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Abstract

The ordered valued differential field T
log

of logarithmic transseries is conjectured to have good model theoretic
properties. This thesis records our progress in this direction and describes a strategy moving forward. As
a first step, we turn our attention to the value group of T

log

. The derivation on T
log

induces on its value
group �

log

a certain map  ; together forming the pair (�

log

, ), the asymptotic couple of T
log

. We study
the asymptotic couple (�

log

, ) and show that it has a nice model theory. Among other things, we prove
that Th(�

log

, ) has elimination of quantifiers in a natural language, is model complete, and has the non-
independence property (NIP). As a byproduct of our work, we also give a complete characterization of when
an H-field has exactly one or exactly two Liouville closures. Finally, we present an outline for proving a
model completeness result for T

log

in a reasonable language. In particular, we introduce and study the notion
of LD-fields and also the property of a differentially-valued field being  -closed.
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Conventions and Notations

We include here conventions and notations which will be in force throughout the entire thesis. The most
important convention is, of course, the following:

Global Convention 0.0.1. Throughout, m and n range over N = {0, 1, 2, . . . }.

Citation conventions. In this thesis, we use many definitions and cite many results from [6]. As a general
rule, any result taken directly from that reference is titled ADH instead of Lemma, Theorem, etc. In citing
results in this way we do not imply that they are originally due to the authors of [6]; for instance, ADH 5.1.1
is actually a classical fact of valuation theory due to Kaplansky. Furthermore, in citations we omit qualifiers
when no confusion should arise, writing, for example, [14, 3.2] instead of [14, Lemma 3.2].

Model theory conventions. We adopt the model theoretic conventions of Appendix B of [6]. In particular,
L can be a many-sorted language. For a complete L-theory T , we will sometimes consider a model M |= T and
a cardinal (M) > |L| such that M is (M)-saturated and every reduct of M is strongly (M)-homogeneous.
Such a model is called a monster model of T . In particular, every model of T of size 6 (M) has an
elementary embedding into M. “Small” will mean “of size < (M)”. If M is a parameter set underlying an
elementary submodel of M, then we denote this elementary submodel also by M . For a parameter set A, we
let hAi denote the L-substructure of M generated by A. Similarly, if M is an elementary submodel of M, we
let MhAi denote hM [Ai. If L is one-sorted, then we let Sn

(A) denote the space of n-types over A.

Set theory conventions. We assume the reader is familiar with the basic concepts and definitions from
set theory (for example, see [25] or [20]). Throughout,  will denote an infinite cardinal and ⌘,�, ⌫ will
denote (possibly finite) ordinals. Given a linear order I and subset J ✓ I, we say that J is a dense subset
of I if the closure of J in the order topology on I is all of I (see [6, §2.1]). We define

ded() := sup{|�| : there is a linear order of size |�| which has a dense subset of size }.
In general  < ded() 6 ded()@0 6 2

 for all  with equality if  = @
0

. Furthermore, ded() 6 ded(�) if
 6 �.

Ordered set conventions. By “ordered set” we mean “totally ordered set”.

Let S be an ordered set. Below, the ordering on S will be denoted by 6, and a subset of S is viewed as
ordered by the induced ordering. We put S1 := S [ {1}, 1 62 S, with the ordering on S extended to a
(total) ordering on S1 by S < 1. Occasionally, we even take two distinct elements �1,1 62 S, and extend
the ordering on S to an ordering on S [ {�1,1} by �1 < S < 1. Suppose that B is a subset of S. We
put S>B

:= {s 2 S : s > b for every b 2 B} and we denote S>{a} as just S>a; similarly for >, <, and 6
instead of >. For a, b 2 S [ {�1,1} and B ✓ S we put

[a, b]B := {x 2 B : a 6 x 6 b}.
vii



If B = S, then we usually write [a, b] instead of [a, b]S . A subset C of S is said to be convex in S if for all
a, b 2 C we have [a, b] ✓ C. For A ✓ S we let

conv(A) := {x 2 S : a 6 x 6 b for some a, b 2 A}
be the convex hull of A in S, that is, the smallest convex subset of S containing A. A subset A of S is
said to be a cut in S, or downward closed in S, if for all a 2 A and s 2 S we have s < a ) s 2 A. We
say that an element x of an ordered set extending S realizes the cut A if A < x < S \A. For A ✓ S we put

A#
:= {s 2 S : s 6 a for some a 2 A},

which is the smallest downward closed subset of S containing A.

We say that S is a successor set if every element x 2 S has an immediate successor y 2 S, that is,
x < y and for all z 2 S, if x < z, then y 6 z. For example, N and Z with their usual ordering are successor
sets. We say that S is a copy of Z (respectively, copy of N) if (S,<) is isomorphic to (Z, <) (respectively,
(N, <)).

A well-indexed sequence is a sequence (a⇢) whose terms a⇢ are indexed by the elements ⇢ of an infinite
well-ordered set without a greatest element.

Algebra conventions. For an (additively written) abelian group G we set G 6=
:= G \ {0}. We say a group

G is trivial if G = {e}, where e is the identity element of G. We say a subgroup H of G is a trivial
subgroup (of G) if H is a trivial group, otherwise we say that H is a nontrivial subgroup (of G). For a
field K we let K⇥

:= K \ {0} = K 6= be its multiplicative group of units. Let R be a commutative ring and
M an R-module. When U and V are given as additive subgroups of R and M , respectively, then we set

UV :=

(
nX

i=1

rixi 2 M : r
1

, . . . , rn 2 U, x
1

, . . . , xn 2 V

)
,

the additive subgroup of M generated by the products rx with r 2 U and x 2 V .

Ordered abelian group conventions. Suppose that G is an ordered abelian group. Then we set G<
:=

G<0; similarly for >,6, and > instead of <. We define |g| := max(g,�g) for g 2 G. For a 2 G, the
archimedean class of a is defined by

[a] := {g 2 G : |a| 6 n|g| and |g| 6 n|a| for some n > 1}.
The archimedean classes partition G. Each archimedean class [a] with a 6= 0 is the disjoint union of the two
convex sets [a] \G< and [a] \G>. We order the set [G] := {[a] : a 2 G} of archimedean classes by

[a] < [b] :() n|a| < |b| for all n > 1.

We have [0] < [a] for all a 2 G 6=, and

[a] 6 [b] () |a| 6 n|b| for some n > 1.

The rank of G, denoted by rank(G), is defined to be n if there are exactly n nontrivial convex subgroups of
G, and defined to be 1 if there are infinitely many convex subgroups of G.

As a torsion-free abelian group, we will consider G as a subgroup of the divisible abelian group QG := Q⌦ZG

via the embedding g 7! 1⌦ g. We also equip QG with the unique linear order that makes it into an ordered

viii



abelian group containing G as an ordered subgroup. The ordered abelian group QG is called the divisible
hull of G.
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CHAPTER 1

Introduction

1.1. Introduction

Consider the following function:

�(x) =

2

1� (log log x)�1

+

1

1� (log x)�1

+

7

x
+

5

x2

� 3

Expanding �(x) formally as x ! 1, we get a logarithmic transseries:

2

log log x
+

2

(log log x)2
+

2

(log log x)3
+ · · ·+ 1

log x
+

1

(log x)2
+

1

(log x)3
+ · · ·+ 7

x
+

5

x2

Transseries are formal transfinite series which provide a general setting for considering orders of growth
which are different from the usual powers of x:

. . . , x�3, x�2, x�1, 1, x, x2, x3, . . .

and they are an appropriate forum to give actual meaning to often divergent series that arise in nature.
Transseries arise as solutions to algebraic differential equations, often where more classical methods break
down (for instance, see [42]). Already, there are many important applications in dynamical systems with
Écalle’s and Il0yashenko’s proofs of the Dulac conjecture [11, 19, 41] which is related to Hilbert’s 16th
Problem, as well as applications in model theory [5, 9] in connection with Tarski’s problem on the real
exponential field, and computer algebra [13, 42], allowing for the automation of solving differential equations
by a computer. Logarithmic transseries also occur in combinatorics in the work of Loeb and Rota [27, 28]
in connection with difference equations and certain generalizations of umbral calculus.

For us, the most compelling results on transseries can be found in the book Asymptotic Differential Al-
gebra and Model Theory of Transseries by Matthias Aschenbrenner, Lou van den Dries and Joris van der
Hoeven, [6]. In it, they study the model theory and algebra of the ordered valued differential field T of
logarithmic exponential transseries. In particular, they prove a quantifier elimination result for T and they
show that the theory of T is the model companion of a certain natural class of ordered valued differential
fields: the so-called H-fields. This effectively anoints T as an appropriate universal domain for doing “ordered
asymptotic differential algebra”, in much the same way that the algebraically closed field C is a universal
domain for algebraic geometry of characteristic 0.

In [6], they also isolate a particularly nice differential subfield of T:

T
log

: the ordered valued differential field of logarithmic transseries

In this thesis, we study the algebra and model theory of T
log

. It is our ultimate goal to accomplish for T
log

what is accomplished for T in [6]. This thesis records our progress in this direction and sheds light on our
strategy moving forward.

1



1.2. Construction of T
log

In this section we give a construction of the ordered valued differential field T
log

. In the rest of this thesis,
the “official” construction of T

log

we use is the one given in Appendix A of [6], i.e., a construction of T
log

as
a distinguished subfield of T. However, the construction we give here is equivalent and perhaps a little more
direct and transparent.

The iterated logarithms (`n). We set `
0

:= x and `n+1

:= log `n to obtain the formal sequence (`n) of
iterated logarithms of x. At this point, the elements `

0

, `
1

, `
2

, `
3

, . . . have no meaning whatsoever, however
they can (and should) be thought of as formal counterparts to the familiar functions from freshman calculus:

x, log x, log log x, log log log x, . . . .

In particular, at no point will we ever talk about “branch cuts”.

The ordered multiplicative group Ln of logarithmic transmonomials. For each n, we construct the
multiplicative group Ln = (Ln, ·) of logarithmic transmonomials of depth n:

Ln := `R
0

· · · `Rn := {`r0
0

· · · `rnn : r
0

, . . . , rn 2 R}
with group multiplication given by:

(`r0
0

· · · `rnn ) · (`s0
0

· · · `snn ) := `r0+s
0

0

· · · `rn+sn
n .

We further make Ln into an ordered group Ln = (Ln, ·,�) by requiring

`r0
0

· · · `rnn � `s0
0

· · · `snn () (r
0

, . . . , rn) <lex

(s
0

, . . . , sn)

where <
lex

is the usual lexicographical ordering on R1+n. Given m < n, we naturally view Lm as an ordered
abelian subgroup of Ln, and in particular, Lm ✓ Ln.

Note that the ordering � on Ln respects the asymptotic behavior of the iterated logarithms as x ! +1
when viewed as real-valued functions. For example, the statement “for all m, `m

1

� `
0

” about L
1

can be
viewed as a formal counterpart to the asymptotic statement “for all m, (log x)m = o(x) as x ! +1” about
the real-valued functions x and log x.

The Hahn field R[[Ln]]. For each n, we construct the so-called Hahn field R[[Ln]], the field of formal series
whose coefficients come from R and whose monomials come from the ordered group Ln. More specifically:

A set G ✓ Ln is said to be well-based if there is no strictly increasing sequence m
0

� m
1

� m
2

� · · · in
G. Suppose we are given a function f : Ln ! R; we may formally construe f as a series

P
m2Ln

fmm, with
fm = f(m), and we say the support of f is the set supp f := {m 2 Ln : fm 6= 0}. Then we set

R[[Ln]] := {f : Ln ! R : supp f ✓ Ln is well-based}.
We equip R[[Ln]] with pointwise addition, and multiplication given by

f · g :=

X

m2Ln

 
X

n
1

·n
2

=m

fn1gn2

!
m

making R[[Ln]] a field by [6, 3.1.3]. Here are some elements from R[[L
2

]]:

x3

log x+

p
x+ 2 +

1

log log x
+

1

(log log x)2
+ · · ·

2



1

log log x
+

1

(log log x)2
+ · · ·+ 1

log x
+

1

(log x)2
+ · · ·+ 1

x
+

1

x2

+

1

x3

+ · · ·

Given m < n, we naturally view R[[Lm]] as a subfield of R[[Ln]]. Furthermore, we identify r 2 R with the
series r`0

0

2 R[[L
0

]]. In this way, we view R as a subfield of R[[Ln]] for every n.

The field T
log

. We define the underlying field of T
log

to be the direct union
S1

n=0

R[[Ln]]. It is important
to note that the construction of T

log

excludes formal series such as

l =

1

`
0

+

1

`
0

`
1

+

1

`
0

`
1

`
2

+ · · ·+ 1

`
0

· · · `n + · · ·
or

w =

1

`2
0

+

1

`2
0

`2
1

+

1

`2
0

`2
1

`2
2

+ · · ·+ 1

`2
0

· · · `2n
+ · · ·

from being members of T
log

, i.e., for each series in T
log

, there is a bound on the iteration depth allowed in
the logarithmic transmonomials which occur in the series. Constructing T

log

as an increasing union which
avoids series such as l or w may seem a bit odd, but it is actually crucial that we do this.

The valued field T
log

. We will now equip T
log

with the structure of a valued field :

First, we define the value group of T
log

. Let
L

n Ren be a vector space over R with basis (en). Then
L

n Ren
can be made into an ordered group using the usual lexicographic order, i.e., by requiring for nonzero

P
i riei

that X
riei > 0 () rn > 0 for the least n such that rn 6= 0.

Let �
log

be the above ordered abelian group
L

n Ren. It is often convenient to think of an element
P

riei

as the vector (r
0

, r
1

, r
2

, . . .).

