
Lecture notes for Math61: Introduction to

Discrete Structures

Last revised March 10, 2020

Allen Gehret

Author address:

Department of Mathematics, University of California, Los Ange-
les, Los Angeles, CA 90095

E-mail address: allen@math.ucla.edu

Contents

Introduction vii
Conventions and notation viii
Acknowledgements viii

Chapter 1. Propositional Logic, Sets, and Induction 1
1.1. Propositional logic 1
1.2. Sets and set constructions 4
1.3. Familiar number systems and some basic features 11
1.4. The well-ordering principle and induction 15
1.5. Exercises 21

Chapter 2. Relations 27
2.1. Predicates and quantifiers 27
2.2. Relations 30
2.3. Partial and total order relations 31
2.4. The divides relation 33
2.5. Equivalence relations and partitions 36
2.6. The mod n congruence (equivalence) relation 39
2.7. More abstract nonsense 40
2.8. Exercises 41

Chapter 3. Functions 45
3.1. Functions 45
3.2. Three special types of functions 47
3.3. The mod n function and the greatest common divisor function 51
3.4. The Euclidean Algorithm 54
3.5. Exercises 57

Chapter 4. Counting 61
4.1. Basic counting principles 61
4.2. Permutations and combinations 64
4.3. Exercises 68

Chapter 5. Sequences 71
5.1. Sequences and recurrence relations 71
5.2. Solving recurrence relations I: first-order linear (in)homogeneous

recurrence relations 73
5.3. Solving recurrence relations II: second-order linear homogeneous

recurrence relations 74
5.4. Exercises 78

iii

iv CONTENTS

Chapter 6. Graphs and trees 81
6.1. Graphs 81
6.2. Trees and forests 89
6.3. Exercises 92

Chapter 7. A glimpse of infinity 93
7.1. Infinite sets and cardinality 93
7.2. Cantor’s Theorem on dense linear orders 95
7.3. Exercises 95

Appendix A. Appendix 97
A.1. The natural numbers and Peano arithmetic 97
A.2. The (ordered) ring of integers 99
A.3. The (ordered) field of rational numbers 103
A.4. The (ordered) field of real numbers 103
A.5. The field of complex numbers 103
A.6. Exercises 103

Bibliography 105

Index 107

Abstract

The goal of this class is to develop a basic level of mathematical literacy through
the study of common structures and theories which often arise in mathematics and
computer science.

I recommend you refer to these notes for learning the mathematical content
of the course, and refer to the textbook for alternative explanations, examples,
pictures, and additional exercises.

Note: these lecture notes are subject to revision, so the numbering of Lemmas,
Theorems, etc. may change throughout the course and I do not recommend you
print out too many pages beyond the section where we are in lecture. Any and all
questions, comments, and corrections are enthusiastically welcome!

Last revised March 10, 2020.
2010 Mathematics Subject Classification. Primary .
The author is supported by the National Science Foundation under Award No. 1703709.

v

List of Figures

1.1 Venn diagram of the union A ∪B of the sets A and B 6

1.2 Venn diagram of the intersection A ∩B of the sets A and B 7

1.3 Venn diagram of the difference A \B of the sets A and B 7

1.4 Venn diagram of the complement A of A in the universal set U 8

1.5 Pascal’s Triangle: Table of binomial coefficients
(
n
k

)
14

1.6 Demonstration of Pascal’s Rule 15

1.7 A formal proof that (P → Q) ∧ (Q→ R) ∧ P =⇒ R. 22

1.8 The inference rule of Modus Ponens, written in standard form. 22

2.1 Arrow diagram from X to Y illustrating the relation R on X × Y 30

2.2 Digraph representing the relation R 31

2.3 Partial digraph of the ⊆ relation on P
(
{0, 1, 2, 3}

)
(with self-loops and

transitive arrows omitted) 32

2.4 Partial digraph of the ≤ relation on N (with self-loops omitted) 33

2.5 Partial digraph of the divides relation | on N (with self-loops and transitive
arrows omitted) 34

2.6 Digraph of the equivalence relation E on X 37

2.7 Partition X/E of X 38

2.8 Partition Z/(mod 5) = {[0], [1], [2], [3], [4]} of Z into equivalence classes 40

3.1 A bijective (i.e., an injective and surjective) function 48

3.2 A surjective function that is not bijective 48

3.3 An injective function that is not surjective 49

3.4 A function that is neither injective nor surjective 49

6.1 A graph with vertex set V = {1, 2, 3, 4, 5, 6, 7, 8, 9} and edges E ={
{1, 2}, {2, 3}, {2, 5}, {4, 5}, {5, 6}, {8, 9}

}
81

6.2 The complete graph K4 with vertex set V = {1, 2, 3, 4} 82

6.3 An example of a bipartite graph with partition V = V1 ∪ V2 83

6.4 The complete bipartite graph K2,3 83

6.5 The Königsberg Graph 85

6.6 An illustration of the Boundary-Crossing Lemma 86

6.7 The proof that V (P) = V 88

vii

viii LIST OF FIGURES

6.8 The proof that V (P) = V 89

6.9 A forest with four trees 90

A.1 The natural numbers N and the successor function S : N→ N 97

Introduction

We begin with a list of a few cardinal rules which you should always obey at all
times if you want to be successful in this class and in future math classes.

(I) Read.

This rule is best explained by the following quote from Paul Halmos [1], where he
is discussing how one is supposed to read mathematics:

Don’t just read it; fight it! Ask your own question, look for
your own examples, discover your own proofs. Is the hypothesis
necessary? Is the converse true? What happens in the classical
special case? What about the degenerate cases? Where does the
proof use the hypothesis?

Another way to think about reading is as follows: in real life when you read a novel
(e.g., Harry Potter), it probably takes only a few minutes to read a single page,
depending on how fast or slow a reader you are. In mathematics, it often takes
a few minutes to read a single sentence. This is because you should constantly
be employing the above advice from Halmos. Doing this might seem tedious at
first, but it is the only way you can truly understand the material (and it becomes
easier with practice!). If you don’t do this, then you will only achieve a superficial
understanding of the material and have to rely more on memorization.

(II) Write in complete sentences.

A mathematical proof is a form of communication where you are convincing a
very skeptical (but otherwise mathematically literate) person that your argument
is correct and the statement you claim is true is actually true. A proof is not a
mess of scribbles and arrows and formulas on a page but instead is a reasoned
and coherent argument that another human being can understand (and any two
different human beings will understand in the same exact way). One easy way to
force yourself to write a readable proof is to write in complete sentences. In this
case, many times the verbs of the sentence might be equals signs or inequalities,
and sometimes the nouns of the sentence will be mathematical objects or formulas.
A more compelling way to say this is the following quote inspired by Quintilian
(Institutio Oratoria, Book VIII, Chapter II, 24 from 95 AD.):

Say what you mean. Mean what you say. Aim to make your work
impossible to be misunderstood, rather than merely possible to
be understood.

(III) Always work from the definition.

About a third of the content of the course is learning important definitions. De-
pending on who you ask, in mathematics the definitions are almost as important as

ix

x INTRODUCTION

the theorems themselves. Moreover, the definition of a particular word is the only
thing that gives that word meaning, so you must always use the definition.

(IV) Only write true statements.

If you are writing something that is supposed to be a true statement, then it better
be a true statement and you better know why it is a true statement. Really the
only time you would ever knowingly write down something that is false is if you are
doing a proof by contradiction; but even in this case, the introduction of the false
statement is still in the service of justifying a true statement.

Conventions and notation

In this class the natural numbers is the set N = {0, 1, 2, 3, . . .} of nonnegative
integers. In particular, we will consider 0 to be a natural number. Note: in the
textbook the set N is denoted by Znonneg, but we will not use this notation.

Unless stated otherwise, the following convention will be in force throughout the
entire course:

Global Convention 0.0.1. Throughout, m and n range over N = {0, 1, 2, . . . }.

When we write “X := Y ”, we mean that the object X does not have any meaning
or definition yet, and we are defining X to be the same thing as Y . When we write
“X = Y ” we typically mean that the objects X and Y both already are defined and
are the same. In other words, when writing “X := Y ” we are performing an action
(giving meaning to X) and when we write “X = Y ” we are making an assertion of
sameness.

In making definitions, we will often use the word “if” in the form “We say that . . .
if . . .” or “If . . ., then we say that . . .”. When the word “if” is used in this way
in definitions, it has the meaning of “if and only if” (but only in definitions!). For
example:

Definition 0.0.2. Given integer d, n ∈ Z, we say that d divides n if there exists
an integer k ∈ Z such that n = dk.

This convention is followed in accordance with mathematical tradition. Also, we
shall often write “iff” or “⇔” to abbreviate “if and only if.”

Acknowledgements

I am grateful to Julian Ziegler Hunts for producing many of the figures in these
lecture notes and to Ben Spitz for suggesting various exercises.

CHAPTER 1

Propositional Logic, Sets, and Induction

1.1. Propositional logic

Definition 1.1.1. A proposition is a sentence that is either true or false, but
not both. In other words, a proposition is a statement for which it makes sense to
assign a True/False value (of course, whether a proposition is actually true or false
depends on context, definitions, interpretation, etc.).

Example 1.1.2. The following sentences are propositions:

(1) 2 + 2 = 5.
(2) Winter is coming.
(3) I am the one who knocks.
(4) We were on a break.

The following sentences are not propositions:

(5) Should I stay or should I go now?
(6) May the force be with you.
(7) Is it too late now to say sorry?
(8) Everybody clap your hands!

In mathematics, and in language in general, more complicated propositions are
built from simpler propositions by (logical) operators (and, or, not and implies).

Definition 1.1.3. Given propositions P and Q, the conjunction of P and Q
(notation: P ∧ Q) is the proposition “P and Q”. The truth value of the conjunc-
tion P ∧ Q is determined by the individual truth values of P and Q separately in
accordance with the following truth table:

P Q P ∧Q
T T T
T F F
F T F
F F F

In other words, P ∧Q is true precisely when both P and Q are true.

Definition 1.1.4. Given propositions P and Q, the disjunction of P and Q
(notation: P ∨ Q) is the proposition “P or Q”. The truth table for P ∨ Q is as
follows:

P Q P ∨Q
T T T
T F T
F T T
F F F

In other words, P ∨Q is true precisely when at least one of P or Q is true.

1

2 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

Remark 1.1.5. In common language, there are two versions of “or”. The version
defined above is the so-called inclusive or because it includes the case when both
P and Q are true. The other version is the exclusive or (notation: P xor Q) which
excludes the case when both P and Q are true:

P Q P xor Q
T T F
T F T
F T T
F F F

In mathematics the exclusive or is rarely used and when people say “or” they almost
always mean P ∨ Q. In computer science both regularly get used. In this class,
“or” will always mean “P ∨ Q” and never “P xor Q”, so for us there will never
be any ambiguity when we say “or”. However in common everyday language, it is
possible that this ambiguity might arise and it is good to be aware of it.

Definition 1.1.6. Given a proposition P , the negation of P (notation: ¬P) is
the proposition “not P”. Its truth table is as follows:

P ¬P
T F
F T

In other words, ¬P has the opposite truth value from P .

Definition 1.1.7. Given propositions P and Q, the proposition “if P , then Q”
(notation: P → Q) is called the conditional proposition with hypothesis (or
antecedent) P and conclusion (or consequent) Q. Its truth table is as follows:

P Q P → Q
T T T
T F F
F T T
F F T

In other words, the only time P → Q is false is when the hypothesis P is true
and the conclusion Q is false. One slightly counterintuitive feature of conditional
propositions is that any time P is false, then P → Q is automatically true, regardless
of Q! Whenever we encounter a conditional proposition P → Q which is true by
virtue of P being false, then we say that P → Q is vacuously true (or true by
default).

Definition 1.1.8. Given propositions P and Q, the proposition “P if and only if
Q” (notation: P ↔ Q) is called a biconditional proposition. Its truth table is
as follows:

P Q P ↔ Q
T T T
T F F
F T F
F F T

In other words, P ↔ Q is true precisely when P and Q have the same truth values.
In writing, we will often abbreviate “if and only if” with the single word “iff”.

1.1. PROPOSITIONAL LOGIC 3

Convention 1.1.9. For more complicated propositions we technically need to in-
troduce parentheses to ensure unique readability. However, we wish to avoid a
proliferation of parentheses in our propositions as much as possible. Therefore, we
introduce the following convention of operator precedence (or operator binding
strength) akin to “order of operations” for basic arithmetic. We agree that, in the
absence of parentheses, we evaluate the operators in the following order of priority:

(1st) ¬
(2nd) ∧
(3rd) ∨
(4th) →
(5th) ↔

For example, instead of writing(
(¬P) ∧Q

)
∨ (¬R)

we can just write
¬P ∧Q ∨ ¬R.

In general we will not go too overboard with applying these conventions, since
sometimes redundant parentheses can still assist in readability. For example, we
might choose to write the above proposition as

(¬P ∧Q) ∨ ¬R,
so that it is easier for the eye to see the grouping.

Since we will be in the business of reading/writing propositions and analyzing their
truth values, one fundamental issue we need to address is the following: how can
we tell when two propositions are actually saying the same thing? This is taken
care of by the notion of logical equivalence:

Definition 1.1.10. Suppose we are given propositions P and Q which are both
built from simpler propositions p1, . . . , pn. Then we say that P and Q are logi-
cally equivalent (notation: P ≡ Q) if for all possible truth values for p1, . . . , pn,
the propositions P and Q have the same resulting truth value. In other words,
P ≡ Q means that in a truth table which contains both P and Q, the columns
corresponding to P and Q are identical.

Example 1.1.11. Given propositions p1 and p2, define

P := p1 → p2 and Q := ¬p1 ∨ p2
(recall that ¬p1∨p2 is shorthand for (¬p1)∨p2 and not ¬(p1∨p2), by our conventions
for operator precedence). We claim that P ≡ Q.

Proof. To verify that P ≡ Q, we need to set up a truth table which contains both
P and Q, and then observe that they have identical columns of truth values:

p1 p2 ¬p1 P := p1 → p2 Q := ¬p1 ∨ p2
T T F T T
T F F F F
F T T T T
F F T T T

Since we observe that the columns for P and Q are the same (TFTT), we conclude
that P ≡ Q. �

4 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

As the previous example shows, there is nothing difficult involved with proving that
two propositions are equivalent. Indeed, it is a completely mechanical process of
filling out a truth table in accordance with the rules for the various logical operators.

Remark 1.1.12. Logical equivalence is a so-called equivalence relation on the
collection of propositions (see Definition 2.5.1) in the sense that given propositions
P , Q, and R, the following always hold:

(1) P ≡ P ,
(2) if P ≡ Q, then Q ≡ P , and
(3) if P ≡ Q and Q ≡ R, then P ≡ R.

Furthermore, any time you know that two propositions are logically equivalent,
then you are free to treat them as if they are exactly the same when doing proofs.

Sometimes we will encounter propositions which are always true and also proposi-
tions which are always false. These have special names:

Definition 1.1.13. A tautology (or tautological statement) is a proposition
which is always true, for all possible truth assignments. In other words, a tautology
is a proposition whose column in a truth table has all T ’s.

A contradiction (or contradictory statement) is a proposition which is
always false, for all possible truth assignments (i.e., a contradiction has all F ’s in
its column in a truth table).

We now record some common laws for propositional logic. The proofs of each of
the laws follows by considering truth tables as in Example 1.1.11.

Boolean Algebra of Propositional Logic 1.1.14. Given propositions P , Q, and
R, a tautology T , and a contradiction F , the following logical equivalences always
hold:

(1) (Associative laws) (P ∨Q)∨R ≡ P ∨(Q∨R) and (P ∧Q)∧R ≡ P ∧(Q∧R)
(2) (Commutative laws) P ∨Q ≡ Q ∨ P and P ∧Q ≡ Q ∧ P
(3) (Distributive laws) P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R) and P ∨ (Q ∧R) ≡

(P ∨Q) ∧ (P ∨R)
(4) (Identity laws) P ∨ F ≡ P and P ∧ T ≡ P
(5) (Negation laws) P ∨ ¬P ≡ T and P ∧ ¬P ≡ F
(6) (Idempotent laws) P ∨ P ≡ P and P ∧ P ≡ P
(7) (Bound laws) P ∨ T ≡ T and P ∧ F ≡ F
(8) (Absorption laws) P ∨ (P ∧Q) ≡ P and P ∧ (P ∨Q) ≡ P
(9) (Double negation law) ¬(¬P) ≡ P

(10) (T/F laws) ¬F ≡ T and ¬T ≡ F
(11) (De Morgan’s laws) ¬(P ∨Q) ≡ ¬P ∧ ¬Q and ¬(P ∧Q) ≡ ¬P ∨ ¬Q

1.2. Sets and set constructions

A set is a collection of mathematical objects. Mathematical objects can be almost
anything: numbers, other sets, functions, vectors, relations, matrices, graphs etc.
For instance:

{2, 5, 7},
{

3, 5, {8, 9}
}
, and {1, 3, 5, 7, . . .}

are all sets. A member of a set is called is called an element of the set. The
membership relation is denoted with the symbol “∈”, for instance, we write “2 ∈
{2, 5, 7}” (pronounced “2 is an element of the set {2, 5, 7}”) to denote that the
number 2 is a member of the set {2, 5, 7}. There are several ways to describe a set:

1.2. SETS AND SET CONSTRUCTIONS 5

(1) by explicitly listing the elements in that set, i.e., the set {2, 5, 7} is a set
with three elements, the number 2, the number 5, and the number 7.

(2) by specifying a “membership requirement” that determines precisely which
objects are in that set. For instance:{

n ∈ Z : n is positive and odd︸ ︷︷ ︸
membership requirement

}
is the set of all odd positive integers. The above set is pronounced “the set
of all integers n such that n is positive and odd”. The colon “:” is usually
pronounced “such that”, and the condition to the right of the colon is the
membership requirement. Defining a set in this way is sometimes referred
to as using set-builder notation since you are describing how the set
is built (in the above example, the set is built by taking all integers and
keeping the ones that are positive and odd), instead of explicitly specifying
which elements are in the set. We could also choose to describe the set
above by writing

{1, 3, 5, 7, . . .},
although this might be a less ideal description because it requires the
reader to guess or infer the meaning of “. . .”.

The following is a very famous set:

Definition 1.2.1. The emptyset is the set which contains no elements (hence the
name). It is denoted by either ∅ or {}.

The following are some of the main relationships two sets can have:

Definition 1.2.2. Suppose A and B are sets. We say that

(1) A is a subset of B (notation: A ⊆ B) if every element of A is also an
element of B, i.e.,
• For every x, if x ∈ A, then x ∈ B

(2) A is equal to B (notation: A = B) if A and B have exactly the same
elements, i.e.,
• For every x, x ∈ A if and only if x ∈ B

equivalently, A = B means the same thing as A ⊆ B and B ⊆ A
(3) A is a proper subset of B (notation: A (B) if A ⊆ B and A 6= B.

Note that for any set A, we automatically have ∅ ⊆ A.

We now discuss how one might go about proving statements of the form “A ⊆ B”
and “A = B” for sets A and B.

Question 1.2.3. Suppose you are in a situation where you are asked to prove
A ⊆ B for some sets A and B. What is the general strategy?

Answer. This depends on what the sets A and B actually are, but in general, you
take an arbitrary element x ∈ A and by some argument, conclude that x also has
to be an element of B, i.e., that x ∈ B. Here, “arbitrary” means that you are not
allowed to assume anything specific about the element x except that it belongs to
A. We give an example from linear algebra. �

Another answer. Another strategy is to do a proof by contradiction. To do this,
you first assume towards a contradiction that A 6⊆ B (i.e., it is not the case that

6 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

A ⊆ B). This means that there is at least one x ∈ A such that x 6∈ B. Given an x
like this, you then argue (using the specifics of whatever is assumed about A and
B) to get some contradiction. Once you get a contradiction, you can conclude that
it must actually be the case that A ⊆ B. �

Example 1.2.4. Prove that{
(a, b, c) ∈ R3 : a = 0 and b = 0

}
⊆
{

(a, b, c) ∈ R3 : a+ b = 0
}

Proof. Call the first set A and the second set B. We want to prove that A ⊆ B.
Let (a, b, c) ∈ A be arbitrary. This means that a = 0 and b = 0. We want to show
that (a, b, c) is an element of B. In order to be an element of B, it would have to be
true that a+b = 0. However, since a = 0 and b = 0, then we have a+b = 0+0 = 0.
Thus (a, b, c) satisfies the membership requirement for B so we can conclude that
(a, b, c) ∈ B. Since (a, b, c) was an arbitrary element of A, we can conclude that
A ⊆ B. �

INCORRECT proof. We want to show that A ⊆ B. Let (a, b, c) be an element
of A, for instance, (0, 0, 2). The vector (0, 0, 2) is also in B since a+ b = 0 + 0 = 0
for this vector. Thus A ⊆ B. [Here, the crime is that we showed that a single
specific vector from A is also in B. This does not constitute a proof that all vectors
from A are also elements of B.] �

Question 1.2.5. Suppose you are asked to prove that A = B where A and B
are sets (possibly with two different-seeming descriptions). How do you prove that
A = B?

Answer. This means you have to prove two separate things:

(1) prove A ⊆ B, and
(2) prove B ⊆ A.

So this breaks down to two different proofs, each one then reduces to answering
Question 1.2.3 for those particular sets. �

Definition 1.2.6. Given sets A and B, we define their union (notation: A ∪ B)
to be the set of all elements that are in either A or B, i.e.,

A ∪B := {x : x ∈ A or x ∈ B}.

A B

Figure 1.1: Venn diagram of the union A ∪B of the sets A and B

Definition 1.2.7. Given sets A and B, we define their intersection (notation:
A ∩B) to be the set of all elements they have in common, i.e.,

A ∩B := {x : x ∈ A and x ∈ B}.

1.2. SETS AND SET CONSTRUCTIONS 7

A B

Figure 1.2: Venn diagram of the intersection A ∩B of the sets A and B

Definition 1.2.8. Given sets A and B, we define their (set) difference (or rel-
ative complement) (notation: A \ B) to be the subset of A of all elements in A
that are not in B, i.e.,

A \B := {x : x ∈ A and x 6∈ B}.

A B

Figure 1.3: Venn diagram of the difference A \B of the sets A and B

Occasionally we will be in a mathematical situation where all relevant sets under
discussion are subsets of one large sets. For example:

(1) In probability, all events E are subsets of the sample space Ω
(2) In real analysis, all relevant sets at a given moment might be subsets of

the real numbers R
In such situations, it is convenient to work with a so-called universal set. A univer-
sal set (or universe) is a set U such that all sets under discussion are implicitly
assumed to be a subset of U . In such a situation, it makes sense to talk about the
complement of a set:

Definition 1.2.9. Suppose U is a universal set, and X ⊆ U . We define the
complement of X (notation: X) to be the subset of U consisting of all elements
which are not in X, i.e.,

X := U \X = {x ∈ U : x 6∈ X}.
Note that when we are working in a universal set, we can rewrite set difference in
terms of intersection and complement:

A \B = A ∩B
Warning: the operation of complement only makes sense when it is clear what the
universal set U is. Usually this will be explicitly told to you or easily inferred from

8 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

the context. In some contexts there is no universal set, in which case complements
don’t make sense (but relative complements still do).

U

A B

Figure 1.4: Venn diagram of the complement A of A in the universal set U

One very important invariant of a set is its size or cardinality (i.e., number of
elements). The notion of cardinality is actually quite subtle, but for finite sets the
following superficial definition is good enough for our current purposes:

Definition 1.2.10. Given a finite1 setX, we define the cardinality ofX (notation:
|X| or sometimes #X) to be the number of elements of X.

Example 1.2.11. |∅| = 0, |{∅}| = 1
∣∣{0, 1, 2, 3}∣∣ = 4, and

∣∣{0, 1, {2, 3}}∣∣ = 3.

Definition 1.2.12. Given a set X, we define the powerset of X (notation: P(X))
to be the set of all subsets of X:

P(X) := {A : A is a set and A ⊆ X}

Example 1.2.13. Suppose X = {0, 1, 2}. Then

P(X) =
{
{0, 1, 2}, {0, 1}, {0, 2}, {1, 2}, {0}, {1}, {2}, ∅

}
Note that |X| = 3 whereas

∣∣P(X)
∣∣ = 8 = 23.

Suppose we have elements a, b, c, d such that {a, b} = {c, d}. It is tempting in this
situation to conclude that “a = c and b = d”, but in general this is false. Indeed,
we have {1, 2} = {2, 1}, but 1 6= 2 and 2 6= 1. This is because elements of a set
are unordered. To get an ordered version of a two-element set we introduce the
so-called ordered pair construction.

Definition 1.2.14. Given objects a and b, we define their ordered pair to be the
object:

(a, b) :=
{
{a}, {a, b}

}
The righthand side of the definition might seem a little funny, but it guarantees the
following:

Ordered Pair Property 1.2.15. For every a, b, c, d,

(a, b) = (c, d) if and only if a = c and b = d.

Proof. This is Exercise 1.5.6. �

1See Definition 7.1.6 for the definition of a finite set.

1.2. SETS AND SET CONSTRUCTIONS 9

In practice, the Ordered Pair Property 1.2.15 is really the only feature of ordered
pairs that is ever relevant. You will almost never have to actually deal with the
definition “

{
{a}, {a, b}

}
”, except when it comes proving the Ordered Pair Property.

Definition 1.2.16. Given sets X and Y , we define the cartesian product (of X
and Y) (notation: X × Y) to be the following set:

X × Y :=
{

(x, y) : x ∈ X and y ∈ Y
}

Example 1.2.17. Suppose X = {0, 1} and Y = {a, b, c}. Then the cartesian
product of X and Y is

X × Y =
{

(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)
}
.

Note that |X| = 2, |Y | = 3, and |X × Y | = 2 · 3 = 6.

We conclude this section with the set-theoretic analogue of the identities in Boolean
Algebra for Proposition Logic .

Boolean Algebra of Sets 1.2.18. Given sets X, Y , and Z, and a universal set
U , the following set equalities always hold:

(1) (Associative laws) (X∪Y)∪Z = X∪(Y ∪Z) and (X∩Y)∩Z = X∩(Y ∩Z)
(2) (Commutative laws) X ∪ Y = Y ∪X and X ∩ Y = Y ∩X
(3) (Distributive laws) X ∩ (Y ∪Z) = (X ∩ Y)∪ (X ∩Z) and X ∪ (Y ∩Z) =

(X ∪ Y) ∩ (X ∪ Z)
(4) (Identity laws) X ∪ ∅ = X and X ∩ U = X
(5) (Complement laws) X ∪X = U and X ∩X = ∅
(6) (Idempotent laws) X ∪X = X and X ∩X = X
(7) (Bound laws) X ∪ U = U and X ∩ ∅ = ∅
(8) (Absorption laws) X ∪ (X ∩ Y) = X and X ∩ (X ∪ Y) = X

(9) (Double complement law) X = X

(10) (0/1 laws) ∅ = U and U = ∅
(11) (De Morgan’s laws) (X ∪ Y) = X ∩ Y and X ∩ Y = X ∪ Y

Proof. We will only give a proof for the first De Morgan’s law:

(X ∪ Y) = X ∩ Y .

This will also be an example of how to prove a universal statement. Recall from
the definition of two sets being equal (i.e., having exactly the same elements), the
statement we need to prove written out formally is:

∀x ∈ U(x ∈ (X ∪ Y)↔ x ∈ X ∩ Y),

10 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

i.e., we need to show the “iff” statement is true for every x ∈ U . Let x ∈ U be
arbitrary. We will prove this by a trail of equivalences and definition-unwinding:

x ∈ (X ∪ Y) ⇔ x 6∈ X ∪ Y (by def. of complement)

⇔ ¬(x ∈ X ∪ Y) (by def. of 6∈)

⇔ ¬(x ∈ X︸ ︷︷ ︸
P

∨ x ∈ Y︸ ︷︷ ︸
Q

) (by def. of union ∪)

⇔ ¬(x ∈ X︸ ︷︷ ︸
P

) ∧ ¬(x ∈ Y︸ ︷︷ ︸
Q

)

(by De Morgan’s law for Propositions: ¬(P ∨Q) ≡ ¬P ∧ ¬Q))

⇔ x 6∈ X ∧ x 6∈ Y
⇔ x ∈ X ∧ x ∈ Y
⇔ x ∈ X ∩ Y .

