 yields

bn =
(
1 + (b− 1)

)n ≥ 1 + n(b− 1) > M.

Now suppose x > n is arbitrary. Then since bx : R → R is strictly increasing,
bx > bn > M . Thus limx→∞ bx =∞.

(2) Let ε < 0. By (1), there is N ∈ N such that if x > N , then bx > 1/ε. Thus
for x < −N , b−x > 1/ε, so taking reciprocals yields bx < ε. Thus limx→−∞ bx = 0.

(3) follows from the Intermediate Value Theorem 3.2.10 and (1) and (2). �

3.5. Exercises

Exercise 3.5.1. Find the following limits or determine that they do not exist:

(1) limx→0 |x|
(2) limx>0,x→0

x+
√
x

2+
√
x

(3) limx→0
|x|2
x

(4) limx→0
1
x

Exercise 3.5.2. Suppose the function f : R → R has the property that there is
some M > 0 such that ∣∣f(x)

∣∣ ≤ M |x|2 for all x.

Prove that

lim
x→0

f(x) = 0 and lim
x→0

f(x)

x
= 0.

Exercise 3.5.3. Let k ∈ N. Prove that

lim
x→1

xk − 1

x− 1
= k.

Exercise 3.5.4. For each of the following statements, determine whether it is true
or false and justify your answer:

(1) If the function f + g : R→ R is continuous, then the functions f : R→ R
and g : R→ R are also continuous.

(2) If the function f2 : R→ R is continuous, then so is the function f : R→ R.
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(3) If the functions f + g : R→ R is continuous and g : R→ R is continuous,
then so is the function f : R→ R is continuous.

(4) Every function f : N→ R is continuous.

Exercise 3.5.5 (Bump Lemma). Let g : S → R be continuous at x0 ∈ S, and
suppose g(x0) > 0. Given a value α ∈ (0, g(x0)), show that there is an open
interval I such that x0 ∈ I and g(x1) ≥ α for every x1 ∈ I ∩ S.

Exercise 3.5.6. Suppose f : R → R is such that for every x, y ∈ R, f(x + y) =
f(x)f(y). Furthermore, suppose that f is continuous at 0. Show that f is contin-
uous (i.e., f is continuous at every x ∈ R).

Exercise 3.5.7. We say a subset D ⊆ R is dense if for every a, b ∈ R with a < b,
there is d ∈ D such that a < d < b (for example, Q ⊆ R is a dense subset of R). Let
D be a dense subset of R. Suppose f, g : R→ R are functions such that f(q) = g(q)
for every q ∈ D. Show the following:

(1) If f is continuous and g is monotone, then f(x) = g(x) for every x ∈ R.
(2) If f and g are both continuous, then f(x) = g(x) for every x ∈ R.

Exercise 3.5.8. Let f : R→ R be the function given by

f(x) :=

{
x if x ∈ Q
0 if x 6∈ Q.

Determine (with proof) all points x0 ∈ R such that f is continuous at x0.

Exercise 3.5.9. Suppose f : R→ R is a function that for every x, y ∈ R, f(x+y) =
f(x) + f(y). Furthermore, suppose f is continuous at 0.

(1) Show that f is uniformly continuous (on all of R).
(2) Give a more explicit description of the function f .

Exercise 3.5.10. A function f : (a, b)→ R is said to be convex if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

whenever x, y ∈ (a, b) and λ ∈ (0, 1). Suppose f : (a, b)→ R is convex.

(1) Prove that f is continuous.
(2) Suppose g : R → R is an increasing convex function. Prove that g ◦

f : (a, b)→ R is convex.
(3) Suppose a < s < t < u < b. Show that

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.

Exercise 3.5.11. Assume f : (a, b)→ R is continuous and has the property that

f

(
x+ y

2

)
≤ f(x) + f(y)

2

for every x, y ∈ (a, b). Prove that f is convex.

Exercise 3.5.12. For each of the following statements, determine whether it is
true or false, and justify your answer.

(1) Every function f : [0, 1]→ R has a maximum.
(2) Every continuous function f : [a, b]→ R has a minimum.
(3) Every continuous function f : (a, b)→ R has a maximum.
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(4) Every continuous function f : (0, 1) → R has a bounded image (i.e., that
the set f

(
(0, 1)

)
is bounded).

(5) If a continuous function f : (0, 1) → R is such that the image is bounded
below (i.e., the set f

(
(0, 1)

)
is bounded below), then the function attains

a minimum.

Exercise 3.5.13. Let f, g : [a, b] → R be continuous functions such that f(a) ≥
g(a) and f(b) ≤ g(b). Prove there is x0 ∈ [a, b] such that f(x0) = g(x0).

Exercise 3.5.14. Consider the polynomial p(x) = a0 + a1x + a2x
2 + · · · + anx

n

(with a0, . . . , an ∈ R). Prove that if a0an < 0, then p has a positive root.

Exercise 3.5.15. Suppose that the function f : [a, b] → R is continuous. For a
natural number k, let x1, . . . , xk ∈ [a, b]. Prove there is z ∈ [a, b] at which:

f(z) =
1

k

k∑
`=1

f(x`).

Exercise 3.5.16. Let p : R → R be a polynomial of odd degree. Prove there is a
solution of the equation:

p(x) = 0, where x ∈ R.

Exercise 3.5.17. Suppose f, g : D → R are both uniformly continuous functions.
Is the product fg : D → R also uniformly continuous? Prove or give a counterex-
ample.

Exercise 3.5.18. Suppose f : (a, b) → R is uniformly continuous. Prove that
f : (a, b)→ R is bounded.

Exercise 3.5.19. Suppose f : [0, 1] → R is continuous, with f(0) = f(1). Show
there is c ∈ [0, 1/2] such that f(c+ 1/2) = f(c).

Exercise 3.5.20. Let f : S → R be a uniformly continuous and bounded function.
The function ω : (0,+∞)→ R given by

ω(δ) := sup
{
|f(x)− f(y)| : x, y ∈ S, |x− y| < δ

}
is called the modulus of continuity of f . Show that ω is increasing and determine
limδ>0,δ→0 ω(δ).





CHAPTER 4

Differentiation

In Chapter 3 we encountered the magical property of continuity. Continuity is a
local property1, i.e., it is a property which is determined in a tiny neighborhood of
a point. A function is globally continuous iff it is locally continuous at each point.

In this chapter we will encounter an even stronger local property: differentiability.
This property says that in a tiny neighborhood around a point, the function can be
approximated suspiciously well by a straight line. This is a much more specific type
of local property than continuity. Naturally, we will be able to produce stronger
results about functions which have this stronger property.

For example, if a function f : [a, b]→ R is continuous, then we know by the Extreme
Value Theorem 3.2.9 that f attains a minimum and maximum somewhere. However,
knowing this fact alone does us little good if we want to find where f attains
this min and max. If we know in addition that f is differentiable, then Fermat’s
Theorem 4.3.1 is able to help us find the min and max by solving f ′(x) = 0.

Throughout this chapter I ⊆ R is an open interval.

4.1. Differentiability and derivatives

We will actually give three equivalent definitions of differentiability at a point. As
is typical when giving multiple equivalent definitions, we will first prove that three
properties are equivalent, then afterwards define differentiability to mean any2 one
of the three equivalent properties.

Proposition 4.1.1. Suppose f : I → R and a ∈ I. The following are equivalent:

(1) (Standard definition) The limit

lim
x→a

f(x)− f(a)

x− a
= `

exists and is finite (i.e., ` ∈ R).
(2) (Taylor definition) There exists a number d ∈ R and a function R : I → R

such that

f(x) = f(a) + d(x− a) +R(x) and lim
x→a

R(x)

x− a
= 0.

(3) (Carathéodory definition) There exists a function q : I → R which is con-
tinuous at a such that

f(x) = f(a) + q(x)(x− a).

1This is actually an important mathematical theme you should take seriously.
2We do it in this way as to not “play favorites” with any one particular version of the

definition. This is just a matter of style and taste.
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Furthermore, if any (equivalently all) of (1), (2), and (3) holds, then

(4) ` = d = q(a), and
(5) f is continuous at a.

Proof. (1)⇒(2) Suppose the limit in (1) exists with limit ` ∈ R. Define the
function R : I → R by

R(x) := f(x)− f(a)− `(x− a)

for x ∈ I. Then since

lim
x→a

f(x)− f(a)

x− a
= `,

it follows from subtracting ` from both sides that

0 = lim
x→a

f(x)− f(a)− `(x− a)

x− a
= lim

x→a

R(x)

x− a
.

Thus (2) holds with d := `.
(2)⇒(3) Suppose (2) holds for some d ∈ R and R : I → R. Define the function

q : I → R by

q(x) :=

{
d+ R(x)

x−a if x 6= a

d if x = a,

for x ∈ I. Then by (2),
lim
x→a

q(x) = d = q(a),

so q is continuous at a by Corollary 3.2.7.
(3)⇒(1) Suppose we have q : I → R as in (3). Note that for x ∈ I \{a} we have

f(x)− f(a)

x− a
= q(x),

so in particular since q is continuous at a the limit

lim
x→a

f(x)− f(a)

x− a
= lim

x→a
q(x) = q(a)

exists. Thus (1) holds with ` = q(a).
(4) The above arguments show that if any of (1), (2) or (3) hold, they all hold

and that necessarily ` = d = q(a).
(5) The representation of f as in (3) shows that f is continuous at a since each

of the functions f(a), q(x) and x− a are continuous at a. �

Note that each of (1), (2) and (3) in the above proposition is expressing that in
some sense f can be well-approximated by a linear function when you are very
close to a. We now define differentiability to mean any one of the three equivalent
conditions in the above proposition:

Definition 4.1.2. Suppose f : I → R and a ∈ I. We say that f is differentiable
at a, if any of the three equivalent conditions (1), (2), or (3) in Proposition 4.1.1
hold. In the case f is differentiable at a, we write:

f ′(a) := lim
x→a

f(x)− f(a)

x− a
(also equals ` = d = q(a) from Proposition 4.1.1)

and we call f ′(a) the derivative of f at a. If f : I → R is differentiable at every
a ∈ I, then we say f is differentiable (on I).

