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Abstract

The objective of this class is to experience an introduction to the rich, complex,
and powerful subject of Ordinary Differential Equations (ODEs). Specifically:

(1) Develop a working familiarity with linear algebra to the extent we need it
for the differential equations we shall consider. Linear algebra serves us
as a very robust backend for handling all higher-dimensional linear issues
which will arise.

(2) Learn how to solve a reasonably large class of differential equations. Most
differential equations cannot be solved (the solutions can only be approx-
imated with computers, which is a story for a different math class), but
we will teach you many of the differential equations for which we can find
exact solutions.

(3) Observe and investigate real-world applications which are governed by
differential equations.

(4) Study qualitative properties of both the differential equations we can solve
and those we cannot.

The textbook for the course is Differential Equations Second Edition, by John
Polking, Albert Boggess, and David Arnold [1]. These notes are based on this
textbook, except for the sake of time we only include a select curated portion of the
textbook material in these notes. Any and all comments, typos, errors, questions,
suggestions are enthusiastically welcome!

Last revised April 11, 2020.
2010 Mathematics Subject Classification. Primary .
The first author is supported by the National Science Foundation under Award No. 1703709.
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Introduction

The prerequisite for this course is Math31B: Integration and Infinite Series. Conse-
quently, we will assume you have a working familiarity with the basic properties of
differentiation and integration of common elementary functions (although we will
review the tools which are most relevant for us). In this class we will put these
existing tools to work to help us solve so-called differential equations. We begin
with a simple example of a differential equation:

Question 0.0.1. Find a differentiable function y : R → R which satisfies the
following:

(1) y′(t) = exp(t) for all t ∈ R, and
(2) y(0) = 10.

Answer. From (1) we know that the function y(t) must be of the form y(t) =
exp(t) + C for some fixed C ∈ R. By (2) we know that y(0) = exp(0) + C =
1 + C = 10. Thus C = 9 and so y(t) = exp(t) + 9. �

Question 0.0.1 illustrates a paradigm for differential equations in general. Namely,
we will often be given the following information:

(1) Information about an unknown function y’s derivative (or second deriva-
tive, etc.), for instance, saying “y′(t) = exp(t)”

(2) Information about specific function values of y (or y′, y′′, etc.), for in-
stance, saying “y(0) = 10”.

Then the game will then be to use this information to determine the unknown
function y as specifically as we can. Before we go any further, we make the following
declaration:

You will not be able to solve most differential equations.

This is by no means a commentary on anyone’s mathematical abilities, we simply
want to bring you up to speed with a cold hard fact of life: most differential equa-
tions are impossible (for anyone) to solve exactly. However, we will study in detail
many simple differential equations which we can solve exactly. Fortunately, the dif-
ferential equations we will study also have many practical real-world applications.

What about the non-solvable differential equations? Not all hope is lost in this case.
Indeed, for practical real-world applications you generally only need a sufficiently
accurate approximation of a solution. Luckily this is something that computers are
very good at and this is a very active area of applied mathematics. We will not
go down this rabbit-hole in this class, but it helps to be aware of this remedy so
you are not too discouraged if and when you encounter an impossible differential
equation.

ix



x INTRODUCTION

Algebraic equations

In this section we will review the state of affairs for one-variable algebraic equations.
Recall that a one-variable algebraic equation is an equation of the form:

p(X) = 0,

where p is a polynomial and X is a variable. A solution to this equation is a
specific real number x ∈ R which has the property that p(x) = 0 (i.e., when we
plug in the number x into p, it evaluates to the number 0).

We also hope to make a general point in this section: that even for algebraic
equations (i.e., a differential equation with no derivatives), things become very
complicated and eventually impossible very quickly.

Linear equations. A linear equation (in one variable) is an equation of the
form:

a1X + a0 = 0 (where a1, a0 ∈ R)

If a1 6= 0, then this has exactly one solution, namely:

x := −a0
a1
.

If a1 = 0, then this has either zero solutions (for instance, if a0 6= 0), or infinitely
many solutions (for instance, if a0 = 0 then every x ∈ R is a solution). These
observations foreshadow various features of systems of linear equations in multiple
variables which we will study in Chapter 1.

Quadratic equations. A quadratic equation is an equation of the form:

a2X
2 + a1X + a0 = (where a2, a1, a0 ∈ R)

If a2 6= 0, then the quadratic formula yields solutions:

x1 :=
−a1 +

√
a21 − 4a2a0

2a2
and x2 :=

−a1 −
√
a21 − 4a2a0

2a2

Recall that three things can happen depending on the sign of the discriminant
a21 − 4a2a0:

(Case 1) If a21 − 4a2a0 > 0, then x1 6= x2 are two real solutions.
(Case 2) If a21 − 4a2a0 = 0, then x1 = x2 is a single real solution (of multiplicity

two).
(Case 3) If a21 − 4a2a0 < 0, then x1 6= x2 are two distinct solutions, however, they

will be complex solutions and not real solutions.

You are expected to be able to use the quadratic formula to solve quadratic equa-
tions in this class.

Cubic equations. A cubic equation is an equation of the form:

a3X
3 + a2X

2 + a1X + a0 = 0 (where a3, a2, a1, a0 ∈ R)

You were probably never taught the formula for the cubic equation in school. This
is for good reason: it’s complicated! You do not need it for this class either, but in
case you are curious, here it is: if a3 6= 0, then the three solutions are

xk = − 1

3a3

(
a2 + ξkC +

∆0

ξkC

)
, for k = 0, 1, 2
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where

ξ :=
−1 +

√
−3

2

∆0 := a22 − 3a3a1

∆1 := 2a32 − 9a3a2a1 + 27a23a4

C :=
3

√
∆1 ±

√
∆2

1 − 4∆3
0

2

(choose either + or − provided C 6= 0)

Here there can either be three, two, or one distinct solution, and the solutions can
be either real or complex, much like the quadratic equation.

Quartic equations. A quartic equation is an equation of the form:

a4X
4 + a3X

3 + a2X
2 + a1X + a0 = 0 (where a4, a3, a2, a1, a0 ∈ R)

The general solution for the quartic equation is even more complicated than the
equation for the cubic. You definitely do not need to know it, but in case you are
curious here it is: if a4 6= 0, then the four solutions are:

x1,2 := − a3
4a4
− S ± 1

2

√
−4S2 − 2p+

q

S

x3,4 := − a3
4a4

+ S ± 1

2

√
−4S2 − 2p− q

S

where

p :=
8a4a2 − 3a23

8a24

q :=
a33 − 4a4a3a2 + 8a24a1

8a34

S :=
1

2

√
−2

3
p+

1

3a

(
Q+

∆0

Q

)

Q :=
3

√
∆1 +

√
∆2

1 − 4∆3
0

2

∆0 := a22 − 3a3a1 + 12a4a0

∆1 := 2a32 − 9a3a2a1 + 27a23a0 + 27a4a
2
1 − 72a4a2a0

(with special cases if S = 0 or Q = 0)

Quintic (and higher degree) equations. A quintic equation is an equa-
tion of the form:

a5X
5 + a4X

4 + a3X
3 + a2X

2 + a1X + a0 = 0 (where a5, a4, a3, a2, a1, a0 ∈ R)

You might be expecting an even longer and more complicated formula for the five
solutions to a quintic equation, but actually it is known that this is impossible. In
fact, there is a theorem which tells us that this is impossible:



xii INTRODUCTION

Theorem 0.0.2 (Galois). Suppose n ≥ 5. Then there is no general formula using
radicals (

√
, 3
√

, 4
√
, . . .) which gives the solutions to

anX
n + an−1X

n−1 + · · ·+ a1X + a0 = 0

in terms of the coefficients an, . . . , a0.

Of course, sometimes you will be able to solve for the solutions of a high-degree
polynomial equation (for instance, x := 1 is a solution to X100 − 1 = 0), but this
is usually because the polynomial is carefully chosen in order to admit solutions
you can find exactly. This is an exceptional case. In general, the only polynomial
equations you can expect a guaranteed solution for is degree 1 (linear) and degree
2 (quadratic). If we do encounter higher-degree polynomials in this class, they will
be chosen so that it is possible to find exact solutions. However in general we will
stick to degree 2 or lower.

Conventions and notation

In this class the natural numbers is the set N = {0, 1, 2, 3, . . .} of nonnegative
integers. In particular, we consider 0 to be a natural number.

Unless stated otherwise, the following convention will be in force throughout the
entire course:

Global Convention 0.0.3. Throughout, m and n range over N = {0, 1, 2, . . . }.



CHAPTER 1

Linear algebra I

Before commencing with differential equations, we begin with the first of three
chapters on linear algebra. This might seem initially unrelated to differential equa-
tions (like the one considered in Question 0.0.1) but we will soon find that linear
algebra is intimately connected with many of the things we will do with differential
equations and it is the best language to explain many different phenomena we will
encounter.

1.1. Systems of equations

In this section we will give a crash course in the correct way to completely solve a
system of equations (with any number of variables and any number of equations).

Systems of equations. Here is an example of a system of equations:

(1.1)
2X + Y = 1

X − Y = 1

This is a system of equations with two variables (X and Y ) and two equations. A
solution to (1.1) is a pair (x, y) of real numbers, such that when we plug in x for X
and y for Y , both equations are satisfied. We will recall how one solves (1.1) using
what we will call the naive method :

Solution to (1.1). First we will multiply the second equation by 2 so that the
coefficients on “X” are the same:

(1.2)
2X + Y = 1

2X − 2Y = 2

Next we will subtract the first equation from the second equation to eliminate the
second “X”:

(1.3)
2X + Y = 1

−3Y = 1

Now we see that y := −1/3 is the only value for Y which works. Plugging this into
the top equation yields:

2X − 1/3 = 1 and thus X = 2/3.

Thus x := 2/3 is the only value for X that works. We conclude that (x, y) =
(2/3,−1/3) is the only solution to (1.1). �

We call this the naive method because it relies on observations and ad hoc com-
putations. We include it here mainly to jog your memory of how you might have
previously learned to solve systems of equations. However, this method quickly
becomes burdensome when you consider more variables and more equations. In the

1
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rest of this section, we will introduce the correct method you should use to solve
these systems. At this point we make the following declaration:

You should never again use the naive method

to solve a system of equations.

Instead you should commit to learning and using the method introduced below.
Before we proceed, we will make a few more definitions:

Definition 1.1.1. A system of equations (with m equations and n vari-
ables) is a system

(1.4)

a11X1 + a12X2 + · · ·+ a1nXn = b1

a21X1 + a22X2 + · · ·+ a2nXn = b2

...

am1X1 + am2X2 + · · ·+ amnXn = bm

where bi, aij ∈ R for every i = 1, . . . ,m and j = 1, . . . , n. A solution to the
system (1.4) is an n-tuple (x1, x2, . . . , xn) of real numbers such that when you plug
xi in for Xi (for each i = 1, . . . , n), each equation is true.

Example 1.1.2. The following system has 3 equations and 4 variables:

X1 + 2X2 − 3X3 +X4 = 6

2X1 +X2 − 2X3 −X4 = 4

6X2 + 4X3 −X4 = 4

and it is easy to check that (1/3, 4/3,−1, 0) is a solution (although there are other
solutions as well).

In general the goal will be to find all solutions to a system of equations, not just
one single solution.

Augmented matrices. Recall that in our solution to the system (1.1) above
we first had the system

2X + 1Y = 1

2X −2Y = 2

which then we transformed into the system

(1.5)
2X + 1Y = 1

0X −1Y = 1.

Note also that every symbol colored in red has nothing to do with the specific
numbers; the presence and locations of “X”, “Y ” and “=” is always guaranteed
to be exactly the same each time we transform the system. The only thing that
matters for each system is what coefficients are in which spot.

This brings us to the first major innovation linear algebra has to offer us for systems
of equations: augmented matrices. An augmented matrix for a system of m
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equations in n variables (such as (1.4) above) is a rectangular array with m rows
and n+ 1 columns which stores all the coefficients of the system:

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


Example 1.1.3. For example, the system

3a+ 4b+ c = 2

a− 5c = 3

has corresponding augmented matrix[
3 4 1 2
1 0 −5 3

]
In other words an augmented matrix is nothing more than a compact storage device
for an entire system of equations. Whenever you see a system of equations, you
should also picture it’s augmented matrix, and vice versa.

Henceforth, we will primarily use augmented matrices

for writing systems of equations.

Now we return to the main order of business which is to efficiently solve systems
of equations (i.e., determine all solutions). Basically, we will learn how to play
a game. The game is called Gaussian Elimination. The rules of the game are
roughly as follows:

(I) There are three legal moves (so-called elementary row operations) which we
can use to transform one augmented matrix into the next augmented matrix.

(II) When starting out, the first1 goal is to transform your matrix into Row
Echelon Form.

(III) After getting to Row Echelon Form, the next goal is to continue to transform
your matrix into Reduced Row Echelon Form.

(IV) Once the matrix is in Reduced Row Echelon Form, it is very easy to read off
all solutions to the original system.