Comparing the first and last statement, we see that x ∈ (X ∪ Y) iff x ∈ X ∩ Y .
Since x ∈ U was arbitrary (i.e., we didn’t assume anything special about x beyond
the assumption x ∈ U), we conclude that this is true for all x ∈ U . [Note: In
Answer to Question 1.2.5 we said you need to prove two set containments A ⊆ B
and B ⊆ A separately to conclude A = B. The proof here is an exception because
every step along the way was easily reversible, but in general that might not be the
case.]

The proofs for the rest of the laws work exactly the same way: unwinding
definitions, writing everything out fully in terms of logical operators, and applying
the appropriate Propositional Logic equivalence. As an exercise, you are encouraged
to prove the other laws. �

Remark 1.2.19. (⇔ vs. ↔) In the above proof, ⇔ is an abbreviation for “if and
only if”. So when we write “x ∈ X ∧ x ∈ Y ⇔ x ∈ X ∩ Y ”, this is just shorthand
for a longer English sentence asserting that whenever x makes the proposition on
the lefthand side true, it also makes the proposition on the righthand side true,
and vice-versa (in this case, because of the definition of intersection ∩). There is
a subtle distinction between this usage of “if and only if” and the logical operator
↔. Namely, when writing “if and only if” in a proof, we are actually asserting as
the prover that two things are equivalent. The symbol ↔ does not do this; given
propositions P and Q (which each could either be true or false), the symbol ↔
allows us to build a new proposition P ↔ Q (which could also be either true or
false). In other words,↔ is part of the formal language for writing propositions (it’s
a symbol which combines two propositions, equipped with a rule determining the
overall truth value given the truth values of the individual propositions), whereas
⇔ is part of the meta-language of English in which we are expressing our argument
in.

We conclude this section with a few more constructions and definitions we will need
later:

1.3. FAMILIAR NUMBER SYSTEMS AND SOME BASIC FEATURES 11

Definition 1.2.20. We define ordered triples, ordered quadruples, and more
generally ordered n-tuples recursively as follows:

(a1, a2, a3) :=
(
(a1, a2), a3

)
(a1, a2, a3, a4) :=

(
(a1, a2, a3), a4

)
...

(a1, . . . , an+1) :=
(
(a1, . . . , an), an+1

)
for any objects a1, a2, a3, It follows that two ordered n-tuples (a1, . . . , an) and
(b1, . . . , bn) are equal iff ai = bi for each i ∈ {1, . . . , n}. Next, given sets A1, . . . , An,
we define their n-fold cartesian product to be the set

A1 × · · · ×An :=
{

(a1, . . . , an) : ai ∈ Ai for each i = 1, . . . , n
}
.

Definition 1.2.21. (1) We say that two sets X and Y are disjoint if X∩Y =
∅.

(2) Given a collection2 of sets S. We say that the collection of sets in S is
pairwise disjoint if for every X,Y ∈ S, if X 6= Y , then X ∩ Y = ∅.

(3) Given a set X, we say that a collection S of subsets of X (so S ⊆ P(X))
is a partition of X if
(a) for every Y ∈ S, Y 6= ∅,
(b) for every x ∈ X, there is exactly one Y ∈ S such that x ∈ Y .
It follows that a partition of X is pairwise disjoint.

1.3. Familiar number systems and some basic features

In this section we review some familiar number systems and some of their basic
features. In lieu of giving precise and formal definitions we opt instead for the
following casual discussion. We relegate a more thorough discussion to Appendix A.

You have probably encountered the following number systems before:

N = {0, 1, 2, 3, . . .} (the natural numbers)

Z = {0, 1,−1, 2,−2, . . .} (the integers)

Q = {k/` : k, ` ∈ Z, ` 6= 0} = {all “fractions”} (the rational numbers)

and finally:

R (the set of all real numbers)

Furthermore, we know that these number systems contain one another:

N ⊆ Z ⊆ Q ⊆ R
i.e., every natural number is an integer, every integer is a rational number, and
every rational number is a real number.

The development of these number systems somewhat reflects the stages in life you
learned about them. For example:

(1) As a young child you probably first learned about the positive natural
numbers (or “counting numbers”), i.e., 1, 2, 3, 4, 5, . . . You also slowly
learned how to add and multiply these numbers.

2Collection is a synonym for set. Often when discussing a set consisting of other sets, we will
instead say collection of sets or family of sets.

12 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

(2) Later on in elementary school you learn about the numbers “0” as well
as the negatives of the natural numbers −1,−2,−3, . . . You also learned
how to add and multiply these numbers.

(3) At some point in elementary school you also start to learn about fractions
1/2, 2/3, 3/4, . . . as well as how to add and multiply these numbers as well.

(4) Finally, later in middle school and high school, you start learning about

“real numbers” which aren’t fractions, like
√

2, π, and e. You were proba-
bly given a vague (and possibly incorrect) description of “what is the set
of real numbers R” suitable enough to learn how to do the computations
in calculus. However, you probably didn’t spend any time discussing what
R “really is”, as a mathematical object.

In this class we will assume familiarity with the basic properties of R, if you want
to really understand R you should take Math131a.

When it comes to arithmetic involving numbers, we will be interested in adding an
arbitrary number of numbers together. The best way to make this precise is with
summation notation:

Notation 1.3.1. Suppose M,N ∈ Z are integers such that M ≤ N and suppose
we are given numbers aM , aM+1, . . . , aN indexed by all integers between M and N .
Then we denote the finite summation of the integers aM , . . . , aN by

N∑
k=M

ak := aM + aM+1 + · · ·+ aN .

The “k” in the expression
∑N
k=M ak is referred to as the index of summation

and it is a dummy variable, i.e., a variable which only exists and takes value
inside the summation. This is analogous to the control variable of a for-loop in
a computer program. Accordingly, the index of summation can be changed to any
other variable which is not being used and the meaning will stay the same, i.e.,

N∑
k=M

ak =

N∑
`=M

a` =

N∑
j=M

aj = · · ·

The following is basic and obvious, but very useful for avoiding so-called off-by-one
errors3 in mathematics and computer science:

Remark 1.3.2 (Number of elements in a list). Suppose M,N ∈ Z are integers
such that M ≤ N . Then there are N −M + 1 integers in the list M,M + 1, . . . , N .
Put another way,

N∑
k=M

1 = N −M + 1.

A handy pneumonic device for remembering this is as follows: given a list

aM , aM+1, . . . , aN

with first index M and last index N , then the number of terms in the list is

Last (index) minus first (index) plus one.

The following two summation formulas are very useful in analysis and arithmetic.

3See https://en.wikipedia.org/wiki/Off-by-one_error

https://en.wikipedia.org/wiki/Off-by-one_error

1.3. FAMILIAR NUMBER SYSTEMS AND SOME BASIC FEATURES 13

Difference of Powers Formula 1.3.3. For any n ∈ N such that n ≥ 2 and
a, b ∈ R,

an − bn = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1)

= (a− b)
n−1∑
k=0

an−1−kbk

Proof. Start with the summation version of the righthand side:

(a− b)
n−1∑
k=0

an−1−kbk

distribute the (a− b):

= a

(
n−1∑
k=0

an−1−kbk

)
− b

(
n−1∑
k=0

an−1−kbk

)
=

n−1∑
k=0

an−kbk −
n−1∑
k=0

an−1−kbk+1

Pull out the first term from the first sum and the last term from the second sum:

= an +

(
n−1∑
k=1

an−kbk −
n−2∑
k=0

an−1−kbk+1

)
− bn

Reindex the second sum so that it starts at k = 1:

= an +

(
n−1∑
k=1

an−kbk −
n−1∑
k=1

an−kbk

)
− bn = an − bn,

which is the desired lefthand side of the formula. �

Geometric Sum Formula 1.3.4. For any n ∈ N and r ∈ R such that r 6= 1,
n∑
k=0

rk = 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
.

Proof. Setting a = 1 and b = r in the Difference of Powers Formula 1.3.3 gives
for n+ 1:

1− rn+1 = (1− r)(1 + r + · · ·+ rn).

The Geometric Sum Formula follows from dividing both sides by 1 − r, which is
permitted since 1− r 6= 0. �

Factorials and binomial coefficients also play an important role in analysis and
arithmetic:

Definition 1.3.5. For nonnegative integers n we define the factorial n! of n re-
cursively by setting

0! := 1 and n! := n · (n− 1)! if n ≥ 1.

In other words, for n ≥ 1 we have

n! = n · (n− 1) · · · 2 · 1.
Given nonnegative integers n and k such that 0 ≤ k ≤ n, we define the binomial
coefficient

(
n
k

)
via the formula(

n

k

)
:=

n!

k!(n− k)!
.

14 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

When the binomial coefficients are displayed as a triangular array as in Figure 1.5
below, this is commonly referred to as Pascal’s Triangle. We chose to make our
triangle left-justified (to make it easier to see the corresponding n and k values),
but it is also common to display the triangle so that each line is centered above the
line below it (see Figure 6.7.1 in [2]).

(
n
k

)
k = 0 1 2 3 4 5 6 7 · · ·

n = 0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1
...

...
. . .

Figure 1.5: Pascal’s Triangle: Table of binomial coefficients
(
n
k

)

Factorials and binomial coefficients are fundamental in combinatorics, the field of
mathematics devoted to counting. In analysis they show up quite naturally in
many formulas and expansions (e.g., Binomial Theorem and Taylor expansions).
The following easy identity relates adjacent binomial coefficients:

Pascal’s Rule 1.3.6. For 1 ≤ k < n we have(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
.

Proof. Note that for 1 ≤ k < n we have(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1)!

k!(n− 1− k)!
+

(n− 1)!

(k − 1)!(n− k)!

= (n− 1)!

[
n− k

k!(n− k)!
+

k

k!(n− k)!

]
= (n− 1)!

n

k!(n− k)!

=
n!

k!(n− k)!

=

(
n

k

)
. �

1.4. THE WELL-ORDERING PRINCIPLE AND INDUCTION 15

In Figure 1.6 below, we demonstrate three instances of Pascal’s Rule. From top to
bottom they are: (

1

0

)
+

(
1

1

)
=

(
2

1

)
i.e., 1 + 1 = 2(

4

1

)
+

(
4

2

)
=

(
5

2

)
i.e., 4 + 6 = 10(

6

4

)
+

(
6

5

)
=

(
7

5

)
i.e., 15 + 6 = 21

(
n
k

)
k = 0 1 2 3 4 5 6 7 · · ·

n = 0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

...
...

. . .

+
=

+
=

+
=

Figure 1.6: Demonstration of Pascal’s Rule

1.4. The well-ordering principle and induction

Here is an important basic property about N which we will take for granted:

Well-Ordering Principle 1.4.1. Suppose S ⊆ N is such that S 6= ∅. Then S has
a least element, i.e., there is some a ∈ S such that for all b ∈ S, a ≤ b.

The following fundamental theorem is more commonly referred to as The Division
Algorithm:

Quotient-Remainder Theorem 1.4.2. Suppose d, n ∈ Z and d 6= 0. Then:

(1) (existence) there exists q, r ∈ Z such that

n = dq + r and 0 ≤ r < |d|
(2) (uniqueness) if q0, q1, r0, r1 ∈ Z are such that

(a) n = dq0 + r0 and 0 ≤ r0 < |d|, and
(b) n = dq1 + r1 and 0 ≤ r1 < |d|,

then q0 = q1 and r0 = r1.

16 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

Item (2) asserts that the q and r in (1) are unique, i.e., there are no other
different options for q and r that also work. We shall call q the quotient and r the
remainder resulting from dividing n by d.

Proof. We will prove two cases:
Case 1: (d > 0). Consider the following set of all candidate remainders:

R := {n− dq : q ∈ Z and n− dq ≥ 0} ⊆ N.

We claim that R 6= ∅. Consider the following integer:

q := −|n|
Then we see that

n−dq = n−d(−|n|) = n+d|n| ≥ n+ |n| ≥ 0 (using d > 0 in first inequality)

and so n− dq ∈ R (hence R is not empty).
By the Well-Ordering Principle 1.4.1, the set has a least element r0 = n−dq0 ∈

R for some q0 ∈ Z. We claim that 0 ≤ r0 < d. Assume towards a contradiction
that r0 ≥ d. In this case the natural number r1 := n− d(q0 + 1) is an even smaller
element of R than r0 is. Indeed, it is in R:

r1 = n− d(q0 + 1) = n− dq0 − d = r0 − d ≥ 0 (since r0 ≥ d)

and it is smaller than r0:

r1 − r0 = n− d(q0 + 1)− n− dq0 = −d < 0.

This contradicts the assumption that r0 = minR. Since we arrived at a contra-
diction, we conclude that 0 ≤ r0 < d. This finishes the proof of Existence for the
case.

For Uniqueness, suppose we have q0, q1 ∈ Z and r0, r1 ∈ N such that

n = dq0 + r0 = dq1 + r1 and 0 ≤ r0, r1 < d.

We can rewrite this as

r1 − r0 = d(q0 − q1)

and taking absolute values gives us

|r1 − r0| = d|q0 − q1|.
Next, since both 0 ≤ r0, r1 < d, we get that |r1 − r0| < d, and so

d|q0 − q1| < d.

Thus

0 ≤ |q0 − q1| < 1.

This forces |q0 − q1| = 0 and so q0 = q1. From this it follows that r0 = r1 also.
Case 2: (d < 0). In this case, apply Case 1 to the number “n” and “−d”,

and then multiply the q you get by −1. In more detail:
(Existence) By Case 1, there are q′, r′ ∈ Z such that n = (−d)q′ + r′ and

0 ≤ r′ < | − d| = |d|. Then for q := −q′ and r := r′ we have n = dq + r and
0 ≤ r ≤ |d|.

(Uniqueness) Suppose q0, q1, r0, r1 ∈ Z are such that n = dq0 + r0, n = dq1 + r1
and 0 ≤ r0, r1 < |d|. Then it is also the case that n = (−d)(−q0) + r0, n =
(−d)(−q1)+r1 and 0 ≤ r0, r1 < |d|, so by the Uniqueness from Case 1, we conclude
that −q0 = −q1 (so q0 = q1) and r0 = r1. �

1.4. THE WELL-ORDERING PRINCIPLE AND INDUCTION 17

We are now in a good position to provide a very sound definition for a concept you
were already using as a young child (however going forward in life you should use
this new definition!):

Definition 1.4.3. Suppose n ∈ Z is an integer. We say that n is even if there
is q ∈ Z such that n = 2q and we say that n is odd if there is q ∈ Z such that
n = 2q + 1.

It follows from the Quotient-Remainder Theorem 1.4.2 that every integer n is either
even or odd, but not both (why?).

The Well-Ordering Principle of N also gives us the following important proof prin-
ciple (or proof template) about natural numbers:

Principle of Induction 1.4.4. Suppose P (n) is a property that a natural number
n may or may not have. Suppose that

(1) P (0) holds (this is called the “base case for the induction”), and
(2) for every n ∈ N, if P (n) holds, then P (n + 1) holds (this is called the

“inductive step”).

Then P (n) holds for every natural number n ∈ N.

Proof. Define the set:

S :=
{
n ∈ N : P (n) is false

}
⊆ N.

Assume towards a contradiction that P (n) does not hold for every natural number
n ∈ N. Thus S 6= ∅. By the Well-Ordering Principle, the set S has a least element
a. Since P (0) holds by assumption, we know that 0 < a (so a− 1 ∈ N). Since a is
the least element of S, then the natural number a− 1 6∈ S, so P (a− 1) holds. By
assumption (2), this implies P (a) holds, a contradiction. �

Warning 1.4.5. In part (2) of the Principle of Induction, it does not say you have
to prove P (n + 1) is true outright. It says you have to prove that the following
implication holds: (

P (n) is true
)

=⇒
(
P (n+ 1) is true

)
Proving the implication is in general easier because you can use the assumption
that P (n) is true to help you prove that P (n+ 1) is true. In other words, P (n) is
a precious gift you’ve been given, so don’t squander it.

We now arrive at the very first example of a proof by induction. It is the canonical
“first proof by induction that everybody should know” and it involves the so-called
triangular numbers4:

Triangular Number Formula 1.4.6. For every natural number n ∈ N,

0 + 1 + 2 + · · ·+ n =

n∑
k=0

k =
n(n+ 1)

2
=

(
n+ 1

2

)
.

Proof. Let P (n) be the assertion:

P (n) : “
∑n
k=0 k = n(n+ 1)/2 is true.”

We will show that P (n) holds for all n ∈ N by induction on n.

4https://en.wikipedia.org/wiki/Triangular_number

https://en.wikipedia.org/wiki/Triangular_number

18 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

Base Case: First, we show that P (0) holds outright. This is easy because
P (0) says “0 = 0 · 1/2”, which is obviously true.

Inductive Step: Next, we will suppose that for some n ≥ 0 that P (n) holds,
and we will use it to prove that P (n+ 1) also holds. Suppose P (n) holds, i.e.,

n∑
k=0

k =
1

2
n(n+ 1).

We must now show that P (n+ 1) also holds. Note that:

n+1∑
k=1

k =

n∑
k=1

k + (n+ 1)

=
1

2
n(n+ 1) + (n+ 1) since P (n) is assumed to be true

= (n/2 + 1)(n+ 1)

=
1

2
(n+ 2)(n+ 1)

=
1

2
(n+ 1)

(
(n+ 1) + 1

)
.

Thus P (n+ 1) holds as well. �

Notice how both “n − 1” and “n” occurs in the statement of Pascal’s Rule 1.3.6.
This property makes Pascal’s Rule useful in inductive proofs involving binomial
coefficients, for instance, in the proof of the important Binomial Theorem:

Binomial Theorem 1.4.7. Suppose a, b ∈ R and n ∈ N. Then

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk.

Proof. The statement we will prove by induction is:

P (n) : “For every a, b ∈ R, (a+ b)n =
∑n
k=0

(
n
k

)
an−kbk.”

Base Cases: First we will verify P (0): (a+ b)0 = 1 =
∑n
k=0

(
0
k

)
a0−kb0, thus P (0)

is true. For good measure (although not technically necessary), we will also verify
P (1) is true. Note that

1∑
k=0

(
1

k

)
a1−kbk =

(
1

0

)
a+

(
1

b

)
= a+ b = (a+ b)1.

Inductive step: We assume that P (n) is true for some n ≥ 1 (this would have to
be “for some n ≥ 0” if we didn’t do the base case P (0) above). We will use this to
prove that P (n+ 1) is true. Note that

(a+ b)n+1 = (a+ b)(a+ b)n = (a+ b)

(
n∑
k=0

(
n

k

)
an−kbk

)
,

1.4. THE WELL-ORDERING PRINCIPLE AND INDUCTION 19

where the last equality uses the inductive assumption P (n). Next, we distribute
the (a+ b):

(a+ b)

(
n∑
k=0

(
n

k

)
an−kbk

)
= a

(
n∑
k=0

(
n

k

)
an−kbk

)
+ b

(
n∑
k=0

(
n

k

)
an−kbk

)

=

n∑
k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1

Then we separate out the first term from the first sum and the last term from the
second sum:

n∑
k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1

= an+1 +

n∑
k=1

(
n

k

)
an−k+1bk +

n−1∑
k=0

(
n

k

)
an−kbk+1 + bn+1

Then we reindex the second sum so that it starts at k = 1:

= an+1 +

n∑
k=1

(
n

k

)
an−k+1bk +

n∑
k=1

(
n

k − 1

)
an−k+1bk + bn+1

Then we combine the two sums:

= an+1 +

n∑
k=1

[(
n

k

)
an−k+1bk +

(
n

k − 1

)
an−k+1bk

]
+ bn+1

= an+1 +

n∑
k=1

[(
n

k

)
+

(
n

k − 1

)]
an−k+1bk + bn+1

Then apply Pascal’s Rule and also note that
(
n+1
0

)
=
(
n+1
n+1

)
= 0:

=

(
n+ 1

0

)
an+1 +

n∑
k=1

(
n+ 1

k

)
a(n+1)−kbk +

(
n+ 1

n+ 1

)
bn+1

Finally, reincorporate the first and last term into the summation:

=

n+1∑
k=0

(
n+ 1

k

)
a(n+1)−kbk.

Thus we have shown P (n+ 1) holds (see the first and last term in the sequence of
equalities.) �

We also have the following variant of the Principle of Induction, which starts at
some natural number (or integer!) other than 0:

Corollary 1.4.8 (Principle of Induction starting at N). Let N ∈ Z and suppose
P (n) is a property that an integer n ≥ N may or may not have. Suppose that

(1) P (N) holds.
(2) for every n ≥ N , if P (n) holds, then P (n+ 1) holds.

Then P (n) holds for every integer n ≥ N .

20 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

Proof. We will prove this by reducing it to the original Induction Principle by
shifting. Let Q(n) be the statement:

Q(n) : “P (n+N) holds.”

Base Case: (1) implies that Q(0) holds.
Inductive Step: Assume for some n ≥ 0 that Q(n) holds. We will use this

to prove that Q(n + 1) holds. Since Q(n) holds, this means that P (n + N) holds.
Since n + N ≥ N , by assumption (2), we conclude that P (n + N + 1) holds. In
other words, Q(n+ 1) holds.

Thus Q(n) is true for all n ≥ 1 by the Principle of Induction. In other words,
P (n) is true for all n ≥ N , which is what we wanted to prove. �

Sometimes, when proving P (n+1) is true, it is not good enough to assume that only
its immediate predecessor P (n) is true. In such situations, the following variant of
the Principle of Induction is useful:

Principle of Strong Induction 1.4.9. Suppose P (n) is a property that a natural
number n may or may not have. Suppose that

(1) P (0) holds, and
(2) For every n ≥ 0, if P (k) holds for k = 0, . . . , n, then P (n+ 1) holds.

Then P (n) holds for every natural number n ∈ N.

Proof. The proof will follow from applying the (usual) Principle of Induction to a
carefully chosen proposition. Specifically, for each n ∈ N, let Q(n) be the statement:

Q(n) : “For each k ∈ {0, . . . , n}, P (k) is true.”

We will prove that Q(n) is true for all n ∈ N.
Base Case: By assumption (1), P (0) holds. In other words, for all k ∈ {0},

P (k) holds. This means that Q(0) holds.
Inductive Step: Assume for some n ∈ N that Q(n) holds. We want to show

that Q(n+ 1) holds. By definition of Q(n), this means for every k ∈ {0, 1, . . . , n},
P (k) is true. By assumption (2), this implies that P (n + 1) is also true. Thus for
k ∈ {0, 1, . . . , n, n + 1}, we have that P (k) is true. This means that Q(n + 1) is
true.

By the Principle of Induction, we conclude that Q(n) is true for all n ≥ 0. Since
for each n, Q(n) implies P (n), we conclude that for every n ≥ 0, P (n) is true. �

Just like regular induction, strong induction can also start at another integer besides
0. Here is such an example of strong induction:

Example 1.4.10. Every natural number n ≥ 12 is of the form 3x + 7y for some
x, y ∈ N.

Proof. For n ≥ 11 we will consider the following statement:

P (n) : “There exists x, y ∈ N such that n = 3x+ 7y”

Base Cases: We verify directly that P (12), P (13) and P (14) are true. Indeed,

12 = 3 · 4 + 7 · 0 (x = 4, y = 0)

13 = 3 · 2 + 7 · 1 (x = 2, y = 1)

14 = 3 · 0 + 7 · 2 (x = 0, y = 2)

1.5. EXERCISES 21

Inductive step: We will now assume that for some n ≥ 14 and that P (k)
holds for k ∈ {12, 13, . . . , n}. We now must show P (n + 1) is true. Since n ≥ 14,
n − 2 ≥ 12, so P (n − 2) holds by the inductive assumption. Thus we can take
x, y ∈ N such that n − 2 = 3x + 7y. Adding another “3” will give us the desired
representation for n+ 1:

3(x+ 1) + y = 3x+ y + 3 = n− 2 + 3 = n+ 1.

By the Principle of Strong Induction 1.4.9, we conclude that P (n) is true for
every n ≥ 12. �

1.5. Exercises

Exercise 1.5.1. The Scheffer stroke (or nand) (notation: P |Q) is the logical
operator with the following truth table:

P Q P |Q
T T F
T F T
F T T
F F T

Given propositions P and Q, show that each of the following propositions are
logically equivalent to a proposition which uses only the Scheffer stroke | (you
might need to use multiple Scheffer strokes):

(1) ¬P
(2) P ∧Q
(3) P ∨Q.

The Peirce arrow (or nor) (notation: P ↓ Q) is the logical operator with the
following truth table:

P Q P ↓ Q
T T F
T F F
F T F
F F T

Given propositions P and Q, show that the following propositions are logically
equivalent to a proposition which uses only the Peirce arrow ↓:

(4) ¬P
(5) P ∧Q
(6) P ∨Q.

Exercise 1.5.2. Given propositions P , Q, and R, determine if the following propo-
sitions are tautologies, contradictions, or neither.

(1) (P ↔ Q)↔ ((P ∧ ¬Q) ∨ (¬P ∧Q))
(2) (P → Q) ∨ (Q→ P)
(3) (¬R→ ((P ∨Q)→ Q)) ∨R
(4) ((P → Q) ∧ (Q→ R))→ (P → R)

Exercise 1.5.3. Recall that a proof is a finite sequence of logical steps. A natural
question is “what counts as a logical step”? We won’t answer this question in depth
in this course, but at a basic level, there are three kinds of steps that can be written
down in a proof:

22 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

• You can state any one of the premises of the proof
• You can state any tautology
• You can apply an inference rule to previous steps of the proof

We already know what all of these things are besides inference rules, which are
what this question aims to introduce. The most basic example of an inference rule
is called Modus Ponens: it says that if, at some point in a proof, we’ve deduced
P → Q and P (where P and Q are some propositions), then we can also deduce Q.
To see this inference rule in action, here is a formal proof in propositional logic:

Premises: P → Q, Q→ R, and P

Step Claim Justification
1. P Premise
2. P → Q Premise
3. Q Modus Ponens on steps 1 and 2
4. Q→ R Premise
5. R Modus Ponens on steps 3 and 4

Conclusion: R

Figure 1.7: A formal proof that (P → Q) ∧ (Q→ R) ∧ P =⇒ R.

Inference rules are usually written in the following way:

P → Q
P
Q

Figure 1.8: The inference rule of Modus Ponens, written in standard form.

This just says that Modus Ponens is an inference rule which allows one to
deduce “Q” whenever both “P → Q” and “P” have already been deduced. One
question we may have is “why is Modus Ponens a valid inference rule”? The answer
is simply that ((P → Q)∧P)→ Q is a tautology! In other words, if we’ve deduced
P → Q and P , then it must be valid to conclude Q, regardless of the truth values
of P and Q.

More generally, an inference rule

A1

A2

...
An
B

just says that A1 ∧ A2 ∧ · · · ∧ An → B is a tautology. Prove the following
inference rules:

(1) Modus Tollens:
P → Q
¬Q
¬P

1.5. EXERCISES 23

(2) Hypothetical Syllogism:

P → Q
Q→ R
P → R

(3) Conjuction:

A
B
A ∧B

Exercise 1.5.4. Given sets A and B, prove that the following two conditions are
equivalent:

(1) A \B = B \A,
(2) A = B.

Exercise 1.5.5. Given sets X and Y , we define the symmetric (set) difference
of X and Y (notation: X4Y) to be the set X4Y := (X ∪ Y) \ (X ∩ Y). Do the
following:

(1) Draw a Venn Diagram which illustrates the symmetric difference X4Y
of X and Y .

(2) Prove that for any set X, X4X = ∅.
(3) Prove that for any sets X and Y , (X ∪ Y) \ (X4Y) = X ∩ Y .
(4) Prove that for any sets X, Y , and Z, (X4Y) ∩ Z = (X ∩ Z)4(Y ∩ Z).

Exercise 1.5.6. Prove the Ordered Pair Property: For every a, b, c, d,

(a, b) = (c, d) if and only if a = c and b = d.