Example 4.1.3. (1) Constant functions are differentiable with derivative 0.
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(2) Let f : R → R be such that f(x) = xn. Then f is differentiable at all
a ∈ R, and f ′(a) = nan−1. To see this, note by The Difference of Powers
Formula,

f(x)− f(a) = xn−an = (x−a) · (xn−1 +axn−2 +a2xn−3 + · · ·+an−2x+an−1),

thus for x 6= a, we have

f(x)− f(a)

x− a
= xn−1 + axn−2 + a2xn−3 + · · ·+ an−2x+ an−1,

and so

lim
x→a

f(x)− f(a)

x− a
= n · an−1.

4.2. Differentiation rules

In this section we prove the usual differentiation rules.

Proposition 4.2.1. Suppose f, g : I → R are differentiable at a ∈ I. Then f +
g, f · g : I → R are differentiable at a, with

(1) (f + g)′(a) = f ′(a) + g′(a),
(2) (product rule) (f · g)′(a) = f(a)g′(a) + f ′(a)g(a),

and if g(a) 6= 0, then f/g : I → R is differentiable at a with

(3) (quotient rule)(
f

g

)′
(a) =

g(a)f ′(a)− f(a)g′(a)

g2(a)

Proof. For (1) and (2) we will use the Carathéodory definition, so we write

f(x) = f(a) + q(x)(x− a)

g(x) = g(a) + r(x)(x− a),

where q, r : I → R are continuous at a and f ′(a) = q(a) and g′(a) = r(a).
For (1) we have

(f + g)(x) = (f + g)(a) + (q + r)(x)(x− a).

By Lemma 3.1.7 the function q + r : I → R is also continuous at a and thus f + g
is differentiable at a and

(f + g)′(a) = (q + r)(a) = q(a) + r(a) = f ′(a) + g′(a).

(2) Note that for x ∈ I,

(fg)(x) = f(x) · g(x) =
(
f(a) + q(x)(x− a)

)(
g(a) + r(x)(x− a)

)
= f(a)g(a) +

(
f(a)r(x) + q(x)g(a) + q(x)r(x)(x− a)

)︸ ︷︷ ︸
p(x)

(x− a)

= (fg)(a) + p(x)(x− a),

and by Lemma 3.1.7 it follows that p(x) is continuous at a. Thus f ·g is differentiable
at a and

(fg)′(a) = p(a) = f(a)r(a) + q(a)g(a) = f(a)g′(a) + f ′(a)g(a).

(3) We will use the Standard definition of differentiable and prove the quotient
rule first in the special case that f ≡ 1 (i.e., f is the constant function 1). Now,
suppose g(a) 6= 0. Then by the Bump Lemma (Exercise 3.5.5), there is an open
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interval J ⊆ I such that a ∈ J and g(x) 6= 0 for all x ∈ J . Thus, for x ∈ J \ {a},
we have

(1/g)(x)− (1/g)(a)

x− a
=

g(a)− g(x)

x− a
· 1

g(x)g(a)
,

and taking limits as x → a (specifically, the limit limx→a which is shorthand here
for limx∈J\{a},x→a) gives

(1/g)′(a) = − g
′(a)

g(a)2
.

The general quotient rule now follows from combining what we just proved with
product rule, i.e., by viewing f/g as the product f · (1/g). �

Remark 4.2.2. An immediate consequence of Proposition 4.2.1(1) and (2) is that
if we have constants c, d ∈ R and differentiable functions f, g : I → R, then

(cf + dg)′ = cf ′ + dg′.

In linear algebra terms, differentiation is R-linear (i.e., it is a linear transformation
on the R-vector space of differentiable functions I → R).

One of the advantages of the Carathéodory definition of differentiability is that it
allows for an elegant proof of the chain rule:

The Chain Rule 4.2.3. Let f : I → R, g : J → R such that J ⊆ R is an open
interval, f(I) ⊆ J , and a ∈ I. Suppose f is differentiable at a and g is differentiable
at f(a). Then g ◦ f is differentiable at a, with

(g ◦ f)′(a) = g′
(
f(a)

)
· f ′(a).

Proof. By assumption, there are functions q : I → R and r : J → R continuous at
a and f(a) respectively, such that

f(x) = f(a) + q(x)(x− a) for x ∈ I
g(x) = g

(
f(a)

)
+ r(x)

(
x− f(a)

)
for x ∈ J .

Then since f(I) ⊆ J , we have for all x ∈ I:

(g ◦ f)(x) = g
(
f(x)

)
= g

(
f(a)

)
+ r
(
f(x)

)(
f(x)− f(a)

)
= (g ◦ f)(x) + r

(
f(x)

)
q(x)︸ ︷︷ ︸

s(x)

(x− a).

The function s : I → R is continuous at a because q is continuous at a and by Propo-
sition 3.2.4 the composition r

(
f(x)

)
is continuous at a (using that f is continuous

at a since it is differentiable at a). Thus g ◦ f is differentiable at a with

(g ◦ f)′(a) = r
(
f(a)

)
q(a) = g′

(
f(a)

)
f ′(a). �

4.3. Differentiation theorems

Fermat’s Theorem 4.3.1. Suppose a function f : (a, b)→ R assumes a maximum
or minimum at a point x0 ∈ (a, b). Then either f ′(x0) = 0 or f is not differentiable
at x0.
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Proof. We may assume that f assumes a maximum at x0 (if f assumes a minimum
at x0, then apply this argument to the function −f). Thus f(x) ≤ f(x0) for all
x ∈ (a, b). Now let (xn) be a sequence in (a, b) such that xn → x0 and xn 6= x0 for
all n. Thus f(x0) ≥ f(xn) for all n. It follows that whenever x0 > xn, then

f(xn)− f(x0)

xn − x0
≥ 0

and whenever x0 < xn, then

f(xn)− f(x0)

xn − x0
≤ 0.

In particular, if f ′(x0) exists, then necessarily f ′(x0) = 0. �

Rolle’s Theorem 4.3.2. Let f : [a, b] → R be a continuous function which is
differentiable on (a, b) such that f(a) = f(b). Then there is some c ∈ (a, b) such
that f ′(c) = 0.

Proof. By the Extreme Value Theorem 3.2.9, there are xm, xM ∈ [a, b] such that
f(xm) ≤ f(x) ≤ f(xM ) for every x ∈ [a, b].

If xm, xM are both endpoints of [a, b], then f is a constant function since f(a) =
f(b). Thus f ′(c) = 0 for every c ∈ [a, b].

Otherwise, f assumes a maximum or minimum at some point c ∈ (a, b), and so
f ′(c) = 0 by Fermat’s Theorem 4.3.1. �

Mean Value Theorem 4.3.3. Let f : [a, b] → R be a continuous function which
is differentiable on (a, b). Then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Define m := (f(b)− f(a))/(b− a). Define

L(x) := f(a) +m(x− a),

the line that connects the endpoints (a, f(a)) and (b, f(b)) of the graph of f . Then

L(a) = f(a), L(b) = f(b), L′(x) = m.

Now define the function g := f−L. Then g is continuous on [a, b] and differentiable
on (a, b) with

g(a) = 0 = g(b).

Thus by Rolle’s Theorem 4.3.2, there is c ∈ (a, b) such that g′(c) = 0. Thus

f ′(c) = L′(c) = m. �

Corollary 4.3.4. Suppose f : (a, b) → R is differentiable. Then f is a constant
function iff f ′(x) = 0 for all x ∈ (a, b).

Proof. (⇒) This follows from Example 4.1.3.
(⇐) Suppose towards a contradiction that f is not constant on (a, b). Then

there are x1, x2 such that a < x1 < x2 < b and f(x1) 6= f(x2). By the Mean Value
Theorem 4.3.3, there is x3 ∈ (x1, x2) such that

f ′(x3) =
f(x2)− f(x1)

x2 − x1
6= 0,

which contradicts the assumption that f ′(x) = 0 for all x ∈ (a, b). �
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A common question in analysis is: when are two functions f, g : I → R the same?
If f and g are differentiable, the following makes this question easier to answer:

The Identity Criterion 4.3.5. Let f, g : (a, b) → R be differentiable such that
f ′ = g′ on (a, b). Then there exists a constant c ∈ R such that f(x) = g(x) + c for
all x ∈ (a, b). Furthermore, if there is a point x0 ∈ (a, b) such that f(x0) = g(x0),
then f(x) = g(x) for all x ∈ (a, b).

Proof. The function f − g : (a, b)→ R is differentiable by Proposition 4.2.1, and
(f − g)′(x) = f ′(x) − g′(x) = 0 for all x ∈ (a, b). By Corollary 4.3.4, there is a
constant c ∈ R such that (f − g)(x) = c for all x ∈ (a, b), i.e., f(x) = g(x) + c for
all x ∈ (a, b).

Now, suppose there is x0 ∈ (a, b) such that f(x0) = g(x0). Then also f(x0) =
g(x0) + c, so we can conclude that c = 0. Thus f(x) = g(x) for all x ∈ (a, b). �

The Identity Criterion 4.3.5 is the impetus for the uniqueness part of many existence
and uniqueness theorems for ordinary differential equations (ODEs).