Next, to each nonzero transseries f 2 T⇥
log

we associate

d(f) := max

4
supp f,

the dominant monomial of f . In particular, for every f 2 T
log

we have d(f) = `r0
0

· · · `rnn for some n and
r
0

, . . . , rn 2 R.

Now we can define the valuation v : T⇥
log

! �

log

as the unique map such that

(1) v(`r0
0

· · · `rnn ) = �r
0

e
0

� · · ·� rnen, and
(2) v(f) = v

�
d(f)

�
for all f 2 T

log

.

Furthermore, we extend v to a map T
log

! �

log,1 by setting v(0) := 1. It is easy to see that v is indeed a
valuation on T

log

, i.e., for all f, g 2 T
log

:

(V1) v(fg) = v(f) + v(g), and
(V2) v(f + g) > min

�
v(f), v(g)

�
.

Here are some sample calculations using v:

v(5x3

log x+

p
x+ 2 + · · · ) = (�3,�1, 0, 0, . . .)

v

✓
⇡

log log x
+

7

(log log x)2
+ · · ·

◆
= (0, 0, 1, 0, 0, . . .)

v

✓
1

`
0

`
1

· · · `n

◆
= v(`�1

0

`�1

1

· · · `�1

n ) = (1, . . . , 1| {z }
n times

, 0, 0, . . .)
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With the valuation v, we also define the valuation ring O of T
log

:

O :=

�
f 2 K : v(f) > 0

 

The valuation ring O is a local ring with maximal ideal:

O :=

�
f 2 K : v(f) > 0

 

Given O and O, we also get the residue field res(T
log

) := O/O. In this case, the residue field can be
identified with R, the field of real numbers.

Finally, we equip T
log

with a dominance relation 4 by defining for all f, g 2 T
log

:

f 4 g :() vf > vg.

It is well known that the notions of valuation, valuation ring, and dominance relation in valuation theory are
essentially equivalent (in the sense that given one of the three, you can recover the other two). Here, when
we refer to T

log

as a valued field, we mean the field T
log

equipped with the valuation v, and/or the valuation
ring O, and/or the dominance relation 4. The distinction does not matter unless we need to decide on a
first-order language for the sake of doing model theory.

The ordered valued field T
log

. Next we equip the valued field T
log

with an ordering < which makes it
an ordered valued field. This ordering is defined in the natural way by looking at the sign of the leading
coefficient, i.e., for f =

P
m2Ln

fmm 2 T⇥
log

we define

f > 0 :() fd(f) > 0.

The ordered valued differential field T
log

. To complete the construction of T
log

, we finally equip it with
a derivation ∂, making it an ordered valued differential field.

Define the derivation ∂ : T
log

! T
log

as the unique map satisfying:

(1) ∂ is additive: ∂(f + g) = ∂(f) + ∂(g) for all f, g 2 T
log

;
(2) ∂ satisfies the Leibniz rule: ∂(fg) = f∂(g) + ∂(f)g for all f, g 2 T

log

;
(3) ∂ is defined in the natural way on iterated logarithms: ∂(`r

0

) = r`r�1

0

and ∂(`rn+1

) = r`r�1

n+1

(`
0

· · · `n)�1

for all r 2 R; and
(4) ∂ is strongly linear : ∂(

P
m2Ln

fmm) =

P
m2Ln

fm∂(m) for
P

m2Ln
fmm 2 R[[Ln]] ✓ T

log

.

The reader should take on faith that such a map exists and is unique; any doubters would be better off just
reading the official construction in [6, Appendix A].

We would like to emphasize that there is nothing fancy about the definition of ∂ on T
log

; in fact, it is the
most natural derivation one would define on logarithmic transseries. For example:

∂(x3

log x+

p
x+ 2 + · · · ) = 3x2

log x+ x2

+

1

2x1/2
+ · · ·

∂
✓

1

log log x
+

1

(log log x)2
+ · · ·

◆
= � 1

x log x(log log x)2
� 2

x log x(log log x)3
+ · · ·

Associated with the derivation on T
log

is its constant field:

CT
log

:=

�
f 2 T

log

: ∂(f) = 0
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In this case, it turns out the constant field is just R. Given the derivation ∂ on T
log

, we also define the
logarithmic derivative

f 7! f†
:=

∂(f)
f

: T⇥
log

! T
log

and the additive abelian group of all logarithmic derivatives of T
log

:

T†
log

:= {f†
: f 2 T⇥

log

} = (T⇥
log

)

†

The logarithmic derivative is interdefinable with the derivation, and it is of equal importance.

1.3. Properties of T
log

In this section, we survey various properties enjoyed by T
log

as an ordered valued differential field. In
particular, we will draw attention to the special ways in which the ordering, the valuation, the derivation,
and the field structure interact.

H-field. Recall that the constant field of T
log

is the field R of real numbers. Above, we defined the valuation
ring O from the valuation map v, which a priori had nothing to do with the derivation. Alternatively, we
could have defined the same valuation ring as the convex hull of the constant field:

O =

�
f 2 T

log

: |f | 6 c for some c 2 R
 

Furthermore, T
log

has the following two properties:

(H1) for all f 2 T
log

, if f > R, then ∂(f) > 0;
(H2) O = R+ O, where O = {f 2 T

log

: |f | < c for all c 2 R>} is the maximal ideal of the valuation ring O.

(H1) and (H2) should be viewed as properties which describe an interaction between the derivation, valu-
ation and ordering of T

log

. These two properties already capture much of the “asymptotics” of logarithmic
transseries.

More generally, an H-field is an ordered differential field K such that for the convex hull

OK = {f 2 K : |f | 6 c for some c 2 CK}
of the constant field CK of K we have:

(H1) for all f 2 K, if f > CK , then ∂(f) > 0;
(H2) OK = CK + OK , where OK is the maximal ideal of the valuation ring OK of K.

That T
log

satisfies (H1) and (H2) above means that T
log

is an H-field.

The asymptotic couple of T
log

. It is a consequence of (H1) and (H2) that for f 2 T⇥
log

such that v(f) 6= 0,
the values of v

�
∂(f)

�
and v(f†

) only depend on v(f). Thus we follow Rosenlicht [33] in taking the function

 : �

6=
log

! �

log

defined by
 (�) := v(f†

) for f 2 T⇥
log

such that � = v(f) 6= 0

as a new primitive, calling the pair (�

log

, ) an asymptotic couple (the asymptotic couple of T
log

). On
the level of vectors, the map  does the following:

(0, . . . , 0| {z }
n

, rn|{z}
6=0

, rn+1

, . . .) 7! (1, . . . , 1| {z }
n+1

, 0, 0, . . .)
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In Figure 1.1 we attempt to visualize the asymptotic couple (�

log

, ). As with any dense linear order, we
can picture the underlying divisible ordered abelian group �

log

as an infinite line stretching from left to
right. Additionally we include a distinguished vertical stick to indicate the location of 0 = (0, 0, 0, . . .). To
represent the important subset  

log

=  (�6=
log

), we draw a collection of vertical sticks to the right of 0. The
convergent and shrinking nature of this collection is intended to suggest that both

(1) the induced ordering ( 

log

, <) is isomorphic to that of the natural numbers (N, <), and
(2) the distance between two adjacent sticks is much bigger than the distance between the next two adjacent

sticks.

Indeed, the difference between, say, the first and second elements of  
log

is

(1, 1, 0, . . .)� (1, 0, . . .) = (0, 1, 0, . . .)

which is infinitely larger (i.e., is a member of a larger archimedean class) than the difference between the
second and third elements of  

log

, which is

(1, 1, 1, 0, . . .)� (1, 1, 0, . . .) = (0, 0, 1, 0, . . .).

Figure 1.1. Illustration of (�
log

, )

0

(1, 1, 0, . . .)

(1, 1, 1, 0, . . .)

(1, 1, 1, 1, 0, . . .)

�

log

!

(1, 0, . . .)

Most of our intuition for this structure and its elementary extensions comes from drawing pictures of this
form (for example, see Figure 4.1). Our choice of drawing the infinite set  

log

in this way was inspired by
the illustrations from [8, Ch. 10].

Integration. Another feature of T
log

is that it has integration:

For all f 2 T
log

, there is g 2 T
log

such that ∂(g) = f

This is a consequence of the series construction of T
log

, for example:

1

log x
= ∂

✓
x

log x
+

x

(log x)2
+

2x

(log x)3
+

6x

(log x)4
+ · · ·

◆

A slick way to prove that T
log

has integration is with [6, 15.2.4].

Partial exponential integration. In contrast to having full integration, T
log

only has partial exponential
integration in the following sense:

For f 2 T
log

, there may or may not exist g 2 T⇥
log

such that g† = f

6



In other words, T†
log

is a proper subset of T
log

. For example, there is no g 2 T⇥
log

such that g† = 1. If there
were, then ∂(g) = g, i.e., “g = exp(x)”. However, the derivation of T

log

does not contain any such fixed
points.

The H-field T from [6] does have full exponential integration, i.e., T†
= T. In many ways, this is the main

difference between T
log

and T. It is also seems to be the biggest hurdle when it comes to describing the first
order theory of T

log

.

Real closed field. As a field, T
log

is a real closed field. This is guaranteed by the construction of T
log

:
each R[[Ln]] is a real closed field because it is a spherically complete (hence henselian) valued subfield of the
valued field T

log

, with real closed residue field R and divisible value group Ln. As T
log

is the direct union
of real closed fields, it is also real closed. This observation also gives an alternative way to define the same
ordering < on T

log

which makes it an ordered field, i.e., for f 2 T
log

:

f > 0 () there is g 2 T⇥
log

such that g2 = f

w-free and newtonian. Finally, there are two technical properties of H-fields which T
log

enjoys: it is w-free
and newtonian. We refer the reader to Section 5.3 for rigorous definitions and a fuller discussion of these
properties. We will nevertheless make a few vague comments now:

For valued fields (with or without any derivation), the notion of henselian is very important. A valued
field K with valuation ring O is henselian if every polynomial which “should” have a zero in O actually
does have a zero in O, where “should” has a precise technical meaning. Newtonian is a generalization of
henselian for H-fields which involves also differential -polynomials, i.e., an H-field K is newtonian if every
differential-polynomial which “should” have a zero in O actually does have a zero in O.

The property of w-free is a robust first-order property which prevents certain deviant behavior from occurring
in differentially-algebraic extensions of an H-field. Unlike newtonian, there is no apparent valued field
analogue for w-free. T

log

being w-free essentially boils down to the fact that its construction excludes the
following formal series:

w =

1

`2
0

+

1

`2
0

`2
1

+

1

`2
0

`2
1

`2
2

+ · · ·+ 1

`2
0

· · · `2n
+ · · ·

The H-field T is also w-free and newtonian. In fact, these two properties do much of the heavy lifting in
achieving the main model-theoretic results in [6].

1.4. Overview of results

We will briefly describe here the main results contained in this thesis. Most of these results are in [14, 15, 16].

Model theory of the asymptotic couple (�

log

, ) of T
log

. Much of Chapters 2, 3, and 4 work towards
studying the first-order theory of the asymptotic couple (�

log

, ) of T
log

. In Chapter 4 we use the natural
language of asymptotic couples:

LAC := {0,+,�, <, ,1}
as well as introduce a larger language which is more specific to the structure (�

log

, ):

LAC,log = {0,+,�, <, ,1, s, p, �
1

, �
2

, �
3

, . . .}
In these languages, we axiomatize an LAC-theory TAC and an LAC,log-theory TAC,log which extends TAC by
definitions, such that TAC = ThLAC (�log, ) and TAC,log = ThLAC,log(�log, ). Furthermore, we get:
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Theorem (Theorem 4.2.2). TAC,log has quantifier elimination.

Theorem (Corollary 4.2.3). TAC is model complete.

The above two theorems, and the quantifier elimination in particular, open up the floodgates for obtaining
further model theoretic results, for instance:

Theorem (Corollary 4.3.14). The subset  
log

of �
log

is stably embedded in (�

log

, ).

Theorem (Theorem 4.5.3). TAC has the non-independence property (NIP).

Theorem (Theorem 4.6.3). TAC is not strong. In particular, it is not strongly NIP, does not have finite
dp-rank, and is not dp-minimal.

Chapter 4 also contains several other minor model-theoretic results and observations about TAC and TAC,log.

The number of Liouville closures of an H-field. Consider the classical ordinary differential equation

(1.4.1) y0 + fy = g

where f and g are sufficiently nice real-valued functions. To solve (1.4.1), we first perform an exponential
integration to obtain the so-called integrating factor µ = exp(

R
f). Then we perform an integration to obtain

a solution y = µ�1

R
(gµ). We can also solve equations of the form (1.4.1) in H-fields in a similar way, by

first exponentially integrating and then by integrating.

One of the biggest differences between T
log

and T is that T
log

only has partial exponential integration. In
particular, in T

log

some equations of the form (1.4.1) do not have nonzero solutions. However, in T all
equations of the form (1.4.1) have nonzero solutions. In other words, we say that T is Liouville closed,
whereas T

log

is not.

More generally, a real closed H-field in which every equation of the form (1.4.1) has a nonzero solution, with
f and g ranging over K, is said to be Liouville closed. If K is an H-field, then a minimal Liouville closed
H-field extension of K is called a Liouville closure of K. The main result of [4] is that for any H-field K,
exactly one of the following occurs:

(I) K has exactly one Liouville closure up to isomorphism over K,
(II) K has exactly two Liouville closures up to isomorphism over K.