Exercise 1.5.7. Find the cardinalities of the following finite sets:

(1) {1, 2} ∪ P({1, 2})
(2) {{1}, {2}} ∪ P({1, 2})
(3) {0, 1, 2, 3} × {∅, {0, 1, 2, 3}}

Exercise 1.5.8. Prove the following fact by induction: for any natural number n,
n∑
i=0

i2 =
n(n+ 1)(2n+ 1)

6
.

Exercise 1.5.9. In this exercise we will prove the so-called Hockey-Stick Identity :

(1) Prove the following: For 0 ≤ r ≤ n we have
n∑
i=r

(
i

r

)
=

(
n+ 1

r + 1

)
.

Hint: Fix r ∈ N and then do a proof by induction on n (so the base case
will be n = r). Pascal’s Rule might also be useful.

(2) Draw your own Pascal’s Triangle with at least 8 rows and illustrate 3
instances of the Hockey-Stick Identity with n− r ≥ 2.

Exercise 1.5.10. Let f, g : R → R be sufficiently nice functions (i.e., you can
differentiate them as many times as you like). Recall the product rule from
calculus:

D(fg) = fD(g) +D(f)g.

24 1. PROPOSITIONAL LOGIC, SETS, AND INDUCTION

Let Dn denote taking the nth derivative. Prove the following analogue of the
Binomial Theorem for derivatives: For every n ≥ 1,

Dn(fg) =

n∑
k=0

(
n

k

)
Dn−k(f)Dk(g).

Exercise 1.5.11. Use the Principle of Strong Induction to carefully prove the
Principle of Cauchy Induction: Suppose P (n) is a property that a natural number
n may or may not have. Suppose that

(a) P (2) holds,
(b) For every n ≥ 2, if P (n) holds, then P (2n) holds, and
(c) For every n ≥ 3, if P (n) holds, then P (n− 1) holds.

Then P (n) holds for every natural number n ≥ 2.

Exercise 1.5.12. Let Fn be the sequence of Fibonacci numbers: F0 = 0, F1 = 1,
and Fn+2 = Fn+1 + Fn for all natural numbers n. For example, F2 = F1 + F0 =
1 + 0 = 1 and F3 = F2 + F1 = 1 + 1 = 2. Prove that

Fn =
1√
5

(αn − βn)

for all natural numbers n, where

α :=
1 +
√

5

2

β :=
1−
√

5

2

Hint: Use strong induction. Notice that α+ 1 = α2 and β + 1 = β2!

Exercise 1.5.13. The Catalan numbers Cn are defined by

Cn :=
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
, for n ∈ N,

forming a sequence C0 = 1, C1 = 1, 2, 5, 14, 42, 132, For each n ≥ 1 prove that

Cn =
2(2n− 1)

n+ 1
Cn−1

Exercise 1.5.14. For each of the following pairs of integers n, d ∈ Z find the unique
q, r ∈ Z such that n = dq + r and 0 ≤ r < |d|:

(1) n = 59 and d = 13
(2) n = 1188 and d = 385
(3) n = 832 and d = 10933
(4) n = 4131 and d = 2431

Challenge: try to do the calculations by hand without a calculator!

Exercise 1.5.15. Use the Quotient-Remainder Theorem 1.4.2 to carefully prove
the following:

(1) The square of any integer is either of the form 3k or 3k + 1 (i.e., prove
that for every integer j there exists an integer k such that j2 = 3k or
j2 = 3k + 1).

(2) The cube of any integer has one of the forms: 9k, 9k + 1, or 9k + 8.

1.5. EXERCISES 25

(3) Prove that 3k2 − 1 is never a perfect square (i.e., prove that for every
integer j it is not the case that there exists an integer k such that j2 =
3k2 − 1).

Exercise 1.5.16. Use the Principle of Induction to prove the following for all
n ≥ 1:

n∑
k=1

k · k! = (n+ 1)!− 1.

Exercise 1.5.17. Use the Binomial Theorem to prove the following identities:

(1)
∑n
k=0

(
n
k

)
= 2n

(2)
∑n
k=0(−1)n

(
n
k

)
= 0

(3)
∑n
k=0 k

(
n
k

)
= n2n−1 [Hint: n

(
n−1
k

)
= (k + 1)

(
n
k+1

)
]

CHAPTER 2

Relations

2.1. Predicates and quantifiers

The primary role of propositional logic is to serve as a very robust backend for
handling all the boolean logic which shows up (i.e., it tells us how to deal with and,
or, not). However, propositional logic by itself is too crude of a language to really
do or say anything useful about the mathematical structures we (will) care about.
Indeed, it would be more natural and useful to work in a language which can also
handle the following things:

quantifiers variables relations functions predicates

We will now give a brief introduction to the type of logic which can express these
things (so-called first-order logic).

Definition 2.1.1. A predicate (or propositional function) is a statement P (x)
where x is a variable ranging over a set D (D is called the domain of discourse)
such that for each specific d ∈ D, the statement P (d) is a proposition (i.e., it is
either true or false).

Example 2.1.2. Consider the predicate

P (x) : “x is a prime number”

where x ranges over its domain of discourse N. Then for each k ∈ N, P (k) is either
true or false, for instance: P (2), P (3), P (5) are true, whereas P (1), P (4), P (6) are
false. Note that it doesn’t make sense to ask what the truth value of the predicate
“P (x)” is since it has a free variable x. The predicate only obtains a definitive
truth value once we plug a specific number in for x.

We can (and will) also talk about predicates P (x1, . . . , xn) with multiple free vari-
ables, with each having its own domain of discourse (which could all be the same
set, or not).

Definition 2.1.3. Suppose P (x) is a predicate with domain of discourse D.

(1) The statement

“for all x, P (x)” (notation: ∀xP (x))

is a proposition which is true precisely when for each d ∈ D, the indi-
vidual proposition P (d) is true. This is called a universally quantified
statement and the symbol ∀ is called a universal quantifier.

(2) The statement

“there exists x such that P (x)” (notation: ∃xP (x))

27

28 2. RELATIONS

is a proposition which is true precisely when there is at least one d ∈ D
such that P (d) is a true proposition. This is called a existentially quan-
tified statement and the symbol ∃ is called a existential quantifier.

Proving an existential statement is in general a finding problem. For example:

Example 2.1.4. The following proposition with domain of discourse C (the set of
all complex numbers) is true:

∃x (x2 − 2x+ 2 = 0)

This is because we observe that for the specific complex number z := 1 + i, we
get an equality z2 − 2z + 2 = 0 (so P (1 + i) is true where P (x) is the predicate
“x2 − 2x + 2 = 0”). How did we actually find the above number 1 + i? For that
we used actual math (the quadratic formula, for instance). Note that the domain
of discourse also plays an important role in determining the truth value of the
proposition. For instance, if our domain of discourse were instead R, then the
above proposition would be false since the polynomial x2 − 2x + 2 does not have
any real roots.

We are now in a position to give a very vague definition of first-order logic:

Informal Definition 2.1.5. The language of first-order logic consists of all state-
ments which can be built up from:

• “simple1 predicates” involving one or more free variables,
• the logical operators ∧,∨,¬,→,↔ from Section 1.1, and
• quantifiers ∀ and ∃ quantifying over free variables.

Nearly all mathematical statements we have encountered so far can be converted
into a first-order logic statement. As a general rule, we will continue to write
mathematical statements as clear English sentences, however, we will often also
choose to spell out our statements as a first-order logic statement in order to make
clear what the precise logical structure of the statement is. For instance, the first
part of the Quotient-Remainder Theorem says:

“Suppose d, n ∈ Z and d 6= 0.

Then there exists q, r ∈ Z such that n = dq + r and 0 ≤ r < |d|.”
We could write this in first-order logic as:

∀d∀n
(
d 6= 0→ ∃q∃r(n = dq + r ∧ 0 ≤ r < |d|)

)
where all domains of discourse are Z, or even as

∀d 6= 0∀n∃q∃r(n = dq + r ∧ 0 ≤ r < |d|)

where the domain of discourse for d is {k ∈ Z : k 6= 0} and the domains of discourse
for n, q, r are all Z.

Just as in propositional logic, we also have a notion of logical equivalence in first-
order logic:

1We won’t define this term, but it includes statements like “x is prime” or “x2−2x+ 2 = 0”.

2.1. PREDICATES AND QUANTIFIERS 29

Informal Definition 2.1.6. Given two propositions P and Q in first-order logic,
we say that P and Q are logically equivalent (notation: P ≡ Q) if for all possible
choices of domains of discourse, P and Q will always have the same truth value. In
other words, P ≡ Q means that P and Q are logically indistinguishable under any
possible interpretation.

Logical equivalences in propositional logic naturally give rise to logical equivalences
in this setting, for instance:

∀x
(
P (x)→ Q(x)

)
≡ ∀x

(
¬P (x) ∨Q(x)

)
The following logical equivalences are essential when dealing with negating state-
ments with quantifiers:

Fact 2.1.7. Suppose P (x) is a predicate. The following logical equivalences show
you how to negate a quantifier:

(1) ¬∀xP (x) ≡ ∃x
(
¬P (x)

)
,

(2) ¬∃xP (x) ≡ ∀x
(
¬P (x)

)
.

In other words, to move a negation sign past a quantifier, you have to switch the
quantifier type.

Example 2.1.8. Recall that A ⊆ B means

∀x(x ∈ A→ x ∈ B)

where the domain of discourse is some universal set U . What A 6⊆ B (read “A is
not a subset of B”) mean? By negating and applying logical equivalences, we see
that

¬∀x(x ∈ A→ x ∈ B) ≡ ∃x¬(x ∈ A→ x ∈ B)

≡ ∃x¬
(
¬(x ∈ A) ∨ x ∈ B

)
(by Example 1.1.11)

≡ ∃x
(
¬¬(x ∈ A) ∧ ¬(x ∈ B)

)
(by De Morgan’s Law)

≡ ∃x
(
x ∈ A ∧ x 6∈ B

)
.

In other words, A 6⊆ B means there exists at least one x such that x ∈ A and x 6∈ B.
This is the formal justification for the second answer we gave to Question 1.2.3.

We end this section with a friendly warning:

You can’t switch the order of quantifiers of different type.

Consider the following proposition with domain of discourse R:

∀x∃y (x = y)

This is clearly a true proposition since we can just take y := x in a proof. However,
the proposition

∃y∀x (x = y)

is clearly false since otherwise there would be a real number y ∈ R which is equal to
all other real numbers, which can’t happen since R has at least two elements in it.
Occasionally you will encounter situations where the quantifiers can be switched,
but this type of coincidence would only happen for some special mathematical
reason. You can, however, always switch quantifiers of the same type, provided
they are next to each other, for instance:

∀x∀yP (x, y) ≡ ∀y∀xP (x, y) and ∃x∃yQ(x, y) ≡ ∃y∃xQ(x, y)

30 2. RELATIONS

2.2. Relations

The mathematical structures we will deal with usually have more structure on it
beyond the underlying set. For instance, we know that when we talk about the set
R, we also want to be able to talk about the linear order ≤ and the usual arithmetic
binary functions + and ·. If we didn’t have these notions available to us, then there
wouldn’t be anything that special about the set R except that it’s a very very large
set. The formal way to make things like this is through relations.

Definition 2.2.1. Given sets X and Y , we define a (binary) relation on X ×Y
(or a (binary) relation from X to Y) to be a subset R ⊆ X × Y . If R is a
relation on X × Y , then for an ordered pair (x, y) ∈ X × Y we will often write

xRy instead of (x, y) ∈ R, and

x 6Ry instead of (x, y) 6∈ R.

(Note: xRy is pronounced “x is related to y (by R)”; and x 6Ry is pronounced “x is
not related to y (by R)”)

Remark 2.2.2. The word binary in Definition 2.2.1 refers to the fact that R is a
relation on a cartesian product on two sets: X and Y . One can also define ternary
relations on X × Y × Z and every n-ary relations on X1 ×X2 × · · · ×Xn. In this
class we will (for the most part) restrict our attention to binary relations.

Example 2.2.3. Consider X := {1, 2, 3, 4} and Y := {a, b, c} and the binary
relation R on X × Y given by:

R =
{

(1, a), (1, b), (2, a), (4, b), (4, c)
}

The relation R tells us, among other things, 1Ra but 3 6Ry for every y ∈ R. We can
picture all the relations specified by R with the following arrow diagram:

•1

•2

•3

•4

• a

• b

• c

X Y

Figure 2.1: Arrow diagram from X to Y illustrating the relation R on X × Y

We can also represent the relation R with the following relation matrix:

a b c

1 1 1 0
2 1 0 0
3 0 0 0
4 0 1 1

The relation matrix is constructed by labelling the rows with the elements of X,
labelling the columns with the elements of Y , and for each x ∈ X and y ∈ Y , the
entry of the matrix corresponding to (x, y) is 1 iff xRy and is 0 otherwise.

2.3. PARTIAL AND TOTAL ORDER RELATIONS 31

In the rest of this chapter we will study specific examples of relations.

2.3. Partial and total order relations

Many common relations have the property that the two sets X and Y are actually
the same. In this case, we use the following terminology:

Definition 2.3.1. Given a set X, we say that R is a relation on X if R ⊆ X×X
is a binary relation on X ×X (i.e., a relation on X × Y as defined in the previous
section, except that X = Y is the same set).

Example 2.3.2. Suppose X = {a, b, c, d, e} and R is a relation on X given by

R :=
{

(a, b), (b, a), (e, a), (e, c), (d, e), (d, d)
}
.

In this situation, instead of representing R as an arrow diagram from X to X, since
both the first set and the second set are the same set, we can represent R as a
directed graph (or digraph) on X:

•e

•a

•
b

• d

• c

Figure 2.2: Digraph representing the relation R

We draw special attention to the following properties which a relation R on a set
X may or may not enjoy:

Definition 2.3.3. Suppose R is a relation on X. We say that the relation R is

(1) reflexive if for every x ∈ X, (x, x) ∈ R:

∀x ∈ X, xRx
(2) antireflexive if for every x ∈ X, (x, x) 6∈ R:

∀x ∈ X, ¬(xRx)

(3) symmetric if for every x, y ∈ X, if (x, y) ∈ R, then (y, x) ∈ R:

∀x ∈ X ∀y ∈ X, (xRy → yRx)

(4) antisymmetric if for all x, y ∈ X, if (x, y) ∈ R and (y, x) ∈ R, then
x = y:

∀x ∈ X ∀y ∈ X, (xRy ∧ yRx→ x = y)

(5) transitive if for all x, y, z ∈ X, if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈
R:

∀x ∈ X ∀y ∈ X ∀z ∈ X, (xRy ∧ yRz → xRz)

Note that in general, “antisymmetric” is not the negation of “symmetric”; same
with “antireflexive” and “reflexive”.

32 2. RELATIONS

Definition 2.3.4. We say a relation R on X is a partial order if R is reflexive,
antisymmetric, and transitive.

We interpret a partial ordering on X as a comparing notion. It is useful for encoding
hierarchical structure, for example:

Example 2.3.5. Given a set X, the subset relation ⊆ on the powerset P(X) of X
is a partial order on P(X).

∅

{0} {1} {2} {3}

{0, 1} {0, 2} {0, 3} {1, 2} {1, 3} {2, 3}

{0, 1, 2} {0, 1, 3} {0, 2, 3} {1, 2, 3}

{0, 1, 2, 3}

Figure 2.3: Partial digraph of the ⊆ relation on P
(
{0, 1, 2, 3}

)
(with self-loops

and transitive arrows omitted)

One of the features of the subset relation ⊆ on P
(
{0, 1, 2, 3}

)
in the above example

is that certain sets are unrelated to each other. For instance, {0, 1} 6⊆ {2, 3} and
{2, 3} 6⊆ {0, 1}, i.e., the sets {0, 1} and {1, 2} are incomparable with respect to the
subset relation. We are also interested in partial orders where every pair of elements
are related by the relation. First, some definitions:

Definition 2.3.6. Suppose R is a partial order on a set X. Given elements x, y ∈
X, we say they are

(1) comparable if xRy or yRx, and
(2) incomparable if x 6Ry and y 6Rx.

We say that the partial order R on X is a total order (or linear order) if all
pairs of elements are comparable, i.e., if R also satisfies:

(3) (totality) for every x, y ∈ X, either xRy or yRx:

∀x ∈ X ∀y ∈ X, (xRy ∨ yRx)

2.4. THE DIVIDES RELATION 33

Example 2.3.7. The first and most important example of a total order is the usual
“less than or equal” relation “≤” on R. This relation also restricts to a total order
on Q,Z,N and really any subset of R. In Figure 2.4 below we sketch the partial
diagraph corresponding to the ≤ relation on N. Since we know that ≤ is reflexive
we chose to omit the self-loops on each number for the sake of clarity.

0 1 2 3 4 · · ·

Figure 2.4: Partial digraph of the ≤ relation on N (with self-loops omitted)

Convention 2.3.8. If we refer to an object (X;R) as a partial order, we mean
that X is a set and R ⊆ X ×X is a partial order on X. Likewise, if we refer to an
object (L;≤) as a linear order, we mean that L is a set and ≤ is a total/linear
order on L.

2.4. The divides relation

In this section we introduce the divides relation, an important and fundamental
relation in number theory and arithmetic:

Definition 2.4.1. Suppose d, n ∈ Z. We say that d divides n (notation: d|n) if
there exists q ∈ Z such that dq = n; in symbols:

d|n :⇐⇒ ∃q ∈ Z (d · q = n)

If d|n and q ∈ Z is such that dq = n, then we shall call d a divisor (or factor)
of n, and we shall call q the quotient of n divided by d. We shall construe | as a
relation on Z, i.e., “| ⊆ Z× Z”.

In Figure 2.5 below, we illustrate how the digraph of the divides relation | looks
on the set N. Since the divides relation is reflexive and transitive, for the sake of
clarity we chose to omit all self-loops from the picture and any arrows resulting
from applying transitivity to other arrows. We are now in a position to define one
of the most important notions in all of mathematics:

Definition 2.4.2. A natural number p ∈ N is called a prime number if p 6= 1
and its only nonnegative divisors are 1 and p; in symbols:

p prime :⇐⇒ p 6= 1 ∧ ∀d ∈ N(d|p→ d = 1 ∨ d = p)

A natural number n ≥ 2 which is not prime is called composite.

34 2. RELATIONS

1

2 3 5 7 11

4 9 25 49 121
6

10
15

14 21 35
77

12 18 30

24
36

20
8 27 125 343 1331

16 81 625 2401 14641

0

Primes

Figure 2.5: Partial digraph of the divides relation | on N (with self-loops and
transitive arrows omitted)

In order to prove that one number divides another number, you have to explicitly
“find the q”.

Example 2.4.3. 42|546, i.e., 42 divides 546.

Proof. By the definition of “d|n”, we have to show that there exists q ∈ Z such
that 42q = 546. We claim that q := 13 works. Indeed:

42q = 42 · 13 = 546. �

Officially speaking, we are under no obligation to show how we arrived at q := 13.
Clearly the above proof shows that 42 does indeed divide 546. In the case where d
does not divide n, a good strategy to rigorously prove this is to apply the Quotient-
Remainder Theorem to n and d and then observe r 6= 0 (see next proof).

2.4. THE DIVIDES RELATION 35

Example 2.4.4. 42 - 547, i.e., 42 does not divide 547.

Proof. Note that for q1 := 13 and r1 := 1 we have

547 = 42 · 13︸︷︷︸
q1

+ 1︸︷︷︸
r1

and 0 ≤ r1 = 1 < 42.

Suppose towards a contradiction that 42|547, i.e., there is q2 ∈ Z such that 42q2 =
547. Then for this q2 and r2 := 0 we would have

547 = 42 · q2 = 42 · q2 + 0︸︷︷︸
r2

and 0 ≤ r2 = 0 < 42.

By the uniqueness part of the Quotient-Remainder Theorem 1.4.2(2), we conclude
that r1 = r2, i.e., 1 = 0, a contradiction. Thus 42 - 547. �

Clearly divisibility is a fundamental arithmetic relation we should (and do!) care
about. Indeed, you implicitly use it all the time whenever you are mentally simpli-
fying fractions. Consequently, it makes sense to establish a robust arsenal of useful
properties about divisibility which we can just use anytime in the future without
having to reprove them every time. Here it is:

Divisibility Properties 2.4.5. For every a, b, c ∈ Z the following hold:

(D1) a|0, 1|a, a|a
(D2) a|1 if and only if a = ±1
(D3) if a|b and c|d, then ac|bd
(D4) if a|b and b|c, then a|c
(D5) a|b and b|a if and only if a = ±b
(D6) if a|b and b 6= 0, then |a| ≤ |b|
(D7) if a|b and a|c, then for every x, y ∈ Z, a|(bx+ cy)

In particular, the divides relation | is reflexive (D1) and transitive (D4).

Proof. The general strategy for proving these properties is to rewrite what you
need to prove in terms of the definition of divides |. We provide a few examples
and leave the rest as an exercise for the reader.

(D3) Assume that a|b and c|d. By definition of the divides relation, this means
there exists integers q0, q1 ∈ Z such that aq0 = b and cq1 = d. Multiplying these
equalities together yields:

bd = (aq0)(cq1) = (ac)(q0q1︸︷︷︸
=:q

) = (ac)q

so we see that for the integer q := q0q1 we have bd = (ac) · q. Thus ac|bd, by
definition of the divides relation.

(D7) Assume a|b and a|c. By definition of the divides relation, this means there
exists q0, q1 ∈ Z such that b = aq0 and c = aq1. Then for the integer q := q0x+q1y,
we see that

bx+ cy = aq0x+ aq1y = a(q0x+ q1y) = aq,

and so a|bx+ cy by definition of the divides relation. �

We would like to think of | as a partial order, however (D5) shows that this is not
the case. Indeed, 2|−2 (because 2 · (−1) = −2) and −2|2 (because (−2) · (−1) = 2),
but 2 6= −2. However, if we restrict out attention to only considering nonnegative
numbers, then this natural restriction of | is a partial order.

36 2. RELATIONS

Corollary 2.4.6. The restriction of | to the natural numbers, i.e., the relation on
N× N defined by

d|n :⇐⇒ there exists q ∈ Z such that dq = n

for d, n ∈ N, is a partial order on N.

(Note that if d, n ∈ N and d|n, then if n = 0, then d · 0 = n and if n > 0, then
if dq = n for some q ∈ Z, then necessarily q > 0 since d ≥ 0. Thus in either case, if
d|n, then a “q” as in the definition of “d|n” can already be found in N; not that it
matters for the veracity of the corollary.)

Proof. Reflexivity is part of (D1), transitivity is (D4), and antisymmetry follows
from (D5) since we are restricting to N. �

We are now in a position to prove the following theorem by Euclid (c. 300 BCE)
that there exists infinitely many prime numbers. This is another “very famous
proof everyone should know”.

Euclid’s Theorem 2.4.7. There exists infinitely many prime numbers.

Proof. Let P := {p ∈ N : p prime} be the set of all prime numbers. It will be
sufficient2 to prove the following statement for every n ≥ 1 by induction on n ≥ 1:

P (n) : “P has at least n distinct elements in it

(i.e., the cardinality |P| of P is ≥ n).”

Base Case: 2 is a prime number, so 2 ∈ P which implies |P| ≥ 1. Thus P (1)
is true.

Induction Step: Suppose for some n ≥ 1 that P (n) is true. This means
the set P contains at least n distinct primes. Let p1, . . . , pn be n distinct prime
numbers (it doesn’t matter what they are, P (n) just assures us that they exist).
We will show there must be another prime number which is not in this list already.
Consider the positive integer

M := p1 · · · pn + 1.

By Exercise 2.8.7 there exists a prime number p ∈ P such that p|M . Since p - 1,
it follows from (D7) that p - M − 1. However, for each i ∈ {1, . . . , n}, we have
pi|M − 1 = p1 · · · pn. Thus p 6= pi. In particular, |{p1, . . . , pn, p}| = n + 1, so
|P| ≥ n+ 1. Hence P (n+ 1) is proved. �

2.5. Equivalence relations and partitions

One of the amazing insights that permeates all of modern mathematics is the idea
of relaxing the very strict and draconian relation of “equals” (i.e., being the same
in every single possible way) to a relation of “equivalence” (i.e., being the same in
only the ways we care about). For example, suppose you were deriving some rules
about how the evenness/oddness of an integer gets affected by the usual arithmetic
operations + and ×. You would probably come up with the following:

odd+odd=even even+even=even even+odd=odd

2We don’t have a formal definition of what it means for a set to be infinite. However, knowing

that the claim P (n) is true for all n ≥ 1 should at least convince you that the set is not finite (if
it were finite, then it would have a fixed cardinality n0 ∈ N, but then P (n0 + 1) being true would

contradict that).

2.5. EQUIVALENCE RELATIONS AND PARTITIONS 37

odd×odd=odd even×even=even even×odd=even

You would probably discover in the course of your investigation that the only thing
that matters about a number n in this context is whether r = 0 or 1, where
n = 2q + r is the result of applying the Quotient-Remainder Theorem 1.4.2 to n
with d = 2. All other information (for instance, the precise value of q) is irrelevant
in this context. The notion of equivalence relation gives us a way of making this
feeling rigorous.

Definition 2.5.1. We say a relation E on X is a equivalence relation if E is
reflexive, symmetric, and transitive. Recall this means:

(1) (reflexive) ∀x (xEx)
(2) (symmetric) ∀x∀y (xEy → yEx)
(3) (transitive) ∀x∀y∀z (xEy ∧ yEz → xEz)

where the domain of discourse is X.

Example 2.5.2. (1) Given a set X, we can construe “=” as an equivalence
relation on X in the obvious way, i.e.,

= :=
{

(x, x) : x ∈ X
}
⊆ X ×X.

(2) Given a set X, define the trivial equivalence relation on X to be the
relation E := X × X, i.e., for every x, y ∈ X, xEy. Then E is a (not
particularly useful) equivalence relation with a single equivalence class.

(3) Let X := {a, b, c, d, e, f}. The following relation E on X is an equivalence
relation:

E :=
{

(a, a), (b, b), (c, c), (d, d), (e, e), (f, f),

(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, e), (e, d)
}

E has the following digraph:

•
a •

b

•
c • d

• e

•f

Figure 2.6: Digraph of the equivalence relation E on X

In general, equivalence relations are most useful when they are nontrivial and not
the equals relation (although these are still perfectly valid examples of equivalence
relations). Given an equivalence relation E on a set X, there is a natural construc-
tion which allows us to replace E with actual equality =, at the cost of modifying
the objects we are talking about:

38 2. RELATIONS

Definition 2.5.3. Suppose E is an equivalence relation on a set X. For each
a ∈ X, define the equivalence class of a (with respect to E) to be

[a] = [a]E := {x ∈ X : xEa}.
In other words, [a] is the set of all things in X which E thinks is equivalent to a.
Define the quotient of X by E (notation: X/E, read: “X mod E”) to be the set

X/E :=
{

[a] : a ∈ X
}

There is a correspondence between partitions of a set X and equivalence relations
on a set X. The following makes this clear:

Fact 2.5.4. Suppose E is an equivalence relation on a set X. Then

(1) X/E is a partition of X,
(2) if S ⊆ P(X) is a partition of X, then the relation ES on X defined by:

xESy :⇐⇒ there exists A ∈ S such that x ∈ A and y ∈ A
is an equivalence relation on X and X/ES = S,

(3) for every x, y ∈ X, xEy if and only if [x] = [y].

Proof. (1) and (2) is Exercise 2.8.8. For (3) suppose x, y ∈ X are arbitrary. If
xEy, by definition of [y] we have x ∈ [y]. Thus x ∈ [x]∩ [y] 6= ∅ is nonempty. Since
X/E is a partition, it must be the case that [x] = [y]. Conversely, suppose [x] = [y].
Then x ∈ [x] = [y] and so xEy. �

In other words, an equivalence relation partitions the set X into disjoint equivalence
classes. The set X/E is basically the set X where we collapse each equivalence class
into a single element. When studying the equivalence relation E, we can either use
“E” and talk about “X”, or use “=” and talk about X/E. Using both points of
view and the interplay between them can be very fruitful.