Up until this point if we want to show that a function f : I → R is increasing, we
usually have to give some tedious argument involving inequalities and identities. If
we know that f is differentiable, then the following provides an easier method of
proving that f is increasing (or decreasing, etc.).

Corollary 4.3.6. Let f : (a, b)→ R be a differentiable function. Then

(1) f is strictly increasing if f ′(x) > 0 for all x ∈ (a, b),
(2) f is strictly decreasing if f ′(x) < 0 for all x ∈ (a, b),
(3) f is increasing if f ′(x) ≥ 0 for all x ∈ (a, b), and
(4) f is decreasing if f ′(x) ≤ 0 for all x ∈ (a, b).

Proof. (1) Let x1, x2 be such that a < x1 < x2 < b. By the Mean Value Theo-
rem 4.3.3, for some x ∈ (x1, x2) we have

f(x2)− f(x1)

x2 − x1
= f ′(x) > 0.

Since x2 − x1 > 0, we get f(x2)− f(x1) > 0 which implies f(x2) > f(x1).
(2), (3), and (4) are similar and left as an exercise to the reader. �

4.4. The exponential function

We now return to our study of the various exponential functions Φ(x), exp(x), and
ex. Ultimately we will show these three functions are the same. As a warmup, we
will show that Φ is differentiable:

Proposition 4.4.1. The function Φ(x) has the following properties:

(1) Φ: R→ R is a differentiable function and Φ′(x) = Φ(x) for all x ∈ R.
(2) In particular, by Proposition4.1.1 (5), Φ: R→ R is continuous.

Proof. We only need to prove (1). By Exercise 4.6.5, it suffices to show that Φ
is differentiable at 0 and that Φ′(0) = 1. Suppose h ∈ R is such that h 6= 0 and
|h| < 1. Then by inequality (b) from Definition 2.5.2, we have

1 + h ≤ Φ(h) ≤ 1

1− h
= 1 +

h

1− h
.
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Subtracting 1 and dividing by h yields

1 ≤ Φ(h)− 1

h
≤ 1

1− h
.

Taking a limit as h→ 0, the Squeeze Lemma implies

lim
h→0

Φ(h)− 1

h
= 1.

Thus Φ is differentiable at 0 (since Φ(0) = 1), and Φ′(0) = 1 = Φ(0). �

We can now conclude from Propositions 4.4.1, 3.4.1, and Exercise 3.5.7(2) the
following:

Corollary 4.4.2. For every x ∈ R, Φ(x) = ex.

4.5. Derivatives of higher order

So far, we have only studied the first derivative of a function f . We will occasionally
need higher derivatives of a function (which might not exist).

Definition 4.5.1. Set f (0) := f (the zeroeth derivative is the function itself). Then
for n ≥ 1, and x ∈ I, suppose that f (n−1) : I → R exists. If f (n−1) is differentiable
at x, then we define

f (n)(x) := (f (n−1))′(x) the nth derivative of f at x

If f (n−1) : I → R is differentiable at every x ∈ I, then we set

f (n) := (f (n−1))′ : I → R,
and we call f (n) the nth derivative of f . In this case we also say that f (n) exists.

Example 4.5.2. By Proposition 4.4.1, for every n ≥ 0, Φ(n) : R → R exists and
Φ(n)(x) = Φ(x) for every x ∈ R (this follows from an easy induction argument).

4.6. Exercises

Exercise 4.6.1. Suppose that the function f : R → R is differentiable at 0. For
real numbers a, b, c ∈ R such that c 6= 0, determine (with proof!) the limit:

lim
x→0

f(ax)− f(bx)

cx

Exercise 4.6.2. A function f : R→ R is called even if

f(x) = f(−x) for all x,

and f : R→ R is called odd if

f(x) = −f(−x) for all x.

Prove that if f : R→ R is differentiable and odd, then f ′ : R→ R is even.

Exercise 4.6.3. Let n ∈ N.

(1) Suppose f : R → R is differentiable and the equation f ′(x) = 0 has at
most n − 1 solutions. Prove that the equation f(x) = 0 has at most n
solutions.

(2) Consider the polynomial p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, where
a0, . . . , an ∈ R and an 6= 0. Prove that the equation p(x) = 0 has at most
n solutions.
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Exercise 4.6.4. Suppose S,C : R→ R are differentiable and that

(1) S′(x) = C(x) and C ′(x) = −S(x) for all x ∈ R, and
(2) S(0) = 0 and C(0) = 1.

Prove that S2(x) + C2(x) = 1 for all x ∈ R.

Exercise 4.6.5. Suppose f : R → R has the property that for every x, y ∈ R,
f(x+ y) = f(x)f(y). Furthermore, assume that f is differentiable at 0. Prove that
f is differentiable and that for every x ∈ R, f ′(x) = f ′(0) · f(x).

Exercise 4.6.6. Suppose f, g : I → R are functions such that for some n ≥ 0,
f (k), g(k) exists for k = 0, 1, . . . , n. Let x ∈ I and show that

(fg)(n)(x) =

n∑
k=0

(
n

k

)
f (k)(x)g(n−k)(x).

Exercise 4.6.7. Let b > 1. Show that the power function bx : R → R is differen-
tiable and describe its derivative as explicitly as possible. [Hint: this is easy if you
appropriately use everything we proved so far about Φ and real power functions.]

Exercise 4.6.8. Suppose f, g : R→ R are functions which are differentiable at x0,
g′(x0) 6= 0, and f(x0) = g(x0) = 0. Prove that

lim
x→x0

f(x)

g(x)
=

f ′(x0)

g′(x0)
.

Exercise 4.6.9. Suppose f : [a, b]→ R is a continuous function, which is differen-
tiable on (a, b). Furthermore, suppose f(a) = f(b) = 0, but f is not the constant
zero function. Show there is c ∈ (a, b) such that f ′(c) = f(c). [Hint: Apply Rolle’s
Theorem to an appropriate auxiliary function, consider using the most important
function in mathematics.]



CHAPTER 5

Integration

In this chapter we will construct the Darboux integral. Among other things, this
integral gives us a suitable inverse operation to differentiation. The development
of the Darboux integral is different from the Riemann integral (the style of integral
usually encountered in freshman calculus). There is actually no harm in taking
this route in light of the theorem1 which says that the Darboux integral and the
Riemann integral are actually the same thing [2, 32.9].

One of the reasons that the Darboux integral is not taught in freshman calculus is
that it is a bit more abstract (it’s definition involves taking a supremum!). For us
however, this is a feature and not a bug. The effort we put in in Chapter 1 will
now bear fruit in the form of an efficient development of a transparent and robust
theory of integration.

We previously remarked that both continuity and differentiability are local proper-
ties. The property of integrability which we will study in this chapter is not a local
property (i.e., there is no such property “integrable at a point” such that a function
is globally integrable iff it is integrable at every point). This sets integrability apart
from continuity and differentiability on both logical and philosophical grounds and
it requires us to take a “global” approach from the very beginning.

Throughout this chapter, a, b ∈ R and a < b. We will focus our attention on
functions defined on the closed bounded interval [a, b].

5.1. Partitions, Darboux sums, and the Darboux integral

In this section, we fix a bounded function

f : [a, b]→ R.

Notation 5.1.1. For S ⊆ [a, b], we set

M(f, S) := sup f(S),

m(f, S) := inf f(S).

Definition 5.1.2. A partition of [a, b] is a finite set

P = {t0, . . . , tn} (n ≥ 1)

where a = t0 < t1 < · · · < tn = b. We also define the size of the partition to be
|P | = n (number of subintervals).

1We will not prove this theorem in this course.
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Given such a partition P = {t0, . . . , tn} of [a, b], we define

U(f, P ) :=

n∑
k=1

M
(
f, [tk−1, tk]

)
· (tk − tk−1)

L(f, P ) :=

n∑
k=1

m
(
f, [tk−1, tk]

)
· (tk − tk−1).

We call U(f, P ) and L(f, P ) the upper (respectively, lower) Darboux sum of f
with respect to P .

Remark 5.1.3. Given a partition P of [a, b], we have

m
(
f, [a, b]

)
· (b− a) ≤ L(f, P ) ≤ U(f, P ) ≤ M

(
f, [a, b]

)
· (b− a).

Partition Refinement Lemma 5.1.4. Suppose f : [a, b] → R is bounded, and
P,Q are partitions of [a, b] such that P ⊆ Q (i.e., “Q is a refinement of P”). Then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Proof. The middle inequality is obvious. We will prove only the first inequality
L(f, P ) ≤ L(f,Q). The third inequality U(f,Q) ≤ U(f, P ) is similar and left as an
exercise.