There are three distinct types of H-fields: an H-field K either is grounded, has a gap, or has asymptotic
integration. According to [4], grounded H-fields fall into case (I) and H-fields with a gap fall into case (II).
If an H-field has asymptotic integration, then it is either in case (I) or (II). However, the precise dividing
line between (I) and (II) for K having asymptotic integration was not known.

The main result of Chapter 6 shows that this dividing line is exactly the property of an H-field being l-free,
which is a weakening of the property of being w-free. Specifically we show:

Theorem. (Theorem 6.7.1) Let K be an H-field. Then K has at least one and at most two Liouville closures
up to isomorphism over K. In particular,

(1) K has exactly one Liouville closure up to isomorphism over K iff
(a) K is grounded, or
(b) K is l-free.

8



(2) K has exactly two Liouville closures up to isomorphism over K iff
(c) K has a gap, or
(d) K has asymptotic integration and is not l-free.

A conjectured language and axiomatization for a model complete theory of T
log

. The final
part of this thesis (Chapters 7 and 8) outlines our strategy for proving model completeness for T

log

in a
certain language. We direct the reader to the introduction of Chapter 7 and Section 8.3 for a more detailed
introduction to our strategy.

In Chapter 7, we introduce two new classes of objects: LD-fields and LD-H-fields. Roughly speaking, an
LD-H-field is a pair (K,LD) where K is an H-field and LD ✓ K is a distinguished subset of K such that
(K,LD) satisfies many of the same universal properties of the pair (T

log

,T†
log

). An LD-field is like an LD-
H-field, except without a field ordering. In Chapter 7 we develop some of the general theory of LD-fields
and LD-H-fields, although there is still much more work to be done.

In Chapter 8 we turn our attention to the big picture. Ultimately we show that model completeness of T
log

as an LD-H-field can be reduced to three precise conjectures about LD-H-fields.

9



CHAPTER 2

Asymptotic couples

Chapter 2 covers the basic properties and definitions for asymptotic couples. We also develop here some
local machinery that we will need for doing the model theory of (�

log

, ) in Chapters 3 and 4, as well as for
results in later chapters on valued differential fields.

In Section 2.1, we introduce some concepts in the more general setting of ordered abelian groups. In
particular, given an ordered abelian group � and a subset S ✓ �, we consider four properties the set S

may or may not have. Such properties will be related to the “rate of pseudoconvergence” of pseudocauchy
sequences we consider in later chapters. The properties of S to be considered are really properties of the
cut S# determined by S in �, however for technical reasons it will be more convenient for us to define these
notions for arbitrary S.

Section 2.2 reviews the basic theory of asymptotic couples. Most of this material comes from [6, §6.5 and
§9.2]. We also introduce the asymptotic couple (�

Q
log

, ) which will be important to us later.

In Section 2.3, we investigate further the theory of asymptotic couples of H-type with asymptotic integration.
We introduce here the so-called successor function s : � !  on such asymptotic couples. This function
plays a very important role in the theory of (�

log

, ).

In Section 2.4, we introduce and study a new type of cut which can be found in an H-asymptotic couple with
asymptotic integration: an s-cut. In contrast with the properties from Section 2.1, the notion of an s-cut
requires the full asymptotic couple structure, not just the underlying ordered abelian group structure. We
also introduce (B, ")-shifts, a method of equipping an asymptotic couple (�, ) with a new  -map e : �

6= ! �

such that (�, e ) is also an asymptotic couple with the same contraction map.

Finally, in Section 2.5 we introduce the yardstick property and several variants. This property is also related
to the “rate of pseudoconvergence” of pseudocauchy sequences to be considered in later chapters.

2.1. Ordered abelian groups

In this section � is an ordered abelian group, S ✓ �, ↵ 2 � and n > 1. We define:

↵+ nS := {↵+ n� : � 2 S}
A set of the form ↵ + nS is called an affine transform of S. Many qualitative properties of a set S ✓ �

are preserved when passing to an affine transform, for instance:

Lemma 2.1.1. S has a supremum in Q� iff ↵+ nS does.

Jammed sets. The notion of jammed appears in [6, §3.4] in connection with pseudocauchy sequences (see
Section 5.1 below). However, it is ultimately a property of subsets of an ordered abelian group �. In this
subsection we define jammed in this context and discuss some of its basic properties.
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Definition 2.1.2. We say that S is jammed (in �) if S 6= ; does not have a greatest element and for every
nontrivial convex subgroup � of �, there is �

0

2 S such that for every �
1

2 S>�
0 , �

1

� �
0

2 �.

Example 2.1.3. Suppose � 6= {0} is such that �> does not have a least element. Then S := �

<� is jammed
for every � 2 �. In particular, �< is jammed.

Most � 6= {0} we will deal with are either divisible or else [�

6=
] does not have a least element and so

Example 2.1.3 will provide a large collection of jammed subsets for such �. Of course, not all jammed sets
are of the form S#

= �

<� .

Whether or not S is jammed in � depends on the archimedean classes of � in the following way:

Lemma 2.1.4. Let �
1

be an ordered abelian group extension of � such that [�6=] is coinitial in [�

6=
1

]. Then
S is jammed in � iff S is jammed in �

1

.

Being jammed is also preserved by affine transforms:

Lemma 2.1.5. S is jammed iff ↵+ nS is jammed.

Proof. ()) Assume S is jammed. Let � be a nontrivial convex subgroup of �. Let �
0

2 S be such that
for every �

1

2 S>�
0 , �

1

� �
0

2 �. Consider the element �
0

:= ↵ + n�
0

2 ↵ + nS. Let �
1

2 (↵ + nS)>�0 .
Then �

1

= ↵+ n�
1

with �
1

2 S>�
0 and �

1

� �
0

= n(�
1

� �
0

) 2 �. We conclude that ↵+ nS is jammed.
(() Assume ↵+nS is jammed. Let � be a nontrivial convex subgroup of �. Let �

0

= ↵+n�
0

2 ↵+nS

be such that �
1

� �
0

2 � for all �
1

2 (↵+ nS)>�0 . Then for �
1

2 S>�
0 we have �

1

:= ↵+ n�
1

2 (↵+ nS)>�0

and so �
1

� �
0

= n(�
1

� �
0

) 2 �. As � is convex, it follows that �
1

� �
0

2 �. We conclude that S is
jammed. ⇤

Whether or not S is jammed depends only on the downward closure S# of S:

Lemma 2.1.6. S is jammed iff S# is jammed.

Example 2.1.7. Let �
log

be the ordered divisible abelian group defined in Chapter 1. The important set

 

log

:= {e
0

, e
0

+ e
1

, e
0

+ e
1

+ e
2

, . . .}
is a jammed subset of �

log

.

Decelerating sets. The next flavor of set we consider, a decelerating set, is similar in spirit to jammed sets;
however, there is no requirement to exhaust all of the archimedean classes of �. There is no pseudocauchy
sequence analogue of decelerating set in [6].

Definition 2.1.8. We say that S decelerates (in �) (or that S is a decelerating set) if S 6= ; and for
every � 2 S, there is �

0

> 0 such that � + �
0

2 S and for every �
1

> 0, if � + �
0

+ �
1

2 S, then [�
1

] < [�
0

].

A set S decelerating is really a property of the cut that S induces in �, and is preserved under extensions:

Lemma 2.1.9. S decelerates iff S# decelerates. Furthermore, if �
1

is an ordered abelian group extending �,
then S decelerates in � iff S decelerates in �

1

.

Note that if S ✓ � has a largest element, then S does not decelerate.

The following lemma will be used in Proposition 5.5.4:
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Lemma 2.1.10. Let � be a finite rank ordered abelian group and let S ✓ � be nonempty. Then S does not
decelerate.

Proof. This follows from the fact that ordered abelian groups of finite rank have only finitely many
archimedean classes, whereas if S were to decelerate, then there would have to be infinitely many archimedean
classes. ⇤

Example 2.1.11. Consider the abelian group

� :=

M

⇢<!+!

Re⇢

equipped with unique ordering such that e⇢ > 0 for all ⇢, and [e⇢] > [e�] for all ⇢ < � < !+!. Then the set

S := {Pn
i=0

ei : n < !}
is not a jammed set, but it is a decelerating set.

�-fluent sets. In the rest of this section � is a nontrivial convex subgroup of �. Like jammed, the notion
of �-fluent also occurs in [6, §3.4]. Here we extract what it means for subsets of �:

Definition 2.1.12. We say that S is �-fluent if S 6= ; and for every ↵ 2 S, ↵+� ✓ S#.

It is clear that for nonempty S without a largest element, S is �-fluent for some � iff S is not jammed.
Furthermore:

Lemma 2.1.13. S is �-fluent iff ↵+ nS is �-fluent.

Proof. ()) Assume S is �-fluent. Then S 6= ;, so ↵ + nS 6= ;. Let ↵ + n� 2 ↵ + nS with � 2 S. Then
� +� ✓ S# by assumption. It suffices to show that ↵ + n� +�

> ✓ (↵ + nS)#. Let � 2 �> be arbitrary.
Then we have s 2 S such that � + � 6 s. Thus

↵+ n� + � 6 ↵+ n� + n� 6 ↵+ ns.

As � was arbitrary, ↵+ nS is �-fluent.
(() Assume ↵ + nS is �-fluent. Then ↵ + nS 6= ; so S 6= ;. Let � 2 S be arbitrary. Then

↵+ n� +� ✓ (↵+ nS)# by assumption and it suffices to show that � +�

> ✓ S#. Let � 2 �> be arbitrary.
Then also n� 2 � and we have s 2 S such that ↵+ n� + n� 6 ↵+ ns. Thus � + � 6 s. We conclude that S
is �-fluent. ⇤

Almost �-special sets. Finally, we introduce here the notions of �-special and almost �-special, which
are also related to concepts appearing in [6, §3.5].

Definition 2.1.14. We say that S is almost �-special if there is an ↵ 2 � such that S#
= (↵+�)

#. We
say that S is �-special if S#

= �

#

Note that if S is �-special, then necessarily S 6= ; and S does not have a largest element. In some sense,
almost �-special cuts in � are the most well-behaved because the existence of ↵ and � gives us a very
explicit description of the cut.
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2.2. Asymptotic couples

An asymptotic couple is a pair (�, ) where � is an ordered abelian group and  : �

6= ! � satisfies for
all ↵,� 2 �6=,

(AC1) ↵+ � 6= 0 =)  (↵+ �) > min

�
 (↵), (�)

�
;

(AC2)  (k↵) =  (↵) for all k 2 Z 6=, in particular,  (�↵) =  (↵);
(AC3) ↵ > 0 =) ↵+  (↵) >  (�).

If in addition for all ↵,� 2 �,

(HC) 0 < ↵ 6 � )  (↵) >  (�),
then (�, ) is said to be of H-type, or to be an H-asymptotic couple.

In the rest of this section, (�, ) is an asymptotic couple (not necessarily of H-type). By convention, we
extend  to all of � by setting  (0) := 1. Then  (↵ + �) > min

�
 (↵), (�)

�
holds for all ↵,� 2 �, and

 : �! �1 is a (non-surjective) valuation on the abelian group �. In particular, the following is immediate:

Fact 2.2.1. If ↵,� 2 � and  (↵) <  (�), then  (↵+ �) =  (↵).

For ↵ 2 � 6= we shall also use the following notation:

↵†
:=  (↵), ↵0

:= ↵+  (↵).

Convention 2.2.2. Given ↵ 2 � and a function f whose domain contains ↵†, respectively ↵0, expressions
of the form f↵†, respectively f↵0, are abbreviations for f(↵†

), respectively f(↵0
).

The following subsets of � play special roles:

(�

6=
)

0
:= {�0 : � 2 � 6=}, (�

>
)

0
:= {�0 : � 2 �>},

 :=  (�6=) = {�† : � 2 � 6=} = {�† : � 2 �>}.
Note that by (AC3) we have  < (�

>
)

0.

For an arbitrary asymptotic couple (�

⇤, ⇤
) we may occasionally refer to the set  ⇤�

(�

⇤
)

6=� as the  -set of
(�

⇤, ⇤
).

We think of the map id+ : �

6= ! � as the derivative. When antiderivatives exist, they are unique:

ADH 2.2.3. The map � 7! �0 = � +  (�) : �6= ! � is strictly increasing. In particular:

(1) (�

<
)

0 < (�

>
)

0, and
(2) for � 2 � there is at most one ↵ 2 � 6= such that ↵0

= �.

Proof. This follows from [6, 6.5.4(iii)]. ⇤

In fact, most elements have antiderivatives:

ADH 2.2.4. [6, 9.2.1] The set � \ (�6=)0 has at most one element. If  has a largest element max , then
� \ (�6=)0 = {max }.
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ADH 2.2.5. [6, 9.2.4] There is at most one � such that

 < � < (�

>
)

0.

If  has a largest element, there is no such �.

Definition 2.2.6. If � = (�

6=
)

0, then we say that (�, ) has asymptotic integration. If � 2 � is as
in ADH 2.2.5, then we say that � is a gap in (�, ) and that (�, ) has a gap. Finally, we call (�, )
grounded if  has a largest element, and ungrounded otherwise.

The notions of asymptotic integration, gaps and being grounded form an important trichotomy for H-
asymptotic couples:

ADH 2.2.7. [6, 9.2.16] Suppose (�, ) is of H-type. Then exactly one of the following is true:

(1) (�, ) has a gap, in particular, � \ (�6=)0 = {�} where � is a gap in �;
(2) (�, ) is grounded, in particular, � \ (�6=)0 = {max };
(3) (�, ) has asymptotic integration.