We will study these four things separately in the remainder of this section.

Row operations. Suppose we have an augmented matrix
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


The following elementary row operations are the only ways we are allowed to
transform this augmented matrix:

(1) (Row switching) A row in the matrix can be switched with another row
in the matrix. Notation: Ri ↔ Rj

1In some linear algebra books and classes, this step is skipped and the goal is to go directly
to reduced row echelon form in (III). It’s fine if you do it that way, although in general it will take

the same amount of work and effort.
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(2) (Row multiplicaton) A row can be multiplied by a non-zero constant. No-
tation: αRi → Ri

(3) (Row addition) A row can be replaced with the sum of that row and a
multiple of another row. Notation: Ri + αRj → Ri.

Here is an example of a sequence of three applications of elementary row operations:[
0 1 1 2
2 4 4 3

]
R1↔R2−−−−−→

[
2 4 4 3
0 1 1 2

]
(row switch row 1 and row 2)

1
2R1→R1−−−−−−→

[
1 2 2 3/2
0 1 1 2

]
(multiply row 1 by 1/2)

R1−2R2→R1−−−−−−−−→
[
1 0 0 −5/2
0 1 1 2

]
(add −2 times row 2 to row 1)

Question 1.1.4. Why are these the only operations allowed?

Proof. These row operations have the property that they are reversible. This
means that the set of solutions remains the same in each augmented matrix. Note
that if we allowed “multiplication by 0” to be a row operation, then this would
have the effect of deleting information in the system and it might introduce addi-
tional solutions which are not solutions of the original system (which would be very
undesirable). �

Below we will explain how to use these row operations to achieve our objective of
solving the original system of equations.

Row echelon form (REF). We will illustrate the entire process with the
following example which we will occasionally check back in with:

Example 1.1.5. Find all solutions to the system

(1.6)

3X1 + 6X2 + 6X3 = 24

−6X1 − 12X2 − 12X3 = −48

6X1 + 12X2 + 10X3 = 42

Solution to Example 1.1.5, Part I. The first step is to rewrite the system (1.6)
as an augmented matrix:  3 6 6 24

−6 −12 −12 −48
6 12 10 42

 �

Now we need to know how are we supposed to transform our augmented matrix
using the three elementary row operations. First objective is to transform our
augmented matrix into row echelon form:

Definition 1.1.6. An augmented matrix is in row echelon form (REF) if

(1) every row with nonzero entries is above every row with all zeroes (if there
are any), and

(2) the leading coefficient of a nonzero row (i.e., the leftmost nonzero entry
of that row) is to the right of the leading coefficient of the row above it.
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Example 1.1.7. The following augmented matrices are in REF (with the leading
coefficients underlined):

[
4 3 1
0 1 2

] [
0 3 1 8

] 
1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 0

 [
2 3 0 0
0 0 1 0

] [
0 0 2
0 0 0

]

The following augmented matrices are not in REF:[
0 0 0
0 1 1

] 1 0 0 1
0 0 1 2
0 1 0 3

 0 1 0
0 0 0
1 0 0


Solution to Example 1.1.5, Part II. Our augmented matrix is not in row ech-
elon form. In particular, the leading coefficients of the second and third row are
directly below the leading coefficient of the first row, which is not allowed: 3 6 6 24

−6 −12 −12 −48
6 12 10 42


To fix this, we need to use row addition with the first row to turn the leading −6
and 6 of the second and third row into a zero: 3 6 6 24

−6 −12 −12 −48
6 12 10 42

 R2+2R1→R2−−−−−−−−→

3 6 6 24
0 0 0 0
6 12 10 42


R3−2R1→R3−−−−−−−−→

3 6 6 24
0 0 0 0
0 0 −2 −6


We are still not in row echelon form since we have a row of all zeros above a row
with nonzero entries: 3 6 6 24

0 0 0 0
0 0 −2 −6


To remedy this, we will switch rows 2 and 3:

R2↔R3−−−−−→

3 6 6 24
0 0 −2 −6
0 0 0 0


We are now in row echelon form and we are done this step. �

Once our augmented matrix is in row echelon form, we can make the following
definition:

Definition 1.1.8. Given an augmented in REF, a pivot is a leading coefficient in
a nonzero row.

For instance, the augmented matrix we arrived at in Example 1.1.5 has two pivots,

which we indicate in boxes :  3 6 6 24

0 0 −2 −6

0 0 0 0


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Pivots play an important role in Gaussian Elimination. The next step is to take
our augmented matrix a little bit further to reduced row echelon form.

Reduced row echelon form (RREF). The ultimate goal is to get our aug-
mented matrix into reduced row echelon form:

Definition 1.1.9. An augmented matrix is in reduced row echelon form (RREF)
if

(1) it is in row echelon form (REF),
(2) every pivot is 1, and
(3) every entry above a pivot is 0.

Example 1.1.10. The following augmented matrices are in RREF:

[
0 1 0

]  1 2 0 0

0 0 1 0

0 0 0 1

 [
1 0 0

0 1 5

]

The following matrices are in REF but not RREF:[
4 3 1

0 1 2

] [
0 3 1 8

] [
2 3 0 0

0 0 1 0

]
We now continue on with our main example:

Solution to Example 1.1.5, Part III. We see that the augmented matrix we
left off with is not in RREF, only REF. This is because the pivots are 3 and −2,
not 1 and 1, and also the underlined 6 should be a 0: 3 6 6 24

0 0 −2 −6

0 0 0 0


To remedy this, we use row multiplication to fix the pivot values, and then row
addition to get rid of the 6:

1
3R1→R1−−−−−−→

1 2 2 8
0 0 −2 −6
0 0 0 0


− 1

2R2→R2−−−−−−−→

1 2 2 8
0 0 1 3
0 0 0 0


R1−2R2→R1−−−−−−−−→

1 2 0 2
0 0 1 3
0 0 0 0



Finally we arrive at RREF. �

Once our augmented matrix is in RREF, it is easy to read off all solutions of the
original system.
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Getting the final answer from RREF. We will describe how to get the
final answer from RREF first in terms of our main example:

Solution to Example 1.1.5, Part IV. First recall that the first three columns
correspond to the three variables X1, X2, and X3:


X1 X2 X3

1 2 0 2

0 0 1 3
0 0 0 0


Since X1 and X3 have pivots in their columns, X1 and X3 are called pivot vari-
ables and the first and third columns are called pivot columns. Since X2 does
not have a pivot, it is called a free variable and the second column is called a free
column. Now we read off the solutions using the following steps:

(1) Each free variable is can be any arbitrary value. In this case, we will say
that X2 = s, where s ∈ R is any number we like.

(2) Next we rewrite the augmented matrix as a system and solve for the pivot
variables:

X1 + 2X2 = 2

X3 = 3

0 = 0

which simplifies to:

X1 = 2− 2s

X3 = 3.

We now have our final answer: every solution is of the form:

X1 = 2− 2s

X2 = s

X3 = 3,

where s ∈ R can be any number. We write the set of all solutions as
follows: {

(2− 2s, s, 3) : s ∈ R
}

This way of describing the set of solutions is often called parametric
form because it describes the solutions in terms of the free parameter s.
Notice that there are infinitely many solutions, since there are infinitely
many values of s. To get specific solutions, you can just choose values of
s. For instance, s := 0 yields the solution (2, 0, 3), whereas s := 10 yields
the solution (−18, 10, 3). �

Example 1.1.11. In this example we will see what to do with 2 free variables.
Suppose we are given some system which has the following RREF:


X1 X2 X3 X4

0 1 2 0 7

0 0 0 1 8
0 0 0 0 0


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Then we have two free variables X1 and X3, so we need to introduce two parameters
s, t ∈ R and set X1 = s and X3 = t. Then the system becomes:

X2 + 2X3 = 7

X4 = 8

and so the general solution is:

X1 = s

X2 = −2t+ 7

X3 = t

X4 = 8

where s, t ∈ R are arbitrary. We can write the set of solutions in parametric form
as follows: {

(s,−2t+ 7, t, 8) : s, t ∈ R
}

Note that to get a specific solution, we are free to choose any s and any t we like.
For instance, s = 1, t = 0 gives the solution (1, 7, 0, 8) whereas s = 0, t = 1 gives
the solution (0, 5, 1, 8).

Example 1.1.12. We will give an example of a system with no solutions. Suppose
we are given a system with the following RREF:

[ X1 X2

1 2 0

0 0 1

]
Converting this augmented matrix back to a system of equations yields:

1X1 + 2X2 = 0

0X1 + 0X2 = 1

We claim there cannot be any solutions. Indeed, if say (x1, x2) is a solution, then
this would mean it satisfies both equations, in particular, the bottom equation.
Then 0x1 + 0x2 = 1, i.e., 0 = 1. However this is always false.

We conclude this section with some more terminology and some general facts:

Definition 1.1.13. We say that a system of equations is consistent if it has at
least one solution, and we say a system of equations is inconsistent if it does not
have any solutions.

Fact 1.1.14. Given a system of equations, exactly one of the following three things
will happen:

(1) The system has zero solutions (i.e., it is inconsistent). This happens when
the RREF contains a row of the form[

0 · · · 0 1
]

because this corresponds to the equation 0 = 1 which can never be true.
(2) The system has exactly one solution. This happens when the system is

consistent and there are no free variables in the RREF.
(3) The system has infinitely many solutions. This happens when the system

is consistent and there is at least one free variable in the RREF.
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In fact, all 3 of the above cases can be determined once you’re in REF. If you only
care about how many solutions there are (and not what exactly they are), then you
can just stop once you get to REF. This is one of the benefits of going through the
REF on your way to RREF.

Here are some cardinal rules to always follow:

(1) Always recopy the entire augmented matrix in each step, even if you are
copying a row of zeros. It is important that the size of the augmented
matrix (3× 4 in our example) does not change.

(2) Always denote which row operation you are performing in each step.
(3) Always do one row operation at a time, at least when you are starting

out. If you attempt to do multiple row operations in one step then this
can lead to errors.

Remark 1.1.15. Given a system of equations, we take it to RREF and obtain the
set of solutions for the original system we started out with. However, this is actually
the set of solutions for every system we encountered along the way. This is because
the RREF of the original system also works as the RREF for every intermediate
system.

Geometric interpretation. When you are solving systems of equations, it is
good to keep in mind the underlying geometric interpretation. Recall that a linear
equation in two variables:

2x+ 3y = 1

can also be viewed as an equation for a line in the plane (y = − 2
3x + 1

3 ). Thus, a
system of linear equations:

2x+ 3y = 1

5x+ 7y = 2

x+ y = 3

is really asking us to find all points (x, y) in the plane which are part of all three lines,
i.e., we want to know where do these three lines intersect, if at all. If we are consider
three variables, then we are asking where do multiple planes simultaneously inter-
sect, if at all. For more than 3 variables, we are asking where do higher-dimensional
hyper-planes intersect in higher-dimensional euclidean space (something difficult to
visualize).

In Figure 1.1, we consider five systems of equations, where each one has two vari-
ables and three equations. You can see that there are different ways that the cases
no solutions, exactly one solution, and infinitely many solutions can arise.
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(a) Unique solution (b) Infinitely many solutions

(c) No solutions (d) No solutions

(e) No solutions

Figure 1.1. Possible intersections of three lines in a plane

Some specifics about terminology. In this section, we have only been work-
ing with augmented matrices, for instance

(1.7)

[
1 2 3
4 5 6

]
An augmented matrix is just a special example of a matrix with a vertical bar
which superficially separates the columns. A matrix (with m rows and n columns)
is a rectangular array of numbers:

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


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For instance, the augmented matrix (1.7) is considered a 2 × 3 matrix. When
discussing an augmented matrix, we will always consider every column as part of
the augmented matrix. If we want to refer only to the entries to the left of the
vertical bar: [

1 2
4 5

]
this will be referred to as the coefficient matrix (of the linear system).

Definition 1.1.16. Here are some precise definitions summarized:

(1) Given a matrix, a leading entry of a row is the leftmost nonzero entry (if
there is one). In the following matrices, we underline the leading entries:2 3 0

0 2 1
1 0 2

 [
1 2 0
0 0 1

]
(2) If a matrix is in REF, then the leading entries are also called pivots. The

following matrices are in REF and the pivots are in boxes:
2 3 5 4

0 0 7 1

0 0 0 2
0 0 0 0




0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0


(3) If a matrix is not in REF, then we choose not to define what a pivot

is. In this class we will only discuss “pivots” in the context of Gaussian
Elimination and only allow ourselves to refer to “the pivots of a matrix”
if we know the matrix is already in REF. For all matrices, the expression
“leading entry” will always make sense, regardless of whether the matrix
is in REF or not.

(4) We define the rank of a matrix to be the number of pivots any REF of
that matrix has (it will be the same number even though there could be
many different REFs).

Question 1.1.17. Why are we reluctant to call leading coefficients in a non-REF
matrix “pivots”?