We will prove this by induction on d := |Q| − |P |.
If d = 0, then P = Q, so L(f, P ) = L(f,Q).
For the inductive step, suppose d ≥ 1 and that we know the claim is true when

the difference in partition sizes is d−1 ≥ 0. Suppose d = |Q|− |P |. Take t ∈ Q\P ,
and define Q′ := Q \ {t}. Then Q′ is also a partition of [a, b], P ⊆ Q′ ⊆ Q and
|Q′| − |P | = d− 1, and |Q| − |Q′| = 1. By the inductive hypothesis, it is enough to
show that L(f,Q′) ≤ L(f,Q) (this is basically proving the d = 1 case). Thus we
can assume:

Q′ = {t0, . . . , tn} (a = t0 < t1 < · · · < tn = b)

Q = {t0, . . . , tk−1, s, tk, . . . , tn} (tk−1 < s < tk, k ∈ {1, . . . , n})

Now we have

L(f,Q)− L(f,Q′) = m
(
f, [tk−1, s]

)
· (s− tk−1) +m

(
f, [s, tk]

)
· (tk − s)

−m
(
f, [tk−1, tk]

)
· (tk − tk−1)

(by cancelling everything that L(f,Q) and L(f,Q′) have in common). However,

m
(
f, [tk−1, tk]

)
· (tk − tk−1) = m

(
f, [tk−1, tk]

)
·
(
(tk − s) + (s− tk−1)

)
≤ m

(
f, [s, tk]

)
· (tk − s) +m

(
f, [tk−1, s]

)
· (s− tk−1),

and so L(f,Q)− L(f,Q′) ≥ 0. �

Definition 5.1.5. We define

U(f) := inf
{
U(f, P ) : P is a partition of [a, b]

}
(upper Darboux integral of f)

L(f) := sup
{
L(f, P ) : P is a partition of [a, b]

}
(lower Darboux integral of f)
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Corollary 5.1.6. If P,Q are partitions of [a, b], then

L(f, P ) ≤ U(f,Q).

Thus, L(f) ≤ U(f).

Proof. First, suppose P and Q are arbitrary partitions of [a, b]. Then P ∪Q is a
common refinement of both P and Q. Using the Partition Refinement Lemma 5.1.4
in two different ways we get

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

Thus:{
L(f, P ) : P is a partition of [a, b]

}
≤
{
U(f,Q) : Q is a partition of [a, b]

}
(i.e., every element of the set on the left is less than or equal to every element of
the set on the right). By Exercise 1.9.21, this implies that

L(f) = sup
{
L(f, P ) : P is a partition of [a, b]

}
≤ inf

{
U(f,Q) : Q is a partition of [a, b]

}
= U(f). �

Definition 5.1.7. We say that f : [a, b]→ R is integrable on [a, b] if L(f) = U(f).

In this case we write either
∫ b
a
f or

∫ b
a
f(x) dx for this common value, i.e.,∫ b

a

f =

∫ b

a

f(x) dx = L(f) (which also equals U(f))

This value is known as the Darboux integral of f . If f : [a, b]→ R is integrable,
then it will also be convenient to define∫ a

a

f := 0 and

∫ a

b

f := −
∫ b

a

f.

Example 5.1.8. (1) The constant function c : [a, b]→ R defined by c(x) = c

for some c ∈ R is integrable, and
∫ b
a
c = c(b − a). To see this, note

that for any nonempty S ⊆ [a, b] we have M(c, S) = m(c, S) = c. Thus
for any partition P of [a, b] we have L(c, P ) = U(c, P ) = c(b − a) (by
writing out the relevant summation, pulling out c, and telescoping). Thus
L(c) = U(c) = c(b− a).

(2) The function f : [0, b] → R given by f(x) = x2 is integrable and
∫ b
0
f =

b3/3. To prove this directly (without the Fundamental Theorem of Cal-
culus) take a little bit of work, but is not too hard. Given a partition
P = {0 = t0 < t1 < · · · < tn = b}, we have

U(f, P ) =

n∑
k=1

sup{x2 : x ∈ [tk−1, tk]} · (tk − tk−1) =

n∑
k=1

t2k(tk − tk−1).

If we choose the “regular” partition where tk = kb/n, then the Sum Of
Squares Formula A.2.2 shows that

U(f, P ) =

n∑
k=1

k2b2

n

(
b

n

)
=

b3

n3
· n(n+ 1)(2n+ 1)

6
.
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For very large n, this quantity can be made arbitrarily close to b3

3 , so

U(f) ≤ b3

3 . Using the same regular partition, we also get

L(f, P ) =

n∑
k=1

(k − 1)2b2

n2

(
b

n

)
=

b3

n3
· (n− 1) · n · (2n− 1)

6

which shows that L(f) ≥ b3

3 . Thus L(f) = U(f), so f is integrable and∫ b
0
f = b3

3 .
(3) Consider the function f : [a, b]→ R defined by

f(x) =

{
0 if x ∈ Q, and

1 if x ∈ R \Q.

Then f is not integrable. Note that for any nonempty subinterval S ⊆
[a, b], we have m(f, S) = 0 and M(f, S). Thus for any partition P of [a, b]
we have L(f, P ) = 0 and U(f, P ) = (b− a), and so

L(f) = 0 < (b− a) = U(f).

The following is very useful in practice for showing that a function is integrable:

Cauchy Criterion for Integrability 5.1.9. Let f : [a, b]→ R be a bounded func-
tion. The following are equivalent:

(1) f is integrable,
(2) for every ε > 0 there is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Proof. (1) ⇒ (2) Suppose f is integrable and let ε > 0. Take partitions P1, P2 of
[a, b] such that

L(f, P1) > L(f)− ε

2

U(f, P2) < U(f) +
ε

2
.

Now, set P := P1 ∪ P2. By the Partition Refinement Lemma 5.1.4, we have

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1)

<
(
U(f) +

ε

2

)
−
(
L(f)− ε

2

)
= U(f)− L(f) + ε = ε.

(2)⇒ (1) Suppose (2) holds, and suppose towards a contradiction that U(f) >
L(f). Set ε := U(f)− L(f) > 0. Take a partition P of [a, b] as in (2), then

U(f, P )− L(f, P ) < ε = U(f)− L(f) ≤ U(f, P )− L(f, P ),

a contradiction. �

5.2. Properties of the Darboux integral

Definition 5.2.1. The mesh of a partition P is the maximum length of the subin-
tervals in P , i.e., if P = {a = t0 < t1 < · · · < tn = b}, then

mesh(P ) := max{tk − tk−1 : k = 1, 2, . . . , n}.

Proposition 5.2.2 (Monotonic functions are integrable). If f : [a, b]→ R is mono-
tonic, then f is integrable.
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Proof. We will only do the case where f is increasing (the case where f is decreas-
ing is similar and left as an exercise). Furthermore, we may assume f(a) < f(b)
(otherwise, since f is increasing, if f(a) = f(b) then f is a constant function, hence
integrable).

Furthermore, it is clear that f is bounded by max
{
|f(a)|, |f(b)|

}
. We will use

the Cauchy Criterion 5.1.9 to show that f is integrable. Let ε > 0. Pick a partition
P of [a, b] such that mesh(P ) < ε/

(
f(b)− f(a)

)
. Then

U(f, P )− L(f, P ) =

n∑
k=1

[
M
(
f, [tk−1, tk]

)
−m

(
f, [tk−1, tk]

)]
· (tk − tk−1)

=

n∑
k=1

[
f(tk)− f(tk−1)

]
· (tk − tk−1) (since f increasing)

<

n∑
k=1

[
f(tk)− f(tk−1)

]
· ε

f(b)− f(a)

(since mesh(P ) <
ε

f(b)− f(a)
)

=
[
f(b)− f(a)

]
· ε

f(b)− f(a)

= ε. �

Proposition 5.2.3 (Continuous functions are integrable). If f : [a, b]→ R is con-
tinuous, then f is integrable.

Proof. We will use the Cauchy Criterion 5.1.9 to show that f is integrable. Let
ε > 0. By Proposition 3.3.7, f is uniformly continuous, so there is δ > 0 such
that for every x, y ∈ [a, b], if |x − y| < δ, then |f(x) − f(y)| < ε/(b − a). Let
P = {a = t0 < t1 < · · · < tn = b} be a partition such that mesh(P ) < δ. By
the Extreme Value Theorem 3.2.9, on each closed interval [tk−1, tk], the function f
attains its maximum and minimum. Thus

M
(
f, [tk−1, tk]

)
−m

(
f, [tk−1, tk]

)
<

ε

b− a
for each k. Thus

U(f, P )− L(f, P ) <

n∑
k−1

ε

b− a
(tk − tk−1) =

ε

b− a
· (b− a) = ε. �

Lemma 5.2.4 (Linearity of Integration). Let f, g : [a, b] → R be integrable func-
tions, and let α ∈ R. Then

(1) αf : [a, b]→ R is integrable, and
∫ b
a
αf = α

∫ b
a
f ,

(2) f + g : [a, b]→ R is integrable, and
∫ b
a

(f + g) =
∫ b
a
f +

∫ b
a
g.

Proof. (1) We prove this by considering three cases.
(Case 1: α > 0) Let P = {a = t0 < t1 < · · · < tn = b} be an arbitrary partition

of [a, b]. Exercise 1.9.20 shows that

M
(
αf, [tk−1, tk]

)
= α ·M

(
f, [tk−1, tk]

)
for all k = 1, . . . , n, so

U(αf, P ) = α · U(f, P ).
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Now, the same exercise again shows that

U(αf) = inf
{
U(αf, P ) : P a partition of [a, b]

}
= inf

{
α · U(f, P ) : P a partition of [a, b]

}
= α · inf

{
U(f, P ) : P a partition of [a, b]

}
= α · U(f).

A similar argument using inf’s also shows that L(αf) = α · L(f). Since f itself is
integrable, we have

L(αf) = α · L(f) = α · U(f) = U(αf),

thus αf is integrable, and∫ b

a

αf = U(αf) = α · U(f) = α

∫ b

a

f.

(Case 2: α = −1) This is Exercise 5.5.1.
(Case 3: α < 0) This follows from recognizing α = −(−α), and then applying

Case 2, and then Case 1 with −α.
(2) We will use the Cauchy Criterion 5.1.9 to show that f +g is integrable. Let

ε > 0. First, since f and g are separately integrable, the Cauchy Criterion 5.1.9
(using ε/2 instead of ε) gives partitions P1 and P2 of [a, b] such that

U(f, P1)− L(f, P1) <
ε

2
and U(g, P2)− L(g, P2) <

ε

2
.