Note that if (�, ) is of H-type, then  is constant on archimedean classes of �: for ↵,� 2 �6= with [↵] = [�]

we have  (↵) =  (�). The function id+ enjoys the following remarkable intermediate value property:

ADH 2.2.8. [6, 9.2.14] Suppose (�, ) is of H-type. Then the functions

� 7! �0 : �> ! �, � 7! �0 : �< ! �

have the intermediate value property.

It is very useful to think of H-asymptotic couples in terms of the following geography:

 < possible gap < (�

>
)

0

Let (�

1

, 
1

) be an asymptotic couple. An embedding

h : (�, ) ! (�

1

, 
1

)

is an embedding h : �! �

1

of ordered abelian groups such that

h
�
 (�)

�
=  

1

�
h(�)

�
for � 2 � 6=.

If � ✓ �
1

and the inclusion �! �

1

is an embedding (�, ) ! (�

1

, 
1

), then we call (�
1

, 
1

) an extension
of (�, ).

Definition 2.2.9. Call an asymptotic couple (�, ) divisible if the abelian group � is divisible. If (�, ) is
a divisible asymptotic couple, then we construe � as a vector space over Q in the obvious way.

By [4, Proposition 2.3(2)],  extends uniquely to a map (Q�) 6= ! Q�, also denoted by  , such that (Q�, )
is an asymptotic couple. We say that (Q�, ) is the divisible hull of (�, ). The following summarizes
many important properties of the divisible hull:

ADH 2.2.10. Let (�, ) be an asymptotic couple. Then (Q�, ) is an extension of (�, ) such that

(1) (Q�, ) is divisible,

14



(2)  
�
(Q�) 6=

�
=  =  (�6=),

(3) [Q�] = [�],
(4) if dimQ Q� is finite, then  =  (�6=) is a finite set,
(5) if (�, ) is of H-type, then so is (Q�, ),
(6) if (�, ) is grounded, then so is (Q�, ),
(7) if � 2 � is a gap in (�, ), then it is a gap in (Q�, ),
(8) (�

6=
)

0
=

�
(Q�) 6=

�0 \ �, and
(9) if i : (�, ) ! (�

1

, 
1

) is an embedding and (�

1

, 
1

) is divisible, then i extends to a unique embedding
j : (Q�, ) ! (�

1

, 
1

).

Proof. For proofs of all these facts, see [6, §6.5 and §9.2]. ⇤

We say that (�, ) has rational asymptotic integration if its divisible hull (Q�, ) has asymptotic
integration.

Remark 2.2.11. It is entirely possible that (�, ) has asymptotic integration whereas (Q�, ) has a gap.
For an example of this, see the remark after Corollary 2 in [2]. We avoid this pathology in Section 4.2 by
considering only divisible asymptotic couples.

Example 2.2.12. In analogy with (�

log

, ) defined in Chapter 1, we now define (�

Q
log

, ). Its underlying
abelian group is

L
n Qen, a vector space over Q with basis (en). We equip �Q

log

with the unique ordering
which makes �Q

log

✓ �
log

an extension of ordered abelian groups, and we define  : (�

Q
log

)

6= ! �

Q
log

in such a
way as to make (�

Q
log

, ) ✓ (�

log

, ) an extension of asymptotic couples: for rn 6= 0,

↵ = (0, . . . , 0| {z }
n

, rn, rn+1

, . . .) 7!  (↵) = (1, . . . , 1| {z }
n+1

, 0, 0, . . .).

(�

Q
log

, ) is a divisible H-asymptotic couple with (rational) asymptotic integration. In fact, (�Q
log

, ) will be
a prime model for the theory TAC = ThLAC (�log, ) to be introduced in Chapter 4.

2.3. Asymptotic integration

In this section (�, ) is an H-asymptotic couple with asymptotic integration and we let ↵,� range over �.
By ADH 2.2.10 we may assume that (�, ) is given as a substructure of some divisible H-asymptotic couple.
Doing this allows us to multiply by 1/n in the proofs, for n > 1.

Definition 2.3.1. Given ↵ we let
R
↵ denote the unique � 6= 0 such that �0

= ↵ and we call � =

R
↵ the

integral of ↵. This gives us a function
R
: �! �

6= which is the inverse of � 7! �0 : �6= ! �. We sometimes
refer to the act of applying the function

R
as integrating. Note that

R
↵ < 0 if ↵ 2  #

= (�

<
)

0.

We define the successor function s : � !  by ↵ 7!  (
R
↵). The successor function gets its name from

the observation that in many cases of interest, such as the asymptotic couple of T
log

, the ordered subset  
of � is a successor set, and for ↵ 2  , the immediate successor of ↵ in  is s(↵). However in general,  
as an ordered subset of � need not be a successor set; for example, if (�, ) is a so-called closed asymptotic
couple considered in [3], then  , as an ordered set, is a dense linear order without endpoints, and hence not
a successor set.

15



We also define the contraction map � : �

6= ! �

< by ↵ 7! R
 (↵). We extend � to a function �! �

6 by
setting �(0) := 0. The contraction map gets its name from the connection between asymptotic couples and
contraction groups (for instance, see [21, 22, 2]). Since � can be defined in terms of  and

R
, and

R
can be

defined in terms of s as we will see in Lemma 2.3.3, we choose to focus most of our attention on the function
s.

Example 2.3.2. In this example (�, ) is either (�

log

, ) or (�

Q
log

, ). The functions
R

, s, and � are given
by the following formulas:

(1) (Integral) For ↵ = (r
0

, r
1

, r
2

, . . .) 2 �, take the unique n such that rn 6= 1 and rm = 1 for m < n. Then

↵ = (1, . . . , 1| {z }
n

, rn|{z}
6=1

, rn+1

, rn+2

. . .) 7! R
↵ = (0, . . . , 0| {z }

n

, rn � 1, rn+1

, rn+2

, . . .)

(2) (Successor) For ↵ = (r
0

, r
1

, r
2

, . . .) 2 �, take the unique n such that rn 6= 1 and rm = 1 for m < n.
Then

↵ = (1, . . . , 1| {z }
n

, rn|{z}
6=1

, rn+1

, rn+1

. . .) 7! s(↵) = (1, . . . , 1| {z }
n+1

, 0, 0, . . .)

(3) (Contraction) If ↵ = 0, then �(↵) = 0. Otherwise, for ↵ = (r
0

, r
1

, r
2

, . . .) 2 �6=, take the unique n such
that rn 6= 0 and rm = 0 for m < n. Then

↵ = (0, . . . , 0| {z }
n

, rn|{z}
6=0

, rn+1

, . . .) 7! �(↵) = (0, . . . , 0| {z }
n+1

,�1, 0, 0, . . .)

In particular, note that for elements in  
log

, s acts as follows:

s(1, 0, 0, 0, 0, . . .) = (1, 1, 0, 0, 0, . . .)

s(1, 1, 0, 0, 0, . . .) = (1, 1, 1, 0, 0, . . .)

s(1, 1, 1, 0, 0, . . .) = (1, 1, 1, 1, 0, . . .)

...

s(1, . . . , 1| {z }
n

, 0, 0, . . .) = (1, . . . , 1| {z }
n+1

, 0, 0, . . .)

Furthermore, s0 = (1, 0, 0, . . .) = min 

log

and s0 > 0. It is clear that the function � 7! s� :  

log

!  

>s0
log

is
a bijection and ( 

log

;<) is a successor set such that for ↵ < � 2  
log

we have s↵ 6 �.

Lemma 2.3.3 (Integral Identity).
R
↵ = ↵� s↵.

Proof. Note that (

R
↵)0 = ↵. Expanding this out gives  (

R
↵) +

R
↵ = s↵+

R
↵ = ↵. ⇤

The next lemma tells us, among other things, that for each ↵, we get an increasing sequence

s↵ < s2↵ < s3↵ < s4↵ < · · ·
in  .

Lemma 2.3.4. If ↵ 2 (�

<
)

0, then ↵ < s(↵), and if ↵ 2 (�

>
)

0, then ↵ > s(↵). In particular, if ↵ 2  , then
↵ < s(↵).
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Proof. If ↵ 2 (�

>
)

0, then ↵ >  (
R
↵) by (AC3). Thus assume that ↵ 2 (�

<
)

0 and let ↵ = �0 with � < 0.
Then

↵ < s(↵) , ↵ <  (
R
↵)

, ↵ <  (�)

, ↵�  (�) < 0

and the latter is true since ↵�  (�) = �0 �  (�) = �. ⇤

By (HC), if [↵] > [�], then  (� � ↵) =  (↵). In the case where [↵] = [�] and ↵ and � are both sufficiently
far up the set (�

<
)

0, the following lemma can be very useful:

Lemma 2.3.5 (Successor Identity). If s↵ < s�, then  (� � ↵) = s↵.

Proof. Assume s↵ < s�. We will prove that [��s↵] < [s↵�↵], and so  (��↵) =  (s↵�↵) =  (� R
↵) =

s↵. From s↵ < s� we get  (
R
↵) <  (

R
�), which gives [

R
�] < [

R
↵]. First consider the case where ↵ 2 (�

<
)

0

and s↵ < �. Then
R
↵ < 0 and s↵� ↵ > 0. Note that

[� � s↵] < [s↵� ↵] , � � s↵ < 1

n (s↵� ↵) for all n > 1

, � < s↵+

1

n (s↵� ↵) for all n > 1

, � <  (
R
↵) + 1

n (�
R
↵) for all n > 1

, � <  (� 1

n

R
↵) + (� 1

n

R
↵) for all n > 1

, � < (� 1

n

R
↵)0 for all n > 1

, R
� < 1

n (�
R
↵) for all n > 1,

and the latter holds because [

R
�] < [

R
↵]. All other cases are similar. ⇤

It follows that s can be defined in terms of  if we allow a suitable “external parameter”:

Corollary 2.3.6. Let (�

⇤, ⇤
) be an H-asymptotic couple with asymptotic integration that extends (�, ).

Suppose �⇤ 2  ⇤ is such that  < �⇤. Then s(↵) =  ⇤
(↵� �⇤) for all ↵ 2 �.

Since  has no largest element, compactness yields an extension (�

⇤, ⇤
) of (�, ) with an element �⇤ as in

Corollary 2.3.6. In Chapter 3 below we also give explicit constructions for extensions with this property in
Lemma 3.2.3 and Lemma 3.2.4.

Since (�, ) has asymptotic integration, ADH 2.2.7 tells us that (�, ) most definitely does not have a gap.
However, it is fun (also useful) to summarize Corollary 2.3.6 with the following slogan:

“s(x) =  (x� gap that does not exist)”

This fact is essential for Corollary 4.3.7 and a variant of this device allows the proof of Lemma 3.2.5 to be
carried out. The following is immediate from Corollary 2.3.6 and (HC):

Corollary 2.3.7. The function s has the following properties:

(1) s is increasing on (�

<
)

0 and decreasing on (�

>
)

0,
(2) if ↵ 2 s(�), then s�1

(↵) \ (�

>
)

0 and s�1

(↵) \ (�

<
)

0 are convex in �,
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(3) if s is injective on  , then s is strictly increasing on  .

The following lemma is also useful in understanding s in terms of  .

Lemma 2.3.8 (Fixed Point Identity). � =  (↵� �) iff � = s(↵).

Proof. Applying  to
R
↵ = ↵ � s↵ gives s↵ =  (↵ � s↵). Next, suppose that � =  (↵ � �). Then

↵ = (↵� �) + � = (↵� �) +  (↵� �) and so
R
↵ = ↵� �. Applying  yields s↵ =  (↵� �) = �. ⇤

The following lemma is a more constructive version of [3, Lemma 4.6] and [6, 9.2.11 and 9.2.13]. It shows
that our function s is the same as the function ↵ 7!  (⇤ � ↵) from [6].

Lemma 2.3.9 (Limit Lemma). Let ↵ 2 �. Then �
0

:= s2↵ 2  and �
0

:= s2↵� R
s↵ 2 (�

>
)

0 and the map

� 7!  (� � ↵) : �! �1

takes the constant value s↵ on the set [�
0

, �
0

] := {� : �
0

6 � 6 �
0

}.

Proof. Define �
0

:= � R
 
R
↵ = � R

s(↵) > 0. Then �
0

=  (�
0

) = s2(↵) 2  and �
0

= s2↵ � R
s↵ =

s2↵+ �
0

=  (�
0

) + �
0

= �0
0

2 (�

>
)

0. First we calculate the values of  (�
0

� ↵) and  (�
0

� ↵):

 (�
0

� ↵) =  (s2↵� ↵)

= s↵ (by Lemma 2.3.5)

 (�
0

� ↵) =  (s2↵� R
s↵� ↵)

=  
�
(s2↵� ↵)� R

s↵
�

= s↵
�
because  (s2↵� ↵) = s↵ and  (

R
s↵) = s2↵ > ↵

�

Finally, we must show that  (� � ↵) is constant as a function of � 2 [�
0

, �
0

]. By (HC), it is sufficient to
show that either ↵ < �

0

< �
0

or �
0

< �
0

< ↵. First suppose ↵ 2 (�

<
)

0. By Lemma 2.3.4 it follows that
↵ < s↵ < s2↵ = �

0

< �
0

. Next, suppose ↵ 2 (�

>
)

0. Then �
0

< �
0

and

�
0

< ↵ , s2↵� R
s↵ < ↵

, � R
s↵ < ↵� s2↵.

The last inequality holds by (HC) and the observation that both � R
s↵ and ↵� s2↵ are positive. ⇤

Lemma 2.3.10. s0 6= 0 and s0 is the unique element x 2 � 6= for which  (x) = x.