Answer 1.1.18. In general, a pivot (noun) is something that you pivot (verb)
around. Given a nonzero entry of a matrix, to pivot around that entry means
to use elementary row operations to turn that entry into a 1 and then use it to
turn the other entries in that column into 0. In the following example, we pivot
around the boxed entry (for no particular reason other than to show an example of
“pivoting”): 1 1 1

2 2 2
3 3 3

 1
2R2→R2−−−−−−→

1 1 1

1 1 1
3 3 3

 R1−R2→R1−−−−−−−−→

0 0 0

1 1 1
3 3 3

 R3−3R1→R3−−−−−−−−→

0 0 0

1 1 1
0 0 0


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Since this is what “pivoting” means, we define pivots so that in Gaussian Elimina-
tion we are essentially pivoting around the pivots. We do not pivot around the lead-
ing entries which are not pivots. Furthermore, there are other algorithms in linear
algebra besides Gaussian Elimination (for instance, the Simplex Algorithm2) where
you pivot around entries which are not leading coefficients. Thus, you shouldn’t
get too attached to the idea “pivot means leading entry”.

Given the above discussion, we can now recast some of the above facts in more
detail:

Fact 1.1.19. Suppose we are considering a system of equations which has aug-
mented matrix: 

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


and coefficient matrix: 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


(1) The following are equivalent:

(a) the system has no solutions,
(b) the system is inconsistent,
(c) an REF of the augmented matrix has a row of the form[

0 · · · 0 6= 0
]
,

(d) the RREF of the augmented matrix has a row of the form[
0 · · · 0 1

]
,

(e) an REF of the augmented matrix has a pivot in the last column,
(f) the RREF of the augmented matrix has a pivot in the last column,
(g) the rank of the coefficient matrix is not equal to the rank of the entire

augmented matrix.
(2) Suppose the system is consistent. Then the following are equivalent:

(a) the system has exactly one solution,
(b) every variable is a pivot variable,
(c) there are no free variables,
(d) the rank of the augmented matrix is equal to the number of columns

in the coefficient matrix (= number of variables).
(3) Suppose the system is consistent. Then the following are equivalent:

(a) the system has infinitely many solutions,
(b) at least one variable is a free variable,
(c) the rank of the augmented matrix is less than the number of columns

in the coefficient matrix (i.e., less than the number of variables).

2https://en.wikipedia.org/wiki/Simplex_algorithm

https://en.wikipedia.org/wiki/Simplex_algorithm
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1.2. Application: partial fractions

In this section, we revisit the powerful method of partial fractions, viewed as an
application of linear systems.

Case I: distinct linear factors. Suppose we want to integrate the rational
function:

3x+ 4

x3 − 3x2 + 2x

To do this, we must first factor the denominator polynomial: x3 − 3x2 + 2x =
(x− 0)(x− 1)(x− 2). Since there are no (strictly) complex roots, this polynomial
factors into linear factors (with real roots). Also, for this polynomial, every linear
factor is distinct (occurs with multiplicity one). Thus, the general form of the
partial fraction decomposition is:

3x+ 4

x(x− 1)(x− 2)
=

A

x
+

B

x− 1
+

C

x− 2
,

where A,B,C ∈ R are three unknown real numbers we need to solve for. Clearing
denominators yields:

3x+ 4 = A(x− 1)(x− 2) +Bx(x− 2) + C(x− 1)(x− 2)

This equality is to be interpreted as: for every possible real number x ∈ R, when
you plug x into both the lefthand side and the righthand side, you should get a true
equality of two numbers. We will use this observation and plug in three carefully
chosen numbers to see what they give us:

• (x = 0) In this case, the equation becomes 4 = 2A
• (x = 1) In this case, the equation becomes 7 = −B
• (x = 2) In this case, the equation becomes 10 = 2C

Thus, we have arrived at a (easy) system of equations:

2A = 4

−B = 7

2C = 10.

We can solve this system using Gaussian Elimination:2 0 0 4
0 −1 0 7
0 0 2 10

 1
2R1→R1,−R2→R2,

1
2R3→R3−−−−−−−−−−−−−−−−−−−→

1 0 0 2
0 1 0 −7
0 0 1 5


This gives us the unique solution (A,B,C) = (2,−7, 5). We conclude that

3x+ 4

x3 − 3x2 + 2x
=

2

x
− 7

x− 1
+

5

x− 2

is our desired partial fraction decomposition. The rational function can now be
integrated using the logarithm.
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Case II: repeated linear factors. Suppose now we wish to decompose

5x3 + 6x2 + 7x+ 8

x4 − 2x3 + x2

We are able to factor the denominator as x4 − 2x3 + x2 = x2(x− 1)2. We see that
there are two linear factors, each one with multiplicity two. Thus the general form
of the partial fraction decomposition is

5x3 + 6x2 + 7x+ 8

x2(x− 1)2
=

A

x
+
B

x2
+

C

x− 1
+

D

(x− 1)2

where A,B,C,D ∈ R are four unknown real numbers we need to solve for (the rule
is, for each multiplicity of a linear factor, you get another term in the expansion
and another variable). First we cross-multiply so that we have an equality of
polynomials, then we rewrite the righthand side as a single polynomial:

5x3 + 6x2 + 7x+ 8 = Ax(x− 1)2 +B(x− 1)2 + Cx2(x− 1) +Dx2

= A(x3 − 2x2 + x) +B(x2 − 2x+ 1) + C(x3 − x2) +Dx2

= (A+ C)x3 + (−2A+B − C +D)x2 + (A− 2B)x+B.

Next, we use the important observation that two polynomials are the same if and
only if they have the same degree and the corresponding coefficients are the same.
Thus the above equality of polynomials yields the system:

A+ C = 5

−2A+B − C +D = 6

A− 2B = 7

B = 8.

We can now solve the system using Gaussian Elimination:
1 0 1 0 5
−2 1 −1 1 6
1 −2 0 0 7
0 1 0 0 8

 to RREF (steps omitted)−−−−−−−−−−−−−−−−→


1 0 0 0 23
0 1 0 0 8
0 0 1 0 −18
0 0 0 1 26


We find that the unique solution is (A,B,C,D) = (23, 8,−18, 26). Thus the desired
partial fraction decomposition is

5x3 + 6x2 + 7x+ 8

x4 − 2x3 + x2
=

23

x
+

8

x2
− 18

x− 1
+

26

(x− 1)2

Case III: irreducible quadratic factors. Technically speaking, if you are
comfortable working with complex numbers and complex-valued functions, then
you only ever have to consider factorizations of the denominator into linear factors.
However, for various reasons it is convenient to have a method of partial fraction
decomposition which does not require us to ever leave the realm of real numbers.
For instance, for the following rational function

10x2 + 11x+ 12

(x2 + 1)(x+ 1)

we could factor the denominator into linear factors

(x2 + 1)(x+ 1) = (x+ i)(x− i)(x+ 1),
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and then proceed as in Case I (which we’ll do below just to prove a point). However,
we can just as easily keep the quadratic factor x2 + 1 as is in our computation.
Since in general the number of unknowns in a partial fraction decomposition must
be equal to the degree of the denominator polynomial, the quadratic factor has to
contribute two unknowns to the general form:

10x2 + 11x+ 12

(x2 + 1)(x+ 1)
=

Ax+B

x2 + 1
+

C

x+ 1

We now proceed as in Case II by clearing denominators and getting an equality of
two polynomials:

10x2 + 11x+ 12 = (Ax+B)(x+ 1) + C(x2 + 1)

= (A+ C)x2 + (A+B)x+ (B + C)

This gives us a system of equations:

A+ C = 10

A+B = 11

B + C = 12

which we can solve using Gaussian Elimination1 0 1 10
1 1 0 11
0 1 1 12

 to RREF (steps omitted)−−−−−−−−−−−−−−−−→

1 0 0 9/2
0 1 0 13/2
0 0 1 11/2


This gives us the desired partial fraction expansion:

10x2 + 11x+ 12

(x2 + 1)(x+ 1)
=

9x+ 13

2(x2 + 1)
+

11

2(x+ 1)

We can check our work by re-doing the decomposition with complex numbers:

10x2 + 11x+ 12

(x+ i)(x− i)(x+ 1)
=

A

x+ i
+

B

x− i
+

C

x+ 1

Cross-multiplying yields

10x2 + 11x+ 12 = A(x− i)(x+ 1) +B(x+ i)(x+ 1) + C(x− i)(x+ i)

Now we plug in the three denominator roots to get linear equations for the un-
knowns:

• (x = −i) In this case, the equation becomes 2− 11i = (−2− 2i)A
• (x = i) In this case, the equation becomes 2 + 11i = (−2 + 2i)B
• (x = −1) In this case, the equation becomes 11 = 2C

This yields the system:

(−2− 2i)A = 2− 11i

(−2 + 2i)B = 2 + 11i

2C = 11

which we can solve with Gaussian Elimination:−2− 2i 0 0 2− 11i
0 −2 + 2i 0 2 + 11i
0 0 2 11

 to RREF (steps omitted)−−−−−−−−−−−−−−−−→

1 0 0 (9 + 13i)/4
0 1 0 (9− 13i)/4
0 0 1 11/2


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This yields the desired partial fraction decomposition:

10x2 + 11x+ 12

(x+ i)(x− i)(x+ 1)
=

9 + 13i

4(x+ i)
+

9− 13i

4(x− i)
+

11

2(x+ 1)

Finally, to pull this decomposition back into the realm of real numbers, we add
the first two fractions together (since those two correspond to a conjugate pair of
roots):

13− 9i

4(x+ i)
+

9− 13i

4(x− i)
+

11

2(x+ 1)
=

(9 + 13i)(x− i) + (9− 13i)(x+ i)

4(x+ i)(x− i)
+

11

2(x+ 1)

=
9x+ 13

2(x2 + 1)
+

11

2(x+ 1)

This shows that working with complex numbers gives the same decomposition.

Case IV: repeated quadratic factors. Finally, we arrive at perhaps the
most involved case: repeated quadratic factors. However, the method here is really
just the same as the methods in Cases II and III provided you know the rule for
the general form. Here is an example:

6x3 + 7x2 + 8x+ 9

(x2 + x+ 1)2

Since the quadratic factor x2 +x+ 1 has multiplicity two, it has two show up twice
in the decomposition. Since the total number of unknowns needs to be four (=
degree of denominator polynomial), each occurrence of the quadratic factor has to
have two unknowns:

6x3 + 7x2 + 8x+ 9

(x2 + x+ 1)2
=

Ax+B

x2 + x+ 1
+

Cx+D

(x2 + x+ 1)2

Just as before, we cross-multiply and get an equality of polynomials:

6x3 + 7x2 + 8x+ 9 = (Ax+B)(x2 + x+ 1) + Cx+D

= Ax3 + (A+B)x2 + (A+B + C)x+ (B +D)

Equating the two polynomials gives us the system of equations:

A = 6

A+B = 7

A+B + C = 8

B +D = 9

which we can solve using Gaussian Elimination:
1 0 0 0 6
1 1 0 0 7
1 1 1 0 8
0 1 0 1 9

 to RREF (steps omitted)−−−−−−−−−−−−−−−−→


1 0 0 0 6
0 1 0 0 1
0 0 1 0 1
0 0 0 1 8


This gives us the desired partial fraction decomposition:

6x3 + 7x2 + 8x+ 9

(x2 + x+ 1)2
=

6x+ 1

x2 + x+ 1
+

x+ 8

(x2 + x+ 1)2



CHAPTER 2

Calculus review

In this section we will summarize all the important definitions and results from
calculus. In general we will state these results for arbitrary nice functions, for
summary of calculus results pertaining to special elementary functions, see Appen-
dix A. First, some terminology which will simplify some things. Given the set of
real numbers R, we artificially adjoin two new symbols +∞ and −∞ to serve as
convenient bookends of the ordering. More specifically:

Definition 2.0.1. Define the extended real numbers to be the set R±∞ :=
R ∪ {−∞,+∞}. We extend the ordering on R to all of R±∞ by declaring:

−∞ ≤ a ≤ +∞ for every a ∈ R±∞.

Unless we state otherwise, we do not extend the arithmetic operations +, · on R
to include ±∞. It is important to realize the new elements ±∞ are not numbers
and there is not supposed to be anything super deep or special about adjoining
±∞ to our real line. We primarily introduce it because it makes certain commonly
occurring statements and expressions shorter.

For instance, we can define bounded intervals and unbounded intervals with uniform
notation. Given a, b ∈ R such that a < b, an interval is a set of one of the following
forms:

(a, b) := {x ∈ R : a < x < b}
[a, b) := {x ∈ R : a ≤ x < b}
(a, b] := {x ∈ R : a < x ≤ b}
[a, b] := {x ∈ R : a ≤ x ≤ b}

(a,+∞) := {x ∈ R : a < x}
[a,+∞) := {x ∈ R : a ≤ x}
(−∞, b) := {x ∈ R : x < b}
(−∞, b] := {x ∈ R : x ≤ b}

(−∞,+∞) := R

Intervals of the form (a, b), [a, b), (a, b], [a, b] are called bounded intervals. In-
tervals of the form (a,+∞), [a,+∞), (−∞, b), (−∞, b], (−∞,+∞) are called un-
bounded intervals. Intervals of the form (a, b), (a,+∞), (−∞, b), (−∞,+∞) are
call open intervals. Intervals of the form [a, b], [a,+∞), (−∞, b], (−∞,+∞) are
called closed intervals.