Example 2.5.5. Let X and E be from Example 2.5.2(3). Then the partition X/E
is the following set:

X/E =
{
{a, b, c}, {d, e}, {f}

}
which we illustrate in Figure 2.7 below.

•
a

•
b

•
c

•
d

•
e

•
f

Figure 2.7: Partition X/E of X

2.6. THE MOD N CONGRUENCE (EQUIVALENCE) RELATION 39

2.6. The mod n congruence (equivalence) relation

In this section, fix a positive integer n ≥ 1. We will define one of the most funda-
mental examples of an equivalence relation in all of mathematics. At its core its
based on the divisibility relation:

Definition 2.6.1. We say that two integers a, b ∈ Z are congruent modulo n
(notation: a ≡ b (mod n)) if n|a− b, i.e.,

a ≡ b (mod n) :⇐⇒ n|a− b
⇐⇒ there exists q ∈ Z such that nq = a− b

We shall construe congruence mod(ulo) n as a binary relation on Z × Z in the
natural way, i.e., the pair (a, b) is in the relation iff a ≡ b (mod n).

Remark 2.6.2. Note that the n in the definition of congruence modulo n is fixed.
In other words, we are actually defining infinitely many equivalence relations – one
for each n ≥ 1.

Example 2.6.3. (1) Suppose n := 2. Then for k ∈ Z, we have either k = 2q
or k = 2q + 1, so either 2|k − 0 or 2|k − 1. Thus either k ≡ 0 (mod 2) or
k ≡ 1 (mod 2) depending on whether k is even or odd. Thus congruence
mod 2 captures the evenness/oddness of the numbers.

(2) Let’s consider the case where n := 1. Suppose a, b ∈ Z. Then 1 · (a− b) =
a−b, so with q := a−b we see that 1|a−b and thus a ≡ b (mod 1). Thus,
congruence mod 1 is the trivial equivalence relation on Z2. Consequently,
we will restrict our attention to congruence mod n where n ≥ 2.

Congruence Properties 2.6.4. Fix n ≥ 1. Then for every a, b, c, d ∈ Z the
following hold:

(C1) a ≡ a (mod n)
(C2) if a ≡ b (mod n), then b ≡ a (mod n)
(C3) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n)
(C4) if a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n) and

ac ≡ bd (mod n)
(C5) if a ≡ b (mod n), then am ≡ bm (mod n) for every m ∈ N.

Proof. The general strategy for proving things about ≡ is to rewrite what you
are doing in terms of the divides relation | (i.e., in terms of the definition of ≡), and
then if necessary rewrite what you are doing in terms of the definition of divides.
We prove (C4) like this and leave the rest as an exercise for the reader (for (C5)
use induction on m ∈ N).

(C4) Suppose a ≡ b (mod n) and c ≡ d (mod n). By definition, this means
that n|a− b and n|c− d. By (D7) (with x = y = 1), we have

n|(a− b) + (c− d)

which we can rewrite as
n|(a+ c)− (b+ d).

We conclude that a + c ≡ b + d (mod n), by definition of ≡. For the second part,
applying the definition of divides we get integers q0, q1 ∈ Z such that nq0 = a − b
and nq1 = c− d, i.e., a = b+ nq0 and c = d+ nq1. Note that

ac = (b+ nq0)(d+ nq1) = bd+ (bq1 + dq0 + q0q1n)n

40 2. RELATIONS

which we rewrite as

ac− bd = (bq1 + dq0 + q0q1n)︸ ︷︷ ︸
an integer

n

which implies n|ac−bd, by definition of divides. We conclude that ac ≡ bd (mod n),
by definition of ≡. �

It follows from (C1), (C2), and (C3) that (for a fixed n ≥ 1) congruence is an
equivalence relation:

Corollary 2.6.5. For fixed n ≥ 1, the relation “a ≡ b (mod n)” is an equivalence
relation on Z.

We conclude this section with an example which shows what the quotient of Z with
a congruence relation looks like.

Example 2.6.6. Suppose n = 5. Then the equivalence relation x ≡ y (mod 5)
partitions Z into five distinct equivalence classes: [0], [1], [2], [3], and [4]. We
illustrate these five equivalence classes in Figure 2.8 below.

0, −5, 5, −10, 10, −15, . . .

1, −4, 6, −9, 11, −14, . . .

2, −3, 7, −8, 12, −13, . . .

3, −2, 8, −7, 13, −12, . . .

4, −1, 9, −6, 14, −11, . . .

Figure 2.8: Partition Z/(mod 5) = {[0], [1], [2], [3], [4]} of Z into equivalence classes

2.7. More abstract nonsense

We conclude this chapter with a few more general constructions for relations. The
first is a way to construct a relation on X × Z given a relation on X × Y and a
relation on Y × Z:

Definition 2.7.1. Suppose R is a relation on X ×Y and S is a relation on Y ×Z.
We define the composition (of R with S) (notation: S ◦ R) to be the following
relation on X × Z:

S ◦R :=
{

(x, z) ∈ X×Z : ∃y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S
}
⊆ X×Z.

The second is a way to get a relation on Y ×X given a relation on X × Y :

2.8. EXERCISES 41

Definition 2.7.2. Suppose R is a relation on X × Y . We define the inverse of R
(notation: R−1) to be the following relation on Y ×X:

R−1 :=
{

(y, x) ∈ Y ×X : (x, y) ∈ R
}
⊆ Y ×X.

These notions of composition and inverse will be more important for functions
(special type of relation) in the next chapter. Although they can still be quite
useful for relations which aren’t functions.

2.8. Exercises

Exercise 2.8.1. This exercise is about writing natural statements in first-order
logic, and then negating those statements. These examples come from Math131a
and Math115a, although you don’t need to know anything from those subjects to
do this problem.

(1) Suppose (an)n∈N = a0, a1, a2, . . . is a sequence of real numbers indexed by
n ∈ N and a ∈ R is a fixed real number. We say the sequence (an)n∈N
converges to a (notation: limn→∞ an = a) if: for every real number
ε > 0, there is an index N ∈ N such that for all indices n ≥ N we have
|an − a| < ε.
(a) Write the statement “(an)n∈N converges to a” as a statement in first-

order logic. Indicate what the domain of discourse is for each variable.
(b) Write the negation of the statement from (a) as a statement in first-

order logic. Write it in an equivalent form which does not require the
negation symbol “¬”.

(c) Rewrite the symbolic statement from (b) as a statement using natural
language.

(2) Suppose f : R→ R is a function. We say that f is a continuous function
if: for every point a ∈ R, for every real number ε > 0, there is a real
number δ > 0 such that for every b ∈ R, if |a−b| < δ, then |f(a)−f(b)| <
ε. Repeat steps (a)-(c) for the statement “f : R → R is a continuous
function”.

(3) Suppose V is a vector space over R. Given vectors v1, . . . , vn ∈ V ,
we say that v1, . . . , vn are linearly independent if: for all coefficients
c1, . . . , cn ∈ R, if c1v1 + c2v2 + · · · + cnvn = 0, then ci = 0 for each
i = 1, . . . , n. Repeat steps (a)-(c) for the statement “v1, . . . , vn are lin-
early independent”.

Exercise 2.8.2. Let A = {2, 4} and B = {6, 8, 10} and define relations R and S
from A to B as follows: For all (x, y) ∈ A×B, xRy iff x|y, and xSy iff y − 4 = x.
State explicitly which ordered pairs are in A×B, R, S, R ∪ S, and R ∩ S.

Exercise 2.8.3. For each of the following relations, determine (with justification)
whether each one is reflexive, symmetric, and/or transitive:

(1) Define the relation I on R by: xIy iff x − y ∈ R \ Q (i.e., iff x − y is
irrational).

(2) Let P be the set of all propositions (in some fixed setting). Define the
relation R on P by: pRq iff the proposition “p→ q” is true.

(3) Define the relation P on Z by: kP` iff there exists a prime number p ∈ N
such that p|k and p|`.

Exercise 2.8.4. Prove by induction that for every n ≥ 1 we have 15|24n − 1.

42 2. RELATIONS

Exercise 2.8.5. Prove that for all d, n ∈ N, if d|n, then 2d − 1|2n − 1 [Hint: use
Difference-of-Powers Formula]. Then justify why 31|235 − 1 and 127|235 − 1.

Exercise 2.8.6. For every a ∈ Z, show the following:

(1) 2|a(a+ 1)
(2) 3|a(a+ 1)(a+ 2)
(3) 3|a(2a2 + 7)

Exercise 2.8.7. Prove that every natural number n ≥ 2 has a prime divisor. Hint:
Apply the Well-Ordering Principle to a carefully chosen set of divisors of n; you
can also do this with Strong Induction.

Exercise 2.8.8. Prove parts (1) and (2) of Fact 2.5.4.

Exercise 2.8.9. Let n ≥ 1 and suppose a, b ∈ Z. Prove the following are equivalent:

(1) a ≡ b (mod n),
(2) n|a− b,
(3) if q0, q1, r0, r1 ∈ Z are such that a = nq0+r0, b = nq1+r1 and 0 ≤ r0, r1 <

n, then r0 = r1 (i.e., a and b leave the same remainder when divided by
n).

Exercise 2.8.10. For n ≥ 1 let pn denote the nth prime number (so the sequence
p1, p2, p3, . . . begins 2, 3, 5, . . .). Use strong induction to prove the following: For

each n ≥ 1, pn ≤ 22
n−1

. [Hint: study the proof of Euclid’s Theorem.]

Exercise 2.8.11. Prove the existence part of the Fundamental Theorem of Arith-
metic by strong induction:

For each n ≥ 2 there exists m ≥ 1, prime numbers p1 < p2 < · · · < pm and
positive integers k1, . . . , km such that

n = pk11 p
k2
2 · · · pkmm .

Exercise 2.8.12. Suppose X,Y, Z,W are sets sets and R ⊆ X×Y , S ⊆ Y ×Z and
T ⊆ Z ×W are binary relations. Prove that relational composition is associative:

T ◦ (S ◦R) = (T ◦ S) ◦R.

Exercise 2.8.13. Suppose R is a relation on a set X. For each n ≥ 1 define the
n-fold composition R◦n as follows: for n = 1 we set R◦1 := R and for n ≥ 1
we define R◦(n+1) := R◦n ◦ R. Define the transitive closure Rtc of R to be the
following relation on X:

Rtc :=

∞⋃
n=1

R◦n := {(x, y) ∈ X ×X : there exists n ≥ 1 such that (x, y) ∈ R◦n}

Prove the following:

(1) R ⊆ Rtc,
(2) Rtc is a transitive relation on X,
(3) for every relation S on X, if

(a) R ⊆ S and
(b) S is transitive,

then Rtc ⊆ S.

This essentially says that Rtc is the transitive relation “generated” by R, and it is
the smallest transitive relation on X which contains R.

2.8. EXERCISES 43

Exercise 2.8.14. This problem is the sequel to the “transitive closure” exercise
above (and you can freely cite parts of that problem here if it helps). Given S ⊆
X ×X define the following operations:

ρ(S) := S ∪
{

(x, x) : x ∈ X
}

σ(S) := S ∪ S−1

Stc :=

∞⋃
n=1

S◦n

Now suppose R ⊆ X ×X.

(1) Show that (σ(ρ(R)))tc is an equivalence relation on X which contains R.
(2) Show that if R′ ⊆ X ×X is an equivalence relation on X which contains

R (i.e., R ⊆ R′), then R′ ⊇ (σ(ρ(R)))tc. In other words, (σ(ρ(R)))tc is
the smallest equivalence relation which contains R. (One could perhaps
call this the “equivalence relation closure” of R.)

[Hint: For this problem, it might help to state and prove several smaller claims.]

Exercise 2.8.15. True or False (with justification):

(1) 17 ≡ 2 (mod 5)
(2) 14 ≡ −6 (mod 10)
(3) 97 ≡ 5 (mod 13)
(4) 3 · 4 ≡ 3 · 14 (mod 6)
(5) 4 ≡ 14 (mod 6)
(6) For all a, b, c ∈ Z and n ≥ 1, if ab ≡ ac (mod n), then b ≡ c (mod n).

Exercise 2.8.16. This problem is about prime numbers.

(1) Prove that if n > 2, then there exists a prime p satisfying n < p < n!.
[Hint: Consider n!− 1].

(2) Prove that if 2n − 1 is prime, then n is prime.
(3) Prove that if 2n + 1 is prime, then n is a power of 2.

CHAPTER 3

Functions

3.1. Functions

We are already familiar with functions f : X → Y as being some sort of machine
that assigns to each input x ∈ X a unique output y ∈ Y . The formal way to view
functions is as a special case of relations:

Definition 3.1.1. Suppose f is a relation on X ×Y . We say that f is a function
from X to Y (notation: f : X → Y) if for every x ∈ X there is exactly one y ∈ Y
such that (x, y) ∈ f , i.e.,

(i) For each x ∈ X, there exists y ∈ Y such that (x, y) ∈ f :

∀x ∈ X ∃y ∈ Y
(
(x, y) ∈ f

)
(ii) For each x ∈ X, and for every y1, y2 ∈ Y , if (x, y1) ∈ f and (x, y2) ∈ f , then

y1 = y2:

∀x ∈ X ∀y1 ∈ Y ∀y2 ∈ Y
(
(x, y1) ∈ f ∧ (x, y2) ∈ f → y1 = y2

)
Note: (i) asserts there is at least one y ∈ Y , and (ii) asserts there is at most one
y ∈ Y . Taken together, (i) and (ii) assert there is exactly one y ∈ Y (with the
property (x, y) ∈ f).

Suppose f : X → Y . Then:

(1) We shall use the notation f(x) = y to indicate that (x, y) ∈ f
(2) The set X is called the domain of f (notation: domain(f) = X)
(3) The set Y is called the codomain of f (notation: codomain(f) = Y)
(4) The following subset of Y

range(f) :=
{
f(x) : x ∈ X

}
=
{
y ∈ Y : there exists x ∈ X such that f(x) = y

}
is called the range of f

(5) We also may use the notation “x 7→ f(x) : X → Y ” instead of f : X → Y ,
especially when the function f is determined by a formula in x and/or
it is not necessary to give a name to the function; see Example 3.1.2(2)
below.

Example 3.1.2. (1) Given a set X we define the identity function on X
(notation: idX : X → X) to be the function that sends every x ∈ X to
itself, i.e.,

idX(x) := x, for every x ∈ X.

Note that in this case, domain(idX) = codomain(idX) = range(idX) = X.
(2) The function:

k 7→ k2 : Z→ Z
has domain Z, codomain Z and range {0, 1, 4, 9, 16, . . .}.

45

46 3. FUNCTIONS

(3) We define the floor function to be the function x 7→ bxc : R→ Z defined
by

x 7→ bxc := the unique k ∈ Z such that k ≤ x < k + 1,

i.e., the floor of a real number x is the greatest integer less than or equal
to x.

(4) Likewise, we define the ceiling function to be the function x 7→ dxe :
R→ Z defined by

x 7→ dxe := the unique k ∈ Z such that k − 1 < x ≤ k,
i.e., the ceiling of a real number x is the least integer greater than or equal
to x.

Question 3.1.3. What is the codomain of the following function:

f :=
{

(1, a), (2, c), (3, c), (4, b)
}

Answer 3.1.4. Trick question! The domain is definitely the set X := {1, 2, 3, 4},
however, the codomain can technically be any set which contains Y := {a, b, c}.
Indeed, f is a valid function of type “X → Y ” (in which case, the codomain would
be Y), but it is also a valid function of type “X → Y ∪ {d, e, f}” (in which case,
the codomain would be Y ∪ {d, e, f} = {a, b, c, d, e, f}). The lesson here is that the
codomain is determined by what we say it is when we are specifying the function
as either f : X → Y or f : X → Y ∪ {d, e, f}. This annoyance only occurs for the
codomain. The domain is always uniquely determined (as mentioned above) from
the underlying set of ordered pairs, as is the range (which in this case is Y).

Just as with relations, we can form a new function from two given functions by
composition.

Definition 3.1.5. Suppose f : X → Y and g : Y → Z are functions. Then the
relational composition g ◦ f ⊆ X × Z is a function1 g ◦ f : X → Z called the
composition of g with f . Recall that g ◦ f : X → Z is defined by:

(g ◦ f)(x) := g
(
f(x)

)
:= the unique z ∈ Z such that ∃y ∈ Y

such that f(x) = y and g(y) = z.

Remark 3.1.6. (1) Suppose we have three function f : X → Y , g : Y →
Z and h : Z → W . Then we can create two new functions through
composition: g ◦ f : X → Z and h ◦ g : Y → W . Finally, we can create
two new functions:

h ◦ (g ◦ f) : X →W and (h ◦ g) ◦ f : X →W.

By Exercise 2.8.12, it follows that these functions are the same, i.e.,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.
Thus we say that functional composition is associative.

(2) Functional composition allows us to highlight the two main properties of
the identity function idX : X → X:
(a) For every function f : X → Y we have f ◦ idX = f ,
(b) For every function g : W → X we have idX ◦g = g.

1See Exercise 3.5.1.

3.2. THREE SPECIAL TYPES OF FUNCTIONS 47

We can also (sometimes) consider the inverse of a function. However, we will define
the inverse of a function in a more compelling way than just considering the inverse
f−1 of the underlying relation f (our definition will turn out to mean the same
thing).

Definition 3.1.7. Suppose f : X → Y is a function. We say that a function
g : Y → X is an inverse to f if f ◦ g = idY and g ◦ f = idX . We say that
f : X → Y is an invertible function if there exists an inverse g : Y → X.

At this point, it is not clear whether every function has an inverse (answer: no),
or even in the cases when a function does have an inverse whether that inverse is
unique (answer: yes). The following clears up the latter issue:

Lemma 3.1.8 (Uniqueness of function inverse). Suppose f : X → Y is a function
and g, h : Y → X are inverses to f . Then g = h.

Proof. Note that

g = g ◦ idY by Remark 3.1.6(2)

= g ◦ (f ◦ h) since h is an inverse of f

= (g ◦ f) ◦ h since composition is associative

= idX ◦h since g is an inverse of f

= h by Remark 3.1.6(2). �

One special feature of the proof of Lemma 3.1.8 is that it used very general principles
(compositional property of identity, definition of inverse, associativity) and did not
mention specific elements x ∈ X at all. Analogues of this argument show up in
many other areas of math, for example, in the proof that the inverse of an invertible
matrix is unique. At any rate, we can now unambiguously define the inverse f−1

of an invertible function f :

Definition 3.1.9. Suppose f : X → Y is an invertible function. Then we define
f−1 : Y → X to be the (unique) inverse of f .

At this point, given an invertible function f we have two meanings to “f−1”, the
one given by Definition 2.7.2 (if we were viewing f as a relation) and the one given
by Definition 3.1.9 (if we are viewing f as an invertible function). Fortunately these
two meanings coincide so there is no issue (see Exercise 3.5.3).

3.2. Three special types of functions

There are three special flavors of functions which permeate all of mathematics:

Definition 3.2.1. A function f : X → Y is called

(1) injective (or one-to-one) if for every x1, x2 ∈ X, if f(x1) = f(x2), then
x1 = x2:

∀x1 ∈ X ∀x2 ∈ X
(
f(x1) = f(x2)→ x1 = x2

)

48 3. FUNCTIONS

(2) surjective (tacitly2: surjective onto Y)(or onto) if for every y ∈ Y
there exists an x ∈ X such that f(x) = y:

∀y ∈ Y ∃x ∈ X
(
f(x) = y

)
Equivalently, f is surjective if range(f) = codomain(f).

(3) bijective (or a bijection, or one-to-one and onto) if f is both injective
and surjective

We give some simple examples of functions which either have or do not have each
of these properties:

Example 3.2.2. (1) Suppose X = {a, b, c} and Y = {d, e, f}. Then the
function f : X → Y specified in Figure 3.1 is a bijection, i.e., it is both
injective and surjective.

•a

•b

•c

• d

• e

• f

Figure 3.1: A bijective (i.e., an injective and surjective) function

(2) Suppose X = {a, b, c} and Y = {d, e}. Then the function f : X → Y
specified in Figure 3.2 is a surjective function but it is not injective.

•a

•b

•c

• d

• e

Figure 3.2: A surjective function that is not bijective

(3) Suppose X = {a, b} and Y = {c, d, e}. Then the function f : X → Y
specified in Figure 3.3 is an injective function but it is not surjective.

2The notion of surjective (as well as bijective) only makes sense when it is clear what the

codomain is. If you change what the codomain is, the function might change whether it is surjective
or not. For instance, in Question 3.1.3, the function f : X → Y is surjective, but the function

f : X → Y ∪ {d, e, f} is not surjective, even though the two f ’s have the same underlying set!

3.2. THREE SPECIAL TYPES OF FUNCTIONS 49

•a

•b

• c

• d

• e

Figure 3.3: An injective function that is not surjective

(4) Suppose X = {a, b} and Y = {c, d}. Then the function f : X → Y
specified in Figure 3.4 is neither injective nor surjective.

•a

•b

• c

• d

Figure 3.4: A function that is neither injective nor surjective

These notions allow us to characterize which functions are invertible:

Theorem 3.2.3. Suppose f : X → Y is a function. The following are equivalent:

(1) f is a bijection.
(2) f is invertible.

Proof. This is Exercise 3.5.5. �

For finite domains and codomains, the notions of injective, surjective, and bijective
are intimately tied to the concept of cardinality. We begin with introducing the
following (obvious) fact about cardinality which we will take for granted:

Cardinality Fact 3.2.4. Suppose X is a finite set and a 6∈ X. Then |X ∪ {a}| =
|X|+ 1.

We also need to introduce the following:

Definition 3.2.5. Suppose f : X → Y is a function. Then we define the inverse
image function (of f) to be the set-valued function

f−1 : P(Y)→ P(X)

defined by
f−1(A) := {x ∈ X : f(x) ∈ A}

for every A ⊆ Y . Here are some basic facts about the inverse image function:

(1) a function f : X → Y is an injection iff for every b ∈ Y , |f−1({b})| ≤ 1,
(2) a function f : X → Y is a surjection iff for every b ∈ Y , |f−1({b})| ≥ 1,
(3) if f : X → Y is a function and X is finite, then

|X| =
∑
b∈Y

|f−1({b})|.

50 3. FUNCTIONS

Remark 3.2.6. Note that every function f : X → Y admits an inverse image
function f−1 : P(Y) → P(X), regardless of whether f is invertible or not. If f
is invertible, then its inverse f−1 : Y → X also has the name “f−1”, although
this should not cause any confusion since the inverse image function takes as input
subsets of Y whereas the inverse of f (should it exist), takes as input elements of
Y . Thus the context should always make clear what “f−1” means, depending on
what type of object the input and output of the function is supposed to be.

Lemma 3.2.7. Suppose f : X → Y is a function. Then

(1) if X is finite and f is an injection, then |X| ≤ |Y |.
(2) if f is a surjection, then there exists an injection g : Y → X such that

f ◦ g = idY , and thus |Y | ≤ |X| if Y is finite.

Proof. (1) We will prove this statement by induction on |X|. Specifically, we will
prove the following for every n ≥ 0:

P (n) : “if |X| = n and f : X → Y is an injection, then |X| ≤ |Y |.”
Base Case: Suppose n = 0, then automatically |X| = 0 ≤ |Y |.
Inductive Step: Suppose for some n ≥ 0 we know that P (n) is true. We will

show that P (n + 1) is true. Suppose f : X → Y is an injection with |X| = n + 1.
Select some a ∈ X and consider X ′ := X \ {a}, so |X ′| = n. Also define Y ′ :=
Y \{f(a)}. Then the relation f \{(a, f(a))} ⊆ X ′×Y ′ is also an injective function.
Thus by P (n) it follows that |X ′| ≤ |Y ′|. By Cardinality Fact 3.2.4, it follows that
|X| = |X ′|+ 1 ≤ |Y ′|+ 1 = |Y |. Thus P (n+ 1) is proven.

(2) Suppose f : X → Y is a surjection. Since f is surjective, for each b ∈ Y , the
set f−1({b}) is nonempty. Thus define g(b) arbitrarily such that g(b) ∈ f−1({b}).
Then f

(
g(b)

)
= b for every b ∈ Y so f ◦ g = idY . Furthermore, the function

g : Y → X is an injection. Indeed, suppose b1, b2 ∈ Y are arbitrary such that
g(b1) = g(b2). Applying f to both sides yields b1 = f

(
g(b1)

)
= f

(
g(b2)

)
= b2. �

Theorem 3.2.8. Suppose f : X → Y is a function, X and Y are finite sets and
|X| = |Y |. Then the following are equivalent:

(1) f is injective.
(2) f is surjective.
(3) f is bijective.
(4) f is invertible.

Proof. (3)⇔(4) follows from Theorem 3.2.3. (3)⇒(1) and (3)⇒(2) follows from
the definition of bijection.

(1)⇒(2) Suppose f : X → Y is an injection. Then f : X → range(f) is also
an injection and so |X| ≤ | range(f)| ≤ |Y |. However, since |X| = |Y | and these
sets are finite, it follows that |Y | = | range(f)| and so Y = range(f). Thus f is
surjective.

(2)⇒(1) Suppose f : X → Y is surjective. By Lemma 3.2.7(2) there exists
an injective function g : Y → X such that f ◦ g = idY . Since we already know
(1)⇒(2) is true, we know that g is surjective and so g : Y → X is bijective, and
thus invertible (by (3)⇔(4)). Let h : X → Y be an inverse of g, which is also
injective since it is invertible. Note that

h = idY ◦h = (f ◦ g) ◦ h = f ◦ (g ◦ h) = f ◦ idX = f.

Thus f is also injective.

3.3. THE MOD N FUNCTION AND THE GREATEST COMMON DIVISOR FUNCTION 51

Now that we’ve established (1)⇔(2), we know that an injective function f :
X → Y is automatically surjective, hence bijective. Thus (1)⇒(3) is also true. �

The contrapositive of Lemma 3.2.7(1) is of special importance:

Pigeonhole Principle 3.2.9 (Abstract Form). Suppose f : X → Y is a function,
X and Y are finite sets and |X| > |Y |. Then f is not injective, i.e., there are
x1, x2 ∈ X such that x1 6= x2 and f(x1) = f(x2).

Note: the previous three results are in some sense an embryonic form of the ar-
guments needed for basic dimension-theoretic results concerning linear transforma-
tions between finite-dimensional vector spaces.

3.3. The mod n function and the greatest common divisor function

In this section we continue our study of basic number theory. In section 2.6 we
encountered the a ≡ b (mod n) congruence (equivalence) relation on Z2. Given
integers a, b ∈ Z, the relation a ≡ b (mod n) says that a and b leave the same
remainder when divided by n. Many times, it is convenient to know what the
remainder actually is. For instance, it is nice to know that 432 ≡ 7495 (mod 7),
but it is perhaps more informative to know that 432 ≡ 5 (mod 7) and 7495 ≡ 5
(mod 7), This is because in our minds we picture the equivalence classes (mod 7)
as being labeled by some number from {0, 1, 2, . . . , 6} (the remainder when divided
by 7), so we somehow know more information if we are told both 432 and 7495
are ≡ 5 (mod 7) because it tells us which specific equivalence class these numbers
belong to, which could be useful when comparing them to other numbers later
which come along.

Definition 3.3.1. Fix an n ≥ 1. Define the modulus operator (with respect to
n) to be the function

k 7→ k%n : Z→ {0, 1, . . . , n− 1}
defined for k ∈ Z by

k%n := the unique r ∈ {0, . . . , n− 1} such that k ≡ r (mod n).

In the textbook, k%n is denoted instead “kmodn”, however we will stick to the
notation k%n to emphasize that we are talking about a function, to acknowledge
the computer science connection, and to distinguish it from the equivalence relation
a ≡ b (mod n) (which is not a function)

When simplifying fractions a/b, we want to know what is the best divisor which we
can factor out of both a and b simultaneously, to then cancel out. For instance,

15

21
=

3 · 5
3 · 7

=
5

7
.