By the Partition Refinement Lemma 5.1.4 applied to the common refinement P =
P1 ∪ P2 of P1 and P2 yields

U(f, P )− L(f, P ) <
ε

2
and U(g, P )− L(g, P ) <

ε

2
.

Furthermore, Exercise 5.5.4 yields

L(f + g, P ) ≥ L(f, P ) + L(g, P ) and U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Combining these four inequalities gives

U(f + g, P )− L(f + g, P ) < ε.

This shows, by the Cauchy Criterion 5.1.9, that f + g is integrable.
Using the same ε and partition P , we also have∫ b

a

(f + g) = U(f + g) ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P )

< L(f, P ) + L(g, P ) + ε ≤ L(f) + L(g) + ε

=

∫ b

a

f +

∫ b

a

g + ε,

and ∫ b

a

f = L(f + g) ≥ L(f + g, P ) ≥ L(f, P ) + L(g, P )

> U(f, P ) + U(g, P )− ε ≥ U(f) + U(g)− ε

=

∫ b

a

f +

∫ b

a

g − ε.
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Combining these (see Remark 1.3.3) gives∣∣∣∣∣
∫ b

a

(f + g)−

[∫ b

a

f +

∫ b

a

g

]∣∣∣∣∣ < ε,

and since we can show this for any ε (perhaps using a different partition P ), we

conclude that
∫ b
a

(f + g) =
∫ b
a
f +

∫ b
a
g. �

Lemma 5.2.5. Suppose f, g : [a, b]→ R. Then:

(1) (Monotonicity) If f, g are integrable, and f(x) ≤ g(x) for every x ∈ [a, b],

then
∫ b
a
f ≤

∫ b
a
g.

(2) If g is a continuous nonnegative function and
∫ b
a
g = 0, then g(x) = 0 for

every x ∈ [a, b] (i.e., “g is identically zero”).

Proof. (1) By Lemma 5.2.4, the function h := g − f is integrable on [a, b]. Since
g(x) ≥ f(x) for every x ∈ [a, b], it follows that h(x) ≥ 0 for all x ∈ [a, b]. In

particular, L(h, P ) ≥ 0 for every partition P of [a, b]. Thus
∫ b
a
h = L(h) ≥ 0. By

Lemma 5.2.4 again, we get∫ b

a

g =

∫ b

a

f +

∫ b

a

h ≥
∫ b

a

f.

(2) Assume towards a contradiction that there is x0 ∈ [a, b] such that g(x0) > 0.
Define α := g(x0)/2 > 0. By the Bump Lemma (Exercise 3.5.5), there is an open
interval I which contains x0 such that g(x) > g(x0)/2 for every x ∈ I. By making
I smaller, we obtain a closed interval [c, d] ⊆ [a, b] which contains x0 such that
g(x) > g(x0)/2 for every x ∈ [c, d]. Now∫ b

a

g ≥
∫ d

c

g (because g is nonnegative)

≥
∫ d

c

g(x0)

2
(by Monotonicity)

=
g(x0)

2
(d− c) (by Example 5.1.8)

> 0.

This contradicts the assumption
∫ b
a
g = 0. �

Lemma 5.2.6. If f : [a, b]→ R is integrable, then |f | : [a, b]→ R is integrable and∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |.

Proof. For any S ⊆ [a, b] we have

M(|f |, S)−m(|f |, S) ≤ M(f, S)−m(f, S),

by Exercise 5.5.5. It follows from this inequality that

U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P )

for each partition P of [a, b]. Now, let ε > 0. By the Cauchy Criterion 5.1.9, there
is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε,
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but then it follows that

U(|f |, P )− L(|f |, P ) < ε.

Thus |f | is integrable also by the Cauchy Criterion 5.1.9.
Next, note that for every x ∈ [a, b] we have

−|f(x)| ≤ f(x) ≤ |f(x)|.

Thus by Monotonicity (Lemma 5.2.5(1)) and Linearity (Lemma 5.2.4(1)), we get

−
∫ b

a

|f(x)| dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx,

which is equivalent to what we want to show; see Lemma 1.3.3. �

Lemma 5.2.7 (Additivity over intervals). Suppose f : [a, b] → R is bounded and
c ∈ (a, b). Then f is integrable on [a, b] iff f is integrable on [a, c] and [c, b]. In this
case, we have ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

In fact, if f : [a, b]→ R is integrable, then the above equation holds for all c ∈ [a, b]
by definition of

∫ a
a
f = 0.

Proof. (⇒) This is Exercise 5.5.6.
(⇐) Assume f is integrable on both [a, c] and [c, b]. Let ε > 0 be arbitrary. By

the Cauchy Criterion 5.1.9 applied twice, we get partitions P1 of [a, c] and P2 of
[c, b] such that

U(f, P1)− L(f, P1) <
ε

2
and U(f, P2)− L(f, P2) <

ε

2
.

Combining these partitions gives a partition P = P1 ∪ P2 of the full interval [a, b].
Using the equalities

U(f, P ) = U(f, P1) + U(f, P2) and

L(f, P ) = U(f, P1) + U(f, P2)

gives us

U(f, P )− L(f, P ) < ε.

As ε was arbitrary, by the Cauchy Criterion 5.1.9 we conclude that f : [a, b]→ R is
integrable.

We now assume that f : [a, b]→ R is integrable. Using the ε > 0 and partitions
P1, P2, and P as above, we have∫ b

a

f ≤ U(f, P ) = U(f, P1) + U(f, P2)

< L(f, P1) + L(f, P2) + ε ≤
∫ c

a

f +

∫ b

c

f + ε.

Also ∫ b

a

f ≥ L(f, P ) = L(f, P1) + L(f, P2)

> U(f, P1) + U(f, P2)− ε ≥
∫ c

a

f +

∫ b

c

f − ε.
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Combining these yields ∣∣∣∣∣
∫ b

a

f −
[∫ c

a

f +

∫ a

c

f

]∣∣∣∣∣ < ε.

As ε > 0 was arbitrary, we conclude that∫ b

a

f =

∫ c

a

f +

∫ b

c

f. �

5.3. Integration theorems

In this section we prove some main theorems about the Darboux integral.

The first theorem says that the “average (or mean2) function value” of f on [a, b] is
equal to the function value of f at some point x0 ∈ (a, b), provided f is continuous.

Mean Value Theorem for Integrals 5.3.1. Suppose f, g : [a, b]→ R are contin-
uous, g ≥ 0 or g ≤ 0 (so g does not change sign on [a, b]) and g 6≡ 0 (g is not the
constant zero function). Then there is c ∈ [a, b] such that

f(c) =

∫ b
a
fg∫ b
a
g
.

In particular, there is c ∈ [a, b] (possibly different c) such that

f(c) =
1

b− a

∫ b

a

f.

Proof. By possibly multiplying by −1, we arrange that g ≥ 0. By the Extreme
Value Theorem 3.2.9 there are xm, xM ∈ [a, b] such that

f(xm) ≤ f(x) ≤ f(xM ) for every x ∈ [a, b].

Since g ≥ 0, this gives

f(xm)g(x) ≤ f(x)g(x) ≤ f(xM )g(x) for every x ∈ [a, b].

Then by Lemmas 5.2.5(1) and 5.2.4(1) we get

f(xm)

∫ b

a

g ≤
∫ b

a

fg ≤ f(xM )

∫ b

a

g.

Since g is continuous, g ≥ 0 and g 6≡ 0, Lemma 5.2.5(2) implies that
∫ b
a
g > 0, so

we can divide by this number:

f(xm) ≤
∫ b
a
fg∫ b
a
g
≤ f(xM ).

Finally, by the Intermediate Value Theorem 3.2.10, there is c ∈ [a, b] such

f(c) =

∫ b
a
fg∫ b
a
g
.

2The textbook refers to this theorem as the “Intermediate Value Theorem for Integrals”,
see [2, 33.9]. This is probably because the proof uses the Intermediate Value Theorem (for

continuous functions), Theorem 3.2.10. I believe it’s more common to call this the “Mean Value

Theorem (for integrals)” since the quantity 1/(b− a)
∫ b
a f is like an average (i.e., mean) function

value of f on [a, b].
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The second statement follows by considering the special case of g(x) = 1 for
every x ∈ [a, b]. �

We now extend the definition of integrable slightly to include bounded functions
defined on open intervals f : (a, b)→ R.

Definition 5.3.2. We say a bounded function h : (a, b)→ R is integrable on [a, b]

if every extension of h to some function h̃ : [a, b] → R is integrable. In this case,

we define
∫ b
a
h :=

∫ b
a
h̃. By Exercise 5.5.2,

∫ b
a
h̃ does not depend on the choice of

extension (since any two extensions of h to functions with domain [a, b] differ only
at the two endpoints).

First Fundamental Theorem of Calculus 5.3.3. Suppose F : [a, b] → R is a
function such that:

(1) F is continuous on [a, b],
(2) F is differentiable on (a, b), and
(3) F ′ is bounded on (a, b) and integrable on [a, b] (in the sense of Defini-

tion 5.3.2).

Then ∫ b

a

F ′ = F (b)− F (a).

Proof. Since F ′ : (a, b)→ R is “integrable on [a, b]”, we extend F ′ : (a, b)→ R to
a function F ′ : [a, b]→ R (which we also denote by F ′). The value of the extension
of F ′ on the endpoints does not matter at all.

Let ε > 0. By the Cauchy Criterion 5.1.9, there is a partition P = {a = t0 <
t1 < · · · < tn = b} of [a, b] such that

U(F ′, P )− L(F ′, P ) < ε.