Of course, intervals are not the only types of subsets of R which naturally arise
in this class. For instance, the natural domain of the tangent function is not an

17
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interval, but instead a union of intervals:

domain(tan t) = {t ∈ R : t 6= π/2 + πk for every k ∈ Z}

=
⋃
k∈Z

(π
2

+ πk,
π

2
+ π(k + 1)

)
In order to avoid too many technicalities, we will consider a subset D ⊆ R to be
nice if can show up as the true domain of some function one would encounter in
freshman calculus. To be specific:

Definition 2.0.2. We call a set D ⊆ R nice if it is an interval or a union of a
sequence of intervals, i.e., if there exists a sequence of intervals I0, I1, I2, . . . such
that

D =
⋃
n≥0

In

In general we will always restrict our attention to functions with nice domains, with
the domain of the tangent function being representative of the worst type of nice
domain. If you find the definition of nice too technical, then surprisingly very little
is lost if you just interpret the adjective nice in the colloquial sense. Really, these
things won’t matter too much for this class (since you’re being graded primarily on
learning how to do calculations), but we introduce this terminology anyway so that
way in these notes we can still restrict ourselves to making statements which are
literally true in a mathematical sense, without being overly abstract and technical.

In the exposition we will occasionally refer to elementary functions. We don’t
mean anything too precise by this, although you can take the following as a rough
definition:

Rough Definition 2.0.3. An elementary function f : D → R is any function
constructed from the following operations:

(1) arithmetic operations: +,−, ·, /
(2) algebraic operations such as taking nth roots
(3) composition of functions
(4) the exponential exp : R→ R and logarithm ln : [0,+∞)→ R,
(5) the trigonometric functions sin, cos, tan
(6) the inverse trigonometric functions arcsin, arccos, arctan

In other words, an elementary function is the type of function which shows up in
freshman calculus.

2.1. Limits

In this section D is a nice set. We will review the definition and rules for computing
limits. Recall that sometimes, even if a function f : (a, b) → R is defined on an
open interval (a, b), it sometimes still makes sense to ask what is the limit of f(x)
as x → a, i.e., limx→a f(x), even though f is not defined at a. This makes sense
because a is an endpoint of (a, b), so there are points in (a, b) which are arbitrarily
closed to a. In general we will consider functions f : D → R where the domain D
is a nice set. Before we define limit, it first makes sense to define what is the set of
all points which it might make sense to take the limit to.
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Definition 2.1.1. Define the closure of D to be the slightly larger set cl(D) ⊇ D
defined such that for every α ∈ R±∞, we say that α ∈ cl(D) if there exists x ∈ R
such that either:

(1) x < α and (x, α) ⊆ D, or
(2) α < x and (α, x) ⊆ D.

In particular, if α ∈ D, then α ∈ cl(D). In other words, cl(D) is the same thing as
D plus all the endpoints of the intervals which define D. For example:

cl
(
(1, 2]

)
= [1, 2]

cl
(
(−1, 0) ∪ (0, 1]

)
= [−1, 1]

cl
(

domain(tan t)
)

= R

We can now define in one definition every type of limit of a function encountered
in freshman calculus:

Definition 2.1.2. Suppose f : D → R is a function with nice domain D. Suppose
α ∈ cl(D) and L ∈ R±∞. We say the limit of f as x approaches α exists and is
equal to L, notation:

lim
x→α

f(x) = L

if one of the following is satisfied (depending on whether α,L = ±∞ or not):

(1) (α,L ∈ R) for every ε > 0, there exists δ > 0 such that for all x ∈ D, if
0 < |x− α| < δ, then

∣∣f(x)− L
∣∣ < ε.

(2) (α = +∞, L ∈ R) for every ε > 0, there exists M ∈ R such that for all
x ∈ D, if M < x, then

∣∣f(x)− L
∣∣ < ε.

(3) (α = −∞, L ∈ R) for every ε > 0, there exists M ∈ R such that for all
x ∈ D, if x < M , then

∣∣f(x)− L
∣∣ < ε.

(4) (α ∈ R, L = +∞) for every M ∈ R, there exists δ > 0 such that for all
x ∈ D, if 0 < |x− α| < δ, then M < f(x).

(5) (α = L = +∞) for every M ∈ R, there exists N ∈ R such that for all
x ∈ D, if N < x, then M < f(x).

(6) (α = −∞, L = +∞) for every M ∈ R, there exists N ∈ R such that for
all x ∈ D, if x < N , then M < f(x).

(7) (α ∈ R, L = −∞) for every M ∈ R, there exists δ > 0 such that for all
x ∈ D, if 0 < |x− α| < δ, then f(x) < M .

(8) (α = +∞, L = −∞) for every M ∈ R, there exists N ∈ R such that for
all x ∈ D, if N < x, then f(x) < M .

(9) (α = L = −∞) for every M ∈ R, there exists N ∈ R such that for all
x ∈ D, if x < N , then f(x) < M .

In general, for this class if and when we compute limits, we will not use directly
Definition 2.1.2. Instead we will use known formulas for limits of special functions
(see Appendix A) along with various limit laws, including facts about continuity.

Here is the general limit law for sums of limits:

Addition Limit Law 2.1.3. Suppose f, g : D → R are functions where D is a
nice domain. Further suppose α ∈ cl(D) and the limits

lim
x→α

f(x) = Lf and lim
x→α

g(x) = Lg

exist with Lf , Lg ∈ R±∞. Then:
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(1) if Lf , Lg ∈ R, then

lim
x→α

(f + g)(x) = Lf + Lg

(2) if Lf = +∞ and Lg 6= −∞, or Lg = +∞ and Lf 6= −∞, then

lim
x→α

(f + g)(x) = +∞

(3) if Lf = −∞ and Lg 6= +∞, or Lg = −∞ and Lf 6= +∞, then

lim
x→α

(f + g)(x) = −∞

(4) if Lf = +∞ and Lg = −∞, or Lf = −∞ and Lg = +∞, then more subtle
investigation is needed (l’Hôpital’s rule).

Here is the general limit law for products of limits:

Product Limit Law 2.1.4. Suppose f, g : D → R are functions where D is a nice
domain. Further suppose α ∈ cl(D) and the limits

lim
x→α

f(x) = Lf and lim
x→α

g(x) = Lg

exist with Lf , Lg ∈ R±∞. Then:

(1) if Lf , Lg ∈ R, then

lim
x→α

(f · g)(x) = Lf · Lg

(2) if one of the following is true:
(a) Lf = +∞ and Lg > 0
(b) Lf = −∞ and Lg < 0
(c) Lf < 0 and Lg = −∞
(d) Lf > 0 and Lg = +∞

then
lim
x→α

(f · g)(x) = +∞

(3) if one of the following is true:
(a) Lf = −∞ and Lg > 0
(b) Lf = +∞ and Lg < 0
(c) Lf < 0 and Lg = +∞
(d) Lf > 0 and Lg = −∞

then
lim
x→α

(f · g)(x) = −∞

(4) if one of the following is true:
(a) Lf = 0 and Lg = ±∞
(b) Lf = ±∞ and Lg = 0,

then more subtle investigation is needed (l’Hôpital’s rule).

Finally, here is the general limit law for quotients of functions:

Quotient Limit Law 2.1.5. Suppose f, g : D → R are functions where D is a
nice domain. Define the set:

D′ :=
{
x ∈ D : g(x) 6= 0

}
⊆ R.

Assume that D′ is also nice (for us it always will be) and suppose for α ∈ cl(D′) ⊆
cl(D) the limits

lim
x→α

f(x) = Lf and lim
x→α

g(x) = Lg
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exist with Lf , Lg ∈ R±∞. Then for the quotient function:

f

g
: D′ → R

we have:

(1) if Lf ∈ R, and Lg ∈ R and Lg 6= 0, we have

lim
x∈α

(
f

g

)
(x) =

Lf
Lg

(2) if Lf 6= ±∞ and Lg = ±∞, we have

lim
x∈α

(
f

g

)
(x) = 0

(3) if Lf = +∞ and Lg > 0, or Lf = −∞ and Lg < 0, then

lim
x∈α

(
f

g

)
(x) = +∞

(4) if Lf = +∞ and Lg < 0, or Lf = −∞ and Lg > 0, then

lim
x∈α

(
f

g

)
(x) = +∞

(5) otherwise a more subtle investigation is needed (l’Hôpital’s rule).

2.2. Continuity

The most basic property we might wish for a function f : D → R to have is that it
is continuous. Here is the definition:

Definition 2.2.1. Suppose f : D → R is a function with nice domain D ⊆ R. We
say that f is continuous if for every α ∈ D,

lim
x→α

f(x) = f(α).

Example 2.2.2. Here are some continuous functions:

(1) Every constant function x 7→ c : R→ R (where c ∈ R) is continuous.
(2) The identity function x 7→ x : R→ R is continuous.

(3) The absolute value function x 7→ |x| :=
√
x2 : R→ R is continuous.

(4) The square root function x 7→
√
x : [0,+∞)→ R is also continuous.

The following shows how continuity is preserved under the basic arithmetic opera-
tions:

Proposition 2.2.3. Suppose f, g : D → R are continuous functions on a nice
domain D. Then the following functions are also continuous on D:

(1) f + g : D → R,
(2) f · g : D → R

Furthermore, define the set

D′ :=
{
x ∈ D : g(x) 6= 0

}
and assume that D′ is nice (for us it always will be). Then

(3) f/g : D′ → R is continuous.
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The following tells us that continuity is preserved when you compose two compos-
able continuous functions:

Proposition 2.2.4 (Composition and continuity). Suppose f : D → R is continu-
ous with nice domain D and g : E → R is continuous with nice domain E such that
f(D) ⊆ E. Then g ◦ f : D → R is continuous.

Combining Example 2.2.2(3) with Proposition 2.2.4 gives us:

Corollary 2.2.5. If f : D → R is continuous with nice domain D, then so is
|f | : D → R, given by

|f |(x) := |f(x)|, for x ∈ D.

The following is an important theorem about continuous functions:

Intermediate Value Theorem 2.2.6. Suppose f : [a, b]→ R is continuous, with
a < b ∈ R. Let y be a number strictly between f(a) and f(b), i.e.,

f(a) < y < f(b) or f(b) < y < f(a).

Then there is x0 ∈ (a, b) such that f(x0) = y.

2.3. Differentiation

In this section D ⊆ R is a nice set. Given a function f : D → R, if it is differentiable
at a point in its domain, then that means the function f can be approximated
suspiciously well by a linear tangent line at that point. The following proposition
gives three equivalent ways of saying exactly this:

Proposition 2.3.1. Suppose f : D → R is a function and α ∈ D. The following
are equivalent:

(1) (Standard definition) The limit

lim
x→α

f(x)− f(α)

x− α
= `

exists and is finite (i.e., ` ∈ R).
(2) (Taylor definition) There exists a number d ∈ R and a function R : D → R

such that

f(x) = f(α) + d(x− α) +R(x) and lim
x→α

R(x)

x− α
= 0.

(3) (Carathéodory definition) There exists a function q : D → R which is
continuous at α such that

f(x) = f(α) + q(x)(x− α).

Furthermore, if any (equivalently all) of (1), (2), and (3) holds, then

(4) ` = d = q(α), and
(5) f is continuous at α.

Definition 2.3.2. We say that function f : D → R is differentiable on D, if for
every α ∈ D, the equivalent conditions of Proposition 2.3.1 hold. In this case, we
define the derivative of f at α to be

f ′(α) := lim
x→α

f(x)− f(α)

x− α
.
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In this class, since we will be working with special elementary functions and not
arbitrary differentiable functions, we generally will not have to use the formal def-
inition when computing derivatives. In general we will be able to compute all
relevant derivatives by employing the following rules as well as the known formulas
(see Appendix A) for the derivatives of the functions we care about.

Example 2.3.3. (1) Constant functions are differentiable with derivative 0.
(2) Let f : R→ R be such that f(x) = xn. Then f is differentiable, and and

for every α ∈ R f ′(α) = nαn−1. To see this, note by The Difference of
Powers Formula,

f(x)−f(α) = xn−αn = (x−α) ·(xn−1 +αxn−2 +α2xn−3 + · · ·+αn−2x+αn−1),

thus for x 6= α, we have

f(x)− f(α)

x− α
= xn−1 + αxn−2 + α2xn−3 + · · ·+ αn−2x+ αn−1,

and so

lim
x→α

f(x)− f(α)

x− α
= n · αn−1.