The divisor we are looking for is called the greatest common divisor of a and b. In
order to make this definition precise, first we need to observe the following:

Lemma 3.3.2. Suppose a, b ∈ Z are such that either a 6= 0 or b 6= 0, i.e., suppose
(a, b) ∈ Z2 \ {(0, 0)}. Then the set of common divisors

CD(a, b) := {d ∈ N : d|a and d|b}
has the properties:

(1) 1 ∈ CD(a, b) (so CD(a, b) is nonempty), and

52 3. FUNCTIONS

(2) for every d ∈ CD(a, b), d ≤ max(|a|, |b|) (so CD(a, b) is bounded above).

Thus the set CD(a, b) has a largest element.

Proof. (1) follows from 2.4.5(D1) and (2) follows from (D6). �

Definition 3.3.3. Define the greatest common divisor function of two integers
to be the function

(a, b) 7→ gcd(a, b) : Z2 \ {(0, 0)} → N

defined by

gcd(a, b) := max CD(a, b).

In other words, gcd(a, b) = d means:

(1) d|a and d|b, in symbols:

d|a ∧ d|b

(2) for all e ∈ N, if e|a and e|b, then e ≤ d, in symbols:

∀e (e|a ∧ e|b→ e ≤ d)

[Note: (1) asserts that d is a common divisor, and (2) asserts that d is
greater than or equal to all other common divisors, taken together this
means that d is the greatest common divisor.]

For small integers, the gcd is easy to compute by brute-force:

Example 3.3.4. Suppose a = 24 and b = 45. Then the set of positive divisors are
respectively

{1, 2, 3, 4, 6, 8, 12, 24} and {1, 3, 5, 9, 15, 45}.
Thus the common divisors are

CD(24, 45) = {1, 3}

and so gcd(24, 45) = 3.

We will study more efficient ways of computing gcd(a, b). First we give a useful
and more abstract characterization of gcd(a, b):

Theorem 3.3.5. Suppose a, b ∈ Z and (a, b) 6= (0, 0). Consider the nonempty set
of natural numbers:

S := {ax+ by : x, y ∈ Z and ax+ by > 0}

Then gcd(a, b) = minS. Furthermore,

{ax+ by : x, y ∈ Z} =
{
k gcd(a, b) : k ∈ Z

}
,

i.e., the set of all integer combinations of a and b is the same as the set of all
integer multiples of gcd(a, b).

Proof. Let d := minS (by the Well-Ordering Principle, S has a least element
since it is nonempty; indeed, consider x = ±1 and y = ±1, at least one of these
choices of x and y will work). Let x, y ∈ Z be such that d = ax+ by.

By the Quotient-Remainder Theorem, we get q, r ∈ Z such that a = qd + r
where 0 ≤ r < d. Then we have

r = a− qd = a− q(ax+ by) = a(1− qx) + b(−qy).

3.3. THE MOD N FUNCTION AND THE GREATEST COMMON DIVISOR FUNCTION 53

Since 0 ≤ r < d, this forces r = 0 (otherwise r would be an even smaller element of
S than d). Thus d|a. By a similar argument we also get d|b. Thus d is a positive
common divisor of a and b.

Next, suppose c ∈ N is such that c ≥ 1 and c|a and c|b. Then c|ax+ by = d, so
c ≤ d. We conclude that d = gcd(a, b).

For the second property, define T := {ax + by : x, y ∈ Z} and W :=
{
kd : k ∈

Z
}

. Since d|a and d|b, if follows that d|ax + by for all x, y ∈ Z and so T ⊆ W .
Conversely, since d = ax0 + by0 for some x0, y0 ∈ Z (by the first part), it follows
that kd = a(kx0) + b(ky0) ∈ T . Thus W ⊆ T . �

Definition 3.3.6. Given a, b ∈ Z such that (a, b) 6= (0, 0), we say that a and b are
relatively prime if gcd(a, b) = 1.

Euclid’s Lemma 3.3.7. Suppose a, b, c ∈ Z are such that (a, b) 6= (0, 0) and
gcd(a, b) = 1. If a|bc, then a|c.

Proof. Since gcd(a, b) = 1, by Theorem 3.3.5 there are x, y ∈ Z such that ax+by =
1. Thus c = c · 1 = acx+ bcy. Since a|acx and a|bcy, it follows that a|c. �

We now summarize many of the relevant divisibility properties concerning prime
numbers:

Lemma 3.3.8. Suppose p is a prime number. Then

(1) for every a ∈ Z, if p - a, then gcd(p, a) = 1,
(2) for every 0 < k < p, gcd(p, k) = 1,
(3) for every a, b ∈ Z, if p|ab, then p|a or p|b,
(4) for every a1, . . . , an ∈ Z, if p|a1 · · · an, then p|ai for some i ∈ {1, . . . , n}.

Proof. (1) Suppose d := gcd(p, a). Then d|p so either d = p or d = 1. However,
since d|a it must be the case that d 6= p. Thus d = 1.

(2) follows from (1) since if 0 < k < p, then p - k by Divisibility Property (D6).
(3) Assume p|ab and p - a. Then gcd(p, a) = 1 by part (1), so p|b by Euclid’s

Lemma 3.3.7.
(4) follows from (3) by induction on n. �

We are now in a good position to prove the Fundamental Theorem of Arithmetic
which says that every integer n ≥ 2 has a unique prime factorization:

Fundamental Theorem of Arithmetic 3.3.9. Suppose n ≥ 2. Then

(1) (Existence) there exists r ≥ 1, prime numbers p1 < p2 < · · · < pr and
positive integers k1, . . . , kr such that

n = pk11 p
k2
2 · · · pkrr .

(2) (Uniqueness) for every r, s ≥ 1, prime numbers p1 < p2 < · · · < pr,
q1 < q2 < · · · < qs and positive integers k1, . . . , kr and `1, . . . , `s, if

n = pk11 p
k2
2 · · · pkrr = q`11 q

`2
2 · · · q`ss

then r = s, and for each i ∈ {1, . . . , r}, pi = qi and ki = `i.

Proof. (1) This is Exercise 2.8.11.
(2) We will prove the following statement by induction on n ≥ 1:

P (n) : “for every r, s ≥ 1, prime numbers p1 < p2 < · · · < pr, q1 < q2 < · · · < qs

54 3. FUNCTIONS

and positive integers k1, . . . , kr and `1, . . . , `s, if n = pk11 p
k2
2 · · · pkrr = q`11 q

`2
2 · · · q`ss ,

then r = s, and for each i ∈ {1, . . . , r}, pi = qi and ki = `i.”

We will prove this by strong induction.
Base Case: Suppose n ≥ 2 is a prime number (this includes the true base

case of n = 2). We claim that n = pk11 (where p1 := n, k1 = 1, and r := 1) is the
unique prime factorization of n. Suppose we are given s ≥ 1, primes q1 < · · · < qs
and natural numbers `1, . . . , `s such that

n = pk11 = q`11 · · · q`ss .
Then since n is composite, it must be the case that s = 1, that `1 (otherwise n
would have too many divisors). Thus n = p11 = q11 , so p1 = q1 as well.

Inductive Step: Assume for some n ≥ 2 that n+1 is composite and we know
that P (2), . . . , P (n) hold. We will prove that P (n + 1) is true. Suppose we have
r, s ≥ 1, primes p1 < · · · < pr, q1 < · · · < qs, and positive integers k1, . . . , kr and
`1, . . . , `s such that

n+ 1 = pk11 p
k2
2 · · · pkrr = q`11 q

`2
2 · · · q`ss

Then p1|n + 1 = q`11 · · · q`ss . By Lemma 3.3.8(4), it follows that there is some
i ∈ {1, . . . , s} such that p1|qi and thus p1 = qi since qi is prime. Thus q1 ≤ p1. A
similar argument dividing q1 into n+1 shows that p1 ≤ q1. Thus p1 = q1. Consider
the integer:

n′ :=
n+ 1

p1
= pk1−11 pk22 · · · pkrr = q`1−11 q`22 · · · q`ss .

Since 2 ≤ n′ ≤ n, we know that P (n′) is true. Thus r = s, ki = `i and pi = qi for
each i ∈ {1, . . . , r}. Officially, we should do a case distinction to conclude this:

Case 1: Suppose k1 = 1 Then k1−1 = 0, so p1 - n′. Thus q1 - n′, so `1−1 = 0,
so `1 = 1. In this case, the true prime factorization (with all positive exponents) is
actually

n′ :=
n+ 1

p1
= pk22 · · · pkrr = q`22 · · · q`ss .

where there are r − 1 and s− 1 distinct primes in each, respectively. By P (n′), it
follows that r − 1 = s− 1 and thus r − s. Furthermore, it follows from P (n′) that
pi = qi and ki = `i for every i ∈ {2, . . . , r}.

Case 2: Suppose k1 > 1 Then k1 − 1 > 0 is a positive integer, so p1|n′. Thus
q1|n′, so `1 − 1 ≥ 1 is also a positive integer. Thus the true prime factorization in
this case (with all positive exponents) is

n′ :=
n+ 1

p1
= pk1−11 pk22 · · · pkrr = q`1−11 q`22 · · · q`ss .

and so by P (n′), we have that r = s, pi = qi for every i ∈ {1, . . . , r}, k1−1 = `1−1,
so k1 = `1, and ki = `i for every i ∈ {2, . . . , r}. �

3.4. The Euclidean Algorithm

In this section we will present a recursive algorithm for computing gcd(a, b). This
algorithm is based on the following properties of gcd:

Lemma 3.4.1. Suppose a, b ∈ Z are such that (a, b) 6= (0, 0). Then:

(1) (Symmetry) gcd(a, b) = gcd(b, a)
(2) (Reduction) if b 6= 0, then gcd(a, b) = gcd(b, a%b)

3.4. THE EUCLIDEAN ALGORITHM 55

(3) (Stopping Conditions) gcd(a, 1) = 1 and gcd(a, 0) = |a| if a 6= 0.

Proof. (1) Since CD(a, b) = CD(b, a), it follows that

gcd(a, b) = max CD(a, b) = max CD(b, a) = gcd(b, a).

(2) Let q ∈ Z be such that a = qb+ a%b and suppose d ∈ CD(a, b) is arbitrary.
Then d|a − qb = a%b, so d ∈ CD(b, a%b). Conversely, if d ∈ CD(b, a%b), then
d|qb + a%b = a, so d ∈ CD(a, b). Thus CD(a, b) = CD(a, b%a), and so gcd(a, b) =
gcd(a, a%b).

(3) The only positive divisor of 1 is 1, so CD(a, 1) = {1} and gcd(a, 1) = 1.
Since |a||a and |a||0, and gcd(a, 0) ≤ max{|a|, |0|} = |a|, it follows that gcd(a, 0) =
|a|. �

Before formally introducing the Euclidean Algorithm, we will work out an example
of its usage:

Example 3.4.2. What is gcd(157, 30)? Also, find integers x, y ∈ Z such that
gcd(157, 30) = 157x+ 30y.

Answer. We will iterate the (Reduction) property by continually dividing the
new remainder (r) into the old smaller number (d) using the Quotient-Remainder
Theorem, until we reach a (Stopping Condition). We agree to stop at 0 even if a
remainder of 1 shows up (we display d, q, r only to show which numbers are playing
which role in each application of the Quotient-Remainder Theorem):

a = b · q + r d q r

157 = 30 · 5 + 7 30 5 7

30 = 7 · 4 + 2 7 4 2

7 = 2 · 3 + 1 2 3 1

2 = 1 · 2 + 0 1 2 0

Note that by (Reduction) the above computation shows

gcd(157, 30) = gcd(30, 7) = gcd(7, 2) = gcd(2, 1) = gcd(1, 0) = 1.

Thus gcd(157, 30) = 1. We will use back-substitution on the above computation to
find integers x and y:

1 = 7− 2 · 3 (from fourth row)

= 7− (30− 7 · 4) · 3 (from third row)

= 7 · 13− 30 · 3
= (157− 30 · 5) · 13− 30 · 3 (from second row)

= 157 · 13− 30 · 68.

Thus x := 13 and y := −68 suffice. �

The Euclidean Algorithm works exactly as in the above example:

56 3. FUNCTIONS

Euclidean Algorithm 3.4.3. Suppose a > b ≥ 1. Then there are n ≥ 1, a strictly
decreasing sequence r1 > r2 > · · · > rn = 0 and integers q1, . . . , qn ∈ Z such that

(†)

a = bq1 + r1 0 ≤ r1 < b

b = r1q2 + r2 0 ≤ r2 < r1

r1 = r2q3 + r3 0 ≤ r3 < r2

...

rn−3 = rn−2qn−1 + rn−1 0 ≤ rn−1 < rn−2

rn−2 = rn−1qn + rn︸︷︷︸
=0

0 = rn.

Furthermore,

(1) gcd(a, b) = rn−1, with r0 := b,
(2) for each k ∈ {1, . . . , n}, rk = rk−2%rk−1, with r−1 := a,
(3) the numbers (n, r1, . . . , rn, q1, . . . , qn) with property (†) are unique.

[We suggestively call the number n in the Euclidean Algorithm the number of
recursive calls to the Quotient-Remainder Theorem for input (a, b).]

Proof (Sketch). Given all the results we’ve developed so far, there is nothing
inherently difficult about this proof other than the fact that the statement we are
proving by induction is quite a mouthful. (Indeed, saying “are unique” in item
(3) is really shorthand for a much longer statement.) We will prove the following
statement for every b ≥ 1 by strong induction on b:

P (b) : For every a > b there exists (n, r1, . . . , rn, q1, . . . , qn)

which satisfies (†) and (1), (2), and (3).

Base Case: Suppose b = 1. Then by the Quotient-Remainder Theorem 1.4.2
we have q1 := a ∈ Z and r1 := a%1 = 0 such that a = bq1 + r1. Thus the
data (1, 0, a) have properties (†). Furthermore, gcd(a, 1) = 1 by the (Stopping
Condition) so item (1) holds. Item (2) holds by construction and (3) follows from
the Uniqueness part of the Quotient-Remainder Theorem.

Inductive Step: Suppose for some b ≥ 1 we know that P (1), . . . , P (b) are
true. We must show that P (b+ 1) is true. Suppose a > b+ 1 is arbitrary. By the
Quotient-Remainder Theorem, get q1 ∈ Z and r1 := a%b such that a = bq1 + r1 and
0 ≤ r1 < b+ 1.

If r1 = 0, then gcd(a, b) = gcd(b, a%b) = gcd(a, 0) = a by Lemma 3.4.1. Thus
the data (1, 0, q1) has property (†) and satisfies items (1) and (2). Item (3) follows
again from the Uniqueness part of the Quotient-Remainder Theorem.

If 1 ≤ r1 < b+ 1, then by the inductive hypothesis P (r1) is true. Furthermore,
by Lemma 3.4.1 we have gcd(a, b) = gcd(a, r1), so we can use P (r1) to compute
gcd(a, r1). Doing this yields data (m, q′1, . . . , q

′
m, r

′
1, . . . , r

′
n) with the appropriate

properties. Then the data (m+ 1, q1, q
′
1, . . . , q

′
m, r1, r

′
1, . . . , r

′
n) works for computing

gcd(a, b), i.e., it has properties (†) and satisfies items (1), (2), and (3) for the initial
pair (a, b). �

3.5. EXERCISES 57

3.5. Exercises

Exercise 3.5.1. Suppose we have two functions f : X → Y and g : Y → Z. Since
f and g are relations, we can consider their composition g ◦ f which is a relation
on X × Z (see Definition 2.7.1). Prove that g ◦ f is a function X → Z.

Exercise 3.5.2. Suppose i : X → X is a function with the following two properties:

(1) For every set Y and every function f : X → Y we have f ◦ i = f , and
(2) For every set W and every function g : W → X we have i ◦ g = g.

Prove that i = idX , i.e., prove that for every x ∈ X, that i(x) = x.

Exercise 3.5.3. Suppose f : X → Y is an invertible function with inverse g : Y →
X. Also consider the relation

h :=
{

(y, x) ∈ Y ×X : f(x) = y
}

on Y → X. Prove that h is a function Y → X and that g = h.

Exercise 3.5.4. In this problem we will give alternative characterizations for in-
jections and surjections. Suppose f : X → Y is a function.

(1) Prove the following are equivalent:
(a) f : X → Y is an injection.
(b) for every pair of functions g, h : W → X, if f ◦ g = f ◦ h, then g = h.

(2) Prove the following are equivalent:
(a) f : X → Y is a surjection.
(b) for every pair of functions g, h : Y → Z, if g ◦ f = h ◦ f , then g = h.

Exercise 3.5.5. Suppose f : X → Y is a function. The following are equivalent:

(1) f is a bijection.
(2) f is invertible.

Exercise 3.5.6. Suppose f : X → Y and g : Y → Z are invertible functions.
Prove the following:

(1) g ◦ f : X → Z is invertible, and
(2) (g ◦ f)−1 = f−1 ◦ g−1.

Exercise 3.5.7. Suppose f : X → Y is a function. We will show that f can be
“factored” as a surjection followed by an injection in an essentially unique way.

(1) Show that Ef ⊆ X ×X defined by aEfb iff f(a) = f(b) is an equivalence
relation on X.

(2) Show that π ⊆ X ×X/Ef defined by

π :=
{

(a, [a]) : a ∈ X
}

is a function π : X → X/Ef and this function is surjective.

(3) Show that f ⊆ X/Ef × Y defined by

f :=
{

([a], f(a)) : a ∈ X
}

is a function f : X/Ef → Y and this function is injective.

58 3. FUNCTIONS

(4) Show that f = f ◦ π : X → Y . Here is the diagram illustrating the
situation:

X
f //

π ""

Y

X/Ef

f

<<

(5) Suppose we have functions g : X → Q and h : Q→ Y such that
(a) g is a surjection,
(b) h is an injection, and
(c) f = h ◦ g : X → Y .

Prove that there exists a bijection b : X/Ef → Q such that b ◦ π = g and

h ◦ b = f . Here is a diagram illustrating the situation:

X
π //

g
""

X/Ef

b

��

f // Y

Q

h

==

Exercise 3.5.8. Prove for every real number x ∈ R, if x ≥ 0, then⌊√
bxc
⌋

= b
√
xc.

Exercise 3.5.9 (Freshman’s Dream). In this exercise we will prove an important
and useful fact about arithmetic mod p (where p is a prime).

(1) For 0 ≤ k ≤ n, by definition
(
n
k

)
= n!

k!(n−k)! ∈ Q is a rational number.

Prove that in fact
(
n
k

)
∈ Z. [Hint: Use induction on n and for the cases

0 < k < n use Pascal’s Rule]. Conclude that k!(n− k)!|n!.
(2) Suppose p is a prime and 0 < k < p. Prove that k!(p − k)!|(p − 1)!.

Conclude that p|
(
p
k

)
.

(3) Let x, y ∈ Z be arbitrary and suppose p is a prime. Prove that

(x+ y)p ≡ xp + yp (mod p).

Exercise 3.5.10. Suppose a, b ∈ Z are such that gcd(a, b) = d. Prove that
gcd(a/d, b/d) = 1 (this includes justifying first why a/d, b/d ∈ Z).

Exercise 3.5.11. Suppose a, b, c ∈ Z are such that a|c, b|c, and gcd(a, b) = 1.
Prove that ab|c.

Exercise 3.5.12. Suppose a, b ∈ Z are such that gcd(a, b) = 1. Prove that for
every m,n ≥ 1 that gcd(am, bn) = 1 [Hint: use the “ax+ by = 1” characterization
of gcd(a, b) = 1 and the Binomial Theorem.]

Exercise 3.5.13. Suppose a, b, c ∈ Z (with at least two of these numbers being
nonzero). Prove that gcd is associative:

gcd
(
a, gcd(b, c)

)
= gcd

(
gcd(a, b), c

)
.

Exercise 3.5.14. For all integers a, b ∈ Z such that (a, b) 6= (0, 0), prove that if
gcd(a, b) = 1, then gcd(a+ b, ab) = 1.

Exercise 3.5.15. In each of the following, use the Euclidean algorithm to calculate
the gcd and to find appropriate integers x, y ∈ Z:

3.5. EXERCISES 59

(1) Find integers x, y ∈ Z such that 547x+ 632y = gcd(547, 632).
(2) Find integers x, y ∈ Z such that 398x+ 600y = gcd(398, 600).
(3) Find integers x, y ∈ Z such that 922x+ 2163y = gcd(922, 2163).

Exercise 3.5.16. Find integers x, y, z such that

gcd(198, 288, 512) = 198x+ 288y + 512z.

Exercise 3.5.17. This problem is about gcd. Prove the following:

(1) If gcd(a, b) = 1 and if d|(a+ b), then gcd(a, d) = gcd(b, d) = 1.
(2) If a > 1, then gcd(am − 1, an − 1) = agcd(m,n) − 1.

CHAPTER 4

Counting

We begin with an analogy. Recall that prior to learning linear algebra, you could
probably still solve simple linear equations

x+ y = 1

x+ 3y = 2

just by thinking hard enough and coming up with some heuristic argument. How-
ever, linear equations are often much more complicated and the subject of linear
algebra gives us (among many other things) a very systematic way to approach
more complicated linear equations (and the simpler ones too)!

The subject of counting has a similar feeling to it. For instance, you can probably
come up with the answer to the following counting problem

How many 5-card poker hands are a full-house?

just by thinking about it long enough and coming up with some heuristic argument.
However, the subject of counting teaches us various systematic ways to view and
count large sets as well as several very general principles we can apply when faced
with a new problem.

4.1. Basic counting principles

In this section we introduce two fundamental counting principles. I claim that these
principles are obvious and you’ve been using them your entire life. The novelty here
is that we are making these principles explicit when usually we don’t think about
them when we are using them. Consequently, we’ll give an example of the principle
in action first, then discuss the principle itself.

Example 4.1.1 (License Plates). Suppose in some state every license plate is of
the form ABC123 (i.e., three letters from the 26-letter alphabet and three non-zero
digits from {1, 2, . . . , 9}). Letters and numbers are allowed to appear more than
once on the same license plate, so CCD363 is also valid, for instance. A natural
counting question to ask is:

How many distinct license plates can be made?

To answer this question, we think of how we might go about creating/constructing
a particular license plate. This can be done in a series of choices:

(Step 1) Choose the first letter: 26 choices
(Step 2) Choose the second letter: 26 choices
(Step 3) Choose the third letter: 26 choices
(Step 4) Choose the first digit: 9 choices
(Step 5) Choose the second digit: 9 choices

61

62 4. COUNTING

(Step 6) Choose the third digit: 9 choices

In each step, so we are free to make any choice we want, independent of the previous
steps, we should convince ourselves that there are

26 · 26 · 26 · 9 · 9 · 9 = 12, 812, 904 total license plates.

The following is the underlying principle which we used in the above example:

Multiplication Principle 4.1.2. Suppose an object/activity/thing can be con-
structed/specified/created in t successive steps, where for each i ∈ {1, . . . , t} Step
i can be done in ni ∈ N different ways, then the total number of possible ob-
jects/activities/things is

n1 · n2 · · ·nt.

The Multiplication Principle is equivalent to the following abstract form involving
finite sets and cardinalities:

Multiplication Principle 4.1.3 (Abstract Form). Suppose A1, A2, . . . , At are
finite sets. Then

|A1 ×A2 × · · · ×At| = |A1| · |A2| · · · |At|.

Proof. We won’t give a proof of this (we can’t anyway unless we give a more
formal definition of cardinality). However, you should have no problem taking this
principle on faith. To convince yourself that it is true, use induction on t and
recall the “multiplication is repeated addition” characterization of multiplication
in N. �

Our next principle is also straightforward. We give an example first:

Example 4.1.4 (Choosing flights). Suppose we want to purchase an airline ticket
for a flight from Los Angeles to Chicago. For the particular day we are interested
in flying, there are three airlines offering flights throughout the day:

• Airline A has a total of 3 flights
• Airline B has a total of 5 flights
• Airline C has a total of 2 flights

The question we ask is the following:

How many total flights are there?

To answer this, we add up the total number of flights which each airline is offering:

3 + 5 + 2 = 10.

Thus there are 10 total flights to choose from.

The previous example illustrates a simple case of the Addition Principle:

Addition Principle 4.1.5. Suppose the objects we are counting/constructing are
partitioned into t disjoint categories, where for each i ∈ {1, . . . , t} the ith category
has ni ∈ N objects in it. Then the total number of objects is

n1 + n2 + · · ·+ nt.

The Addition Principle is also equivalent to a form involving finite sets and cardi-
nalities (proof also omitted):

4.1. BASIC COUNTING PRINCIPLES 63

Addition Principle 4.1.6 (Abstract Form). Suppose A1, A2, . . . , At are pairwise
disjoint finite sets. Then

|A1 ∪A2 ∪ · · · ∪At| = |A1|+ |A2|+ · · ·+ |At|.

The Addition Principle only works when the sets in question are disjoint. For
non-disjoint unions, the following is essential:

Inclusion-Exclusion Principle 4.1.7. Suppose X and Y are finite sets. Then

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |

Proof. We have the following decompositions of X, Y and X ∪ Y into disjoint
unions:

(1) X = (X \ Y) ∪ (X ∩ Y) (disjoint union)
(2) Y = (X ∩ Y) ∪ (Y \X) (disjoint union)
(3) X ∪ Y = (X \ Y) ∪ (X ∩ Y) ∪ (Y \X) (disjoint union)

Since these unions are disjoint, the Addition Principle 4.1.6 yields:

(4) |X| = |X \ Y |+ |X ∩ Y |
(5) |Y | = |X ∩ Y |+ |Y \X|
(6) |X ∪ Y | = |X \ Y |+ |X ∩ Y |+ |Y \X|

Finally, adding (4) and (5) and then using (6) yields:

|X|+ |Y | = |X \ Y |+ 2|X ∩ Y |+ |Y \X| = |X ∪ Y |+ |X ∩ Y |.

Subtracting |X ∩ Y | from both sides yields the desired formula. �

The Inclusion-Exclusion Principle works any time you would like to use the addition
principle, but are forced to double-count something. Then the Inclusion-Exclusion
Principle says that you should subtract out the double-counted group “−|X ∩ Y |”
to get the correct count.

Example 4.1.8 (CS vs. Math majors). In a particular class containing only CS
and Math majors we are told the following information:

• 100 students have a major in CS
• 90 students have a major in Math
• among the above students, 30 students are majoring in both CS and Math

We want to determine:

How many total students are in the class?

The Inclusion-Exclusion Principle tells us that to count the total number of students
we need to add the first two groups together, and then subtract out the third group
because that third group was counted twice:

#CS majors + #Math majors − #Double majors

= 100 + 90 − 30 = 160 total students.

64 4. COUNTING

4.2. Permutations and combinations

The Multiplication and Addition Principles give rise to various counting motifs that
deserve special attention.

Example 4.2.1 (Class Rank). Suppose a class has five students, A, B, C, D and
E. At the end of the class the students will be ranked 1st to 5th (no ties) depending
on their academic performance.

How many possible rankings are there?

Keeping in line with the previous examples, let’s take a look at what decisions we
need to make if we were to specify a particular ranking.

(1st) We need to choose which student is ranked 1st. There are five choices:
any student from the set {A,B,C,D,E}. Let’s choose student D. Now
our ranking mid-construction looks like (D, ?, ?, ?, ?).

(2nd) Next we need to choose which student is ranked 2nd. There are now four
choices: any student from the set {A,B,C,E}. Let’s choose student B.
Now our ranking mid-construction looks like (D,B, ?, ?, ?).

(3rd) Now we need to choose which student is ranked 3rd. There are now three
choices: any student from the set {A,C,E}. Let’s choose student A. Now
our ranking mid-construction looks like (D,B,A, ?, ?).

(4th) Now we choose which student is ranked 4th among the remaining two
choices: any student from the set {C,E}. Let’s choose student E. Now
our ranking mid-construction looks like (D,B,A,E, ?).

(5th) Finally we “choose” which student is 5th. There is one choice: C. We
now arrive at our ranking (D,B,A,E,C).

In the above line of reasoning, what choices we have available to us at each step
depends on the previous choices we made. However, the number of choices in each
step does not. Indeed, no matter which choice we made in the first step, we would
still have four different choices in the 2nd step, and so on. This suggests that the
total number of possible rankings is

5× 4× 3× 2× 1 = 5! = 120.

This is indeed the correct answer, as justified by Lemma 4.2.4 below. First we shall
make a some definitions.