Proof. By Lemma 2.3.4 we have s0 6= 0, and by the Integral Identity
R
0 = �s0 and so s0 =  (

R
0) =

 (�s0) =  (s0). If x 2 �6= and  (x) = x, then x =  (0� x), so x = s0 by the Fixed Point Identity. ⇤

Lemma 2.3.10 tells us that H-asymptotic couples with asymptotic integration come in two flavors: those
with s0 > 0 and those with s0 < 0. The asymptotic couples (�

log

, ) and (�

Q
log

, ) are both of type “s0 > 0”.
When s0 > 0, then the element s0 is often denoted by “1” and (�, ) is said to have a 1. We will not use
this notation since we have the function s at our disposal and we already will be making use of the rational
number 1 2 Q.

The following lemma further clarifies the geographic relationship between s0, 0, and  :
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Lemma 2.3.11. For every q 2 Q>, if s0 < 0, then  < (1� q)s0, and if 0 < s0, then  < (1 + q)s0.

Proof. Let q 2 Q>. If s0 < 0, then

(�qs0)0 = �qs0 +  (�qs0) = �qs0 +  (s0) = (1� q)s0 2 (Q�>)0

and thus  < (1� q)s0 by (AC3). If 0 < s0, then

(qs0)0 = qs0 +  (qs0) = (1 + q)s0 2 (Q�>)0,

and likewise  < (1 + q)s0. ⇤

The following application of Corollary 2.3.6 says that the functions s and  agree on a large portion of �:

Corollary 2.3.12. For all q 2 Q> and ↵ 2 � with |↵| > (1 + q)|s0| we have s(↵) =  (↵).

Proof. Suppose q 2 Q> and ↵ 2 � are such that |↵| > (1+ q)|s0|. Let (�⇤, ⇤
) be an elementary extension

of (�, ) which contains an element �⇤ 2  ⇤ such that  < �⇤. If s0 < 0, then s0 < �⇤ < 0 and thus
|↵| > (1 + q)|�⇤|. If s0 > 0, then s0 < �⇤ < (1 + q0)s0 for every q0 2 Q> and so |↵| > (1 + q)|�⇤| as well. In
both cases, [↵� �⇤] = [↵], so s(↵) =  ⇤

(↵� �⇤) =  ⇤
(↵) =  (↵) by Corollary 2.3.6. ⇤

We conclude with some facts about the contraction mapping �:

Lemma 2.3.13. For all ↵,� 2 � and � 2 � 6=:

(1)
⇥
�(�)

⇤
< [�].

(2) ↵ 6= � =) ⇥
�(↵)� �(�)

⇤
< [↵� �].

(3) ↵ < � =) ↵� �(↵) < � � �(�).

Proof. (1) and (2) follow easily from [6, 9.2.18 (iii,iv)]. (3) follows from (2). ⇤

2.4. s-cuts

In this section (�, ) is an H-asymptotic couple with asymptotic integration.

Definition 2.4.1. We say B ✓  is an s-cut of  if B is an downward closed subset of  such that
s(B) ✓ B. Let sded( ) be the collection of all s-cuts of  . We define a linear ordering 6 on sded( ) by
B

0

6 B
1

iff B
0

✓ B
1

.
For notational convenience in Lemma 3.3.2 we also define the linear order sded

op
( ) as follows: The

elements of sdedop( ) are subsets B ✓  such that  \B is an s-cut, i.e., B is upward closed and s( \B) ✓
 \B. Furthermore, the linear ordering 6 on sded

op
( ) is defined by B

0

6 B
1

iff B
0

◆ B
1

.
We identify the ordered sets sded( ) and sded

op
( ) via the isomorphism B 7!  \ B, and refer to

elements of either set as an “s-cut of  ”.

Definition 2.4.2. For ↵,� 2  , we define ↵ ⌧ � to mean sn↵ < � for all n, and define ↵ � � to mean
� ⌧ ↵. It follows that if ↵ ⌧ �, then there is a B 2 sded( ) such that ↵ 2 B < �. Finally, we define the
equivalence relation ⇠s on  :

↵ ⇠s � :() ↵ 6⌧ � and � 6⌧ ↵

and we call the equivalence class ↵/ ⇠s of ↵ the s-class of ↵.
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For H-asymptotic couples with asymptotic integration, it is useful to have the following stratification in
mind:

�

6=

� 7![�]
✏✏✏✏

[�

6=
]

[�] 7! (�)
✏✏✏✏

archimedean classes

 

 (�) 7! (�)/⇠s
✏✏✏✏

 -set

 / ⇠s s-classes on the  -set

Perhaps the most important s-cut of  is B :=  . The following two lemmas highlight some of the interesting
behavior of this s-cut.

Lemma 2.4.3. Suppose ↵ 2 (�

<
)

0 and q 2 Q>. Then ↵+ (1 + q)(s↵� ↵) 2 (Q�>)0

Proof. Suppose ↵ 2 (�

<
)

0. Then

↵+ (q + 1)(s↵� ↵) = s↵+ qs↵� q↵

=  (
R
↵) + q (

R
↵)� q(

R
↵)0

=  (
R
↵) + q (

R
↵)� q(

R
↵)� q (

R
↵)

=  (
R
↵)� q

R
↵

= (�q
R
↵)0 2 (Q�>)0.

The last part follows because ↵ 2 (�

<
)

0 iff
R
↵ 2 �< iff �q

R
↵ 2 Q�> iff (�q

R
↵)0 2 (Q�>)0. ⇤

Lemma 2.4.4. The sets  and  # are jammed.

Proof. By Lemma 2.1.6 it suffices to show that  #
= (�

<
)

0 is jammed. By asymptotic integration and
ADH 2.2.7, (�<)0 is nonempty and does not have a largest element. Let � be a nontrivial convex subgroup
of �. Take � 2 �> and set �

0

:= (��)0 2 (�

<
)

0. Then

�
0

+ 2� = �
0

+ 2

�� R
(��)0�

= �
0

+ 2(� R
�
0

)

= �
0

+ 2(s�
0

� �
0

) (Lemma 2.3.3).

Thus �
0

+ 2� 2 (�

>
)

0 by Lemma 2.4.3. In particular, for every �
1

2 (�

<
)

0 with �
1

> �
0

we have �
1

� �
0

<

2� 2 �. We conclude that (�

<
)

0 is jammed. ⇤

The next two corollaries of Lemma 2.4.3 tell us something about the shape of arbitrary nonempty s-cuts.

Corollary 2.4.5. Suppose B 2 sded( ) is nonempty. Then B decelerates in �.

Proof. To see this, take ↵ 2 B arbitrary. Then �
0

:= s↵ � ↵ > 0 and ↵ + �
0

2 B. However, for every
q 2 Q>, ↵+ �

0

+ q�
0

2 (�

>
)

0 > B ✓  by Lemma 2.4.3. Thus if �
1

2 �> is such that ↵+ �
0

+ �
1

2 B, then
necessarily, �

1

< q�
0

for every q 2 Q>, i.e., [�
1

] < [�
0

]. ⇤
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Corollary 2.4.6. Suppose B 2 sded( ) is nonempty. Then for every ↵ 2 � and nontrivial convex subgroup
� of � we have B# 6= (↵+�)

#. In particular, B is not almost �-special for any such �.

Proof. Let � be a nontrivial convex subgroup of �. Assume towards a contradiction that B#
= (↵+�)

#.
Since ↵ + � is convex, we have B \ (↵ + �) 6= ; and so we arrange ↵ 2 B. Then ↵ < s↵ 2 B and so
s↵ 2 ↵ + � and thus ↵ + 2(s↵ � ↵) 2 ↵ + �. However, ↵ + 2(s↵ � ↵) 2 (�

>
)

0 > B by Lemma 2.4.3, a
contradiction. ⇤

(B, ")-shifts. In this subsection we give a method of equipping � with a new  -map e : �

6= ! � such
that (�, e ) is also an H-asymptotic couple with asymptotic integration, and the contraction map e� which
corresponds to e is identical to the original contraction map � associated to  . This construction is a
generalization of one done in [2, §5].

Lemma 2.4.7. Let B 2 sded( ) and " 2 � be such that  (") > B. Define the function e : �1 ! �1 by

e (↵) :=

8
>>><

>>>:

 (↵) if  (↵) 2 B

 (↵) + " if  (↵) > B

1 if ↵ = 0.

Then (�, e ) is an H-asymptotic couple with asymptotic integration such that e� = � on �.

Proof. We will first show (HC). Suppose 0 < ↵ < � and  (↵) > B and  (�) 2 B. Then by Lemma 2.3.5,
 
�
 (�) �  (↵)

�
= s (�) 2 B. It follows that ["] <

⇥
 (↵) �  (�)

⇤
and thus  (↵) �  (�) > �" since

 (↵) �  (�) > 0. From this we get e (↵) =  (↵) + " >  (�) = e (�). All other cases follow immediately
from (HC) for (�, ).

(AC2) is clear from the definition of e .
For (AC1), first suppose that ↵,� are such that [↵] > [�]. Then e (↵ + �) = e (↵) > min

� e (↵), e (�)
�

by (HC) and (AC2). Otherwise, assume that [↵] = [�],  (↵) =  (�) 2 B and  (↵ + �) > B. Then by a
similar argument as for (HC) using ["] <

⇥
 (↵ + �)�  (↵)

⇤
, we can show that e (↵ + �) =  (↵ + �) + " >

 (↵) = min

� e (↵), e (�)
�
. All other cases are trivial.

Instead of verifying (AC3), by [6, 6.5.5] it is sufficient to show that the map � 7! � +

e (�) : �> ! �

is strictly increasing. The main case to consider is 0 < ↵ < � where  (↵) > B and  (�) 2 B. In this case,
[�] > [↵], ["] and so

 (↵) < (� � ↵� ")0 = � � ↵� "+  (� � ↵� ") = � � ↵� "+  (�)

by (HC) and (AC3) for (�, ). Rearranging terms gives us ↵+  (↵) + " < � +  (�), or rather ↵+

e (↵) <
� +

e (�).
We will explicitly show that (�, e ) has asymptotic integration. Define the function ◆ : �! �

6= by:

◆(↵) :=

8
<

:

R
↵ if s↵ 2 B

R
(↵� ") if s↵ > B

We claim that ◆↵+

e (◆↵) = ↵ for all ↵ 2 �. If s↵ 2 B, then  
R
↵ =

e 
R
↵, and so

◆(↵) + e 
�
◆(↵)

�
=

R
↵+  

R
↵ = ↵,
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i.e., ◆↵ =

eR ↵. Otherwise, suppose s↵ > B. Take an elementary extension (�

⇤, ⇤
) of (�, ) with an element

�⇤ 2  ⇤ such that �⇤ >  . Then

s(↵� ") >  (↵� �⇤ � ") > min

�
s↵, (")

�
> B

by Corollary 2.3.6 and (AC1). In particular, e 
R
(↵� ") =  

R
(↵� ") + ". Thus

◆↵+

e (◆↵) =

R
(↵� ") +  

R
(↵� ") + " = (↵� ") + " = ".

We conclude that (�, e ) has asymptotic integration and that e
R
= ◆.

The claim about the contraction mapping follows from checking that e
R e (↵) =

R
 (↵) for all ↵ 2 �6=. ⇤

Definition 2.4.8. Let B 2 sded( ), " 2 � be such that  (") > B, and let e : �1 ! �1 be as in
Lemma 2.4.7 above. Then we call (�, e ) the (B, ")-shift of (�, ).

As a special case of Lemma 2.4.7, we note that the (;, ")-shift of  is just a shift (�, + ") in the sense
of [33, Pg. 978, Lemma(2)]. See also [6, §6.5].

2.5. Yardstick inequalities

In this section (�, ) is an H-asymptotic couple with asymptotic integration and ↵,�, �, " range over �.
Recall that by Convention 2.2.2, expressions of the form

R
�0, s�†, s(� � �)†, etc. are abbreviations for

R
(�0), s(�†), s

�
(� � �)†

�
, etc.

To motivate Calculation 2.5.1 below, suppose � 2 �

6=. Then clearly
R
�0 = �. Now, suppose " 2 � is

sufficiently small, so that �0 + " is a perturbation of �0. Then we want to think of
R
(�0 + ") as being a small

perturbation of �. Calculation 2.5.1 is an identity of this form and is rather important for later results, for
instance, in Chapter 6.

Calculation 2.5.1. Suppose � 6= �. Then
R �

(� � �)0 � R
s((� � �)0)

�
= (� � �) +

�
s(� � �)† � (� � �)†

�
= (� � �)� �(� � �).

Proof. Renaming � � � as �, we arrange that � = 0 and � 6= 0. Then it suffices to prove
R
(�0 � R

s�0) = � + (s�† � �†) = � � �(�).

We begin by showing

(A) s(� + s�†) = �†.

By Lemmas 2.3.5 and 2.3.4 we have

 (��) = �† < s�† =  (�† � s�†),

so  (�† � � � s�†) = �†. Now (A) follows by Lemma 2.3.8.
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We now proceed with our main calculation:
R
(�0 � R

s�0) = (�0 � R
s�0)� s(�0 � R

s�0) (Lemma 2.3.3)

= (�0 � s�0 + s2�0)� s(�0 � s�0 + s2�0) (Lemma 2.3.3)

= (� + �† � �† + s�†)� s(� + �† � �† + s�†) (Def. of s and 0)

= � + s�† � s(� + s�†)

= � + (s�† � �†) (by (A))

Finally, ��(�) = s�† � �† follows from applying Lemma 2.3.3 to �† and the definition of �. ⇤

Lemma 2.5.2. Let � 2 (�

>
)

0. Then
R
� > � R

s� = �� R � > 0.