The following rules show how computing the derivative interacts with the basic
arithmetic operations:

Proposition 2.3.4. Suppose f, g : D → R are differentiable on D. Then

f + g, f · g : D → R

are differentiable on D, and for every α ∈ D
(1) (f + g)′(α) = f ′(α) + g′(α),
(2) (product rule) (f · g)′(a) = f(a)g′(a) + f ′(a)g(a),

Furthermore, with D′ := {x ∈ D : g(x) 6= 0} ⊆ D, if D′ is nice, then the function

f

g
: D′ → R

is differentiable and

(3) (quotient rule) for every α ∈ D′(
f

g

)′
(α) =

g(α)f ′(α)− f(α)g′(α)

g2(α)

Remark 2.3.5. An immediate consequence of Proposition 2.3.4(1) and (2) is that
if we have constants c, d ∈ R and differentiable functions f, g : D → R, then

(cf + dg)′ = cf ′ + dg′.

In linear algebra terms, differentiation is R-linear (i.e., it is a linear transformation
on the R-vector space of differentiable functions D → R).

Differentiation also behaves well with composition of differentiable functions:

Chain Rule 2.3.6. Suppose f : D → R, g : E → R are differentiable functions
such that f(D) ⊆ E. Then g ◦ f : D → R is differentiable, and for every α ∈ D

(g ◦ f)′(α) = g′
(
f(α)

)
· f ′(α).
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In theory, you should be able capable of computing the derivative of any elementary
function provided you know the rules 2.3.4 and 2.3.6 as well as the formulas for the
derivatives of the primitive functions of interest given in Appendix A. Of course,
this should not be news to you.

The following is a very useful consequence of the so-called Mean Value Theorem for
Derivatives. Note that Corollary 2.3.7 and Identity Criterion 2.3.8 are only true
when the domain is an interval.

Corollary 2.3.7. Suppose D is an interval and f : D → R is differentiable. Then
f is a constant function iff f ′(x) = 0 for all x ∈ I.

A common question we might ask when it comes to uniqueness of solutions of ODEs
is: when are two functions f, g : I → R the same? If f and g are differentiable (which
pretty much all of our functions will be), the following makes this question easier
to answer:

Identity Criterion 2.3.8. Suppose D is an interval and f, g : D → R are differ-
entiable such that f ′(α) = g′(α) for every α ∈ D. Then there exists a constant
C ∈ R such that f(x) = g(x) + C for all x ∈ D. Furthermore, if there is a point
x0 ∈ D such that f(x0) = g(x0), then f(x) = g(x) for all x ∈ D.

Proof. The function f − g : D → R is differentiable by Proposition 2.3.4, and
(f−g)′(x) = f ′(x)−g′(x) = 0 for all x ∈ D. By Corollary 2.3.7, there is a constant
C ∈ R such that (f − g)(x) = C for all x ∈ D, i.e., f(x) = g(x) + C for all x ∈ D.

Now, suppose there is x0 ∈ D such that f(x0) = g(x0). Then also f(x0) =
g(x0) + C, so we can conclude that C = 0. Thus f(x) = g(x) for all x ∈ D. �

2.4. Integration

Definite integrals. When it comes to integration, the most fundamental no-
tion is to define the following: given a function f : [a, b] → R, what does it mean

for the function f to be integrable on [a, b] and how do you define
∫ b
a
f(t) dt if this

integral is to exist? We will not dive into this question and instead assume you
have a working understanding of what this means to you. In particular, we define:

Definition 2.4.1. Suppose a < b ∈ R. We say that the function f : [a, b] → R is
integrable if the definite integral ∫ b

a

f(t) dt

exists and is finite (i.e., it equals a real number from R). If f : [a, b] → R is
integrable, then we also define:∫ a

b

f(t) dt := −
∫ b

a

f(t) dt

Given any function g : D → R and α ∈ R, we define:∫ α

α

g(t) dt := 0

Here are some basic facts about what types of functions are integrable:

Fact 2.4.2. Suppose f : [a, b]→ R is a function. Then:

(1) if f is continuous, then f is integrable,
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(2) if f is piecewise continuous, then f is integrable,

(3) if f is integrable and f̃ : [a, b]→ R is a function such that the set:{
x ∈ [a, b] : f(x) 6= f̃(x)

}
is finite, then f̃ is also integrable and∫ b

a

f(t) dt =

∫ b

a

f̃(t) dt

Fact 2.4.2 tells us that basically every function f : [a, b] → R we come across in
this class will be integrable. Furthermore, 2.4.2(3) tells us that as far as computing
integrals are concerned, we can safely change finitely many values of the function
and still arrive at the same answer (for instance, if you are integrating a step
function and you’re not sure about the values at the endpoints).

The following law for computing definite integrals is used all the time:

Lemma 2.4.3 (Linearity of Integration). Let f, g : [a, b] → R be integrable func-
tions, and let α ∈ R. Then

(1) αf : [a, b]→ R is integrable, and
∫ b
a
αf(t) dt = α

∫ b
a
f(t) dt,

(2) f +g : [a, b]→ R is integrable, and
∫ b
a

(f +g)(t) dt =
∫ b
a
f(t) dt+

∫ b
a
g(t) dt.

The following is also very useful, especially if the behavior of a function changes on
different intervals:

Lemma 2.4.4 (Additivity over intervals). Suppose f : [a, b]→ R is a function and
c ∈ (a, b). Then f is integrable on [a, b] iff f is integrable on [a, c] and [c, b]. In this
case, we have ∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt.

The following two theorems tell us that integration and differentiation are inverse
operations, which is what makes integration so useful when it comes to solving
differential equations. First a definition:

Definition 2.4.5. Suppose f : D → R is a continuous function with a nice domain
D ⊆ R. A function F : D → R is called an antiderivative of f if:

(i) F is differentiable, and
(ii) for every t ∈ D, F ′(t) = f(t).

The so-called first fundamental theorem of calculus provides us a method of comput-
ing the exact value of the definite integral of a function provided we have available
to us an antiderivative of that function:

First Fundamental Theorem of Calculus 2.4.6. Suppose f : [a, b] → R is a
continuous function on [a, b] and differentiable on (a, b). Then:∫ b

a

f ′(t) dt = f(a)− f(b).

The so-called second fundamental theorem of calculus provides us a method of using
definite integrals to construct an antiderivative of a continuous function:
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Second Fundamental Theorem of Calculus 2.4.7. Suppose f : D → R is a
continuous function with a nice domain D ⊆ R, and fix t0 ∈ D. Let I ⊆ D be the
largest interval such that t0 ∈ I. Consider the function F : I → R defined by

F (t) :=

∫ t

t0

f(s) ds

for every t ∈ I. Then

(1) F is differentiable on I, and
(2) F ′(t) = f(t) for every t ∈ I, i.e., F is an antiderivative of f on the

interval I.

Indefinite integrals. When we later determine the general solution of a dif-
ferential equation, we need to be able to find (and parametrize) all solutions of
the differential equation, not just a particular one. In terms of antiderivatives, this
means we need to be able to find (and parametrize) all antiderivatives of a partic-
ular function, not just one antiderivative. This is taken care of by the notion of
indefinite integral :

Definition 2.4.8. Suppose f : D → R is a continuous function with a nice domain
D ⊆ R. The indefinite integral of f is an infinite family of functions:

F (t;C) = F (t) + C

where C ∈ R and F : D → R is a particular antiderivative of f . This situation is
often denoted by writing: ∫

f(t) dt = F (t) + C.

Remark 2.4.9. Technically speaking, the indefinite integral of f really should
be the family of all antiderivatives of f . In particular, each so-called connected
component of the domain of f requires its own constant of integration. For instance,
for the function f(t) = 1/t viewed as a function (−∞, 0) ∪ (0,+∞) → R, the
indefinite integral really should be:∫

dt

t
=

{
ln(t) + C1 if t > 0

ln(−t) + C2 if t < 0

where C1, C2 ∈ R could be the same number, or could be different. Simply writing:∫
dt

t
= ln |t|+ C

does not actually give us every possible antiderivative of 1/t on the domain (−∞, 0)∪
(0,+∞) because it requires us to use the same constant of integration on both “con-
nected components” (−∞, 0) and (0,+∞). This is a very minor issue which we are
happy to ignore since the particular solutions to initial value problems (which we
hope to be unique) will have intervals as their domain.

We also have the second fundamental theorem of calculus for indefinite integrals:

Second Fundamental Theorem of Calculus 2.4.10 (Indefinite version). Sup-
pose f : D → R is a continuous function with a nice domain D ⊆ R. Then

d

dt

∫
f(t) dt = f(t).
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Theorem 2.4.10 is to be interpreted as: for every antiderivative F (t) + C of f(t),

d

dt

(
F (t) + C

)
= f(t).





CHAPTER 3

First-order differential equations

3.1. Implicit differential equations

In this course we will be primarily concerned with first-order differential equations,
as well as higher-order linear differential equations. This begs the question:

What is a differential equation and what is the order of a differential equation?

We will answer this question by first giving a very general definition of differential
equation which will encompass nearly all differential equations we will encounter in
this Chapter and in Chapter 5:

Definition 3.1.1. An implicit differential equation (of order r) is an equation
which can be written in the form

(†) F (t, y, y′, y′′, . . . , y(r)) = 0

where F is a real-valued function of r + 2 variables. The order is the order r of
the highest derivative y(r) of y which appears in the equation.

A solution to (†) is a function y : I → R (where I ⊆ R is an interval) which is
differentiable at least r times such that

F
(
t, y(t), y′(t), . . . , y(r)(t)

)
= 0 for every t ∈ I,

i.e., for every t ∈ I, when you plug t, y(t), y′(t), . . . , y(r)(t) into the function F the
output is zero.

We now give some examples of implicit differential equations and some of their
solutions, in increasing order of order.

Zeroth order. Here is an implicit differential equation of order 0:

(3.1) y5 + 2y4 + 3y3 + 4y2 + 5y + 6 = 0

Given a solution α ∈ R of the polynomial equation

X5 + 2X4 + 3X3 + 4X2 + 5X + 6 = 0,

the function y : R → R defined by y(t) := α for all t ∈ R (i.e., the function with
constant value α) is a solution of (3.1). This example should convince you that the
subject of differential equations already encompasses all of one- and two-variable
polynomial equations. In particular, we shouldn’t get our hopes up that we will be
able to solve too many higher-order differential equations in general.

29
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First order. We will give two examples of a first-order differential equation.
The first one takes full advantage of the implicit part of the definition:

Example 3.1.2 (Clairaut). The differential equation:

(3.2) y − ty′ + exp y′ = 0

Every solution y : R→ R of (3.2) has the form

y(t) = Ct+ expC

where C ∈ R is some fixed constant. Note that even though (3.2) is complicated, it
is actually pretty easy to check that the given solution is actually correct. Indeed,
first compute the derivative of y:

y′(t) = C

and then plug t, y(t), y′(t) into (3.2) and notice that everything cancels out:

y(t)− ty′(t) + exp y′(t) = Ct+ expC − tC + expC = 0.

This illustrates another important lesson:

Checking that a given function is/is not a solution to a

differential equation is usually easy, even if the given

differential equation is hard/impossible.

Indeed, it is simply a matter of computing r derivatives and then plugging them
into the equation and seeing if everything cancels out. Of course, we will be more
interested in solving differential equations than checking whether a candidate solu-
tion is correct or not. However, it is reassuring to know that at least one direction
of the process is fairly easy.

The next differential equation is a more typical example of a differential equation
which we will study:

Example 3.1.3 (Logistic equation). Let b, c > 0 be fixed positive constants. Then
the logistic equation is the differential equation:

y′ − y(b− cy) = 0

For every nonzero constant C ∈ R \ {0} we have a solution y : R→ R defined by:

y(t) =
b

c
· 1

1 + C exp(−bt)
Furthermore, the constant functions y = 0 and y = b/c are also solutions. (Exercise:
check this!) We will study the logistic equation in more detail later, including how
to derive these solutions.

Second order. Here is a typical example of a second-order differential equa-
tion we will study:

(3.3) y′′ − 3y′ + 2y = 0

Every solution y : R→ R of (3.3) is of the form:

y(t) = C1 exp 2t+ C2 exp t

where C1, C2 ∈ R are arbitrary constants. Generally speaking, for second-order
differential equations there will be two constants of integration we need to find.
This reflects the fact that the equation involves a first and second derivative (so
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somewhere we are doing two integrals, each one with its own constant of integra-
tion). Equation (3.3) is an example of a second-order linear differential equation
with constant coefficients, which will be one of the main equations of interest in
Chapter 5.

3.2. Differential equations in normal form

Definition 3.1.1 casts a very wide net. In general most differential equations we will
encounter can be put into a slightly simpler form: normal form.