Definition 4.2.2. Suppose X = {x1, . . . , xn} is a set such that |X| = n.

(1) A permutation (or ordering) of X is a tuple (y1, . . . , yn) ∈ Xn such
that for each i, j ∈ {1, . . . , n}, if yi = yj , then i = j.

(2) We define the set O(X) of all permutations of X to be:

O(X) :=
{

(y1, . . . , yn) ∈ Xn : (y1, . . . , yn) is a permutation of X
}
⊆ Xn.

Clearly |O(X)| ≤ |Xn| = nn.

Example 4.2.3. Suppose X = {a, b, c} with |X| = 3. Then the collection of all
permutations of X is

O(X) =
{

(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)
}

Thus |O(X)| = 6 = 3!.

Lemma 4.2.4. Suppose |X| = n. Then the total number of permutations of X is
n!, i.e., |O(X)| = n!.

4.2. PERMUTATIONS AND COMBINATIONS 65

Proof. We will actually prove this using the Addition Principle and induction.
The statement we will prove by induction is:

P (n) : “Every set X of size n has n! total permutations.”

To emphasize a point about n = 0, we will prove two base cases:
Base Case: (n = 0) Suppose X has size 0. Then X = ∅. By convention, the

empty-tuple () is considered an ordering of the emptyset. Thus there is only one
ordering, so |O(∅)| = 1 = 0!.

Base Case: (n = 1) Suppose X = {x1} has size 1. Then (x1) is the only
permutation so the total number of permutations in this case is |O(X)| = 1! = 1.

Inductive Step: Suppose for some n ≥ 1 we know that P (n) is true. We want
to show that P (n + 1) is true. Let X = {x1, . . . , xn+1} be an arbitrary set of size
n+1. We can partition O(X) into n+1 disjoint subsets. For each i ∈ {1, . . . , n+1}
define

O(X)i :=
{

(y1, . . . , yn+1) ∈ O(X) : y1 = xi
}
,

i.e., O(X)i is the set of all orderings where xi is first. This gives us a partition of
O(X):

O(X) = O(X)1 ∪ · · · ∪ O(X)n+1 (disjoint union).

Next note that O(X)i is really the cartesian product

O(X)i = {xi} × O(X \ {xi})
since every permutation of X starting with x1 is the same thing as x1 followed by
a permutation of X \ {xi}, so it has the same cardinality as the set O(X \ {xi})
which by P (n) has size n!. By the Addition Principle, we compute

|O(X)| =

n+1∑
i=1

|O(X)i| =

n+1∑
i=1

n! = (n+ 1)n! = (n+ 1)!. �

The next type of common counting question we would like to answer is exemplified
by the following:

Example 4.2.5 (Committees). Suppose a group has 100 people and they want to
form a leadership committee formed by 7 people from the group.

How many possible committees can be formed?

We will see below that the answer is
(
100
7

)
. To answer this, we will consider a more

general question.

Definition 4.2.6. Suppose 0 ≤ k ≤ n and X is a set such that |X| = n.

(1) A k-combination (or k-subset) of X is a set Y ⊆ X such that |Y | = k.
(2) We denote the set of all k-combinations of X as

Pk(X) := {Y ⊆ X : |Y | = k}.
The notation suggests that Pk(X) is a certain “slice” of the full powerset P(X)
where we keep only the k-subsets. Indeed, these sets give us a partition of the
powerset:

P(X) = P0(X) ∪ P1(X) ∪ · · · ∪ Pn(X).

The general question we want to ask is:

How many k-combinations does an n-element set have?

This is answered by the following lemma:

66 4. COUNTING

Lemma 4.2.7. Suppose 0 ≤ k ≤ n and X is a set of size n. Then the total number
of k-combinations of X is

(
n
k

)
, i.e., |Pk(X)| =

(
n
k

)
.

Proof. We will prove this by induction, the Addition Principle, and Pascal’s Rule.
The statement we will prove by induction is:

P (n) : “For every X with |X| = n, and every 0 ≤ k ≤ n,

we have |Pk(X)| =
(
n

k

)
.”

Again we will prove two base cases.
Base Case: (n = 0) In this case, 0 = k = n and we are asking how many

0-element subsets are there of the emptyset ∅. Since ∅ ⊆ ∅ is the only subset of ∅,
and it has 0 elements, the answer is 1 =

(
0
0

)
= |P0(∅)|.

Base Case: (n = 1) In this case, there are two options for 0 ≤ k ≤ 1. Either
k = 0 or k = 1. Suppose X = {x} is a 1-element set. Then

P({x}) = {∅}︸︷︷︸
=P0({x})

∪ {{x}}︸ ︷︷ ︸
=P1({x})

(disjoint union)

Thus |P0(X)| = 1 =
(
1
0

)
and |P1(X)| = 1 =

(
1
1

)
.

Induction Step: Suppose for some n ≥ 1 we know that P (n) is true. We will
use this to prove P (n+ 1). Let X = {x1, . . . , xn+1} be an arbitrary n+ 1-element
set. Let k ∈ {0, . . . , n+ 1}. We will consider several cases.

If k = 0, then P0(X) = {∅} and so |P0(X)| = 1 =
(
n+1
0

)
.

If k = n+ 1, then Pn+1(X) = {X} and so |Pn+1(X)| = 1 =
(
n+1
n+1

)
.

Now suppose 0 < k < n+1. Note that we can partition Pk(X) into two disjoint
subsets depending on whether the set contains x1 or not:

A := {Y ∈ Pk(X) : x1 ∈ Y } and B := {Y ∈ Pk(X) : x1 6∈ Y },

with Pk(X) = A∪B (disjoint union). One can also check (Exercise 4.3.2) that the
following two functions are bijections:

• f : Pk−1(X \ {x1})→ A given by f(Y) := Y ∪ {x1} and
• g : Pk(X \ {x1})→ B given by g(Y) := Y .

Thus, by P (n), the cardinalities of A and B are

|A| = |Pk(X \ {x1})| =

(
n

k

)
and |B| = |Pk−1(X \ {x1})| =

(
n

k − 1

)
.

Thus by the Addition Principle and Pascal’s Rule:

|Pk(X)| = |A|+ |B| =

(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
. �

We can now give a combinatorial proof of an identity established in Exercise 1.5.17:

Theorem 4.2.8. Suppose X is a finite set such that |X| = n. Then the cardinality
of its powerset is

|P(X)| = 2n =

n∑
k=0

(
n

k

)
.

4.2. PERMUTATIONS AND COMBINATIONS 67

Proof. Suppose X = {x1, . . . , xn} has size n. We will count the cardinality of
P(X) in two different ways.

Method 1: To construct a specific Y ⊆ X, for each of the n elements xi, we
can choose “yes” or “no” whether we want xi ∈ Y . Specifically, there is a bijection
(see Exercise 4.3.3):

f : P(X)→ {0, 1}n

defined by

f(Y) := (ε1, . . . , εn) where for each i ∈ {1, . . . , n}, εi :=

{
1 if xi ∈ Y
0 if xi 6∈ Y .

Thus |P(X)| = |{0, 1}n| = 2n by the Multiplication Principle.
Method 2: Using the Addition Principle, we partition P(X) into the various

Pk(X)’s and count:

|P(X)| = |P0(X) ∪ · · · ∪ Pn(X)| =

n∑
k=0

|Pk(X)| =

n∑
k=0

(
n

k

)
,

using Lemma 4.2.7 for the last step. �

Remark 4.2.9. Note that the above proof essentially gives another proof of the
identity:

(‡) 2n =

n∑
k=0

(
n

k

)
.

Of course, this was originally proved using the Binomial Theorem with x = y := 1.
Instead, we proved it here by counting the set P(X) in two different ways, and
knowing that we must get the same answer either way. Many identities involving
binomial coefficients are like this, where we just find the right set and count it in
two different (and possibly clever) ways.

We have one more type of general counting question that we want to address.

Example 4.2.10 (Track meet placements). Suppose there is a track meet with
100 athletes competing in a certain event. Only the top 10 finalists get ranked 1st
through 10th (the bottom 90 don’t get ranked).

How many different rankings are possible?

This is a lot like a permutation of all 100 athletes, except that we stop after our
first ten choices of who goes 1st through 10th. Thus, we guess that the answer is:

100 · 99 · 98 · 97 · 96 · 95 · 94 · 93 · 92 · 91 =
100!

90!
= 62 815 650 955 529 472 000.

This is correct, as Lemma 4.2.13 shows.

Definition 4.2.11. Suppose 0 ≤ k ≤ n and X is a set such that |X| = n.

(1) A k-permutation (or k-ordering) of X is an ordering of a k-element
subset of X, i.e., it is a tuple (y1, . . . , yk) ∈ Xk such that if i 6= j, then
yi 6= yj .

(2) We denote the set of all k-permutations of X as

Ok(X) :=
{

(y1, . . . , yk) ∈ Xk : (y1, . . . , yk) is a k-permutation of X.
}

Note that O(X) = On(X).

68 4. COUNTING

Example 4.2.12. Suppose X = {a, b, c, d}. The set of all 2-permutations of X is

O2(X) =
{

(a, b), (a, c), (a, d), (b, a), (b, c), (b, d),

(c, a), (c, b), (c, d), (d, a), (d, b), (d, c)
}

Lemma 4.2.13. Suppose 0 ≤ k ≤ n and |X| = n. The total number of k-
permutations of X objects is

|Ok(X)| = n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

Proof. To motivate the proof, we ask the question “how does one create a k-
permutation?” One reasonable answer is that given X, first one chooses a k-subset
Y ⊆ X with |Y | = k and then gives it an ordering (i.e., picks an element of O(Y)).
This is what we will do.

First note that we can partition Ok(X) according to which k-elements of X are
involved in the k-permutation, i.e.,

Ok =
⋃

Y ∈Pk(X)

O(Y) (disjoint union)

(note, the union ranges over all subsets of Y of size k). Lemma 4.2.4 for each Y ∈
Pk(X) it follows that that |O(Y)| = k! since |Y | = k. Furthermore, Lemma 4.2.7
tells us that |Pk(X)| =

(
n
k

)
. Thus

|Ok(X)| =

∣∣∣∣ ⋃
Y ∈Pk(X)

O(Y)

∣∣∣∣ =
∑

Y ∈Pk(X)

|O(Y)| by Addition Principle

=
∑

Y ∈Pk(X)

k! = k!
∑

Y ∈Pk(X)

1 = k!|Pk(X)|

= k!

(
n

k

)
=

n!

(n− k)!
. �

4.3. Exercises

Exercise 4.3.1. How many integers are there in the set {1, 2, 3, . . . , 1000} that are
not divisible by either 6 or 8?

Exercise 4.3.2. Show that the functions f : Pk−1(X \ {x1})→ A and g : Pk(X \
{x1})→ B from the proof of Lemma 4.2.7 are bijections.

Exercise 4.3.3. Show that the function f : P(X) → {0, 1}n defined in the proof
of Theorem 4.2.8 is a bijection.

Exercise 4.3.4. Suppose A and B are sets such that |A| = 50 and |B| = 100.

(1) how many total functions f : A→ B are there?
(2) how many one-to-one functions f : A→ B are there? A function f : A→

B is one-to-one if for all x, y ∈ A, if f(x) = f(y), then x = y.

Exercise 4.3.5. If 12 people are to be divided into 3 committees of respective sizes
3, 4, and 5, how many divisions are possible?

Exercise 4.3.6. A student has to sell 2 books from a collection of 6 math, 7 science,
and 4 economics books. How many choices are possible if

(1) both books are to be on the same subjects?

4.3. EXERCISES 69

(2) the books are to be on different subjects?

Exercise 4.3.7. Seven blue and four red balls are to be arranged in order. How
many ways can this be done if

(1) The blue balls are distinguishable (e.g. numbered) as are the red balls.
(2) Blue balls are distinguishable, but the red balls are identical.
(3) The balls of each color are indistinguishable.

Exercise 4.3.8. How many ways can we distribute n balls among k bags if

(1) the balls and bags are distinguishable (e.g. numbered).
(2) the bags are distinguishable; the balls are not.
(3) balls and bags are distinguishable, but the bags can contain at most one

ball (necessarily, k ≥ n).
(4) the bags are distinguishable, the balls are not, and the bags can contain

at most one ball

Exercise 4.3.9. A candy factory has an endless supply of red, orange, yellow,
green, blue, and violet jelly beans. The factory packages the jelly beans into jars
of 100 jelly beans each. One possible color distribution, for example, is a jar of
58 red, 22 yellow, and 20 green jelly beans. As a marketing gimmick, the factory
guarantees that no two jars have the same color distribution. What is the maximum
number of jars the factory can produce.

Exercise 4.3.10. How many ways can we order the twenty-six letters of the al-
phabet together with seven (indistinguishable) # symbols?

Exercise 4.3.11. This problem involves counting.

(1) Suppose there are 50 customers at a supermarket and there are 5 checkout
lines. How many ways can all 50 customers get into these 5 lines? The
order in each line matters and lines are allowed to be empty.

(2) In how many ways can 5 identical chess pieces be placed on an 8 × 8
chessboard so that four of them form the corners of a rectangle with sides
parallel to the sides of the board?

CHAPTER 5

Sequences

5.1. Sequences and recurrence relations

So far we have only encountered sequences at a casual level. Informally, a sequence
is some list of objects indexed by natural numbers (or integers). We now give the
formal definition:

Definition 5.1.1. A sequence s is a function whose domain D is subset of Z.

As this is a very general definition, some remarks are in order:

Remark 5.1.2. (1) Given a sequence s : D → X, we will often denote it by
{sn}n∈D, where sn := s(n). In particular, when using sequences we will
use the more common subscript notation “sn” instead of usual function
notation “s(n)” to emphasize the role of D as an index set.

(2) Most of the time, the domain D of a sequence is either a finite set of the
form {0, 1, . . . , n} or {1, . . . , n}, or an infinite set of the form N or N\{0}.
Sequences where D is finite are called finite sequences and sequences
where D is infinite are called infinite sequences.

(3) We put no restriction on what the codomain of a sequence is allowed to be.
In general we might wish to consider sequences of real numbers (sequences
of the form s : D → R), sequences of rational numbers (sequences of the
form s : D → Q), and really for any set X we might wish to consider
sequences in X (sequences of the form s : D → X). In this class we will
primarily consider sequences of numbers of some kind.

The following is a famous example of the type of sequence we wish to study:

Example 5.1.3 (Tower of Hanoi). Suppose we have three vertical pegs and n disks
of decreasing radius. At the start of game the disks have the initial setup:

(Start) All n disks are placed on the first peg. Disks of smaller radius are above
disks of bigger radius.

The objective of the game is to move all n disks to the third peg subject to the
following two rules:

(Rule 1) One “move” consists of moving the top-most disk from one peg to another
peg.

(Rule 2) At no point can a disk of larger radius be placed above a disk of smaller
radius.

Associated to this game is a sequence (cn)n≥1 in N we wish to study:

cn := number of moves it takes to move all n disks to the third peg.

Clearly c1 = 1. Indeed, if there is only one disk, then we can legally move it directly
to the third peg in one move. What about cn for arbitrary n ≥ 1?

71

72 5. SEQUENCES

For this, we need to think inductively/recursively. Suppose for some n ≥ 1 we
already know cn. Moreover, suppose for this n we already have some method of
legally moving n disks in cn many moves. Then we can use this to move n+1 disks:

(Step 1) Move the top n disks from the first peg to the second peg (cn total moves).
(Step 2) Now the first peg has only the largest n+1st disk on it. Move this directly

to the third peg (1 total move).
(Step 3) Move the n disks from the second peg to the third peg on top of the largest

n+ 1st disk (cn total moves).

Thus, we can accomplish legally moving n + 1 disks in 2cn + 1 moves. In other
words, cn+1 = 2cn+1. In the parlance of this chapter, we summarize this by saying
that the sequence (cn)n≥1 satisfies the following recurrence relation:

• (Initial condition) c1 = 1
• (Recurrence relation) cn+1 = 2cn + 1 for n ≥ 1.

There are many variants of how a sequence might be recursively defined, but in
general it takes the following form:

Definition 5.1.4. A sequence (cn)n≥1 is recursively defined if we have the
following:

(1) One or more initial conditions, i.e., for some fixed N ≥ 1 we are told
the specific values of c1, c2, . . . , cN (usually N = 1 or 2 for us).

(2) A recurrence relation: for each n ≥ N there is a function fn such that

cn+1 = fn(c1, . . . , cn)

i.e., the n + 1st value of the sequence is completely determined by the
first n values of the sequence in a way we understand. Note: the function
fn is allowed to depend on c1, . . . , cn, but it doesn’t actually have to
reference all of them. Indeed, in the Tower of Hanoi example above, the
function giving cn+1 only depends on cn (which we view as a special case
of depending on c1, . . . , cn).

Here are the main things one might want to do with a recursively defined sequence:

(I) Study its properties. This is vague, but the point is that from the recursive
definition alone you can usually prove many things about cn using induction,
even if you don’t yet have a full understanding of the sequence.

(II) Find an explicit formula for cn. Initially, to compute cn you might have to
first compute c1, . . . , cn−1, which could be labor-intensive. It’s often nice to
have a formula for cn which can be computed from the value of n alone,
without knowing all the previous values in the sequence. For example, we
will show in the Tower of Hanoi example that

cn = 2n − 1 for every n ≥ 1,

which in many ways is a “better” formula for cn than the recursive definition
(see Example 5.2.2 below).

(III) Study its asymptotics as n → ∞. For instance, does limn→∞ cn exist? If
cn →∞ as n→∞, how fast or slow does cn grow? These questions involve
analysis and we won’t address them in this class. However, it’s good to be
aware that this type of information about a sequence is also very desirable.
This is because in many applications when n is really large and cn is also

5.2. SOLVING RECURRENCE RELATIONS I 73

very large, it is often sufficient for practical purposes to have a good estimate
of the value of cn, as opposed to the exact value of cn itself.

5.2. Solving recurrence relations I: first-order linear (in)homogeneous
recurrence relations

In this section we will show how to solve (i.e., find an explicit formula for, as in
(II) above) several very simple recurrence relations of a general form.

Definition 5.2.1. We say that a recursively defined sequence (an)n≥1 is first-
order linear if it has a recursive definition of the following form:

(i) the value of a1 is given as an initial condition,
(ii) there exists c, d ∈ R such that for every n ≥ 1,

an+1 = can + d.

If d = 0, then we say that the recurrence relation is homogeneous. Otherwise, we
say that the recurrence relation is inhomogeneous.

The term first-order refers to the fact that the recursive definition for an+1 in
(ii) only depends on an (it’s first predecessor) and not on any additional terms (like
an−1, an−2, etc).

First-order linear recurrence relations can generally be solved from scratch with the
following strategy (which might also work for other recurrence relations):

(1) Compute the first few terms in the sequence.
(2) Guess a general pattern for the nth term.
(3) Prove that your formula from (2) is correct by induction and using the

original recursive definition of the sequence.

We will use this strategy to solve the Towers of Hanoi recurrence relation, then look
at the general situation:

Example 5.2.2 (Towers of Hanoi). The recursively defined sequence (cn)n≥1 given
by

(i) c1 = 1,
(ii) for every n ≥ 1, cn+1 = 2cn + 1,

satisfies the formula

cn = 2n − 1.

Solution. We begin by computing the first few terms:

c1 = 1

c2 = 2 + 1

c3 = 2(2 + 1) + 1 = 22 + 21 + 20

c4 = 2(22 + 21 + 20) + 1 = 23 + 22 + 21 + 20.

It looks like the general pattern is that the nth term is equal to

dn =

n−1∑
k=0

2k = 2n − 1.

We can prove this is true by induction on the following statement:

P (n) : “cn = dn, i.e., cn = 2n − 1.”

74 5. SEQUENCES

Base Case: If n = 1, then cn = 1 and dn = 21 − 1 = 1. Thus P (1) is true.
Inductive Step: Suppose we know P (n) is true for some n ≥ 1. We will show

P (n+ 1) is true. Note that

cn+1 = 2cn + 1

= 2(2n − 1) + 1 since P (n) is true

= 2n+1 − 2 + 1

= 2n+1 − 1

= dn+1.

Thus P (n+ 1) is true. �

We now look at the arbitrary situation:

Example 5.2.3. Suppose (an)n≥1 is a recursively defined sequence with definition:

(1) a1 is given,
(2) there are c, d ∈ R such that for every n ≥ 1, an+1 = can + d.

Proof. We begin by writing down the first few terms:

a1 = a1

a2 = ca1 + d

a3 = c(ca1 + d) + d = c2a1 + (c+ 1)d

a4 = c(c2a1 + (c+ 1)d) + d = c3a1 + (c2 + c+ 1)d.

We make a guess that the general form of the nth term is:

bn = cn−1a1 + d

n−2∑
k=0

ck.

In fact, this is correct, according to the next theorem. �

Theorem 5.2.4. Suppose (an)n≥1 is a recursively defined linear first-order (in)homogeneous
equation with definition:

(1) a1 is given,
(2) there are c, d ∈ R such that for every n ≥ 1, an+1 = can + d.

Then the nth term of the sequence can be explicitly computed as follows:

an =

{
cn−1a1 + d

(
cn−1−1
c−1

)
if c 6= 1,

cn−1a1 + (n− 1)d if c = 1.

Proof. See Exercise 5.4.2. �

5.3. Solving recurrence relations II: second-order linear homogeneous
recurrence relations

In this section we will show how to solve the following type of recurrence relation:

Definition 5.3.1. We say that a recursively defined sequence (an)n≥0 is second-
order linear homogeneous if it has a recursive definition of the following form:

(i) the values of a0, a1 are given,

5.3. SOLVING RECURRENCE RELATIONS II 75

(ii) there exists c1, c2 ∈ R such that for every n ≥ 1,

an+1 = c1an + c2an−1.

The most famous example of this type of recurrence relation is the sequence of
Fibonacci numbers:

Example 5.3.2 (Fibonacci numbers). Consider the sequence of Fibonacci num-
bers defined by the recurrence:

(i) F0 := 0 and F1 := 1 (two initial conditions),
(ii) for every n ≥ 1, Fn+1 := Fn + Fn−1 (recurrence relation).

Ideally we would like to have a formula which computes Fn directly, i.e., without
requiring us to compute F0, . . . , Fn−1 first. Of course, Exercise 1.5.12 already tells
us the answer:

(†) Fn =
1√
5

(αn − βn), for every n ≥ 0,

where

α :=
1 +
√

5

2

β :=
1−
√

5

2
.

However, this answer seems like we pulled a rabbit out of a habit. How does one
actually get this answer if they don’t guess it in advance? It turns out this can be
done quite systematically utilizing the tools of calculus1:

Derivation. We will show how to derive (†) if you don’t know it in advance. This
will require several ingenious tricks that might be new to you, but in the subject
of recursive sequences they are standard techniques:

Step 1: Encode the sequence (Fn)n≥0 into the DNA of a single object we can
do calculus with. This might sound vague, but what we mean by this is that we
define some function2 F (x) by declaring that the coefficients of its Taylor series
expansion (around x = 0) is precisely the sequence (Fn)n≥0, i.e.,

F (x) :=
∞∑
n=0

Fnx
n = 0 + x+ x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x6 + 21x7 + · · · .

It might seem that we made the problem more complicated. However, provided the
above power series has a positive radius of convergence3, then we can recover the
coefficients via the usual Taylor-series formula:

Fn =
F (n)(0)

n!
, for every n ≥ 0.

Perhaps this doesn’t seem much better, but at least it gives a possible alternative
method of computing the nth coefficient Fn, which is what we want. [Note: at
the moment, we have zero interest in the geometric properties of the graph of the

1You will never be asked to do partial fractions or anything involving Taylor/power series on

an exam in this class.
2This function F (x) is called the generating function for the sequence (Fn)n≥0. See https:

//en.wikipedia.org/wiki/Generating_function.
3We will ignore issues of convergence, you’ll study such things in an (complex) analysis course.

https://en.wikipedia.org/wiki/Generating_function
https://en.wikipedia.org/wiki/Generating_function

76 5. SEQUENCES

function F . It’s role here is basically as a sneaky “data type” which allows us to
encode an entire infinite sequence into one “object”.]

Step 2: Use the recursive definition of Fn to get a better description of F (x).
First note that multiplying F by x and x2 has the effect of shifting all of the
coefficients:

xF (x) = x

∞∑
n=0

Fnx
n =

∞∑
n=0

Fnx
n+1 =

∞∑
n=1

Fn−1x
n

x2F (x) = x2
∞∑
n=0

Fnx
n =

∞∑
n=0

Fnx
n+2 =

∞∑
n=2

Fn−2x
n.

The recursive definition of (Fn)n≥0 then yields

F (x)− x =

∞∑
n=2

Fnx
n =

∞∑
n=2

Fn−1x
n +

∞∑
n=2

Fn−2x
n = xF (x) + x2F (x)

(the recursive definition is used in the second equality above, this also takes into
account the initial conditions). This allows us to solve for the function F (x):

F (x) =
x

1− x− x2
.

The problem is a little more tractable now, we just need a way to compute the
Taylor coefficients of F above.

Step 3: Decompose F via partial fractions into a sum of functions which have
nice Taylor expansions. The first thing to do is to factor the denominator. The
quadratic equation tells us that

x2 + x− 1 = (x+ α)(x+ β),

where α, β are defined as above. Thus we are looking for coefficients A,B ∈ R such
that

−x
(x+ α)(x+ β)

=
A

x+ α
+

B

x+ β
.

Cross-multiplying and equating the numerators gives us the system:{
A+B = −1

Aβ +Bα = 0.

Which has unique solution A = −(5 +
√

5)/10 = −α/
√

5 and B = −(5−
√

5)/10 =

β/
√

5. Thus

F (x) = − α√
5
· 1

x+ α
+

β√
5
· 1

x+ β

By Exercise 5.4.4 and linearity of the derivative, we get

Fn =
F (n)(0)

n!
= − α√

5

dn

dxn

(
1

x+ α

) ∣∣∣∣
x=0

/n! +
β√
5

dn

dxn

(
1

x+ β

) ∣∣∣∣
x=0

/n!

= − α√
5

(
− 1

(−α)n+1

)
+

β√
5

(
− 1

(−β)n+1

)
=

1√
5

(
− 1

(−α)n
+

1

(−β)n

)
=

1√
5

(αn − βn),

using −1/α = β and −1/β = α. �

As it turns out, this is basically how the general case works:

5.3. SOLVING RECURRENCE RELATIONS II 77

Theorem 5.3.3. Consider the second-order homogeneous linear equation:

(A) an+1 = c1an + c2an−1

Define the characteristic polynomial p(x) := x2 − c1x − c2. Suppose p(x) has
roots4 r1, r2.

(1) (Distinct roots) If r1 6= r2, then equation (A) has two basic solutions:
(a) (rn1)n≥0, i.e., the sequence 1, r1, r

2
1, r

3
1, . . ., and

(b) (rn2)n≥0.
(2) (Double root) If r1 = r2, then equation (A) has two basic solutions:

(a) (rn1)n≥0, and
(b) (nrn1)n≥0, i.e., the sequence 0, r1, 2r

2
1, 3r

3
1,

(3) Given a sequence (an)n≥0 which satisfies equation (A), there exists unique
constants b, d ∈ R such that

an = b · (first basic solution) + d · (second basic solution).

The constants b and d are determined by the two initial conditions given
with (an)n≥0. Specifically, in (1) they are determined by the system:

b+ d = a0

br1 + dr2 = a1

and in (2) they are determined by the system:

b = a0

br1 + dr2 = a1.

Note that (3) says that the set of solutions to equation (A) forms a two-
dimensional vector space over R.

Proof. (1) and (2) are done in Exercise 5.4.5. (3) requires basic linear algebra. �

The following example shows that, even if we are interested in sequences in R,
complex numbers are still convenient for giving explicit formulas:

Example 5.3.4. Consider the recurrence relation given by:

(†) an+1 = 0an − an−1.
It is clear that (†) has the following two sequences as solutions:

s0 := (1, 0,−1, 0, 1, 0,−1, . . .) and s1 := (0, 1, 0,−1, 0, 1, 0,−1 . . .)

By Theorem 5.3.3, both of these solutions are linear combinations of the two basic
solutions corresponding to (†). We will show how this is.