For each k = 1, . . . , n, we know that F is continuous on [tk−1, tk] and differentiable
on (tk−1, tk), so by the Mean Value Theorem (for derivatives) 4.3.3, there is ck ∈
(tk−1, tk) such that

(tk − tk−1)F ′(ck) = F (tk)− F (tk−1).

By telescoping, this gives us

F (b)− F (a) =

n∑
k=1

[
F (tk)− F (tk−1)

]
=

n∑
k=1

F ′(ck)(tk − tk−1).

By definition of upper and lower Darboux sums, this gives

L(F ′, P ) ≤ F (b)− F (a) ≤ U(F ′, P ).

Also, we have

L(F ′, P ) ≤
∫ b

a

F ′ ≤ U(F ′, P ).

Putting these two inequalities together yields∣∣∣∣∣
∫ b

a

F ′ −
[
F (b)− F (a)

]∣∣∣∣∣ < ε.

As ε > 0 was arbitrary, this implies
∫ b
a
F ′ = F (b)− F (a). �
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Second Fundamental Theorem of Calculus 5.3.4. Let f : [a, b] → R be inte-
grable and define F : [a, b]→ R by

F (x) :=

∫ x

a

f(t) dt, for x ∈ [a, b].

Then F is (uniformly) continuous on [a, b]. Moreover, if f is continuous at x0 ∈
(a, b), then F is differentiable at x0 and F ′(x0) = f(x0).

Proof. Let M > 0 be such that |f(x)| ≤ M for all x ∈ [a, b]. Let ε > 0. Suppose
x, y ∈ [a, b] are such that x < y and |x− y| < ε/M . Then

|F (y)− F (x)| =

∣∣∣∣∫ y

a

f(t) dt−
∫ x

a

f(t) dt

∣∣∣∣ =

∣∣∣∣∫ y

x

f dt

∣∣∣∣ (by Lemma 5.2.7)

≤
∫ y

x

|f(t)| dt (by Lemma 5.2.6)

≤
∫ y

x

M dt (by Lemma 5.2.5)

= M(y − x) (by Example 5.1.8)

< ε.

Thus F is uniformly continuous on [a, b] (using δ := ε/M).
Now suppose f is continuous at x0 ∈ (a, b). Let ε > 0. Choose δ > 0 such that

for all t ∈ [a, b], if |t − x0| < δ, then |f(t) − f(x0)| < ε. Then for s, t such that
x0 − δ < s ≤ x0 ≤ t < x0 + δ and a ≤ s < t ≤ b, we have∣∣∣∣F (t)− F (s)

t− s
− f(x0)

∣∣∣∣ =

∣∣∣∣ 1

t− s

∫ t

s

[
f(x)− f(x0)

]∣∣∣∣
≤ 1

t− s

∫ t

s

∣∣f(x)− f(x0)
∣∣

< ε.

It follows that F ′(x0) = f(x0). �

Integration By Parts 5.3.5. Suppose u, v : [a, b]→ R are functions such that

(1) u and v are continuous,
(2) u, v : (a, b)→ R are differentiable, and
(3) u′, v′ : (a, b)→ R are integrable (in the sense of Definition 5.3.2).

Then: ∫ b

a

uv′ = u(b)v(b)− u(a)v(a)−
∫ b

a

u′v.

Proof. Define f := uv. Then on (a, b), f ′ = uv′ + u′v, which is an integrable
function by Exercise 5.5.9. Now note that∫ b

a

uv′ +

∫ b

a

u′v =

∫ b

a

f ′

= f(b)− f(a) by the First Fundamental Theorem 5.3.3

= u(b)v(b)− u(a)u(b). �

Taylor’s Theorem 5.3.6. Given n ≥ 0, suppose that f : (a, b)→ R is a function
such that f, f ′, f ′′, . . . , f (n+1) all exist and are continuous on (a, b). Fix x0 ∈ (a, b).
Then:
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(1) For each x ∈ (a, b),

f(x) =

n∑
k=0

(x− x0)k

k!
f (k)(x0) +

∫ x

x0

(x− t)n

n!
f (n+1)(t) dt,

(2) For each x ∈ (a, b), there is c between x and x0 such that

f(x) =

n∑
k=0

(x− x0)k

k!
f (k)(x0) +

f (n+1)(c)

(n+ 1)!
(x− x0)n+1.

Proof. We will prove (1) by induction on n ≥ 0.
For the base case n = 0, we are assuming that f ′ is continuous on (a, b), hence

bounded and integrable on [x0, x]. We need to show that

f(x) = f(x0) +

∫ x

x0

f ′(t)dt,

which is just a restatement of the First Fundamental Theorem of Calculus
Next, assume we know (1) holds for some n ≥ 0. We will prove it for n+ 1, so

assume f, f ′, f ′′, . . . , f (n+2) all exist and are continuous. Then since it is true for n
we have

(A) f(x) =

n∑
k=0

(x− x0)k

k!
f (k)(x0) +

∫ x

x0

(x− t)n

n!
f (n+1)(t) dt

We will apply Integration by Parts to the remainder term, using u = f (n+1)(t),
u′ = f (n+2)(t), v = −(x− t)n+1/(n+ 1)!, v′ = (x− t)n/n!. We get:∫ x

x0

(x− t)n

n!
f (n+1)(t) = −f (n+1)(x)

(x− x)n+1

(n+ 1)!
+

(x− x0)n+1

(n+ 1)!
f (n+1)(x0)

+

∫ x

x0

(x− t)n+1

(n+ 1)!
f (n+2)(t)dt

=
(x− x0)n+1

(n+ 1)!
f (n+1)(x0) +

∫ x

x0

(x− t)n+1

(n+ 1)!
f (n+2)(t)dt

Plugging this in for the remainder term in (A) yields:

f(x) =

n+1∑
k=0

(x− x0)k

k!
f (k)(x0) +

∫ x

x0

(x− t)n+1

(n+ 1)!
f (n+2)(t) dt,

For (b) we need to show there is c between x and x0 such that∫ x

x0

(x− t)n

n!
f (n+1)(t)dt =

f (n+1)(c)

(n+ 1)!
(x− x0)n+1.

Applying the Mean Value Theorem for Integrals 5.3.1, with g(t) = (x− t)n/n!, we
get there is c between x and x0 such that∫ x0

x

(x− t)n

n!
f (n+1)(t)dt = f (n+1)(c)

∫ x0

x

(x− t)n

n!
dt =

f (n+1)(c)

(n+ 1)!
(x−x0)n+1. �
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5.4. The exponential function

As an application of Taylor’s Theorem 5.3.6 we can now show that all three defini-
tions of the exponential function are the same:

Theorem 5.4.1. For every x ∈ R we have:

exp(x) = Φ(x) = ex

Proof. By Corollary 4.4.2 it remains to show that exp(x) = Φ(x). Let x ∈ R be
arbitrary. We already know that exp(0) = Φ(0) = 1, so assume x 6= 0. Let ε > 0.
Since the series

∑∞
k=0 x

k/k! converges, there is N0 ∈ N such that for every n ≥ N0,∣∣∣∣∣exp(x)−
n∑
k=0

xk

k!

∣∣∣∣∣ < ε

2
.

Next, since Φ: R→ R is continuous, its restriction to the interval [0, x] (or [x, 0] if
x < 0) is also continuous, hence bounded on this interval. Pick M > 0 such that
Φ
(
[0, x]

)
≤M . Next, since

∑∞
k=0 x

k/k! converges, so by the Divergence Test 2.4.6,

|xk/k!| → 0. Thus, we may take N1 ∈ N such that for every n ≥ N1,∣∣∣∣ xn+1

(n+ 1)!

∣∣∣∣ < ε

2M
.

Now, set N := max(N0, N1), and let n ≥ N . Then by Taylor’s Theorem there is c
between 0 and x such that

Φ(x) =

n∑
k=0

xk

k!
+

Φ(c)

(n+ 1)
xn+1,

so we have

| exp(x)− Φ(x)| =

∣∣∣∣∣
(

exp(x)−
n∑
k=0

xk

k!

)
−

(
Φ(x)−

n∑
k=0

xk

k!

)∣∣∣∣∣
≤

∣∣∣∣∣exp(x)−
n∑
k=0

xk

k!

∣∣∣∣∣+

∣∣∣∣∣Φ(x)−
n∑
k=0

xk

k!

∣∣∣∣∣
<

ε

2
+

∣∣∣∣Φ(c)xn+1

(n+ 1)!

∣∣∣∣
≤ ε

2
+M

∣∣∣∣ xn+1

(n+ 1)!

∣∣∣∣
≤ ε

2
+
ε

2
= ε.

Since ε > 0 was arbitrary, we conclude that Φ(x) = exp(x). �

As a consequence of Theorem 5.4.1, we get an alternative formula for e := Φ(1):

e =

∞∑
k=0

1

k!

The convergence in this infinite series is fairly rapid, and in some sense, this fast
convergence forces e to be irrational:

Theorem 5.4.2. e is irrational.
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Proof. Assume towards a contradiction that e is rational, i.e., there are p, q ∈ N
such that e = p/q. Pick n > max

{
q,Φ([0, 1])

}
(using that Φ is continuous, so it

attains a maximum on [0, 1]). Then by Taylor’s Theorem 5.3.6 applied to Φ for this
n, x0 := 0 and x := 1, there is c ∈ [0, 1] such that

Φ(1) =
p

q
= 1 + 1 +

1

2!
+ · · ·+ 1

n!
+

Φ(c)

(n+ 1)!
.

Multiplying both sides by n! yields

n!
p

q︸︷︷︸
integer

= n!