Definition 3.2.1. A differential equation of order r in normal form (or an
explicit differential equation of order r) is a differential equation which can
be written in the form

(†) y(r) = F (t, y, y′, y′′, . . . , y(r−1))

where F is a real-valued function of r+ 1 variables. A solution of (†) is a function
y : I → R (where I ⊆ R is an interval) which is at least r times differentiable, such
that for every t ∈ I:

y(r)(t) = F
(
t, y(t), y′(t), . . . , y(r−1)(t)

)
In other words, an implicit differential equation of order r can be put into normal
form if it is possible to solve for the highest derivative y(r) in terms of the lower
derivative y, y′, . . . , y(r−1) and t.

Example 3.2.2. (1) A zeroth-order differential equation in normal form is
an equation of the form:

y = F (t)

Clearly, the function y(t) := F (t) is a solution. We will never be interested
in explicit zeroth-order differential equations.

(2) A first-order differential equation in normal form is an equation of the
form:

y′ = F (t, y)

The logistic equation from Example 3.1.3 can be put into normal form:

y′ = y(b− cy)

It is not clear whether the equation from Example 3.1.2

y − ty′ + exp y′ = 0

can be put into normal form since this would involve solving for y′. In
general, for the equations we deal with there will be no issue with rewriting
them in normal form.

(3) A second-order differential equation in normal form is an equation of the
form:

y′′ = F (t, y, y′).

Equation (3.3) can be written in normal form:

y′′ = 3y′ − 2y

This concludes our discussion of general-order differential equations. For the rest
of the chapter we will focus on first-order differential equations in normal form.
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Explicit first-order differential equations. Recall that an explicit first-
order differential equation is an equation which can be written in the form:

(3.4) y′ = F (t, y)

where F is a real-valued function of two variables. A solution to (3.4) is a differ-
entiable function y : I → R (I ⊆ R is an interval) such that for all t ∈ I,

y′(t) = F
(
t, y(t)

)
Solutions are also referred to as integral curves or solution curves, especially
when we want to emphasize the geometric properties of the solution.

We will often be interested in obtaining a specific solutions which passes through
a given point (t0, y(t0)). The best way to do this is to first find all solutions of the
differential equation, and then find the particular solution we are interested in.

Definition 3.2.3. The general solution of (3.4) is a family1 of functions y(t;C)
which depends on a parameter C ∈ R such that:

(1) for every valid parameter C0, the function y(t;C0) is a solution of (3.4),
and

(2) every solution of (3.4) is of the form y(t;C1) for some valid parameter C1.

A particular solution is a function of the form y(t) = y(t;C0) for some fixed
value C0.

Example 3.2.4. Consider the differential equation

(3.5) y′ = t

We wish to find the general solution to (3.5). Integrating both sides, we find that

y(t) =
1

2
t2 + C

for some constant of integration C ∈ R. We claim that the general solution is

y(t;C) =
1

2
t2 + C

where C can be any real number. Indeed, for every specific C0 ∈ R, the function
y(t) = 1

2 t
2 +C0 is a solution. Furthermore, if ȳ(t) is also a solution, then ȳ′(t) = t,

and thus (
ȳ(t)− y(t; 0)

)′
=
(
ȳ(t)− 1

2
t2
)′

= t− t = 0

which shows that ȳ(t) and y(t; 0) differ by a constant. Thus there exists C1 ∈ R
such that ȳ(t) = y(t;C1). We conclude that y(t;C) is the general solution of (3.5).
Here are some particular solutions:

y(t) = y(t; 3) =
1

2
t2 + 3

y(t) = y(t;−10) =
1

2
t2 − 10.

The problem of finding a specific particular solution will be formulated as an initial
value problem:

1The notation y(t;C) is meant to suggest that the function y(t) depends also on the parameter
C. Each time you choose a specific value C0 for C, then you get a particular solution y(t) :=

y(t;C0).
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Definition 3.2.5. An initial value problem is a pair of two conditions:

(i) a differential equation:

y′ = F (t, y)

(ii) a specific point which the solution must pass through:

y(t0) = y0,

where (t0, y0) ∈ R2. This is called the initial condition.

Example 3.2.6. We wish to solve the following initial value problem:

(i) y′ = t
(ii) y(3) = 7

We have already found that the general solution to (i) is

y(t;C) =
1

2
t2 + C

We will use (ii) to solve for the exact value of C:

y(3) = 7 =
1

2
· 32 + C

and so

C = 7− 9

2
=

5

2
.

We conclude that the solution to the above initial value problem is:

y(t) = y(t; 5/2) =
1

2
t2 +

5

2
.

Direction fields. One of the remarkable features of explicit first-order differ-
ential equations is that, even if some of them might be difficult to solve, it is usually
pretty easy to make a rough sketch of the general solutions. This is because the
equation

y′ = F (t, y)

tells us what the derivative of the solution needs to be at each point (t, y) in the
plane. We make this precise with the notion of a direction field.

Definition 3.2.7. A direction field for the equation

y′ = F (t, y)

is a plot where at each point (t0, y0) you draw a tiny line segment with slope
F (t0, y0).

Of course in practice when you (or a computer) draw a direction field, you can’t
possibly draw such a line segment at every point in the plane (since there are
infinitely many such points). Instead you draw enough tiny line segments (say, at
integer or half-integer coordinates) in order to get a sense of the general behavior
of the direction field. Once you have an accurate direction field, you can sketch an
approximation of a solution by “following the direction of the direction field”.

Example 3.2.8. Consider the logistic equation

(3.6) y′ = y(3− y)

In Figure 3.1 we plot the direction field for (3.6). We also include four solution
curves corresponding to four different initial conditions.
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Figure 3.1. Direction field for the logistic equation y′ = y(3− y)
and several solution curves.

We make the following observations:

(1) At each point (t0, y0), the slope only depends on y0. This is because
y(3− y) only depends on y and not on t.

(2) This suggests that if y(t) is a solution to (3.6), then so is y(t+C) for any
constant C.

(3) The direction field suggests that the constant functions

y(t) = 0 and y(t) = 3

are both solutions to (3.6). This is indeed the case, as can be easily
verified.

(4) There are many other non-constant solutions as well, we will learn how to
solve for them in Section 3.5.

Of course, by merely plotting a direction field and sketching a solution curve, you are
not actually solving the differential equation yet. However, this procedure provides
valuable insight into the nature of the solutions which can be very fruitful. In some
sense, this is the starting point for the qualitative study of differential equations.

3.3. First-order linear differential equations

We now arrive at the first family of differential equations which we will study in
detail, the so-called first-order linear differential equations.

Definition 3.3.1. A first-order linear differential equation is a differential
equation which can be written in the form:

y′ + f(t)y = g(t)
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where f, g are real-valued functions of the variable t. The function f(t) and g(t)
are called2 the coefficient functions.

As we shall see, solving a first-order linear differential equation really boils down
to performing an integration. We will work up to the general case (where both f(t)
and g(t) are nonzero functions) in several steps.

Direct integration. Consider first the case where f(t) = 0 for all t. We call
the resulting differential equation:

y′ = g(t)

a direct integration differential equation. This is because you can directly solve
this differential equation by integrating g and, if need be, solving for C with the
initial condition. Here is an example:

Example 3.3.2. Consider the initial value problem:

(i) y′ =
√
t,

(ii) y(4) = 6.

Integrating the differential equation we obtain

y(t) = 2/3t3/2 + C.

Using the initial condition we get

y(4) = 6 = 2/3(4)3/2 + C

and so C = 6− 16/3 = 2/3. So the solution to the above initial value problem is

y(t) = 2/3t3/2 + 2/3.

In Figure 3.2 we plot the corresponding solution curve together with the direction
field. Notice that the solution exists on the interval [0,+∞), and this is the possible
interval on which the solution can exist and remain a solution because g(t) =

√
t is

only defined on [0,+∞).

We also remark that in Figure 3.2 we see that the direction field only depends on
t and not on y. This observation allows us to guess (if we didn’t know it already)
that any two solutions of (i) differ by a vertical translation (i.e., adding a constant).
This indeed is also the case for general direct integration differential equations.

2sometimes just f(t) is called the coefficient function and g(t) is called the forcing func-
tion.
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Figure 3.2. Direction field for the equation y′ =
√
t and the

solution curve passing through the point (4, 6).

Theorem 3.3.3 (Direct Integration). Suppose g : D → R is a continuous function
with nice domain D ⊆ R. Consider the differential equation:

(i) y′ = g(t)

(1) The general solution of (i) is given by

y(t) = y(t;C) =

∫
g(t) dt+ C

Furthermore, suppose we are also given an initial condition

(ii) y(t0) = y0, where t0 ∈ D and y0 ∈ R.

(2) Then the initial value problem (i)+(ii) has the unique solution:

y(t) =

∫ t

t0

g(s) ds+ y0

(3) The interval of existence of this solution (i.e., the largest interval con-
taining t0 for which this function remains a solution) is the largest interval
I ⊆ R such that:
(a) t0 ∈ I, and
(b) I ⊆ D.

The homogeneous case. We next consider the case where g(t) is the constant
zero function and f(t) is possibly nonzero.

Definition 3.3.4. A first-order linear differential equation is said to be homoge-
nous if it is of the form:

y′ + f(t)y = 0.
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Solving the homogeneous case requires knowing a trick: multiplication by a so-called
integrating factor. We illustrate this first with an example:

Example 3.3.5. Consider the homogeneous first-order linear differential equation:

(3.7) y′ +
1

t
y = 0

Here we are regarding the coefficient function 1/t to have domain (−∞, 0)∪(0,+∞).
First observe that if µ(t) is any function which is never zero, then the differential
equation

µ(t)

(
y′ +

1

t
y

)
= 0

has the same solutions as equation (3.7). We will use the following choice of µ(t):

µ(t) := exp

(∫
dt

t

)
= exp ln |t| = |t|

where the domain of µ(t) is also (−∞, 0)∪ (0,+∞). Then we multiply the lefthand
side of (3.7) by µ(t) to obtain:

|t|
(
y′ +

1

t
y

)
= |t|y′ + sgn(t)y =

(
|t|y
)′

= 0.

In other words, multiplying through by the integrating factor µ(t) allows us to view
the lefthand side as the derivative of a single function of t. Next we integrate both
sides of (

|t|y
)′

= 0

to obtain
|t|y(t) = C,

or rather,

y(t) =
C

|t|
.

Here the function y(t) also has domain (−∞, 0) ∪ (0,+∞).

Here is how to handle the general homogeneous case:

Theorem 3.3.6. Suppose f : D → R is a continuous function with nice domain
D ⊆ R consider the differential equation:

(i) y′ + f(t)y = 0

(1) Define the integrating factor to be the function µ : D → R given by:

µ(t) := exp

(∫
f(t) dt

)
(here

∫
f(t) dt can be any antiderivative of f(t), the constant of integration

does not matter). Then we can multiply (i) by µ to obtain:

µ(t)
(
y′ + f(t)y

)
=
(
µ(t)y

)′
= 0.

(2) The general solution of (i) is given by:

y(t) = y(t;C) =
C

µ(t)
= C exp

(
−
∫
f(t) dt

)
Furthermore, suppose we are also given an initial condition

(ii) y(t0) = y0, where t0 ∈ D and y0 ∈ R.
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(3) Then the initial value problem (i)+(ii) has the unique solution:

y(t) = y0 exp

(
−
∫ t

t0

f(s) ds

)
=

y0
µ(t)

where µ(t) := exp(
∫ t
t0
f(s) ds).

(4) The interval of existence of this solution is the largest interval I ⊆ R such
that:
(a) t0 ∈ I, and
(b) I ⊆ D.

The general case. The general first-order linear case contains both the direct
integration case and the homogeneous case. The trick with the integrating factor
also works for the general case. We give an example first:

Example 3.3.7. Consider the first-order linear differential equation:

(3.8) y′ + sin(t)y = sin3 t

The first thing to do is to compute the integrating factor:

µ(t) = exp

(∫
sin t dt

)
= exp(− cos t)

Next we multiply both sides of (3.8) by µ(t) to obtain:

µ(t)
(
y′ + sin(t)y

)
=
(

exp(− cos t)y
)′

= sin3 t exp(− cos t)

Integrating both sides yields:

exp(− cos t)y(t) =

∫
sin3 t exp(− cos t) dt = −4 exp(− cos t) cos4(t/2) + C

Solving for y(t) gives us the general solution:

y(t) = −4 cos4(t/2) + C exp cos t

The general case works much the same way:

Theorem 3.3.8. Suppose f : D → R and g : E → R are continuous functions with
nice domains D,E ⊆ R and consider the differential equation

(i) y′ + f(t)y = g(t)

(1) Define the integrating factor to be the function µ : D → R given by:

µ(t) := exp

(∫
f(t) dt

)
(here

∫
f(t) dt can be any antiderivative of f(t), the constant of integration

does not matter). Then we can multiply (i) by µ to obtain:

µ(t)
(
y′ + f(t)y

)
=
(
µ(t)y

)′
= µ(t)g(t).