First, define the characteristic polynomial p(x) = x2 + 1. This has imaginary
roots ±i:

x2 + 1 = (x− i)(x+ i).

Since these roots are distinct, it gives two basic solutions (in)n≥0 and
(
(−i)n

)
n≥0.

We will show that the solution s0 is a linear combination of these two solutions.
We are looking for b, d ∈ R such that

s0,n = bin + d(−i)n,

4These roots in general could be complex numbers in C, but most of the time for us they’ll
be in R.

78 5. SEQUENCES

where s0,n is the nth term of s0. In particular, for the first two terms (n = 0 and
n = 1) this gives the system:

b+ d = 1

bi− di = 0.

Multiplying the bottom equation by i and then adding the two equations yields
2d = 1, so d = 1/2. Furthermore, it follows that b = 1/2 as well. Thus

s0,n =
1

2

(
in + (−i)n

)
.

This illustrates how oscillation in real sequences can be explained by geometric
progressions of complex numbers. We will not explore this idea any further.

Here is an example of the Double root case:

Example 5.3.5. Solve the following recurrence relation:

(i) d0 = 1, d1 = 1
(ii) for every n ≥ 1, dn+1 = 4dn − 4dn−1.

Solution. First we define the characteristic polynomial:

p(x) = x2 − 4x+ 4.

This factors as p(x) = (x − 2)2 (by inspection or the quadratic equation). Thus
r1 = r2 = 2, so we are in the Double root case of Theorem 5.3.3. Thus the two
basic solutions are (2n)n≥0 and (n2n)n≥0. Next, we use the initial conditions to
figure out what linear combination of the two basic solutions is the solution to our
specific recurrence relation. This gives us the system:

b = 1

2b+ 2d = 1

Thus b = 1 and d = −1/2. We conclude that

dn = 2n − n2n−1

is the solution to the recurrence relation we are looking for. �

5.4. Exercises

Exercise 5.4.1 (The Ackermann function). The Ackermann function is a very
important function in theoretical computer science and logic. It is a two-variable
function A : N2 → N defined recursively by the following conditions:

(i) A(0, y) = y + 1 for every y ∈ N,
(ii) A(n+ 1, 0) = A(n, 1) for every n ∈ N,
(iii) A(n+ 1, y + 1) = A

(
n,A(n+ 1, y)

)
for every n, y ∈ N.

The theoretical importance of the Ackermann function is the following: For any
primitive recursive function F : N → N, there is a fixed nF ∈ N such that F (x) ≤
A(nF , x) for every x ∈ N (here, a primitive recursive function is essentially any
function that can be built up from constants, basic arithmetic +, · operations,
composition, and one-variable recursive definitions with other primitive recursive
functions, the specifics don’t really matter for this problem. The point is that it’s
a large class of functions, but the Ackermann function is capable of growing faster
than all of them! This shows that two-variable recursion is way more powerful

5.4. EXERCISES 79

than one-variable recursion). The following properties will give you practice with
recursive definitions and induction. Prove the following:

(1) For every n, x ∈ N, A(n, x) < A(n+ 1, x).
(2) For every n, x ∈ N, A(n, x) < A(n, x+ 1).
(3) For every n, x, y ∈ N, A(n, x+ y) ≥ A(n, x) + y. Hint: do induction first

on n, then on y.
(4) For every n, y ∈ N, if n ≥ 1, then A(n + 1, y) > A(n, y) + y. Hint: do a

similar type of double-induction as in (3).
(5) For every n, y ∈ N, A(n+ 1, y) ≥ A(n, y + 1). Hint: do induction on y.
(6) For every n, y ∈ N, 2A(n, y) < A(n + 2, y). Hint: for n > 0 use (3), (4),

and (5) above.
(7) For every n, x, y ∈ N, if x < y, then A(n, x + y) ≤ A(n + 2, y). Hint:

do induction on n. In the inductive step, consider two cases separately:
x = y and x < y.

Exercise 5.4.2. Prove Theorem 5.2.4.

Exercise 5.4.3. Suppose (an)n≥0 is a recursively defined sequence with recursive
definition:

(i) a0 = 1,
(ii) For every n ≥ 0, an+1 = 2(n+ 1)an

Solve this recurrence relation, i.e., find an explicit formula for the nth term and
verify your formula is correct by induction.

Exercise 5.4.4. Fix α ∈ R such that α 6= 0, and define the function:

f(x) :=
1

x− α
(this function is defined R \ {α} → R. For this problem, the relevant feature is
that it is infinitely differentiable on some tiny interval containing x = 0). Prove the
following:

(1) For every n ≥ 0:

f (n)(x) = (−1)n
n!

(x− α)n+1
.

Here f (n) denotes the nth derivative of f , wherever it may be defined.
(2) For every n ≥ 0:

f (n)(0)

n!
= − 1

αn+1
.

Exercise 5.4.5. Consider the second-order homogeneous linear equation:

(A) an+1 = c1an + c2an−1.

Define the characteristic polynomial p(x) := x2 − c1x− c2.

(1) Suppose p(r) = 0, i.e., r is a root of p. Verify that the sequence (rn)n≥0
is a solution to (A).

(2) Suppose p(x) = (x − r)2, i.e., r is a double root of p. Verify that the
sequence (nrn)n≥0 is also a solution to (A).

Exercise 5.4.6. The Lucas numbers are a sequence (`n)n≥0 satisfying the fol-
lowing second-order linear homogeneous relation:

80 5. SEQUENCES

(i) `0 = 2, `1 = 1,
(ii) for n ≥ 1, `n+1 = `n + `n−1.

Prove the following:

(1) For n ≥ 1, `n = Fn−1 +Fn+1, where (Fn)n≥0 is the sequence of Fibonacci
numbers.

(2) For n ≥ 0,
∑n
k=0 `

2
k = `n`n+1 + 2.

Exercise 5.4.7. Solve each of the following recurrence relations:

(1) Give an explicit formula for the nth term of the sequence (an)n≥0 which
has recursive definition:

(i) a0 = 4, a1 = 10
(ii) for n ≥ 1, an+1 = 2an + 8an−1.

(2) Do the same thing for the sequence (bn)n≥0 given by:
(i) b0 = 5, b1 = 16,
(ii) for n ≥ 1, bn+1 = 7bn − 10bn−1.

Exercise 5.4.8. The following question is about straight lines drawn in R2.

(1) n straight lines are drawn on the plane, no two being parallel and no three
intersecting at one point. How many intersection points are there in this
configuration?

(2) What is the largest number of parts into which n straight lines can sub-
divide the plane?

CHAPTER 6

Graphs and trees

6.1. Graphs

In this class we will only consider the simplest type of graph: an undirected simple
graph. Since we will not talk about other types of graphs (directed graphs, graphs
with self-loops, graphs with parallel edges, graphs with weights attached to each
edge, etc.) we will use the term graph to mean the narrow definition which we will
give below. However you should be aware that in other contexts the definition of
“graph” might be different and more general.

Definition 6.1.1. A graph is a pair G = (V,E) consisting of a set V of vertices
and a set E ⊆ P2(V) of edges. (Recall that P2(V) is the set of 2-subsets of V ,
i.e., the set of all unordered pairs from V).

Before we go any further, here is an example of a graph:

•1

•2

•3

• 4

• 5

• 6

• 7

• 8

• 9

Figure 6.1: A graph with vertex set V = {1, 2, 3, 4, 5, 6, 7, 8, 9} and edges E ={
{1, 2}, {2, 3}, {2, 5}, {4, 5}, {5, 6}, {8, 9}

}
Notation 6.1.2. By convention, we will denote an edge {v, w} instead as vw, when
no confusion should arise.

Here are some more basic graph-theory definitions:

Definition 6.1.3. Let G = (V,E) be a graph.

(1) A vertex v ∈ V and an edge e ∈ E are said to be incident if v ∈ e, i.e.,
if v is one of the endpoints of e.

(2) Two vertices v0, v1 ∈ V are adjacent, or are neighbors, if v0v1 ∈ E, i.e.,
if there is an edge connecting them.

81

82 6. GRAPHS AND TREES

(3) The order |G| of G is the total number of vertices, i.e., |G| = |V |.
(4) Given a vertex v ∈ V , we define E(v) to be the set of all edges incident

to v, i.e.,

E(v) := {e ∈ E : v ∈ e}.

(5) Given a vertex v ∈ V , we define N(v) to be the set of all neighbors of v,
i.e.,

N(v) := {w ∈ V : vw ∈ E}

(6) Given a vertex v ∈ V , we define the degree of v to be the total number
of neighbors (equivalently, number of incident edges) that v has, i.e.,

d(v) := #N(v) = #E(v)

Here are some examples of special graphs which have their own names.

Example 6.1.4. (1) A complete graph on n vertices, is a graph G = (V,E)
such that |V | = n and E = P2(V), i.e., it contains every possible edge
between pairs of vertices. We denote a complete graph on n vertices as
Kn. Figure 6.2 shows an example of a complete graph on 4 vertices.

1 2

3

4

Figure 6.2: The complete graph K4 with vertex set V = {1, 2, 3, 4}

(2) A bipartite graph is a graph G = (V,E) such that the vertex set can
be partitioned into two classes V = V1 ∪ V2 such that each edge e ∈ E is
of the form e = v1v2 where v1 ∈ V1 and v2 ∈ V2.

6.1. GRAPHS 83

Figure 6.3: An example of a bipartite graph with partition V = V1 ∪ V2

We say a bipartite graph is a complete bipartite graph if it contains
all possible edges between V1 and V2. Given m,n ≥ 1, we define Km,n to
be the complete bipartite graph with

V = {u1, . . . , um}︸ ︷︷ ︸
V1

∪{v1, . . . , vn}︸ ︷︷ ︸
V2

E = {uivj : i = 1, . . . ,m, j = 1, . . . , n}.

Figure 6.4: The complete bipartite graph K2,3

84 6. GRAPHS AND TREES

The following observation is elementary, but it is the first result of the following
form: a global conclusion (# of total odd-degree vertices) can be obtained from
local information (degrees at each vertex).

Handshake Lemma 6.1.5. Suppose G = (V,E) is a graph. Then

(1)
∑
v∈V d(v) = 2|E|,

(2) thus, the number of odd-degree vertices is even.

[Note: (2) can be interpreted as saying: at a party where guests greet other
guests with handshakes, the total number of people that shook hands an odd num-
ber of times is even.]

Proof. (1) This follows from the observation that if you sum each degree of each
vertex, then you are double-counting every edge. In more detail:∑

v∈V
d(v) =

∑
v∈V

#E(v)

=
∑
v∈V

∑
e∈E

{
1 if v ∈ e
0 if v 6∈ e

=
∑
e∈E

∑
v∈V

{
1 if v ∈ e
0 if v 6∈ e

=
∑
e∈E

2

= 2|E|,
using in the fourth equality that each edge contains exactly two vertices.

(2) This is because if an odd number of vertices had odd degree, the sum in
(1) would be odd. In more detail, taking the equality mod 2 gives:

0 ≡ 2|E| ≡
∑
v∈V

d(v) ≡
∑
v∈V,

d(v)≡0 (mod 2)

d(v) +
∑
v∈V,

d(v)≡1 (mod 2)

d(v)

≡
∑
v∈V,

d(v)≡0 (mod 2)

0 +
∑
v∈V,

d(v)≡1 (mod 2)

1

≡ #{v ∈ V : d(v) odd} (mod 2). �

One of the things we are interested in is how connected the graph is globally. For
this, the following is an essential definition:

Definition 6.1.6. Given a graph G = (V,E), a path (specifically, a path from
v0 to vn) is a finite sequence of vertices and edges

(v0, e1, v1 . . . , vn−1, en, vn) (for some n ≥ 0)

such that for each i = 0, . . . , n − 1, ei+1 = vivi+1 ∈ E (i.e., consecutive vertices
are connected). [Note: for each v ∈ V we regard (v) to be a path from v to v of
length zero. This convention is to ensure the equivalence relation defined in Defini-
tion 6.1.13 is actually reflexive.] The length of a path (v0, e1, v1 . . . , vn−1, en, vn)
is n, the number of edges traversed (counted with multiplicity).

If a path P = (v0, e1, . . . , en, vn) has the property that v0 = vn, then we say
that P is a cycle. We call a cycle of the form (v) a trivial cycle.

6.1. GRAPHS 85

Definition 6.1.7. We say a graph G = (V,E) is connected if for every x, y ∈ V
there is a path from x to y.

The Königsberg Bridge Problem 6.1.8. This is a problem solved by Euler in
17361. Is there a cycle on the graph in Figure 6.5 which traverses each edge exactly
once?

Figure 6.5: The Königsberg Graph

It’s not obvious upon inspection whether there is or is not such a cycle on this
graph. Perhaps after several attempts you will guess “no”, but how can we prove
there is no such cycle? This will be done in the Eulerian Graph Theorem 6.1.10
below.

First we will define precisely what type of cycle we are interested in:

Definition 6.1.9. Suppose G = (V,E) is a graph.

(1) An Euler cycle is a cycle C = (v0, e1, . . . , en, v0) in G such that
(a) each edge e ∈ E occurs exactly once
(b) each vertex v ∈ V occurs at least once (this is implied by (a) if G is

connected, we allow vertices to be repeated).
(2) We say G is Eulerian if it contains an Euler cycle.

Eulerian Graph Theorem 6.1.10. Suppose G = (V,E) is a graph. The following
are equivalent:

(1) G is an Eulerian graph.
(2) G is connected and for every v ∈ V , d(v) is even.

For the proof we will need the following useful lemma:

1See https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg for a full
discussion.

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

86 6. GRAPHS AND TREES

Boundary-Crossing Lemma 6.1.11. Suppose G = (V,E) is a graph, and S ⊆ V
some subset of vertices. If there are two vertices v0 ∈ S and vn 6∈ S and a path

(v0, e1, v1, . . . , vn−1, en, vn)

which connects v0 to vn, then there is some i such that vi ∈ S and vi+1 6∈ S, i.e.,
the edge ei+1 = vivi+1 crosses the “boundary” from being inside of S to outside of
S. [See Figure 6.1.11]

Proof. Consider:
i = max{j : vj ∈ S}.

Then i ≥ 0 and i < n since v0 ∈ S and vn 6∈ S. Thus vi ∈ S and vi+1 6∈ S by
maximality of i. �

Figure 6.6: An illustration of the Boundary-Crossing Lemma

Proof of 6.1.10. (1)⇒(2) Suppose G is Eulerian with Euler cycle:

C = (v0, e1, . . . , en, v0).

(G connected) Suppose x, y ∈ V are arbitrary. Since C is an Euler cycle, it contains
every vertex. Thus there are i, j ≤ n−1 such that vi = x and vj = y. If i ≤ j, then

P = (vi, ei+1, . . . , ej , vj)

(i.e., the restriction of C to the part connecting x to y) is a path from vi to vj . If
j < i, then the reverse of P is the desired path.

(even degrees) Let x ∈ V be arbitrary. Then we must show E(x) has even
cardinality. In the Euler cycle C the vertex x occurs at least once, but possibly
multiple times. Every edge in E(x) occurs exactly once. Partition the set E(x)
into two subsets:

E(x)ingoing :=
{
e ∈ E(x) : ∃i ∈ {1, . . . , n} such that e = ei in C and vi = x

}
E(x)outgoing :=

{
e ∈ E(x) : ∃i ∈ {1, . . . , n} such that e = ei in C and vi−1 = x

}

6.1. GRAPHS 87

(using the convention that vn := v0), i.e., an edge is “ingoing” if it occurs immedi-
ately before x in the cycle, and “outgoing” if it occurs immediately after x in the
cycle. Define the following function:

f : E(x)ingoing → E(x)outgoing

by declaring for e ∈ E(x)ingoing:

f(e) := ei+1 if there exists i ∈ {1, . . . , n} such that e = ei

(using the convention that en+1 := e1). Then f is a bijection (HW), and so E(x)
is even.

(2)⇒(1) Suppose G is connected and deg(x) is even for every x ∈ V . Consider
the finite set:

Σ :=
{
P : P is a path in G with no repeated edges

}
Choose from Σ a path P = (v0, e1, . . . , en, vn) of maximal length.

Claim. P is a cycle, i.e., v0 = vn.

Proof of claim. Suppose towards a contradiction that v0 6= vn. Then v0 is
incident to an odd number of edges in P . Since deg(v0) is even, there exists an
edge e = vv0 ∈ E(v0) not already occurring in P . Then

(v, e, v0, e1, . . . , en, vn)

is a strictly longer path which contains no repeated edges, a contradiction. �

We can now assume v0 = vn. Define V (P) and E(P) to be the sets of all
vertices and edges occurring in P .

Claim. P contains all vertices in V , i.e., V = V (P).

Proof of claim. Assume towards a contradiction that V (P) 6= V . Then there
is v′ ∈ V \ V (P). Since G is connected, there is a path from v0 to v′. By the
Boundary-Crossing Lemma 6.6, there is a vertex vi ∈ V (P) and v ∈ V \V (P) such
that e = viv ∈ E. This yields a longer path with no repeated edges:

(v, e, vi, ei+1 . . . , en, v0, e1, . . . , ei, vi︸ ︷︷ ︸
original P , starting and ending at vi

)

This is a contradiction, see Figure 6.7. �

88 6. GRAPHS AND TREES

Figure 6.7: The proof that V (P) = V

Thus we may now assume V (P) = V .

Claim. P contains every edge in E, i.e., E(P) = E.

Proof of claim. Assume towards a contradiction that E(P) 6= E. Then there is
some e ∈ E \E(P). Since V = V (P), then e is of the form e = vivj for some i < j.
This also yields a longer path with no repeated edges:

(vi, e, vj , vj+1, . . . , en, v0, e1, . . . , ej , vj︸ ︷︷ ︸
original P , starting and ending at vj

)

This is a contradiction, see Figure 6.8. �

6.2. TREES AND FORESTS 89

Figure 6.8: The proof that V (P) = V

We conclude that G is Eulerian. �

Definition 6.1.12. Suppose G = (V,E) and G′ = (V ′, E′) are graphs.

(1) We say that G′ is a subgraph of G if V ′ ⊆ V and E′ ⊆ E.
(2) We say that G′ is an induced subgraph of G is V ′ ⊆ V and E′ =

E ∩ P2(V ′).

In other words, an induced subgraph of G is a graph G′ which results from deleting
some vertices of V to get a vertex-set V ′, but keeping all edges from the original
graph involving only vertices in V ′. In an arbitrary subgraph, you are allowed to
further delete edges between vertices in V ′.

Definition 6.1.13. Suppose G = (V,E) is a graph.

(1) Define an equivalence relation ∼ on V by declaring:

x ∼ y :⇐⇒ there is a path from x to y

Note: This relation is reflexive because for each x ∈ V , we regard (x) to
be a path from x to x of length zero.

(2) This equivalence relation partitions V into subsets V1, . . . , Vm.
(3) The induced subgraphs on these subsets

(V1, E1), . . . , (Vm, Em)

are called the connected components of V . Note that
(a) E1 ∪ · · · ∪ Em = E, and
(b) ifG is connected, then there is only one connected component, namely

G = (V,E) itself.

6.2. Trees and forests

Definition 6.2.1. Let G = (V,E) be a graph.

90 6. GRAPHS AND TREES

(1) We call a path P = (v0, e1, . . . , en, vn) in G a simple path if it does not
repeat any edges (i.e., each edge e ∈ E occurs at most once in P) .

(2) We call a cycle C = (v0, e1, . . . , en, v0) in G a simple cycle if it does not
repeat any edges.

(3) We call G an acyclic graph (or a forest) if it does not contain any
nontrivial simple cycles.

(4) We call G a tree if it is a connected acyclic graph (i.e., a connected forest).

In Figure 6.9 we illustrate a forest with four trees (i.e., each connected component
is a tree).

Figure 6.9: A forest with four trees

In terms of showing connectivity, simple paths are just as good as paths:

Lemma 6.2.2. Suppose G = (V,E) and x, y ∈ V are such that there is a path in
G from x to y. Then there is a simple path from x to y.

Proof. Exercise. Hint: Prove the following statement by strong induction:

P (n) : “For every graph G, for every x, y ∈ G,

if there is a path from x to y of length ≤ n,

then there is a simple path from x to y” �

Tree Characterization Theorem 6.2.3. Suppose G = (V,E) is a graph. The
following are equivalent:

(1) G is a tree.
(2) (Unique paths) for every x, y ∈ V , there exists a unique simple path from

x to y.
(3) (Minimally connected) G is connected, however, for every e ∈ E, G \ e :=(

V,E \ {e}
)

is disconnected.

6.2. TREES AND FORESTS 91

(4) (Maximally acyclic) G is acyclic, however, for every e ∈ P2(V) \ E, G+
e :=

(
V,E ∪ {e}

)
contains a nontrivial simple cycle.

(5) (Euler’s formula) G is connected and if |G| ≥ 1, then |V | = |E|+ 1

Before we proceed with our proof of 6.2.3, we need a definition and some lemmas.

Definition 6.2.4. Suppose G = (V,E) is a graph. We call a vertex v ∈ V a leaf
(of G) if d(v) = 1.

Trees of order ≥ 2 are guaranteed to have at least two leaves:

Leaf Lemma 6.2.5. Every tree with at least 2 vertices contains at least 2 leaves.

Proof. This is essentially Exercise 8 on HW9. Hint: use the strategy employed
in the proof of (2)⇒(1) in the Eulerian Graph Theorem 6.1.10. �

The following is essential to our inductive proof of 6.2.3:

Tree-Pruning Lemma 6.2.6. Suppose G = (V,E) is a graph, v ∈ V is a leaf,
and e ∈ E is the unique edge incident to v. The following are equivalent:

(1) G is a tree.
(2) G \ v :=

(
V \ {v}, E \ {e}

)
is a tree.

Proof. (1)⇒(2) Suppose G is a tree. Then G does not contain any nontrivial
simple cycles so neither does G \ v. Furthermore, suppose x, y ∈ V \ {v}. Since G
is connected, there is a path P = (x = v0, e1, . . . , en, vn = y) from x to y in G. By
Lemma 6.2.2 we may assume that P is a simple path. In particular, every vertex
in P , except possibly x and y, have degree ≥ 2, and thus 6= v. Thus P is a path in
G \ v. This shows that G \ v is also connected.

(2)⇒(1) Suppose G \ v is a tree. Adding in v and e can’t create a nontrivial
cycle since v and e can’t be involved in such a cycle since v has degree 1. Thus G
is acyclic. Since G \ v is connected, so is G, since e connects the new vertex v to
G \ v. �

Proof of 6.2.3. We will prove these equivalences by induction on the order of G:

P (n) : “For every graph G of order ≤ n, (1)-(5) are equivalent.”

Base Cases: For n = 0 the empty graph (∅, ∅) satisfies (1)-(5). Thus P (0)
is true. For n = 1, every graph of order 1 must be a single vertex: G = ({v}, ∅).
(1)-(5) are also all true for this graph (in particular, they are all equivalent).

Inductive Step: Assume for some n ≥ 1 we know that P (n) is true. We will
prove P (n+ 1). Let G = (V,E) be a graph of order n+ 1.

We will first prove that (1) implies (2)-(5). Suppose G is a tree. By the Leaf
Lemma 6.2.5 there is a vertex v ∈ V such that d(v) = 1. Let e ∈ E be the unique
edge incident to v. By the Tree-Pruning Lemma 6.2.6 the graph G\v is also a tree.
In particular, G \ v satisfies (2)-(5) by P (n). We need to verify that G also satisfies
(2)-(5):

(2) Suppose x, y ∈ G. If x, y ∈ V \ {v}, then the unique simple path from
x to y in G \ v is still the only simple path from x to y in G (any path
that includes v or e but doesn’t start or end at v can’t be simple). Now
suppose x ∈ G \ v. Furthermore, let w ∈ V be such that e = vw. Then
there is a unique path from x to w in G \ v. Continuing this path along e
to v yields the unique path from x to v.

92 6. GRAPHS AND TREES

(3) If we remove the edge e, then v will not be connected to V \ {v}, since
d(v) = 1. If we remove an edge from V \ {v}, then the graph G \ v will
become disconnected, by the inductive assumption. Then adding back in
v and e to this disconnected graph can’t connect it since d(v) = 1.

(4) Let x 6= y ∈ V be such that xy 6∈ E. Since G is connected, there is a
unique path from x to y. If we add in the edge xy, then we can create
a nontrivial simple cycle with this new edge plus this path. [Note: this
implication doesn’t use the inductive hypothesis.]

(5) By (5) for G \ v, we know that |V \ v| = |E \ e| + 1. If we add in one
vertex and one edge the equality is preserved and so |V | = |E|+ 1.

Next we will prove that each of (2)-(5) separately implies (1).
(2)⇒(1) By the path assumption, G is connected. Furthermore, G cannot

contain a nontrivial simple cycle, for if it did, this would give at least two simple
paths connecting any two vertices on that simple cycle.

(3)⇒(1) G is also assumed to be connected here. We claim that G is acyclic. If
G contained a nontrivial simple cycle, then we could delete one edge in that cycle
and still have a connected graph, contradicting (3).

(4)⇒(1) We need to check that G is connected. Let x, y ∈ V be two distinct
vertices. We have two cases: (Case 1) suppose xy ∈ E. Then there is obviously
a path from x to y. (Case 2) suppose xy 6∈ E. Then by assumption, the graph
G+xy must contain a nontrivial simple cycle, and this nontrivial simple cycle must
contain xy. Deleting xy from this cycle yields a path connecting x and y.

(5)⇒(1) Suppose |V | = |E| + 1 ≥ 2 and G is connected. By the Handshake
Lemma 6.1.5 the sum of the degrees of all the vertices is 2|V | − 2. Since d(x) ≥ 1
for every x ∈ V , it follows that it cannot be the case that d(x) ≥ 2 for every
x ∈ V . Thus there is some v ∈ V such that d(v) = 1 (i.e., v is a leaf). Deleting v
and the edge adjacent to it yields a connected graph G \ v satisfying |V (G \ v)| =
|E(G\ v)|+ 1, so G\ v is a tree by P (n). Thus G is also a tree by the Tree-Pruning
Lemma 6.2.6. �

Definition 6.2.7. Suppose G = (V,E) is a graph. A spanning tree of G is a
subgraph T = (V ′, E′) of G such that:

(1) V ′ = V , i.e., T contains all the same vertices as G, and
(2) T is a tree.

Every connected graph has a spanning tree:

Spanning Tree Algorithm 6.2.8. Suppose G = (V,E) is a connected graph with
m vertices which we order (e1, . . . , em), for some m ≥ 1. Recursively define a
sequence of sets of edges E0, E1, . . . , Em as follows:

(1) E0 := ∅
(2) if i < m and Ei is already defined, then set:

Ei+1 :=

{
Ei ∪ {ei+1} if (V,Ei ∪ {ei+1}) is acyclic

Ei otherwise.

Then (V,Em) is a spanning tree of G.

Proof. �

6.3. Exercises

CHAPTER 7

A glimpse of infinity

In this chapter we are going to say a few things about infinite sets.

7.1. Infinite sets and cardinality

The first order of business is to come to grips with the cardinality of infinite sets.
To motivate our definitions, let’s take a careful look at how we reason about the
cardinality of finite sets.

Question 7.1.1. Which of the following sets is greater in cardinality:

A := {0, 1, 2} or B := {0, 1, 2, 3, 4}.

Answer 7.1.2. We shall reason as follows:

(1) First count the number of elements in A. There are three elements so we
conclude |A| = 3.

(2) Then count the number of elements of B. There are five elements so we
conclude |B| = 5.

(3) Then we compare the two numbers 3 and 5. Since 3 < 5, we conclude
that |A| < |B|, i.e., the set B has strictly greater cardinality than the set
A.

We make the following observations about the above thought process:

(I) First we determine the cardinalities of the sets A and B separately, i.e., we
associate A to |A| = 3 and associate B to |B| = 5.

(II) After we have determined the cardinalities, then we compare the cardinalities
with each other to determine that B is larger.