(
1 + 1 +

1

2!
+ · · ·+ 1

n!

)
︸ ︷︷ ︸

integer

+
Φ(c)

(n+ 1)
,

which gives a contradiction, since 0 < Φ(c) < n+ 1, so Φ(c)/(n+ 1) 6∈ Z. �

5.5. Exercises

Exercise 5.5.1 (Upper-Lower Darboux symmetry). Suppose f : [a, b] → R is a
bounded function. Prove the following:

(1) If P is a partition of [a, b], then U(f, P ) = −L(−f, P ).
(2) U(f) = −L(−f).

(3) If f is integrable, then so is −f , and
∫ b
a
−f = −

∫ b
a
f .

Exercise 5.5.2. Suppose f, g : [a, b]→ R are bounded functions which disagree on
a nonempty finite set, i.e., there are points x1 < · · · < xn (n ≥ 1) in [a, b] such that{

x ∈ [a, b] : f(x) 6= g(x)
}

= {x1, . . . , xn}
Show the following:

(1) U(f) = U(g). (Hint: carefully prove the case n = 1 first, then argue by
induction. Note: most of the time for induction proofs “the base case
is trivial and the inductive step is where the math happens”. In this
particular induction proof the math really happens in the base case and
the inductive step is trivial.)

(2) L(f) = L(g).
(3) f is integrable iff g is integrable. Furthermore, in case they are integrable,

then
∫ b
a
f =

∫ b
a
g.

Exercise 5.5.3. Consider the function f : [0, 1]→ R defined by

f(x) :=

{
1
n if x ∈ Q, and x = m/n with m ∈ Z, n ∈ N, and n minimal

0 if x ∈ R \Q.

Prove that f is integrable and determine
∫ 1

0
f . [Hint: the previous exercise might

be useful.]

Exercise 5.5.4. Suppose f, g : [a, b] → R are bounded, and P is a partition of
[a, b]. Show that

L(f + g, P ) ≥ L(f, P ) + L(g, P ) and U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Exercise 5.5.5. Suppose f : [a, b] → R is integrable and S ⊆ [a, b] is such that
S 6= ∅. Then

M
(
|f |, S

)
−m

(
|f |, S

)
≤ M(f, S)−m(f, S).
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Exercise 5.5.6. Show that if f : [a, b]→ R is integrable, then the restriction of f
to an interval [c, d] ⊆ [a, b] is also integrable.

Exercise 5.5.7. For this exercise, recall that the floor function of x ∈ R is the
unique integer bxc ∈ Z such that bxc ≤ x < bxc + 1. Suppose 0 < y < x and
f : R→ R is continuous, f is differentiable on R, and f ′ : R→ R is continuous.

(1) Show that for n ∈ Z we have∫ n

n−1
btcf ′(t) dt =

[
nf(n)− (n− 1)f(n− 1)

]
− f(n)

(2) Let m := byc, k := bxc, and show that∫ k

m

btcf ′(t) dt = kf(k)−mf(m)−
∑

y<n≤x

f(n)

where the n in the summation ranges over all integers n such that y <
n ≤ x.

(3) Show also that∫ x

y

f(t) dt = xf(x)− yf(y)−
∫ x

y

tf ′(t) dt

(4) Derive Euler’s summation formula:∑
y<n≤x

f(n) =

∫ x

y

f(t) dt+

∫ x

y

(t− btc)f ′(t) dt+ f(x)(bxc − x)− f(y)(byc − y).

Exercise 5.5.8. Suppose f : [a, b]→ R is bounded by M , i.e., for every x ∈ [a, b],
|f(x)| ≤M .

(1) Suppose P is a partition of [a, b]. Show that

U(f2, P )− L(f2, P ) ≤ 2M
[
U(f, P )− L(f, P )

]
.

(2) Show that if f is integrable on [a, b], then f2 is integrable on [a, b].

Exercise 5.5.9. Suppose f, g : [a, b]→ R are integrable.

(1) Show that fg : [a, b]→ R is integrable.
(2) Show the functions max(f, g) and min(f, g) are integrable.

Exercise 5.5.10 (Integral Test). Suppose f : R → R is a function such that f is
integrable on [a, b] for every b > a where a is fixed. Define∫ ∞

a

f(x)dx := lim
b→∞

∫ b

a

f(x)dx

if this limit exists (and is finite). In that case, we say that the integral on the left
converges. Assume that f(x) ≥ 0 for all x and that f decreases monotonically on
[0,∞). Prove that ∫ ∞

1

f(x)dx

converges if and only if
∞∑
n=1

f(n)

converges.
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Exercise 5.5.11. Suppose f, g : [a, b] → R are bounded functions. We further
assume that (xn)n≥1 is a strictly increasing sequence in [a, b] such that f and g
agree everywhere except on the sequence (xn)n≥1. In other words,{

x ∈ [a, b] : f(x) 6= g(x)
}

= {xn : n ≥ 1}.
Show the following:

(1) U(f) = U(g). (Note: try to take advantage of previously proven results
from the chapter and previous exercises).

(2) L(f) = L(g).
(3) f is integrable iff g is integrable. Furthermore, in case they are integrable,

then
∫ b
a
f =

∫ b
a
g.



APPENDIX A

Formulas, Inequalities, and Identities

A.1. Formulas involving binomial coefficients

Definition A.1.1. For nonnegative integers n we define the factorial n! of n
recursively by setting

0! := 1 and n! := n · (n− 1)! if n ≥ 1.

In other words, for n ≥ 1 we have

n! = n · (n− 1) · · · 2 · 1.

Given nonnegative integers n and k such that 0 ≤ k ≤ n, we define the binomial
coefficient

(
n
k

)
via the formula(

n

k

)
:=

n!

k!(n− k)!
.

Factorials and binomial coefficients are fundamental in combinatorics, the field of
mathematics devoted to counting. In analysis they show up quite naturally in
many formulas and expansions (e.g., Binomial Theorem and Taylor expansions).
The following easy identity relates adjacent binomial coefficients:

Pascal’s Rule A.1.2. For 1 ≤ k, n we have(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
.

Proof. If n < k, then all three binomial coefficients are 0 so the identity is true.
If n = k, then

(
n−1
k−1
)

= 1 =
(
n
k

)
, which is also true. Now assume that n > k. Then(

n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1)!

k!(n− 1− k)!
+

(n− 1)!

(k − 1)!(n− k)!

= (n− 1)!

[
n− k

k!(n− k)!
+

k

k!(n− k)!

]
= (n− 1)!

n

k!(n− k)!

=
n!

k!(n− k)!

=

(
n

k

)
. �

Notice how both “n − 1” and “n” occurs in the statement of Pascal’s Rule. This
property makes Pascal’s Rule useful in inductive proofs involving binomial coeffi-
cients, for instance, in the proof of the important Binomial Theorem:
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Binomial Theorem A.1.3. Suppose a, b ∈ R and n ∈ N. Then

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk.

Proof. The statement we will prove by induction is:

P (n) : “For every a, b ∈ R, (a+ b)n =
∑n
k=0

(
n
k

)
an−kbk.”

Base Case We will verify P (1) is true. Note that

1∑
k=0

(
1

k

)
a1−kbk =

(
1

0

)
a+

(
1

b

)
= a+ b = (a+ b)1.

Inductive step: We assume that P (n) is true for some n ∈ N. We will use this to
prove that P (n+ 1) is true. Note that

(a+ b)n+1 = (a+ b)(a+ b)n = (a+ b)

(
n∑
k=0

(
n

k

)
an−kbk

)
,

where the last equality uses the inductive assumption P (n). Next, we distribute
the (a+ b):

(a+ b)

(
n∑
k=0

(
n

k

)
an−kbk

)
= a

(
n∑
k=0

(
n

k

)
an−kbk

)
+ b

(
n∑
k=0

(
n

k

)
an−kbk

)

=

n∑
k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1

Then we separate out the first term from the first sum and the last term from the
second sum:

n∑
k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1

= an+1 +

n∑
k=1

(
n

k

)
an−k+1bk +

n−1∑
k=0

(
n

k

)
an−kbk+1 + bn+1

Then we reindex the second sum so that it starts at k = 1:

= an+1 +

n∑
k=1

(
n

k

)
an−k+1bk +

n∑
k=1

(
n

k − 1

)
an−k+1bk + bn+1

Then we combine the two sums:

= an+1 +

n∑
k=1

[(
n

k

)
an−k+1bk +

(
n

k − 1

)
an−k+1bk

]
+ bn+1

= an+1 +

n∑
k=1

[(
n

k

)
+

(
n

k − 1

)]
an−k+1bk + bn+1

Then apply Pascal’s Rule and also note that
(
n+1
0

)
=
(
n+1
n+1

)
= 0:

=

(
n+ 1

0

)
an+1 +

n∑
k=1

(
n+ 1

k

)
a(n+1)−kbk +

(
n+ 1

n+ 1

)
bn+1
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Finally, reincorporate the first and last term into the summation:

=

n+1∑
k=0

(
n+ 1

k

)
a(n+1)−kbk.

Thus we have shown P (n+ 1) holds (see the first and last term in the sequence of
equalities.) �

A.2. Formulas involving summations

Triangular Number Formula A.2.1. For every natural number n ∈ N,

1 + 2 + · · ·+ n =

n∑
k=1

k =
n(n+ 1)

2
=

(
n+ 1

2

)
.