(2) Then general solution of (i) is then given by:

y(t) = y(t;C) =
1

µ(t)

∫
µ(t)g(t) dt+

C

µ(t)

Furthermore, suppose we are also given an initial condition

(ii) y(t0) = y0, where t0 ∈ D ∩ E and y0 ∈ R.
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(3) Then the initial value problem (i)+(ii) has the unique solution:

y(t) =
1

µ(t)

∫ t

t0

µ(s)g(s) ds+
y0
µ(t)

where µ(t) := exp(
∫ t
t0
f(s) ds).

(4) The interval of existence of this solution is the largest interval I ⊆ R such
that:
(a) t0 ∈ I,
(b) I ⊆ D, and
(c) I ⊆ E.

Proof. (1) First we will justify the key property of the integrating factor:

µ(t)
(
y′ + f(t)y

)
=
(
µ(t)y

)′
Note that:(
µ(t)y

)′
= µ(t)y′ + µ′(t)y by the product rule 2.3.4(2)

= µ(t)y′ +
d

dt

[
exp

(∫
f(t) dt

)]
y

= µ(t)y′ + exp

(∫
f(t) dt

)
d

dt

[∫
f(t) dt

]
y by the Chain Rule 2.3.6

= µ(t)y′ + µ(t)f(t)y by Theorem 2.4.10

= µ(t)
(
y′ + f(t)y

)
(2 part 1) Next, we will check that for every C ∈ R, the function y(t;C) is

a solution. Since µ(t) is a function which is everywhere nonzero, it follows that
y(t;C) is a solution of

y′ + f(t)y = g(t)

if and only if y(t;C) is a solution of

(†) µ(t)
(
y′ + f(t)y

)
= µ(t)g(t).

We will verify that y(t;C) is indeed a solution of (†). Note that:

µ(t)
(
y′(t;C) + f(t)y(t;C)

)
=
(
µ(t)y(t;C)

)′
by (1)

=

(∫
µ(t)g(t) + C

)′
= µ(t)g(t) by Theorem 2.4.10

This verifies part (1) of Definition 3.2.3. We will return to verifying part (2) of the
definition later.

(3 part 1) We now verify that

y(t) =
1

µ(t)

∫ t

t0

µ(s)g(s) ds+
y0
µ(t)

is a solution to the initial value problem (i)+(ii). It is clear that y(t) is a solution
to (i) since it is a particular instance of the general solution in (2). To verify (ii),
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we notice first that:

µ(t0) = exp

(∫ t0

t0

f(s) ds

)
= exp(0) by Definition 2.4.1

= 1.

Next, we observe:

y(t0) =
1

µ(t0)

∫ t0

t0

µ(s)g(s) ds+
y0
µ(t0)

=

∫ t0

t0

µ(s)g(s) ds+ y0

= 0 + y0 by Definition 2.4.1

= y0.

Thus y(t) is a solution to the initial value problem (i)+(ii). We will prove uniqueness
below.

(4) First observe that the interval I ⊆ D is the largest possible interval which
contains t0 which we could hope to have as the domain of the solution. This is
because the differential equation (i) is only defined on the set D ∩E (the on which
both coefficient functions f and g are defined).

(2 part 2) and (3 part 2) are taken care of by the next lemma. �

Lemma 3.3.9. Suppose f : D → R and g : E → R are continuous functions
with nice domains D,E ⊆ R. Suppose that y0, y1 : I → R are two differentiable
functions such that:

(a) I ⊆ R is an interval contained in both D and E,
(b) for i = 0, 1, y′i(t) + f(t)yi(t) = g(t) for every t ∈ I, i.e., y0 and y1 are both

solutions to the differential equation:

y′ + f(t)y = g(t)

Then:

(1) there exists a constant C ∈ R such that for every t ∈ I,

y0(t) = y1(t) +
C

µ(t)

where µ(t) = exp(
∫
f(t) dt).

(2) Furthermore, if there is t0 ∈ I such that y0(t0) = y1(t0), then C = 0 and
so for every t ∈ I, y0(t) = y1(t).

Proof. It follows from (b) that for every t ∈ I,

(y0 − y1)′(t) + f(t)(y0 − y1)(t) = 0.

Multiplying both sides by µ(t) yields for every t ∈ I:

µ(t)
(
(y0 − y1)′(t) + f(t)(y0 − y1)(t)

)
= 0

which we can rewrite as: (
µ(t)(y0 − y1)(t)

)′
= 0
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for every t ∈ I. Since I is an interval, by Corollary 2.3.7 there is a constant C ∈ R
such that for every t ∈ I:

µ(t)(y0 − y1)(t) = C.

Thus for every t ∈ I,

y0(t) = y1(t) +
C

µ(t)
.

This establishes (1). For (2), suppose there is t0 ∈ I such that y0(t0) = y1(t0).
Plugging in t0 into the above equation then yields:

y0(t0) = y1(t0) +
C

µ(t0)

which simplifies to

0 =
C

µ(t0)
.

This gives us C = 0. In particular, for every t ∈ I, we have

y0(t) = y1(t).

This establishes (2). �

Remark about absolute values in the integrating factor. In this sub-
section we make a few remarks about the role of absolute values in the integrating
factor µ(t) which appears when computing a solution of a first-order linear differ-
ential equation. We begin with a soft rule-of-thumb:

Rule of Thumb 3.3.10. If there are absolute values which arise in

µ(t) = exp

(∫
f(t) dt

)
as a result of an expression ln | · · · | arising in

∫
f(t) dt, then these absolute values

can be safely removed in the final expression for µ(t).

tldr explanation. Suppose we are looking at the first-order linear differential
equation:

y′ + f(t)y = g(t)

The only relevant property that we need an integrating factor µ(t) to satisfy is that
it simplifies the lefthand side:

(†) µ(t)
(
y′ + f(t)y

)
=
(
µ(t)y

)′
However, if µ(t) satisfies (†), then so does −µ(t):

−µ(t)
(
y′ + f(t)y

)
=
(
− µ(t)y

)′
since this amounts to multiplying (†) through by −1. Now suppose that µ(t) =
|u(t)| for some differentiable function u(t). Then by definition,

µ(t) =

{
u(t) if u(t) > 0

−u(t) if −u(t) < 0

The claim is that the function u(t) (i.e., µ without the absolute values) can serve
as an integrating factor. This is essentially because:

u(t) =

{
µ(t) if u(t) > 0

−µ(t) if u(t) < 0
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Since both µ(t) and −µ(t) work perfectly well as integrating factors, it follows that
in all cases, the function u(t) works as an integrating factor. �

We hesitate to call 3.3.10 a “Fact” or “Theorem” because this would require a
complete investigation into all possible ways that an absolute value could show up
in a formula for an antiderivative of an elementary function. However, we will give
a justification as to why dropping absolute value signs is allowed and what we are
actually doing to the integrating factor when we do drop the absolute value signs.
For this discussion, we first make more precise what we mean by an integrating
factor :

Definition 3.3.11. Suppose f : D → R is a continuous function with a nice domain
D ⊆ R and I ⊆ D is a nice subset of D. We call a differentiable function µ : I → R
an integrating factor for y′ + fy on I if:

(1) µ(t) 6= 0 for every t ∈ I, and
(2) for every differentiable function y : I → R, the following equality holds:

µ(t)
(
y′(t) + f(t)y(t)

)
=
(
µ(t)y(t)

)′
for every t ∈ I.

Certainly, the integrating factors we’ve been using:

µ(t) := exp

(∫
f(t) dt

)
satisfy the definition of an integrating factor according to Definition 3.3.11. But an
integrating factor is by no means unique. Indeed, we are free to multiply an inte-
grating factor by any nonzero constant and it remains a perfectly valid integrating
factor:

Observation 3.3.12. Suppose f : D → R is a continuous function with a nice
domain D ⊆ R, I ⊆ D is a nice subset of D, and µ : I → R is an integrating
factor for y′+fy on I. Then for any nonzero constant α ∈ R (α 6= 0), the function
αµ : I → R is also an integrating factor for y′ + fy on I.

However, we have a little bit more freedom in modifying our integrating factors than
just multiplying everything through by nonzero constants. For instance, consider
the differential equation:

y′ +
1

t
y = 0

We find that an integrating factor is µ(t) = exp(
∫
dt/t) = |t|. However, 3.3.10

claims that we can switch to using µ̃(t) = t as an integrating factor. The modifica-
tion from µ(t) to µ̃(t) is more involved than just scaling µ(t) by a nonzero constant.
First, note that in this example, f(t) = 1/t and so f : (−∞, 0)∪ (0,+∞)→ R does
not have 0 in its domain, so we are also considering µ(t) = |t| also to be a function
µ : (−∞, 0) ∪ (0,+∞)→ R without zero in its domain. Furthermore, note that:

µ(t) =

{
t if t > 0

−t if t < 0
and µ̃(t) =

{
t if t > 0

t if t < 0

In other words, to change µ(t) into µ̃(t), we had to multiply µ(t) by −1 on the
(−∞, 0) portion of its domain, and keep µ(t) the same on the (0,+∞) portion of
its domain. The reason this type of “selective” multiplication of µ(t) is allowed is
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because (−∞, 0) and (0,+∞) are not connected to each other, so we don’t have to
worry about the portion of µ̃ on (−∞, 0) joining up nicely with the portion of µ̃ on
(0,+∞). This is an instance of the following general observation:

Observation 3.3.13. Suppose f : D → R is a continuous function with a nice
domain D ⊆ R, and suppose µ : D → R is an integrating factor for y′ + fy on D.
Furthermore:

(1) Suppose the domain D = I1 ∪ I2 ∪ I3 ∪ · · · is a union of disconnected
intervals Ik (i.e., there is no i 6= j and a < b ∈ R such that [a, b] ⊆ Ii∪Ij),
and

(2) Suppose α1, α2, α3, . . . is a sequence of nonzero constants from R.

Then the function µ̃ : D → R defined by:

µ̃(t) := αkµ(t) if t ∈ Ik
is also an integrating factor for y′ + fy on D.

We now arrive at a more precise version of 3.3.10:

Observation 3.3.14. Suppose f : D → R is a continuous function with a nice
domain D ⊆ R, and suppose

µ(t) := exp

(∫
f(t) dt

)
=
∣∣u(t)

∣∣ for every t ∈ D

where u : D → R is some differentiable function. Then:

(1) for every t ∈ D, u(t) 6= 0,
(2) the sets,

D1 :=
{
t ∈ D : u(t) > 0

}
and D2 :=

{
t ∈ D : u(t) < 0

}
are disconnected and D = D1 ∪D2, and thus

(3) the function µ̃ : D → R defined by

µ̃(t) := u(t)

for every t ∈ D is also an integrating factor of y′ + fy.

Justification. (1) is clear because µ(t) is defined as an exponential of a certain
function, and exp never takes the value zero.

(2) Suppose towards a contradiction that there is an interval [a, b] ⊆ D such
that a ∈ D1 and b ∈ D2 (the other case is similar). Then since u : [a, b] → R
is differentiable, and hence continuous, by the Intermediate Value Theorem 2.2.6
there is y ∈ (a, b) such that u(y) = 0. This contradicts (1). Thus D1 and D2 are
disconnected. The claim that D = D1 ∪D2 also follows from (1).

(3) is an application of Observation 3.3.13. In order to obtain µ̃ from µ, on
every interval I ⊆ D1, we can keep µ the same, and on every interval J ⊆ D2, we
can multiply µ by −1. �

Remark 3.3.15. In general, you only need to worry about absolute value signs
(and whether to drop them) when computing the general solution of a first-order
linear differential equation. For an initial value problem, you use the precise inte-
grating factor:

µ(t) := exp

(∫ t

t0

f(s) ds

)
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where t0, t are both included in the same interval in the domain of f . Since your
attention is restricted to this interval, the context should tell you, when faced with
|u(t)|, whether to treat this as u(t) or −u(t) (depending on whether u(t0) > 0 or
u(t0) < 0); only one of them can happen on an interval in the domain of f which
contains t0.

We now give a very carefully worked out example, where we show how to apply the
above discussion on absolute values. In general, when you are doing computations,
you are free to drop absolute values in this context without justification provided
that you still get the full correct answer.

Example 3.3.16. Consider the following initial value problem:

(1) y′ + tan(t)y = sec(t)
(2) y(0) = 5.

Find the general solution to (i) and the particular solution to (i)+(ii).

Solution. First notice that the domain of f(t) = tan(t) and g(t) = sec(t) is

D := domain(tan t) = domain(sec t) =
⋃
k∈Z

(π
2

+ πk,
π

2
+ π(k + 1)

)
i.e., the domain is all of R except points of the form π/2 + πk, where k ∈ Z. Next
we compute the usual integrating factor:

µ(t) := exp

(∫
tan t dt

)
= exp ln | sec t| = | sec t|.