In other words, the relation “|A| < |B|” is a consequence of first defining what |A|
and |B| mean separately. For infinite sets, we need to think about cardinality the
other way around, i.e., first we will define the relations “|A| = |B|”, “|A| ≤ |B|”,
and “|A| < |B|”, and then we define what |A| and |B| mean from this. In the
definitions below, while we have infinite sets in mind, they hold for both finite and
infinite sets:

Definition 7.1.3. Suppose A and B are sets. Then we say that

(1) A and B are equal in cardinality (or equinumerous) (notation: |A| =
|B|) if there exists a bijection from A to B, i.e.,

|A| = |B| :⇐⇒ there exists a function f : A→ B such that f is one-to-one and onto

(2) A is less than or equal in cardinality to B (notation: |A| ≤ |B|) if
there exists a one-to-one function from A to B, i.e.,

|A| ≤ |B| :⇐⇒ there exists a function f : A→ B such that f is one-to-one

93

94 7. A GLIMPSE OF INFINITY

(3) A is less than in cardinality to B (notation: |A| < |B|) if |A| ≤ |B|
and |A| 6= |B|.

The relation |A| ≤ |B| is actually a partial order on sets. Reflexivity and transitivity
are obvious, anti-symmetry is not:

Lemma 7.1.4. Let A,B,C be sets.

(1) (Reflexivity) |A| ≤ |A|,
(2) (Transitivity) if |A| ≤ |B| and |B| ≤ |C|, then |A| ≤ |C|.

Proof. (1) is true since idA : A→ A is an injection.
(2) Assume |A| ≤ |B| and |B| ≤ |C|. By definition, this means there exists

injections f : A → B and g : B → C. Then the composition g ◦ f : A → C is also
an injection, hence |A| ≤ |C|. �

The property of anti-symmetry is far from obvious because it is not clear how to
create a single bijection from two injections going both ways. This construction is
accomplished in the proof of the next theorem:

Schröder-Bernstein Theorem 7.1.5. Let A and B be sets such that |A| ≤ |B|
and |B| ≤ |A|. Then |A| = |B|.

Proof. Suppose f1 : A → B and f2 : B → A are injections. Define B′ := f2(B)
and A1 := f2(f1(A)). Then A1 ⊆ B′ ⊆ A. Furthermore, f2 : B → B′ is a bijection,
so we might as well prove that |B′| = |B|. �

Definition 7.1.6. Given a set A, we say that A is finite if there exists a natural
number n ∈ N such that

|A| =
∣∣{0, 1, . . . , n− 1}

∣∣.
We say that A is infinite if A is not finite.

If A is an infinite set, then we can construct an injection i : N→ A recursively by
at each step getting a different counterexample to finiteness. Thus |N| ≤ |A| if A is
infinite.

Definition 7.1.7. Given a set A, we say that A is countable if |A| ≤ |N|. If A
is countable and infinite, then we say that A is countably infinite. Otherwise, if
|N| < |A|, then we say that A is uncountable.

In view of the Schröder-Bernstein Theorem 7.1.5 above, if A is countably infinite,
then |A| = |N|, i.e.,

“A is the same size as N.”

The next theorem shows that both Z and Q are the “same size” as N. This should
seem paradoxical at first since the sets Z and Q strictly contain N. This is one
of the quirks of infinite cardinality that makes it different from finite cardinality.
Specifically, for finite sets the following statement is true:

Given finite sets A and B, if A ⊆ B and A 6= B, then |A| < |B|.
However, this is COMPLETELY FALSE for infinite sets:

Theorem 7.1.8. The sets Z and Q are countably infinite and so |Z| = |Q| = |N|.
In particular,

(1) There exists an injection f : Z→ N, and thus |Z| = |N|.

7.3. EXERCISES 95

(2) There exists an injection g : Q→ N, and thus |Q| = |N|.

Proof. �

After the previous theorem, you might be tempted to think “so what? maybe this
is true for all sets which contain N and infinite cardinality doesn’t really tell us
anything new.” The next theorem shows that this is definitely not the case.

Theorem 7.1.9. |N| < |R|.

Proof. �

Thus R is uncountably infinite, whereas N,Z, and Q are countably infinite. Is there
any infinity larger than R? Then next theorem shows that there is no largest size
of infinity, i.e., there is always a larger one:

Theorem 7.1.10 (Cantor). For every set X,

|X| < |P(X)|.

[Note that this theorem holds for all sets X, finite or infinite.]

Proof. Let f : X → P(X) be an arbitrary function. It suffices to show that f is
not a surjection. Consider the following element of the codomain:

Y :=
{
x ∈ X : x 6∈ f(x)

}
∈ P(X).

Suppose towards a contradiction that there is z ∈ X such that f(z) = Y . Is z an
element of Y ? Note that

z ∈ Y ⇔ z 6∈ f(z) ⇔ z 6∈ Y,
a contradiction. Thus Y is not in the range of f , and so f is not a surjection. �

7.2. Cantor’s Theorem on dense linear orders

In this section we prove a theorem about linear orders which combines many topics
from this course: sets, induction, relations, functions, and cardinality.

Definition 7.2.1. Suppose

7.3. Exercises

Exercise 7.3.1. Suppose A1, . . . , An are countable sets, i.e., |Ai| ≤ |N| for each
i = 1, . . . , n. Prove that

|A1 × · · · ×An| ≤ |N|,
i.e., the cartesian product A1 × · · · × An is also countable. This shows that for
infinite cardinality, taking cartesian products does not necessarily increase your
cardinality (as opposed to finite cardinality; see the Multiplication Principle 4.1.3).

Exercise 7.3.2. Give an explicit example of a bijection f : Q→ Q>0 := {q ∈ Q :
q > 0} which induces an isomorphism of total orders (Q, <) ∼= (Q>0, <). Prove
that your function f is a bijection and strictly increasing.

APPENDIX A

Appendix

A.1. The natural numbers and Peano arithmetic

This section summarizes the the construction and basic properties of the natural
numbers. For a deeper discussion, we refer the reader to [3, Ch. 5]. We are already
familiar with the natural numbers

N = {0, 1, 2, 3, . . .}

but what exactly do we mean by “0”, or “1”, or “2”? There is a certain philosophy
in math that everything can be built out of pure set-theoretic operations, starting
from the emptyset. Following in this tradition, we can define the natural numbers
as follows:

0 := ∅
1 := 0 ∪ {0} = {∅}
2 := 1 ∪ {1} =

{
∅, {∅}

}
3 := 2 ∪ {2} =

{
∅, {∅}, {∅, {∅}}

}
...

More precisely, we define the natural numbers recursively by setting 0 := ∅ and for
each n ≥ 0:

n+ 1 := S(n) where S(X) := X ∪ {X} for any set X.

We define the set N to be the set {0, 1, 2, 3, . . .} (a fancy way of defining N is to
declare it to be the smallest set which contains 0 and is closed under the operation
S). The operation S restricts to a function S : N → N called the successor
function. We illustrate the action of the successor function in Figure A.1 below.

•
0

• • • • · · · • • · · ·
1 2 3 4 n n+ 1

S S S S S S S S

Figure A.1: The natural numbers N and the successor function S : N→ N

The natural numbers, together with the function S satisfies the following (remem-
ber, S(n) is the function n 7→ n+ 1):

Peano Axioms A.1.1. The following are true for the structure (N;S):

(1) 0 ∈ N,
(2) for every n ∈ N, S(n) ∈ N,

97

98 A. APPENDIX

(3) for every m,n ∈ N, if S(m) = S(n), then m = n (i.e., S is an injective
function),

(4) (Induction Principle) for every X ⊆ N,(
0 ∈ X ∧ ∀n ∈ X(S(n) ∈ X)

)
→ X = N

Justification. One can show, using elementary but technical set-theoretic argu-
ments that the recursive construction of (N;S) satisfies (1)-(4). The justification
for (4) actually looks a lot like our proof of the Principle of Induction 1.4.4. �

There are other operations on N we also care about, namely addition and multipli-
cation. These can be defined from the successor function:

Definition A.1.2. We define the function + : N×N→ N to be the unique function
with the following properties:

(1) for every n ∈ N, 0 + n := n, and
(2) for every m,n ∈ N, S(m) + n := S(m+ n).

and we define the function · : N × N → N to be the unique function with the
following properties:

(3) for every n ∈ N, 0 · n := 0, and
(4) for every m,n ∈ N, S(m) · n := m · n+ n.

Note: (as you are well aware) when dealing with the functions + and ·, we always
use the notation a+ b = c instead of +(a, b) = c and a · b = c instead of ·(a, b) = c.

With lots of induction, one can prove that addition and multiplication have the
following properties:

Fact A.1.3. For every `,m, n ∈ N we have

(1) (Associativity) (`+m) + n = `+ (m+ n) and ` · (m · n) = (` ·m) · n
(2) (Commutativity) m+ n = n+m and m · n = n ·m
(3) (Distributivity) ` · (m+ n) = ` ·m+ ` · n and (`+m) · n = ` · n+m · n
(4) (Additive identity) 0 + n = n+ 0 = n
(5) (Multiplicative identity) 1 · n = n · 1 = n

One convenient feature of our construction of N is that we get the usual inequality
≤ essentially for free: given m,n ∈ N, we define

m ≤ n if and only if m = n or m ∈ n
We construe ≤ as a binary relation on N. One can prove that this binary relation
satisfies the following:

Fact A.1.4. For every `,m, n ∈ N,

(1) ≤ is a total order:
(a) n ≤ n
(b) if m ≤ n and n ≤ m, then m = n
(c) if ` ≤ m and m ≤ n, then ` ≤ n

(2) 0 ≤ n
(3) n ≤ S(n)
(4) if m ≤ n and m 6= n, then S(m) ≤ n
(5) if ` ≤ m, then `+ n ≤ m+ n
(6) if ` ≤ m, then ` · n ≤ m · n

A.2. THE (ORDERED) RING OF INTEGERS 99

In general, when we refer to the basic arithmetic structure of the natural numbers,
we are referring to the structure (N;S,+, ·,≤). We will freely assume and use
all of the above facts and their basic consequences when dealing with the natural
numbers.

A.2. The (ordered) ring of integers

The primary defect of the natural numbers N is that not every addition equation
with coefficients from N has a solution (in N). For example:

(1) x+ 3 = 5 has a solution (x := 2), however
(2) x + 5 = 3 does not have a solution, i.e., there does not exist x ∈ N such

that x+ 5 = 3.

The remedy to this situation is to extend the natural number system N to a larger
number system which does include all solutions to all addition equations. This
larger number system is the integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
which we will construct in this section. Before we do that, we give an additional
reason for wanting to enlarge the number system N to the number system Z:

Question A.2.1. Suppose we have zero interest and desire to solve unsolvable
addition equations and we only want to talk exclusively about natural numbers. In
this case why would it still be beneficial to consider Z?

Answer. Even if we only want to answer questions only involving natural numbers,
allowing ourselves to still work with negative numbers often simplifies the math
and logic by eliminating various case distinctions. For example, suppose we have
two natural numbers a, b ∈ N such that (a, b) 6= (0, 0) and we are interested in
calculating r := gcd(a, b). If we allow ourselves to use negative numbers in our
calculations, we will be able to use the following fact:

gcd(a, b) is the least r ∈ N such that there exists x, y ∈ Z such that r = ax+ by

If we are only allowing natural numbers, then we would be forced to work with the
“natural number version” of this fact:

gcd(a, b) is the least r ∈ N such that there exists x, y ∈ N

such that ax = by + r or by = ax+ r

The natural number version is a little more complicated than the integer version
since the “or” will result in various case distinctions which are avoided if we allow
calculations with (negative) integers. �

We now proceed with the construction of Z. Recall we want to have all solutions
of addition equations of the form x+m = n, where m,n ∈ N. This motivates the
following definition:

Definition A.2.2. For m,n ∈ N, define the pre-integer1 corresponding to the
equation x+n = m to be the ordered pair (m,n) ∈ N×N. We think of the ordered
pair (m,n) as representing a solution to x + n = m (so (m,n) will represent the
integer “m− n” in some sense). The set of all pre-integers is N× N.

1This is provisional terminology.

100 A. APPENDIX

The issue with pre-integers is that there are too many of them. Indeed, the pre-
integer associated to x+ 5 = 3 is (3, 5) and the pre-integer associated to x+ 6 = 4
is (4, 6). The pre-integers (3, 5) 6= (4, 6) are not equal, however, we definitely want
x+5 = 3 and x+6 = 4 to have the same solution (since we get the second equation
from the first equation by adding 1 to both sides, so an x which works for the first
equation should also work for the second equation).

To remedy this, we define an equivalence relation ∼ on the set of all pre-integers
N×N to capture when two pre-integers “ought to” represent the same integer. To
motivate the definition, suppose we have natural numbers m,n,m′, n′ ∈ N and we
want to say when “m− n” is equal to “m′ − n′”. We aren’t allowed to talk about
negative numbers or subtraction yet, but if we were, we would notice that

m− n = m′ − n′ if and only if m+ n′ = m′ + n.

The second condition “m + n′ = m′ + n” doesn’t mention negative numbers or
subtraction at all and takes place entirely within N. We will use this as the definition
for our equivalence relation:

Definition A.2.3. Given two pre-integers (m,n), (m′, n′) ∈ N × N, we say that
(m,n) is equivalent to (m′, n′) (notation: (m,n) ∼ (m′, n′)) if m + n′ = m′ + n,
i.e.,

(m,n) ∼ (m′, n′) :⇐⇒ m+ n′ = m′ + n.

For example, the pre-integer (3, 5) which is supposed to in some sense “represent”
the integer 3− 5 = −2 is equivalent to the following pre-integers:

(0, 2) ∼ (1, 3) ∼ (2, 4) ∼ (3, 5) ∼ (4, 6) ∼ · · ·

All of these pre-integers are also “representations” of −2 in the same sense that
(3, 5) is, which is reassuring. In fact, we have the following:

Lemma A.2.4. Let (m,n) ∈ N× N be arbitrary. Then:

(1) (m,n) ∼ (m+ 1, n+ 1),
(2) the equivalence class [(m,n)] is infinite, and
(3) there exists r ∈ N such that either (m,n) ∼ (r, 0) or (m,n) ∼ (0, r).

By collapsing the set of all pre-integers into their equivalence classes, we arrive at
our definition of the set of integers:

Z := N× N/ ∼ (The quotient of N× N by the equivalence relation ∼)

At this point we should immediately raise the following objection:

Objection A.2.5. By construction it is clear that the sets N (defined as in Sec-
tion A.1) and Z are disjoint. Indeed, each n ∈ N is a technically a finite set
(e.g., 3 =

{
∅, {∅}, {∅, {∅}}

}
so |3| = 3) whereas each k ∈ Z is an infinite set by

Lemma A.2.4. However, we have always been operating under the tacit assump-
tion in these notes that N ⊆ Z. How do we reconcile this?

The answer is we cheat a little and redefine the set of all natural numbers now as
a subset of Z:

• For each n ∈ N, redefine n := [(n, 0)] ∈ Z
• For each n ∈ N such that n ≥ 1, define −n := [(0, n)] ∈ Z (−n is pro-

nounced “negative n”)

A.2. THE (ORDERED) RING OF INTEGERS 101

• We also use the symbol N as the name for the subset of integers which
are natural numbers:

N :=
{

[(n, 0)] : n ∈ N
}
⊆ Z.

It might seem we are asking for trouble by giving two definitions to N and to
each n ∈ N. However, keeping in mind that everything we do has a precise first-
order logic underpinning, we naturally arrive at the following rule: if the domain
of discourse is N (and it really matters to know which definition you are using),
then we are using the definition in Section A.1, and if the domain of discourse is Z
(and it also really matters which definition you are using), then we are using the
definition from the current section. In general it never matters.

The following illustrates our new definition of the natural numbers and what the
equivalence classes look like:

...

−2 =
{

(0, 2), (1, 3), (2, 4), (3, 5), (4, 5), . . .
}

−1 =
{

(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), . . .
}

0 =
{

(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), . . .
}

1 =
{

(1, 0), (2, 1), (3, 2), (4, 3), (5, 4), . . .
}

2 =
{

(2, 0), (3, 1), (4, 2), (5, 3), (6, 4), . . .
}

...

The next order of business is to show that Z contains all solutions to addition
equations. Before we can do that, we need to define what + means for integers.
This is a delicate issue since we need to do this in terms of what + means for N
(as defined in Section A.1) but the elements of Z are equivalence classes of pairs of
natural numbers. The following lemma helps us with this:

Lemma A.2.6. Suppose (a, b), (c, d), (a′, b′), (c′, d′) are pre-integers such that

(1) (a, b) ∼ (a′, b′)
(2) (c, d) ∼ (c′, d′)

Then:

(a+ c, b+ d) ∼ (a′ + c′, b′ + d′).

The previous lemma permits us to make the following definition (see Exercise A.6.1):

Definition A.2.7. We define integer addition to be the function + : Z×Z→ Z
defined by

[(a, b)] + [(c, d)] := [(a+ c, b+ d)]

Integer addition has the following properties:

Lemma A.2.8. For every n ∈ N such that n > 0 we have

(1) n+ (−n) = 0

and for every a, b, c ∈ Z we have

(2) (Associativity) (a+ b) + c = a+ (b+ c)

102 A. APPENDIX

(3) (Commutativity) a+ b = b+ a
(4) (Additive Identity) a+ 0 = 0 + a = a
(5) (Additive Inverse) there exists an integer d ∈ Z such that a+ d = 0 (such

an integer d is called an additive inverse of a)

The first observation is that additive inverses are unique:

Lemma A.2.9. Suppose a ∈ Z and b, c ∈ Z are additive inverses of a. Then b = c.

For each k ∈ Z, we define −k to be the unique d ∈ Z such that k + d = 0. Note
that by Lemma A.2.8(1), for n > 0 the notation −n is defined to be both [(0, n)]
and the additive inverse of n = [(n, 0)], which are the same so there is no issue to
giving two meanings to “−n”. For a, b ∈ Z we will also abbreviate a+ (−b) as just
a− b.

It is easy to verify that with this definition we can solve all integer equations:

Lemma A.2.10. Given m,n ∈ Z, the integer x := m− n satisfies the equation

x+ n = m.

In particular, since we are now viewing N as a subset of Z, Z contains all solutions
to equations x+ n = m for every m,n ∈ N.

Now that integer addition is taken care of, we need to define integer multiplication.
For this we need the following analogue of Lemma A.2.6 for multiplication:

Lemma A.2.11. Suppose (a, b), (c, d), (a′, b′), (c′, d′) are pre-integers such that

(1) (a, b) ∼ (a′, b′)
(2) (c, d) ∼ (c′, d′)

Then:

(ac+ bd, ad+ bc) ∼ (a′c′ + b′d′, a′d′ + b′c′).

This permits us to make the following definition:

Definition A.2.12. We define integer multiplication to be the function

· : Z× Z→ Z

defined by

[(a, b)] · [(c, d)] := [(ac+ bd, ad+ bc)]

This definition of integer multiplication comes from the observation that (antici-
pating how things “ought to” work), if a, b, c, d ∈ N, then

(a− b)(c− d) = (ac+ bd)− (ad+ bc).

Thus the product of [(a, b)] and [(c, d)] better equal [(ac+ bd, ad+ bc)] if our inter-
pretation of pre-integers and integers is going to be correct.
The main properties of integer multiplication, and its interaction with integer ad-
dition, are the following:

Lemma A.2.13.

A.6. EXERCISES 103

A.3. The (ordered) field of rational numbers

A.4. The (ordered) field of real numbers

A.5. The field of complex numbers

A.6. Exercises

Exercise A.6.1. Suppose f : X × Y → Z is a binary function and E1, E2, E3 are
equivalence relations on X,Y, Z respectively. Show the following are equivalent:

(1) For every x, x′ ∈ X and y, y′ ∈ Y , if
(a) xE1x

′, and
(b) yE2y

′,
then

f(x, y) E3 f(x′, y′).

(2) The (ternary) relation

f :=
{

([x]E1
, [y]E2

, [f(x, y)]E3
) : (x, y) ∈ X × Y

}
⊆ X/E1 × Y/E2 × Z/E3

is a function X/E1 × Y/E2 → Z/E3.

Bibliography

1. Paul R. Halmos, I want to be a mathematician, Springer-Verlag, New York, 1985, An au-

tomathography. MR 789980
2. Richard Johnsonbaugh, Discrete mathematics, eighth ed., Pearson, 2018.

3. Yiannis Moschovakis, Notes on set theory, second ed., Undergraduate Texts in Mathematics,

Springer, New York, 2006. MR 2192215

105

Index

k-combination, 65

k-ordering, 67

k-permutation, 67

k-subset, 65

n-fold cartesian product, 11

n-fold composition, 42

0/1 laws for sets, 9

absorption laws for propositional logic, 4

absorption laws for sets, 9

Ackermann function, 78

acyclic, 90

Addition Principle, 62

additive inverse, 102

adjacent vertices, 81

antecedent, 2

antireflexive relation, 31

antisymmetric relation, 31

arrow diagram, 30

associative laws for proposition logic, 4

associative laws for sets, 9

biconditional proposition, 2

bijection, 48

bijective function, 48

binary relation on X × Y , 109

binomial coefficient, 13

Binomial Theorem, 18

bipartite graph, 82

bound laws for propositional logic, 4

bound laws for sets, 9

Boundary-Crossing Lemma, 86

cardinality, 8

cartesian product, 9

Catalan numbers, 24

ceiling function, 46

characteristic polynomial, 77

codomain of a function, 45

collection of sets, 11

commutative laws for proposition logic, 4

commutative laws for sets, 9

comparable, 32

complement, 7

complement laws for sets, 9

complete bipartite graph, 83

complete graph, 82

composite, 33

composition of functions, 46

composition of relation, 40

conclusion, 2

conditional proposition, 2

congruent modulo n, 39

conjunction, 1

Conjunction (inference rule), 23

connected components, 89

connected graph, 85

consequent, 2

contradiction, 4

contradictory statement, 4

countable sets, 94

countably infinite set, 94

cycle in a graph, 84

De Morgan’s laws for propositional logic, 4

De Morgan’s laws for sets, 9

degree of a vertex, 82

difference, 7

Difference of Powers Formula, 13

digraph, 31

directed graph, 31

disjoint, 11

disjunction, 1

distributive laws for propositional logic, 4

distributive laws for sets, 9

divides, 33

divisor, 33

domain of a function, 45

domain of discourse, 27

double complement law for sets, 9

double negation law for propositional logic,
4

dummy variable, 12

element of a set, 4

emptyset, 5

equal in cardinality, 93

equality of sets, 5

107

108 INDEX

equinumerous, 93

equivalence class, 38

equivalence relation, 37

Euclid’s Lemma, 53

Euclidean Algorithm, 55

Eulerian graph, 85

Eulerian Graph Theorem, 85

even integer, 17

exclusive or, 2

existential quantifier, 28

existentially quantified statement, 28

factor, 33

factorial, 13

family of sets, 11

Fibonacci numbers, 24, 75

finite sequence, 71

finite set, 94

finite summation, 12

first-order linear recurrence relation, 73

first-order logic, 28

floor function, 46

forest, 90

Freshman’s Dream, 58

Fundamental Theorem of Arithmetic, 53

generating function, 75

Geometric Sum Formula, 13

graph, 81

Handshake Lemma, 84

Hockey-Stick Identity, 23

homogeneous first-order linear recurrence
relation, 73

hypothesis, 2

Hypothetical Syllogism, 23

idempotent laws for propositional logic, 4

idempotent laws for sets, 9

identity function, 45

identity laws for proposition logic, 4

identity laws for sets, 9

iff, 2

incident, vertex and edge, 81

Inclusion-Exclusion Principle, 63

inclusive or, 2

incomparable, 32

index of summation, 12

index set, 71

induced subgraph, 89

induction, 17

inference rule, 22

infinite sequence, 71

infinite set, 94

inhomogeneous first-order linear recurrence

relation, 73

initial conditions, 72

injective function, 47

integer addition, 101

integer multiplication, 102

integers, 11, 100

intersection, 6

inverse function, 47

inverse image function, 49

inverse of a relation, 41

invertible function, 47

Königsberg Bridge Problem, 85

leaf in a graph, 91

length of a path, 84

less than in cardinality, 94

less than or equal in cardinality, 93

linear order, 32, 33

logical equivalence, 3

logical operators, 1

logically equivalent, 29

Lucas numbers, 79

modulus operator, 51

Modus Ponens, 22

Modus Tollens, 22

Multiplication Principle, 62

nand, 21

natural numbers, 11

negation, 2

negation laws for proposition logic, 4

neighboring vertices, 81

odd integer, 17

off-by-one error, 12

one-to-one and onto function, 48

one-to-one function, 47

onto function, 48

operator precedence, 3

ordered n-tuples, 11

ordered pair, 8

Ordered Pair Property, 8

ordered quadruples, 11

ordered triples, 11

ordering, 64

pairwise disjoint, 11

partial order, 33

Pascal’s rule, 14

Pascal’s Triangle, 14

path in a graph, 84

Peano axioms, 98

Peirce arrow, 21

permutation, 64

Pigeonhole Principle, 51

powerset, 8

pre-integer, 99

predicate, 27

prime number, 33

Principle of Cauchy Induction, 24

Principle of Induction, 17

Principle of Strong Induction, 20

INDEX 109

product rule, 23

proper subset, 5

proposition, 1

propositional function, 27

quotient, 16, 33

quotient of a set by an equivalence relation,
38

Quotient-Remainder theorem, 15

range of a function, 45

rational numbers, 11

real numbers, 11

recurrence relation, 72

reflexive relation, 31

relation matrix, 30

relation on X, 31

relation on X × Y , 30

relative complement, 7

remainder, 16

Scheffer stroke, 21

Schröder-Bernstein Theorem, 94

second-order linear homogeneous

recurrence relation, 74

sequence, 71

set, 4

set difference, 7

set-builder notation, 5

simple cycle, 90

simple path, 90

spanning tree, 91

subgraph, 89

subset, 5

successor function, 97

surjective function, 48

symmetric difference, 23

symmetric relation, 31

T/F laws for propositional logic, 4

tautological statement, 4

tautology, 4

The Division Algorithm, 15

total order, 32

totality of a partial order, 32

Tower of Hanoi, 71

transitive closure, 42

transitive relation, 31

tree, 90

triangular numbers, 17

trivial cycle, 84

trivial equivalence relation, 37

true by default, 2

uncountable sets, 94

union, 6

universal quantifier, 27

universal set, 7

universally quantified statement, 27

universe, 7

vacuously true, 2
vertices, 81

Well-Ordering Principle, 15

	Introduction
	Conventions and notation
	Acknowledgements

	Chapter 1. Propositional Logic, Sets, and Induction
	1.1. Propositional logic
	1.2. Sets and set constructions
	1.3. Familiar number systems and some basic features
	1.4. The well-ordering principle and induction
	1.5. Exercises

	Chapter 2. Relations
	2.1. Predicates and quantifiers
	2.2. Relations
	2.3. Partial and total order relations
	2.4. The divides relation
	2.5. Equivalence relations and partitions
	2.6. The mod n congruence (equivalence) relation
	2.7. More abstract nonsense
	2.8. Exercises

	Chapter 3. Functions
	3.1. Functions
	3.2. Three special types of functions
	3.3. The mod n function and the greatest common divisor function
	3.4. The Euclidean Algorithm
	3.5. Exercises

	Chapter 4. Counting
	4.1. Basic counting principles
	4.2. Permutations and combinations
	4.3. Exercises

	Chapter 5. Sequences
	5.1. Sequences and recurrence relations
	5.2. Solving recurrence relations I: first-order linear (in)homogeneous recurrence relations
	5.3. Solving recurrence relations II: second-order linear homogeneous recurrence relations
	5.4. Exercises

	Chapter 6. Graphs and trees
	6.1. Graphs
	6.2. Trees and forests
	6.3. Exercises

	Chapter 7. A glimpse of infinity
	7.1. Infinite sets and cardinality
	7.2. Cantor's Theorem on dense linear orders
	7.3. Exercises

	Appendix A. Appendix
	A.1. The natural numbers and Peano arithmetic
	A.2. The (ordered) ring of integers
	A.3. The (ordered) field of rational numbers
	A.4. The (ordered) field of real numbers
	A.5. The field of complex numbers
	A.6. Exercises

	Bibliography
	Index