Furthermore, if �
0

, �
1

2 (�

>
)

0, then

�
0

6 �
1

implies � R
s�

0

6 � R
s�

1

.

Proof. We have s� 2 (�

<
)

0, so � R
s� > 0, which gives the second part of the first inequality. For the first

part we note that
R
� > � R

s� () R
� +

R
s� > 0

() R
� + �

R
� > 0,

this last equivalence being true because
R
� > 0 and [�

R
�] < [

R
�] by Lemma 2.3.13(1).

For the second inequality, we have for �
0

, �
1

2 (�

>
)

0,

�
0

6 �
1

=) s�
0

> s�
1

since �
0

, �
1

2 (�

>
)

0

() R
s�

0

>
R
s�

1

by ADH 2.2.3

() � R
s�

0

6 � R
s�

1

. ⇤

Lemma 2.5.3. Let S be a nonempty subset of � without a greatest element. Given � 2 �, the following
conditions on S are equivalent:

(1) for cofinally many � 2 S, � � �(� � �) 2 S#;
(2) for all � 2 S#, � � �(� � �) 2 S#.

Proof. (1) ) (2) follows from Lemma 2.3.13(2). (2) ) (1) is clear. ⇤

Definition 2.5.4. Let S be a nonempty subset of � without a greatest element. We say that S has the
�-yardstick property if it satisfies one of the equivalent conditions of Lemma 2.5.3. If � = 0, then we also
say that S has the yardstick property.

Note that if S is a nonempty subset of � without a greatest element, then S has the �-yardstick property iff
S# has the �-yardstick property.

Remark 2.5.5. The �-yardstick property says that if you have an element � 2 S, then you can increase
upwards at least a distance of ��(� � �) and still remain in S. Similar to the property jammed from
Section 2.1, this is a qualitative property concerning the top of the set S. Unlike jammed, the �-yardstick
property requires the asymptotic couple structure of (�, ), and the contraction map � in particular.
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The �-yardstick property and being jammed are incompatible properties, except in the following case:

Lemma 2.5.6. Let S be a nonempty subset of � without a greatest element with the �-yardstick property.
Then S is jammed iff S#

= �

<�.

Proof. If S#
= �

<� , then S is jammed by Example 2.1.3. Now suppose that S# 6= �

<� . We will show
that S is not jammed. First, assume that S \ �>� 6= ; and take � 2 S \ �>� . Let � be a nontrivial convex
subgroup of � such that [�] <

⇥
�(� � �)

⇤
. Now let �

0

, �
1

2 S be such that � < �
0

< �
0

� �(�
0

� �) < �
1

.
Note that

�
1

� � > �
1

� �
0

> ��(�
0

� �) > ��(� � �) > �.

We conclude that S is not jammed.
Next, suppose � is such that S < � < �. Let � be a nontrivial convex subgroup of � such that

[� � �] >
⇥
�(� � �)

⇤
> [�]. Let �

0

2 S be arbitrary. Then �
0

� �(�
0

� �) 2 S# and we can take �
1

2 S such
that �

1

> �
0

� �(�
0

� �). Thus

�
1

� �
0

>
�
�
0

� �(�
0

� �)
�� �

0

= ��(�
0

� �) > ��(� � �) > �.

We conclude that S is not jammed since �
0

2 S was arbitrary. ⇤

The following technical variant of the yardstick property will come in handy in Sections 6.2, 6.3, and 6.4:

Definition 2.5.7. Let S ✓ � be a nonempty convex set without a greatest element such that either S ✓ (�

>
)

0

or S ✓ (�

<
)

0. We say that S has the derived yardstick property if there is � 2 S such that for every
� 2 S>� ,

� � R
s� 2 S>� .

Proposition 2.5.8. Suppose S ✓ � is a nonempty convex set without a greatest element such that either
S ✓ (�

>
)

0 or S ✓ (�

<
)

0 and S has the derived yardstick property. Then
R
S := {R s : s 2 S} ✓ � is

nonempty, convex, does not have a greatest element, and has the yardstick property.

Proof. By ADH 2.2.3,
R
S is nonempty, convex, and does not have a greatest element. Let � 2 S be such

that for every � 2 S>� , � � R
s� 2 S. Now let � 2 (

R
S)>

R
� . Then �0 2 S>� , so �0 � R

s�0 2 S>� . Thus
R
(�0 � R

s�0) 2 (

R
S)>

R
� .

By Calculation 2.5.1,
� � �(�) 2 (

R
S)>

R
� .

We conclude that
R
S has the yardstick property. ⇤

Example 2.5.9. (The yardstick property in (�

log

, )) To get a feel for what the yardstick property says,
suppose S ✓ �

log

is nonempty, downward closed, and has the yardstick property. Then, given an element
↵ 6= 0 in S we have

↵ = (0, . . . , 0| {z }
n

, rn|{z}
6=0

, rn+1

, . . .)

and then the yardstick property says that the following larger element is also in S:

↵� �(↵) = (0, . . . , 0| {z }
n

, rn|{z}
6=0

, rn+1

)� (0, . . . , 0| {z }
n+1

,�1, 0, 0, . . .) = (0, . . . , 0| {z }
n

, rn|{z}
6=0

, rn+1

+ 1, . . .) 2 S
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In fact, by iterating the yardstick property, we find that for any m, the following element is in S:

(0, . . . , 0| {z }
n

, rn|{z}
6=0

, rn+1

+m, . . .) 2 S

Thus if � is the convex subgroup generated by ��(↵), then ↵+� ✓ S.

The following lemma gets used in Proposition 5.6.8:

Lemma 2.5.10. Suppose " > 0 and � 6= �. Then

� < � + s(� � �)† � (� � �)† = � � �(� � �) <
R
(� � � + "0) + �.

Additionally, suppose that  (� � �) > ↵. Then

� + s(� � �)† � (� � �)† < � + "0 � ↵.

Proof. The first inequality and equality are clear. For use in the fourth implication below, note that for
↵ 6= 0 we have

�
↵��(↵)�† = ↵† and thus

�
↵��(↵)�0 = ↵��(↵)+�

↵��(↵)�†. To get the second inequality,
note that

s(� � �)† < "0 =) (� � �)† � R
(� � �)† < "0

=) (� � �)† � �(� � �) < "0

=) (� � �) + (� � �)† � �(� � �) < � � � + "0

=) (� � �)� �(� � �) <
R
(� � � + "0) (integrating both sides)

=) � � R
(� � �)† <

R
(� � � + "0) + �

=) � + s(� � �)† � (� � �)† <
R
(� � � + "0) + �.

Finally, we get the last inequality by adding together

s(� � �)† < "0 and � (� � �)† < �↵
and then adding � to both sides. ⇤

Lemma 2.5.11. Suppose that  = {sn0 : n > 1} and S ✓ � is downward closed such that either

(i) S = �

<↵ for some ↵ 2 �, or
(ii) S is �-fluent for some nontrivial convex subgroup � of �.

Then exactly one of the following holds:

(1) S <  ;
(2) the set S \ has a maximum;
(3) S 6✓  #.

Proof. It is clear that properties (1), (2) and (3) are mutually exclusive.
First consider the case that S = �

<↵ (so S is jammed). If ↵ >  #
= (�

<
)

0, then we are in case (3) since
↵ 2 (�

>
)

0 and (�

>
)

0 does not have a least element. If ↵ 6  , then we are in case (1). Otherwise, there is a
unique � 2  such that � < ↵ 6 s�. In this case, � = max(S \ ).

Next, suppose that S is �-fluent where � is a nontrivial convex subgroup of �. Assume we are not
in case (1). Let N > 1 be such that sN+1

0 � sN0 2 � (here we use that the sequence
�
[sn+1

0 � sn0]
�

is
coinitial in [�

6=
], a consequence of our assumption on the  -set). If we are not in case (2), then sN0 2 S \ 
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(because it is the Nth element of the  -set). Thus sN0+2(sN+1

0� sN0) 2 S> by Lemma 2.4.3, so we are
in case (3). ⇤
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CHAPTER 3

Embedding lemmas for asymptotic couples

In this chapter we (�, ) is an H-asymptotic couple and (�

1

, 
1

) is an asymptotic couple, not necessarily of
H-type. We include here many embedding results of the following form:

Embedding Lemma Template. Suppose (�, ) has property P . Then there is an asymptotic couple
(�

0, 0
) extending (�, ) such that:

(1) (�

0, 0
) has property Q;

(2) if i : (�, ) ! (�

1

, 
1

) is an embedding such that (�

1

, 
1

) has property Q, then i extends uniquely to
an embedding j : (�0, 0

) ! (�

1

, 
1

).

In Section 3.1, we survey various “small” embedding lemmas of asymptotic couples. By “small” here, we
mostly mean embedding lemmas where the underlying abelian group of � grows by a summand of Z or Q.
These lemmas accomplish very specific things, and will serve as building blocks for the “bigger” embedding
lemmas to come. Many of the embedding lemmas in Section 3.1 are from [6].

In Section 3.2, we prove various “big” embedding lemmas. These big embedding lemmas all deal with
adjoining copies of N or Z to the  -set and are important in our proof of quantifier elimination for (�

log

, )

(Theorem 4.2.2).

Finally, in Section 3.3 we prove a “very big” embedding lemma (Lemma 3.3.2). This allows us to adjoin
ordinal-many copies of Z to the  -set and is useful in showing that (�

log

, ) has the non-independence
property (NIP) in Sections 4.4 and 4.5.

3.1. Small embedding lemmas

Adjoining integrals. The first two lemmas allow us to remove a gap by “adjoining an integral” for the gap.
The first lemma shows that we can make the gap the derivative of a positive element; the lemma after that
shows how to make the gap the derivative of a negative element.

ADH 3.1.1 (Removing a gap, positive version). Let � be a gap in (�, ). Then there is an H-asymptotic
couple (�+ Z↵, ↵) extending (�, ) such that:

(1) ↵ > 0 and ↵0
= �;

(2) if i : (�, ) ! (�

1

, 
1

) is an embedding and ↵
1

2 �
1

, ↵
1

> 0, ↵0
1

= i(�), then i extends uniquely to an
embedding j : (�+ Z↵, ↵) ! (�

1

, 
1

) with j(↵) = ↵
1

.

Furthermore,  ↵
�
(�+ Z↵) 6=

�
=  [ {� � ↵} with  < � � ↵.

Proof. This is by [6, 9.8.2] and its proof. ⇤

ADH 3.1.2 (Removing a gap, negative version). Let � be a gap in (�, ). Then there is an H-asymptotic
couple (�+ Z↵, ↵) extending (�, ) such that:

27



(1) ↵ < 0 and ↵0
= �;

(2) if i : (�, ) ! (�

1

, 
1

) is an embedding and ↵
1

2 �
1

, ↵
1

< 0, ↵0
1

= i(�), then i extends uniquely to an
embedding j : (�+ Z↵, ↵) ! (�

1

, 
1

) with j(↵) = ↵
1

.

Furthermore,  ↵
�
(�+ Z↵) 6=

�
=  [ {� � ↵} with  < � � ↵.

Proof. This follows from remarks after the proof of [6, 9.8.2]. ⇤

Remark 3.1.3. ADH 3.1.1 and 3.1.2 show us that there are essentially two ways to remove a gap. These two
ways are incompatible in the sense that given (�, ) with gap �, we can obtain (�

+, +

) from ADH 3.1.1 and
(�

�, �
) from ADH 3.1.2 and there is no common extension (�

0, 0
) in which these two can be amalgamated,

i.e., the following configuration of embeddings is impossible:

(�

0, 0
)

(�

+, +

)

99

(�

�, �
)

ee

(�, )

ee 99

This issue is referred to as the “fork in the road” and is an obstruction to quantifier elimination. In [3] this
issue is resolved by adding an additional predicate to the language that “decides” for a gap whether it is
supposed to be the derivative of a positive or of a negative element. We avoid this obstacle in Section 4.2
by adding the function s to our language which ensures that all asymptotic couples considered already have
asymptotic integration. The tradeoff in doing so is that we are forced to work entirely in the category of
H-asymptotic couples with asymptotic integration.

If (�, ) has a largest element � in its  -set, then ADH 2.2.4 tells us that there is no ↵ 2 � such that
↵0

= �. ADH 3.1.4 tells us how to “adjoin an integral” for such an element �. It is important to note that
the extension of (�, ) constructed in Lemma 3.1.4 also has a  -set with a largest element.

ADH 3.1.4 (Adjoining an integral for max ). Assume  has a largest element �. Then there is an
H-asymptotic couple (� + Z↵, ↵) extending (�, ) with ↵ 6= 0, ↵0

= �, such that for any embedding
i : (�, ) ! (�

1

, 
1

) and any ↵
1

2 � 6=
1

with ↵0
1

= i(�) there is a unique extension of i to an embedding
j : (�+ Z↵, ↵) ! (�

1

, 
1

) with j(↵) = ↵
1

. Furthermore,  ↵
�
(�+ Z↵) 6=

�
=  [ {� � ↵} with  < � � ↵.

Proof. This follows from [6, 9.8.3] and its proof. ⇤

Adding a gap. The next lemma allows us to add a gap to an asymptotic couple with asymptotic integration.