The domain of µ(t) is the same as the domain of tan t and sec t above (= D).
Furthermore, note that

D1 := {t ∈ D : sec t > 0} =
⋃

k∈Z,k odd

(π
2

+ πk,
π

2
+ π(k + 1)

)
D2 := {t ∈ D : sec t < 0} =

⋃
k∈Z,k even

(π
2

+ πk,
π

2
+ π(k + 1)

)
As we see, the intervals in D1 are not connected to the intervals in D2. Thus we
can define µ̃ : D → R by

µ̃(t) :=

{
µ(t) if t ∈ D1

−µ(t) if t ∈ D2

= sec t

for every t ∈ D. By Observation 3.3.13, we know that µ̃(t) = sec t also works as an
integrating factor, so we will use that instead. Continuing on with the problem, we
multiply (i) through by µ̃ to obtain:(

sec(t)y
)′

= sec2 t

Integrating both sides yields:

sec(t)y = tan t+ C

where C ∈ R is an arbitrary constant. Thus the general solution is:

y(t) = y(t;C) =
tan t+ C

sec t

on the domain D.
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Next, we will solve the initial value problem (i)+(ii) from scratch. Since t0 = 0,
we see that the interval of existence of the solution will be (−π/2, π/2), so we can
restrict our attention to this interval. First we compute the integrating factor
(where t ∈ (−π/2, π/2)):

µ(t) := exp

(∫ t

0

tan s ds

)
= exp

(
ln | sec s|

∣∣∣∣t
0

)

= exp

(
ln sec s

∣∣∣∣t
0

)
(∗)

= exp
(

ln sec t− ln sec 0
)

= exp
(

ln sec t− ln 1
)

= exp
(

ln sec t
)

= sec t

where in step (∗) we removed the absolute value signs because sec s is positive at
s = 0 (if the initial condition had t0 = π for instance, then we would have to replace
ln | sec s| with ln(− sec s) in that step). Now that we have the integrating factor,
we can proceed with the particular solution (which is only defined on the interval
of existence (−π/2, π/2)):

y(t) =
1

sec t

∫ t

0

sec2 s dx+
5

sec t
because y0 = 5

=
tan t

sec t
+

5

sec t

=
tan t+ 5

sec t
. �

Mixing problems. We now discuss a practical application of first-order linear
differential equations, the so-called mixing problems.

Variation of parameters.

3.4. Implicit equations and differential forms

3.5. Separable and exact differential equations
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APPENDIX A

Special functions

In this appendix we will include an overview of relevant properties of common
elementary functions which arise in calculus and differential equations. In general
we will work within the realm of real numbers, although everything we say has an
appropriate extension to the bigger world of complex numbers. However, we might
occasionally have to refer to complex numbers every now and then.

A.1. Polynomials

A polynomial (in the single variable X) is an expression of the form:

p(X) = anX
n + an−1X

n−1 + · · ·+ a2X
2 + a1X + a0 (where each ai ∈ R)

If an 6= 0, then we call n the degree of p(X), denoted deg p = n. We may also
choose to write a polynomial in summation notation:

p(X) =

n∑
k=0

akX
k

We naturally construe a polynomial as a function p : R→ R by declaring for α ∈ R:

p(α) := anα
n + an−1α

n−1 + · · ·+ a2α
2 + a1α+ a0

Recall that given two polynomial p(X) =
∑n
k=0 akX

k and q(X) =
∑n
k=0 bkX

k, we
can form their sum:

(p+ q)(X) :=

n∑
k=0

(ak + bk)Xk

and their product:

(p · q)(X) :=
∑
k

 ∑
i+j=k

aibj

Xk

where the above sum ranges over all possible indices.

Polynomials are perhaps the most well-behaved type of function which shows up in
calculus. Indeed:

Fact A.1.1. Suppose

p(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0 =

n∑
k=0

akX
k

is a polynomial of degree n. Then the following facts are true about p(X) as a
function p : R→ R:

(1) p is continuous on all of R. In particular, for every α ∈ R:

lim
x→α

p(x) = p(α)
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(2) The limits at infinity are computed as follows:
(a) if n = 0, then

lim
x→∞

p(x) = lim
x→−∞

p(x) = a0

(b) if n ≥ 1 is even, then

lim
x→∞

p(x) = lim
x→−∞

p(x) =

{
∞ if an > 0

−∞ if an < 0

(c) if n ≥ 1 is odd, then

lim
x→∞

p(x) =

{
∞ if an > 0

−∞ if an < 0
and lim

x→−∞
p(x) =

{
−∞ if an < 0

∞ if an > 0

(3) p is differentiable on all of R with derivative

dp

dX
(X) = nanX

n−1 + (n− 1)an−1X
n−2 + · · ·+ 2a2X + a1

=

n∑
k=1

kakX
k−1 =

n−1∑
k=0

(k + 1)ak+1X
k

(4) Since the derivative of a polynomial is again a polynomial, p is infinitely
differentiable on all of R,

(5) Define the degree n+ 1 polynomial:

P (X) :=
an
n+ 1

Xn+1 +
an−1
n

Xn + · · ·+ a1
2
X2 + a0X

=

n+1∑
k=1

ak−1
k

Xk =

n∑
k=0

ak
k + 1

Xk+1

Then:
(a) P (X) is an antiderivative of p(X), i.e.,

d

dx
P (X) = p(X),

(b) the indefinite integral of p(X) is∫
p(X) dX = P (X) + C,

(c) the definite integral of p(X) is∫ b

a

p(X) dX = P (b)− P (a),

for every a, b ∈ R.

The following is an important theoretical tool for studying polynomials:

Fundamental Theorem of (Complex) Algebra A.1.2. Suppose n ≥ 1. Then
for every polynomial

p(X) = anX
n + an−1X

n − 1 + · · ·+ a1X + a0

of degree n, there exists complex numbers α1, . . . , αn ∈ C such that

p(X) = an(X − α1)(X − α2) · · · (X − αn).
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The numbers α1, . . . , αn in A.1.2 need not be distinct. One (very minor) drawback
of A.1.2 is that some of the roots might be complex numbers which are not real
numbers. Since we usually want to stick to working entirely with real numbers, the
following variant will be useful for us:

Fundamental Theorem of (Real) Algebra A.1.3. Suppose n ≥ 1. Then for
every polynomial

p(X) = anX
n + an−1X

n − 1 + · · ·+ a1X + a0

of degree n, there exists r, s ∈ N with r + 2s = n, and real numbers

α1, . . . , αr, β1, . . . , βs, γ1, . . . , γs ∈ R

such that:

(1) p can be factored into linear and quadratic factors

p(X) = an (X − α1) · · · (X − αr)︸ ︷︷ ︸
linear factors

(X2 + β1X + γ1) · · · (X2 + βsX + γs)︸ ︷︷ ︸
quadratic factors

,

and
(2) for each i = 1, . . . , s, we have β2

i − 4γi < 0, i.e., the quadratic factor
X2 + βiX + γi does not have real roots.

Theorem A.1.3 is an easy consequence of Theorem A.1.2 since complex roots of
polynomials occur in conjugate pairs. Combining these conjugate pairs together is
what give rise to the quadratic factors.

When dealing with quadratic polynomials with no real roots, the following trick is
essential:

Completing the Square A.1.4. Suppose a, b, c ∈ R are arbitrary such that a 6= 0.
Then

aX2 + bX + c = a

(
X +

b

2a

)2

+ c− b2

4a
= a

[(
X +

b

2a

)2

+
4ac− b2

4a2

]
If the discriminant b2 − 4ac < 0 is negative, then the constant (4ac − b2)/4a2 > 0
is positive.

A.2. Rational functions

A rational function (in the single variable X) is an expression of the form

r(X) =
amX

m + am−1X
m−1 + · · ·+ a1X + a0

bnXn + bn−1Xn−1 + · · ·+ b1X + b0
(where ai, bj ∈ R)

i.e., a rational function is a quotient

r(X) =
p(X)

q(X)

of polynomials, where p(X) = amX
m + · · ·+ a0 and q(X) = bnX

n + · · ·+ b0.

Recall that given two rational functions r0(X) = p0(X)/q0(X) and r1(X) =
p1(X)/q1(X), we can form their sum:

(r0 + r1)(X) :=
p0(X)q1(X) + p1(X)q0(X)

q0(X)q1(X)
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and their product:

(r0 · r1)(X) :=
p0(X)p1(X)

q0(X)q1(X)

Just as with polynomials, we naturally construe a rational function as a real-valued
function. Since the denominator of a fraction is never allowed to be zero, the domain
of r(X) = p(X)/q(X) is:

domain(r) :=
{
α ∈ R : q(α) 6= 0

}
⊆ R

Then we define the function r : domain(r)→ R by declaring for α ∈ R:

r(α) :=
p(α)

q(α)

Warning A.2.1. In general the domain of a rational function might exclude so-
called removable singularities. For example, consider the following two rational
functions:

r0(X) :=
(X + 1)(X + 2)

(X + 1)(X + 3)
and r1(X) :=

X + 2

X + 3

Then as real-valued functions, we have

domain(r0) = R \ {−1,−3} and domain(r1) = R \ {−3}
i.e., r0 is defined everywhere except −1 whereas r1 is defined everywhere except
−3. However, for every α ∈ R \ {−1,−3}, we have r0(α) = r1(α). In other words,
r0 and r1 are essentially the same real-valued function except that r1 is defined
at one more point than r0 is. In some sense, the fact that r0 does not have −1
in its domain is an artificial obstacle. It is due to the factor x + 1 occurring in
both the numerator and denominator. Since this has no effect on the value of the
function (since it contributes multiplication by 1), we can just cancel these factors
out and gain an extra point where the function is defined. In practice, when working
with rational functions, you always want to make sure that the numerator and the
denominator have no common factors so that you can work with the largest possible
“true” domain of the rational function.

In the rest of this section, we will ignore the issue of removable singularities. After
polynomials, rational functions are the second best-behaved family of functions
which show up in calculus:

Fact A.2.2. Suppose

r(X) =
p(X)

q(X)

is a rational function with domain D := domain(r). Then the following facts are
true about r(X) as a function r : D → R:

(1) r is continuous on all of D. In particular, for every α ∈ D:

lim
x→α

r(x) = r(α)

(2) r is differentiable on all of D with derivative

dr

dX
(X) =

q(X) dpdX (X)− p(X) dqdX (X)(
q(X)

)2
which is also a rational function with domain D.

(3) It follows that r(X) is infinitely differentiable on D.
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Integration of rational functions is a little bit more complicated and requires so-
called partial fraction decomposition. First, some terminology:

Definition A.2.3. Suppose r(X) = p(X)/q(X) is a rational function. We say that
r(X) is a proper rational function if deg p < deg q. Otherwise, we say that r(X)
is an improper rational function.

We have two versions of partial fraction decomposition, depending on whether every
factor of the denominator is linear or not:

Partial Fraction Decomposition A.2.4 (Complex Case). Suppose

r(X) =
p(X)

q(X)

is a proper rational function with deg q = n. Then:

(1) By Theorem A.1.2 there exists a nonzero real number a ∈ R, distinct
complex numbers α1, . . . , αr ∈ C, and positive integers n1, . . . , nr ∈ N
such that
(a) n1 + · · ·+ nr = n, and
(b) q(X) = a(X − α1)n1 · · · (X − αr)nr

(2) there exists a family of complex numbers (Ai,j)1≤i≤r,1≤j≤ni
such that

r(X) =
p(X)

q(X)
=

r∑
i=1

ni∑
j=1

Ai,j
(X − αi)j

You should use A.2.4 any time every root of q(X) is real, or if you want to work
with complex numbers. If not every root of q(X) is real and you want to avoid
using complex numbers, then you should use the following:

Partial Fraction Decomposition A.2.5 (Real Case). Suppose

r(X) =
p(X)

q(X)

is a proper rational function with deg q = n. Then:

(1) By Theorem A.1.3 there exists r, s ∈ N such that r + 2s = n, a nonzero
real numbers a ∈ R, distinct real numbers α1, . . . , αt ∈ R, positive integers
n1, . . . , nt, distinct pairs of real numbers (β1, γ1), . . . , (βu, γu) ∈ R2 and
positive integers n′1, . . . , n

′
u such that:

(a) n1 + · · ·+ nt = r,
(b) n′1 + · · ·+ n′u = s,
(c) the denominator factors as:

q(X) = a(X − α1)n1 · · · (X − αr)nr (X2 + β1X + γ1)n
′
1 · · · (X2 + βuX + γu)n

′
u

(d) for every i = 1, . . . , u, we have β2
i −4γi < 0, i.e., the quadratic factor

X2 + βiX + γi does not have real roots.
(2) There exists families of real numbers (Ai,j)1≤i≤r,1≤j≤ni

, (Bi,j)1≤i≤s,1≤j≤n′
i
,

(Ci,j)1≤i≤s,1≤j≤n′
i

such that

r(X) =
p(X)

q(X)
=

r∑
i=1

ni∑
j=1

Ai,j
(X − αi)j

+

s∑
i=1

n′
i∑

j=1

Bi,jX + Ci,j
(X2 + βiX + γi)j
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A.3. Algebraic functions

A.4. The exponential function

A.5. The logarithm

A.6. Power functions

A.7. Trigonometric functions

A.8. Inverse trigonometric functions
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