Proof. See Example 1.1.5. �

Sum Of Squares Formula A.2.2. For every n ∈ N,

12 + 22 + · · ·+ n2 =

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Proof. See Exercise 1.9.1. �

The following gives life to an entire phylum of computations:

Difference of Powers Formula A.2.3. For any n ∈ N such that n ≥ 2 and
a, b ∈ R,

an − bn = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1)

= (a− b)
n−1∑
k=0

an−1−kbk

In particular, if 0 < a < b, then

(b− a)nan−1 < bn − an < (b− a)nbn−1.

Proof. We can prove this directly (without using induction). Start with the sum-
mation version of the righthand side:

(a− b)
n−1∑
k=0

an−1−kbk

distribute the (a− b):

= a

(
n−1∑
k=0

an−1−kbk

)
− b

(
n−1∑
k=0

an−1−kbk

)
=

n−1∑
k=0

an−kbk −
n−1∑
k=0

an−1−kbk+1

Pull out the first term from the first sum and the last term from the second sum:

= an +

(
n−1∑
k=1

an−kbk −
n−2∑
k=0

an−1−kbk+1

)
− bn

Reindex the second sum so that it starts at k = 1:

= an +

(
n−1∑
k=1

an−kbk −
n−1∑
k=1

an−kbk

)
− bn = an − bn,

which is the desired lefthand side of the formula. �
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Geometric Sum Formula A.2.4. For any n ∈ N and r ∈ R such that r 6= 1,
n∑
k=0

rk = 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
.

Proof. Setting a = 1 and b = r in the Difference of Powers Formula A.2.3 gives
for n+ 1:

1− rn+1 = (1− r)(1 + r + · · ·+ rn).

The Geometric Sum Formula follows from dividing both sides by 1 − r, which is
permitted since 1− r 6= 0. �

A.3. Inequalities

Bernoulli’s Inequality A.3.1. For every x ∈ R and n ∈ N, if 1 + x > 0, then

(1 + x)n ≥ 1 + nx.

Proof. We will prove this by induction on n. The specific statement we will prove
by induction is:

P (n) : “for every x ∈ R, if 1 + x > 0, then (1 + x)n ≥ 1 + nx”

Base Case: We will show P (1). The righthand side is (1 + x), the lefthand
side is 1 + 1 · x. We have 1 + x = 1 + x, so in particular, 1 + x ≥ 1 + x.

Induction Step: Suppose P (n) holds for a specific n ∈ N. We will show
P (n+ 1) holds. Let x ∈ R be such that 1 + x > 0. Note that

(1 + x)n+1 = (1 + x)n(1 + x)

≥ (1 + nx)(1 + x) (using inductive hypothesis)

= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x (using x2 ≥ 0)

and so P (n+ 1) holds.
We conclude by the Principle of Induction that P (n) holds for all n ∈ N. �



APPENDIX B

Ordered Fields

B.1. Fields

A field is an abstract generalization of familiar number systems such as (Q; +, ·),
(R; +, ·) and (C; +, ·). We give the definition of a field and then a discussion:

Definition B.1.1. A field is a set F equipped with two binary operations:

+: F × F → F (addition)

· : F × F → F (multiplication)

such that the following axioms are satisfied:

(A1) For all x, y ∈ F , x+ y = y + x (commutativity)
(A2) For all x, y, z ∈ F , (x+ y) + z = x+ (y + z) (associativity)
(A3) There is an element 0 ∈ F such that 0 +x = x for every x ∈ F (additivity

identity)
(A4) For every x ∈ F there exists an element −x ∈ F such that x+ (−x) = 0

(additivity inverse)
(M1) For all x, y ∈ F , x · y = y · x (commutativity)
(M2) For all x, y, z ∈ F , (x · y) · z = x · (y · z) (associativity)
(M3) There is an element 1 ∈ F such that 1 6= 0 and 1 · x = x for every x ∈ F

(multiplicative identity)
(M4) For every x ∈ F such that x 6= 0, there exists an element x−1 ∈ F such

that x · x−1 = 1 (multiplicative inverse)
(D) For all x, y, z ∈ F , x · (y + z) = x · y + x · z (distributivity)

We will often denote a field as a tuple (F ; +, ·) in order to indicate that the opera-
tions “+” and “·” are part of the data of the structure.

You probably already have experience dealing with certain specific fields:

Example B.1.2. Here are some fields you may have encountered before:

(1) The collection of rational numbers (Q; +, ·) (here + and · refer to the
“usual” addition and multiplication on the rational numbers)

(2) The collection of real numbers (R; +, ·)
(3) The collection of complex numbers (C; +, ·), where C = {a+ bi : a, b ∈ R}

and i2 = −1
(4) Let Q[

√
2] denote the subset {p+q

√
2 : p, q ∈ Q} of R. Then (Q[

√
2]; +, ·)

is a field
(5) The set:

R(x) = {p(x)/q(x) : p(x), q(x) are polynomials with coefficients in R and q 6= 0}
of rational functions with real coefficients, equipped with usual addition
and multiplication of rational functions forms a field (R(x); +, ·).

89
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For this class, you do not need to have the field axioms above memorized. The
most consequential of the axioms is probably (M4) which says that you can take
reciprocals of nonzero elements. In other words, division is allowed in fields. This
is not the case in every number system:

Example B.1.3. The collection of integers (Z; +, ·) is not a field. Indeed, the
number 2 ∈ Z does not have a reciprocal in Z, since 1/2 ∈ Q \ Z.

B.2. Ordered fields

Another useful feature of both the rational numbers and the real numbers is that
they come equipped with an ordering. The abstract generalization of this is the
notion of an ordered field :

Definition B.2.1. An ordered field is a field (F ; +, ·) equipped also with a binary
relation < (pronounced “less than”) which satisfies the following axioms:

(O1) If x, y ∈ F , then one and only one of the statements

x < y, x = y, y < x

holds (trichotomy)
(O2) For all x, y, z ∈ F if x < y and y < z, then x < z (transitivity)
(O3) For all x, y, z ∈ F if y < z, then x+ y < x+ z (additive invariance)
(O4) For all x, y ∈ F if x > 0 and y > 0, then x · y > 0 (multiplicative

invariance)

We will often denote an ordered field as a tuple (F ; +, ·, <) to indicate that an
ordered field consists of two operations + and ·, together with an ordering <. If
(F ; +, ·, <) is an ordered field and x ∈ F , then we say x is positive if x > 0 and
negative if x < 0. Furthermore, given x, y ∈ F , then we also write

x ≤ y :⇐⇒ x < y or x = y,

where ≤ is pronounced “less than or equal to”.

Example B.2.2. The following are our main examples of ordered fields:

(1) The rational numbers (Q; +, ·, <) is an ordered field. In some sense, this
is the “smallest” example of an ordered field.

(2) The real numbers (R; +, ·, <) is an ordered field. Note that for the real
numbers, the ordering < can be defined completely from the field structure
(R; +, ·) without the ordering, i.e.,

x < y ⇐⇒ there exists z ∈ R such that z 6= 0 and z2 = y − x
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Cauchy criterion for series, 33

Cauchy induction, 19

Cauchy sequence, 29

Cauchy’s Inequality, 18

Chain Rule, 62

closed interval, 8

closure, 47

comparison test, 34

Completeness Axiom, 9

continuous function, 50

convergent sequence, 21

convergent series, 33

convex function, 56

Darboux integral, 69

Darboux sum, 68

decimal expansions, 28

decreasing sequence, 27

dense set, 56

denseness of Q, 11

derivative of a function, 60

Difference of Powers Formula, 85

differentiable at a point, 60

Distribution of Integers, 11

divergence test, 34

divergent sequence, 22

divergent series, 33

diverges to +∞, 26

dummy variable, 2

Euler’s summation formula, 81

even function, 65

existence of nth roots, 12

exponential function, 37

Extreme Value Theorem, 51

factorial, 83

Fermat’s Theorem, 62

Fibonacci numbers, 19

field, 87

finite summation, 2

First Fundamental Theorem of Calculus, 76

Fixed Point Lemma, 52

floor function, 81

function continuous at a point, 50

geometric mean, 15

geometric series, 33

Geometric Sum Formula, 86

harmonic series, 35

Identity Criterion, 64

increasing sequence, 27

index of summation, 2

induction, 2

infimum, 8

infinite series, 33

integers, 4

integrable function, 69

Integration By Parts, 77

Intermediate Value Theorem, 51

limit of a sequence, 21, 26
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lower bound, 8

lower Darboux integral, 68

lower Darboux sum, 68

maximum, 8

Mean Value Theorem, 63

Mean Value Theorem for Integrals, 75

mesh of a partition, 70

minimum, 8

modulus of continuity, 57

Monotone Convergence Theorem, 28

monotone sequence, 27

natural numbers, 2

negative element of ordered field, 88

Nested Intervals Lemma, 31

odd function, 65

open interval, 8

ordered field, 88

partial sum, 33

partition, 67

Partition Refinement Lemma, 68

Pascal’s rule, 83

positive element of ordered field, 88

power function, 11

power inequality, 7

Principle of Induction, 2

Principle of Strong Induction, 18

product rule for derivatives, 61

quotient rule for derivatives, 61

ratio test, 35

rational numbers, 4

Real Power Theorem, 14

reverse triangle inequality, 7

Rolle’s Theorem, 63

root test, 34

Second Fundamental Theorem of Calculus,

77

sequence, 21

sequence splicing, 44

size of a partition, 67

Squeeze Theorem for Sequences, 25

subsequence, 30

Sum of Squares Formula, 85

Sup-Inf Symmetry, 9

supremum, 8

Taylor’s Theorem, 77

triangle inequality, 6

triangular numbers, 3, 85

two-sided limit, 48

uniformly continuous function, 53

upper bound, 8

upper Darboux integral, 68

upper Darboux sum, 68

Well-Ordering Principle, 2
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