ADH 3.1.5 (Adding a gap). Suppose (�, ) is divisible and has asymptotic integration. Then there is a
divisible H-asymptotic couple (�+Q�, �) extending (�, ) such that:

(1)  < � < (�

>
)

0;
(2) for any divisible (�

1

, 
1

) extending (�, ) and �
1

2 �
1

with  < �
1

< (�

>
)

0 there is a unique embedding
(�+Q�, �) ! (�

1

, 
1

) that is the identity on � and sends � to �
1

;
(3) the set � is dense in the ordered abelian group �+Q�, so [�] = [�+Q�],  =  �

�
(�+Q�) 6=

�
and �

is a gap in (�+Q�, �).
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Proof. This is [6, Lemma 9.8.4]. The proof uses a compactness argument. ⇤

Adding archimedean classes and growing the  -set. Recall that a cut in an ordered set S is simply
a downward closed subset of S, and an element a of an ordered set extending S is said to realize the cut C

in S if C < a < S \ C. The following Lemma 3.1.6 is useful because it enables us to either:

(1) add an element ↵ witnessing  (↵) = �, if � is not already in the  -set, but is not disqualified from
being in a larger  -set by satisfying � 2 (�

>
)

0, or
(2) add an additional archimedean class to

⇥
 �1

(�)
⇤
, if � is already in the  -set.

ADH 3.1.6. Let C be a cut in [�

6=
] and let � 2 � be such that � < (�

>
)

0, �† 6 � for all � 2 � 6= with
[�] > C, and � 6 �† for all � 2 � 6= with [�] 2 C. Then there exists an H-asymptotic couple (� � Z↵, ↵)
extending (�, ), with ↵ > 0, such that:

(1) [↵] 62 [�

6=
] realizes the cut C in [�

6=
],  ↵(↵) = �;

(2) given any embedding i of (�, ) into an H-asymptotic couple (�

1

, 
1

) and any element ↵
1

2 �>
1

such
that [↵

1

] 62 ⇥
i(�6=)

⇤
realizes the cut

�
[i(�)] : [�] 2 C

 
in

⇥
i(�6=)

⇤
and  

1

(↵
1

) = i(�), there is a unique
extension of i to an embedding j : (�� Z↵, ↵) ! (�

1

, 
1

) with j(↵) = ↵
1

.

If (�, ) has asymptotic integration, then so does (��Z↵, ↵). If (�, ) has rational asymptotic integration,
then so does (�� Z↵, ↵).

We also have the following divisible version of ADH 3.1.6:

Lemma 3.1.7. Suppose (�, ) is divisible and let C be a cut in [�

6=
] and let � 2 � be such that � < (�

>
)

0,
�† 6 � for all � 2 � 6= with [�] > C, and � 6 �† for all � 2 � 6= with [�] 2 C. Then there exists a divisible
H-asymptotic couple (��Q↵, ↵) extending (�, ), with ↵ > 0, such that:

(1) [↵] 62 [�

6=
] realizes the cut C in [�

6=
],  ↵(↵) = �;

(2) given any embedding i of (�, ) into a divisible H-asymptotic couple (�

1

, 
1

) and any element ↵
1

2 �>
1

such that [↵
1

] 62 ⇥
i(�6=)

⇤
realizes the cut

�
[i(�)] : [�] 2 C

 
in

⇥
i(�6=)

⇤
and  

1

(↵
1

) = i(�), there is a
unique extension of i to an embedding j : (��Q↵, ↵) ! (�

1

, 
1

) with j(↵) = ↵
1

.

If (�, ) has asymptotic integration, then so does (��Q↵, ↵).

Proof. This follows from performing the extension as in ADH 3.1.6 and then taking the divisible hull. The
universal property follows from respective universal property of those constructions. Also note that if (�, )
has asymptotic integration, then the (� � Z↵, ↵) constructed in ADH 3.1.6 will have rational asymptotic
integration, and thus its divisible hull (��Q↵, ↵) will have asymptotic integration. ⇤

For the special case of C = ; and � a gap in (�, ), ADH 3.1.6 gives [6, 9.8.8]:

ADH 3.1.8 (Making the gap become max ). Let � 2 � be a gap in (�, ). Then there exists an H-
asymptotic couple (�+ Z↵, ↵) extending (�, ), such that:

(1) 0 < n↵ < �> for all n > 0, and  ↵(↵) = �;
(2) for any embedding i of (�, ) into an H-asymptotic couple (�

1

, 
1

) and any ↵
1

2 �>
1

with  
1

(↵
1

) = i(�),
there is a unique extension of i to an embedding j : (�+ Z↵, ↵) ! (�

1

, 
1

) with j(↵) = ↵
1

.

Note that ADH 3.1.8 is compatible with ADH 3.1.2 and incompatible with ADH 3.1.1: if (�, ) has a gap
�, then applying ADH 3.1.8 “decides” that � will be the derivative of a negative element in any extension
with asymptotic integration.
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Embedding lemmas concerning ordered abelian group structure. The following two embedding
lemmas primarily involve the underlying ordered abelian group structure of the extension.

ADH 3.1.9. [6, 9.8.1] Let i : � ! G be an embedding of ordered abelian groups inducing a bijection
[�] ! [G]. Then there is a unique function  G : G 6= ! G such that (G, G) is an H-asymptotic couple and
i : (�, ) ! (G, G) is an embedding.

Lemma 3.1.10. Suppose (�

0

, 
0

) ✓ (�

1

, 
1

) and (�

⇤, ⇤
) are H-asymptotic couples, i : (�

0

, 
0

) ! (�

⇤, ⇤
)

is an embedding and j : �

1

! �

⇤ is an ordered group embedding. Furthermore, suppose that i = j|
�

0

and
[�

0

] = [�

1

]. Then j is also an embedding of asymptotic couples, i.e., j
�
 
1

(�)
�
=  ⇤�j(�)

�
for all � 2 � 6=

1

.

Proof. Let � 2 � 6=
1

. Since [�

0

] = [�

1

], there is �
0

2 � 6=
0

such that [�] = [�
0

]. By (HC)  
1

(�) =  
1

(�
0

)

and so j
�
 
1

(�)
�
= j

�
 
1

(�
0

)

�
= i

�
 
0

(�
0

)

�
. Since j is an ordered group embedding, it also follows that

⇥
j(�)

⇤
=

⇥
i(�

0

)

⇤
in [�

⇤
]. Thus  ⇤�j(�)

�
=  ⇤�i(�

0

)

�
. Since i is an embedding of asymptotic couples,

i
�
 
0

(�
0

)

�
=  ⇤�i(�

0

)

�
and we are done. ⇤

Tournant Dangereux. Suppose that (��Q↵, ↵) and (��Q�, �) are two H-asymptotic couple extensions
of (�, ). In this case, it may be tempting to conclude the following:

The unique abelian group isomorphism � � Q↵ ! (� � Q�) over � which sends ↵ to � is an
isomorphism of asymptotic couple (��Q↵, ↵) ! (��Q�, �) over (�, ) if and only if ↵ and
� realize the same cut over �.

However, this is not true in general. Consider the following scenario:

Suppose  =  

��Q↵ =  

��Q� is a successor set such that for each ↵ 2  , the successor is given by s(↵).
Let �, s� 2  be two adjacent members of the common  -set. Consider the following sets of archimedean
classes of �:

C
0

:=

�
[�] : � 2 � and  (�) = s�

 
< C

1

:=

�
[�] : � 2 � and  (�) = �

 
.

It could be the case that both ↵,� > 0 and C
0

< [↵], [�] < C
1

, which would guarantee that they realize
the same cut over �. However, it is possible that  (↵) = � whereas  (�) = s� and in this case we would
not have an isomorphism of asymptotic couples over (�, ) which sends ↵ to �. To account for this, we will
determine which extra information about ↵ and � is needed in order to get an isomorphism of asymptotic
couples.

We first have the following scenario where the cuts alone determine an isomorphism of asymptotic couples:

Corollary 3.1.11. Suppose (��Q↵, ↵) and (��Q�, �) are two H-asymptotic couple extensions of (�, )
such that

(1) [��Q↵] = [�], and
(2) ↵ and � realize the same cut over �.

Then the isomorphism i : ��Q↵! ��Q� of ordered abelian groups over � which sends ↵ to � is also an
isomorphism i : (��Q↵, ↵) ! (��Q�, �) of asymptotic couples over (�, ).

Proof. By (1) we have that  ↵
�
(��Q↵) 6=

�
=  and by (2) that [��Q�] = [�]. Given �

0

+ q↵ 2 ��Q↵ 6=,
let �

1

2 �

6= be such that [�
0

+ q↵] = [�
1

]. It follows from condition (2) that [�
1

] = [�
0

+ q�]. Thus
i
�
 ↵(�

0

+i↵)
�
=  ↵(�

0

+i↵) =  (�
1

) =  �(�
0

+q�) =  �
�
i(�

0

+q↵)
�
, using ADH 3.1.10 for (��Q�, �). ⇤
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The following shows what information about ↵ and � is needed in the case where the  -set doesn’t grow.
This follows easily from ADH 3.1.6.

Corollary 3.1.12. Suppose (��Q↵, ↵) and (��Q�, �) are two H-asymptotic couple extensions of (�, )
such that:

(1)  ↵
�
(��Q↵) 6=

�
=  =  �

�
(��Q�) 6=

�
,

(2) ↵ > 0 and � > 0,
(3)  ↵(↵) =  �(�), and
(4) [↵] 62 [�], [�] 62 [�], and [↵] and [�] realize the same cut over [�];

then necessarily ↵ and � realize the same cut over � and the isomorphism i : ��Q↵ ! ��Q� of ordered
abelian groups over � which sends ↵ to � is also an isomorphism i : (� � Q↵, ↵) ! (� � Q�, �) of
asymptotic couples over (�, ).

3.2. Big embedding lemmas

In the next embedding lemma, we show how to extend a grounded divisible H-asymptotic couple to a divisible
H-asymptotic couple with asymptotic integration:

Lemma 3.2.1 (Divisible asymptotic integration closure). Let (�

0

, 
0

) be a divisible H-asymptotic couple
such that  has a largest element �

0

. Then there exists a divisible H-asymptotic couple

(�, ) = (�

0

�
M

n

Q↵n+1

, ) = (�

0

�
M

n

Q�n+1

, )

extending (�

0

, ) such that:

(1) (�, ) has asymptotic integration;
(2) s(�n) = �n+1

and
R
�n = ↵n+1

for all n;
(3) for any embedding i of (�

0

, 
0

) into a divisible H-asymptotic couple (�

⇤, ⇤
) with asymptotic integration,

there is a unique extension of i to an embedding (�, ) ! (�

⇤, ⇤
).

Proof. For n > 0, define (�n+1

, n+1

) to be the asymptotic couple (�n + Q↵n+1

, 
↵n+1

n ), the divisible
hull of the asymptotic couple (�n + Z↵n+1

, 
↵n+1

n ) constructed in ADH 3.1.4 as an extension of (�n, n).
With  n :=  n(�

6=
n ), we have  n+1

=  n [ {�
0

�Pn
k=0

↵k+1

} with max n+1

= �
0

�Pn
k=0

↵k+1

=: �n+1

.
Let (�, ) =

S
n(�n, n) and so  =  (�6=) =

S
n n. Note that  does not have a maximum element.

Furthermore, (�, ) does not have a gap because it is the union of a chain of asymptotic couples which do
not have gaps. Thus (�, ) has asymptotic integration.

For (3), assume by induction that we have an embedding in : (�n, n) ! (�

⇤, ⇤
). Since (�

⇤, ⇤
) has

asymptotic integration, there is a unique extension of in to an embedding in+1

: (�n+1

, n+1

) such that
in+1

(↵n+1

) =

R �
in(�n)

�
by the universal property from ADH 3.1.4 and 2.2.10. Thus there is a unique

embedding [nin : (�, ) ! (�

⇤, ⇤
). ⇤

Given (�

0

, 
0

) as in Lemma 3.2.1, the extension (�, ) constructed in this lemma is the unique divisible
H-asymptotic couple with asymptotic integration extending (�

0

, 
0

) which has the universal property (3)
in Lemma 3.2.1. We call this extension the divisible asymptotic integration closure of (�

0

, 
0

). The
following summarizes the relationship between the ↵’s and �’s in Lemma 3.2.1, with �

0

= max 

0

.
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�
0

s //

R

  

�
1

s //

R

  

�
2

s //

R

  

�
3

s //

R

  

· · ·

↵
1

 

OO

�
// ↵

2

 

OO

�
// ↵

3

 

OO

�
// · · ·

The diagram illustrates the manner in which we adjoined integrals at each stage of the construction.

Example 3.2.2. Let (�

0

, 
0

) ✓ (�

Q
log

, ) be such that �
0

= Qe
0

. Then e
0

= max (�6=
0

), and by the
construction in Lemma 3.2.1, (�Q

log

 ) is the divisible asymptotic integration closure of (�
0

, 
0

). Recall that
e
0

= s0 in (�

Q
log

, ). Thus if (�⇤, ⇤
) is any divisible H-asymptotic couple with asymptotic integration such

that s0 > 0, then there is a unique embedding

i : (�Q
log

, ) ! (�

⇤, ⇤
).

Lemma 3.2.3. Let (�

0

, 
0

) be a divisible H-asymptotic couple with asymptotic integration. Then there
exists a divisible H-asymptotic couple (�, ) = (�

0

�Q↵
0

�L
n Q�n, ) extending (�

0

, 
0

), such that:

(1) (�, ) has asymptotic integration;
(2)  

0

(�

6=
0

) < �
0

< (�

>
0

)

0, �
0

=  (↵
0

), �n+1

= s(�n) for all n;
(3) for any embedding i of (�

0

, 
0

) into a divisible H-asymptotic couple (�

⇤, ⇤
) with asymptotic integration

and any ↵⇤ 2 (�

⇤
)

< such that i
�
 
0

(�

0

)

�
<  ⇤

(↵⇤
) <

�
i(�

0

)

>
�0, there is a unique extension of i to an

embedding j : (�, ) ! (�

⇤, ⇤
) such that j(↵

0

) = ↵⇤, j(�
0

) =  ⇤
(↵⇤

) and j(�k+1

) = sk
�
 ⇤

(↵⇤
)

�
.

Proof. By ADH 3.1.5, we can extend (�

0

, 
0

) to an asymptotic couple (�

0

� Q�
0

, ) such that �
0

is a
gap. Then by ADH 3.1.8 and passing to the divisible hull, we can extend (�

0

� Q�
0

, ) to an asymptotic
couple (�

0

� Q�
0

� Q↵
0

, ) such that  (↵
0

) = �
0

and ↵
0

< 0. Thus �
0

= max 
�
(�

0

� Q�
0

� Q↵
0

)

6=�.
Finally, we apply Lemma 3.2.1 to this last asymptotic couple to obtain an asymptotic couple (�, ) =

(�

0

�Q�
0

�Q↵
0

�L
n Q�n+1

, ) with the desired properties. ⇤

Setting ↵n+1

:=

R
�n = �↵n in Lemma 3.2.3, we have the following configuration of the elements we adjoined

to (�

0

, 
0

):

�
0

s //

R

  

�
1

s //

R

  

�
2

s //

R

  

�
3

s //

R

  

· · ·

↵
0

 

OO

�
// ↵

1

 

OO

�
// ↵

2

 

OO

�
// ↵

3

 

OO

�
// · · ·

The top row of the above diagram is a “copy of N” that has been added to the top of  
0

, i.e.,  =

 

0

[ {�
0

,�
1

, . . .} with  
0

< �
0

< �
1

< �
2

< · · · . The bottom row is a sequence of increasingly smaller and
smaller elements (in the sense that [�

6=
0

] > [↵
0

] > [↵
1

] > · · · ) which serve as “witnesses to the top row”.

In the next lemma, we iterate the construction given by Lemma 3.2.3 to add a “copy of Z” to the top of the
 -set.
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Lemma 3.2.4. Suppose (�, ) is divisible. Then there is a divisible H-asymptotic couple (�⇧, ⇧) ◆ (�, )

with a family (�k)k2Z in  ⇧ such that:

(1) (�⇧, ⇧) has asymptotic integration;
(2)  < �

0

, and s(�k) = �k+1

for all k;
(3) for any embedding i : (�, ) ! (�

⇤, ⇤
) into a divisible H-asymptotic couple with asymptotic integration

and any family (�⇤
k)k2Z in  ⇤ with i( ) < �⇤

0

, and s(�⇤
k) = �⇤

k+1

for all k, there is a unique extension
of i to an embedding j : (�⇧, ⇧) ! (�

⇤, ⇤
) sending �k to �⇤

k for all k.

Proof. For each k > 0, let (�, ) ✓ (�k, k) be the extension given by Lemma 3.2.3. In the terms of
the diagram below the proof of Lemma 3.2.3, label the sequence of �’s and ↵’s in (�k, k) as �k

0

,�k
1

, . . .

and ↵k
0

,↵k
1

, . . .. By the universal property of Lemma 3.2.3, there is a unique embedding jk : (�k, k) !
(�k+1

, k+1

) such that ↵k
0

7! ↵k+1

1

.

(�k, k)
jk //

(�k+1

, k+1

)

(�, )

OO 88

This embedding results in identifications �k
l = �k+1

l+1

and ↵k
l = ↵k+1

l+1

for all l > 0. Thus we may define
(�⇧, ⇧) as the union of the increasing chain

(�, ) ✓ (�

0

, 
0

) ✓ (�

1

, 
1

) ✓ (�

2

, 
2

) ✓ · · ·
In (�⇧, ⇧), we define �k := �0

k for k > 0 and �k := ��k
0

for k < 0. Furthermore we also define ↵k :=

R
�k�1

for all k. The following table illustrates the identifications of the �’s in this increasing union, with elements
in the same column being identified:

in (�⇧, ⇧) : · · · ��2

��1

�
0

�
1

�
2

· · ·
...

...
...

...
...

...
in (�

2

, 
2

) : �2

0

�2

1

�2

2

�2

3

�2

4

· · ·
in (�

1

, 
1

) : �1

0

�1

1

�1

2

�1

3

· · ·
in (�

0

, 
0

) : �0

0

�0

1

�0

2

· · ·
The asymptotic couple (�⇧, ⇧) has asymptotic integration since each (�k, k) has asymptotic integra-

tion. Furthermore, �
0

= �0

0

>  by Lemma 3.2.3. Also s(�l) = �l+1

for all l 2 Z. Indeed, if l > 0, then this
is evident already in (�

0

, 
0

). If l < 0, then this can be observed in (��l, �l) as s(��l
0

) = ��l
1

.
Next, suppose i : (�, ) ! (�

⇤, ⇤
) is an embedding into a divisible H-asymptotic couple with asymp-

totic integration and there is a family (�⇤
k)k2Z in  ⇤ with i( ) < �⇤

0

and s(�⇤
k) = �⇤

k+1

for all k. Since
si( ) ✓ i( ), we have i( ) < �⇤

k for all k 2 Z. Define the auxiliary (↵⇤
k)k2Z in �⇤ by ↵⇤

k :=

R
�⇤
k�1

. Then
we have  (↵⇤

k) = �⇤
k .
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Next, for each k > 0, let ik : (�k, k) ! (�

⇤, ⇤
) be the embedding given by Lemma 3.2.3 with

ik(↵
k
0

) = ↵⇤
�k.

(�k, k)
ik //

(�

⇤, ⇤
)

(�, )

OO

i

99

In order to show that this embedding extends to an embedding of (�⇧, ⇧), we must show that ik ✓ ik+1

. By
the universal property of ik, it suffices to show that ik+1

(↵k
0

) = ↵⇤
�k, which follows from a routine diagram

chase. Thus we get an embedding j = [kik : (�⇧, ⇧) ! (�

⇤, ⇤
).

(�⇧, ⇧)

[kik

((...

OO

(�

⇤, ⇤
)

(�

1

, 
1

)

OO
i
1

66

(�

0

, 
0

)

OO

i
0

==

(�, )

OO

i

CC

It remains to prove uniqueness of j. Suppose j0 : (�⇧, ⇧) ! (�

⇤, ⇤
) is an arbitrary embedding such that

j0(�k) = �⇤
k for all k 2 Z. It suffices to show that j0|

�k = ik for all k > 0. I.e., j0(↵�k) = j0(↵k
0

) = ik(↵
k
0

) =

↵⇤
�k. Integrating the expression j0(�k�1

) = �⇤
k�1

yields

↵⇤
k =

R
j0(�k�1

) = j0(
R
�k�1

) = j0(↵k). ⇤

The following lemma allows us to insert a “copy of Z” into the middle of the  -set of a divisible H-asymptotic
couple with asymptotic integration in a canonical way. The decisive point in the proof is to pick an element
a? 2  \B and use it as in that proof.

Lemma 3.2.5. Suppose (�, ) is divisible. Let B 2 sded( ) be nonempty such that B 6=  . Then there
is a divisible H-asymptotic couple (�B , B) ◆ (�, ) with a family (�k)k2Z in  B satisfying the following
conditions:

(1) (�B , B) has asymptotic integration;
(2) B < �k < �>B, and s(�k) = �k+1

for all k;
(3) for any embedding i : (�, ) ! (�

⇤, ⇤
) into a divisible H-asymptotic couple with asymptotic integration

and any family (�⇤
k)k2Z in  ⇤ such that i(B) < �⇤

k < i(�>B
) and s(�⇤

k) = �⇤
k+1

for all k, there is a
unique extension of i to an embedding (�B , B) ! (�

⇤, ⇤
) sending �k to �⇤

k for all k.

Proof. To motivate the construction of (�B , B) as required, suppose (�B , B) ◆ (�, ) is an H-asymptotic
couple with asymptotic integration and (�k)k2Z a family in  B such that B < �k < �>B and s(�k) = �k+1

34



for all k. Fix any a? 2  \B. Let k 2 Z and note that by Corollary 2.3.5,

 B(a
? � �k) = s(�k) = �k+1

.

Therefore setting ↵k := �k�1

� a?, we have  B(↵k) = �k. Then ↵k < 0 and

[�
1

] < [↵k] < [↵k+1

] < [�
2

]

whenever �
1

, �
2

2 � such that  (�
1

) 2 B and  (�
2

) 2  \ B. Thus for � 2 �, i
1

< · · · < in and
q
1

, . . . , qn 2 Q 6=, we have

� + q
1

↵i
1

+ · · ·+ qn↵in > 0 ()
8
<

:
� > 0 if  (�) 2 B or n = 0,

q
1

< 0 if  (�) 62 B and n > 1.

and the  B-value of such an element is uniquely determined:

 B(� + q
1

↵i
1

+ · · ·+ qn↵in) =

8
<

:
 (�) if  (�) 2 B or n = 0,

�i
1

if  (�) 62 B and n > 1.

Furthermore, ↵k +  (↵k) = ↵k + �k = ↵k + a? + ↵k+1

. Rearranging terms gives us �k�1

= ↵k + a? =

↵k � ↵k+1

+  (↵k). Since [↵k] > [↵k+1

], we have  (↵k � ↵k+1

) =  (↵k). Thus
R
�k�1

= ↵k � ↵k+1

,
and s(�k�1

) =  (↵k � ↵k+1

) =  (↵k) = �k. Also,
R
 (↵k � ↵k+1

) =

R
 (↵k) = ↵k+1

� ↵k+2

and thus
�(↵k � ↵k+1

) = �(↵k) = ↵k+1

� ↵k+2

. Here is a picture of what is going on:

�k�1

s //

R

""

�k
s //

R

""

�k+1

↵k�1

 

OO

�
))

↵k

 

OO

�
))

↵k+1

 

OO

↵k � ↵k+1

 

CC

� // ↵k+1

� ↵k+2

 

AA

Note that the ↵k’s depend on the choice of a? whereas the elements of the form ↵k � ↵k+1

do not depend
on this choice.

Next, to actually obtain (�B , B), by compactness we take an elementary extension (�?, ?) of (�, )
with a family (�k)k2Z in  ? such that B < �k < �>B and s(�k) = �k+1

for all k (this uses the assumption
that B 6= ;). Take a⇤ 2  \B and define ↵k := �k�1

�a?. Set �B := �+

P
k Q↵k. By the above observations,

(�B , ?|�B ) is a divisible H-asymptotic couple with the desired properties. ⇤

It follows from the proof of Lemma 3.2.5 that  B =  [ {�k : k 2 Z}.

3.3. A very big embedding lemma

In this section (�, ) is a divisible H-asymptotic couple with asymptotic integration. We can combine and
restate Lemmas 3.2.4 and 3.2.5 using the sded

op
( ) terminology:

Lemma 3.3.1. Let B 2 sded

op
( ) be such that B 6=  . Then there is a divisible H-asymptotic couple

(�B , B) ◆ (�, ) with a family (�k)k2Z in  B satisfying the following conditions:

(1) (�B , B) has asymptotic integration;
(2) �<B < �k < B, and sB(�k) = �k+1

for all k;
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(3)  B =  [ {�k : k 2 Z};
(4) for any embedding i : (�, ) ! (�

⇤, ⇤
) into a divisible H-asymptotic couple with asymptotic integration

and any family (�⇤
k)k2Z in  ⇤ such that i(�<B

) < �⇤
k < i(B) and s⇤(�⇤

k) = �⇤
k+1

for all k, there is a
unique extension of i to an embedding (�B , B) ! (�

⇤, ⇤
) sending �k to �⇤

k for all k.

In Figure 3.1, we illustrate an instance of the construction that is done in Lemma 3.2.5 (over an elementary
extension of (�

log

, ), see Chapter 4). Technically speaking, here B (as a set) is the two rightmost copies of
Z, however, we think of B as indicating the cut between existing copies of Z where a new copy of Z (namely,
(�k)k2Z) is to be added.

Figure 3.1. Example of Lemma 3.2.5 in action

0

� !

B

(�k)k2Z

As for the universal property, suppose i : (�, ) ! (�

⇤, ⇤
) is an embedding as in (4) from Lemma 3.3.1

above. The uniqueness of the extension of i to an embedding (�B , B) ! (�

⇤, ⇤
) depends heavily on the

specification of the family (�⇤
k)k2Z in  ⇤ and in particular the requirement that �k 7! �⇤

k for all k:

(�

⇤, ⇤
) and (�⇤

k)k2Z

(�B , B) and (�k)k2Z

9!
33

(�, )

i

;;

In fact, if we were to drop the requirement that the extension of i to an embedding (�B , B) ! (�

⇤, ⇤
) has

the property that �k 7! �⇤
k for all k 2 Z, then there would always be infinitely many distinct extensions of i
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to embeddings (�B , B) ! (�

⇤, ⇤
):

(�

⇤, ⇤
)

(�B , B)

91
66

(�, )

i

AA

This follows from Lemma 3.2.5 by considering the reindexing (�⇤
k+l)k2Z of the family (�⇤

k)k2Z by an arbitrary
l 2 Z.

In the lemma below we add transfinitely many copies of Z to  . We think of the extension (�⇢, ⇢) of (�, )
constructed in that lemma as adding ⌫-many copies of Z to  in the s-cuts specified by ⇢, where ⌫ is a
(possibly finite) ordinal.

Lemma 3.3.2. Let ⇢ : ⌫ ! sded

op
( )\{ } be an increasing function. Then there is a divisible H-asymptotic

couple (�⇢, ⇢) ◆ (�, ) with a family (�k,⌘)k2Z,⌘<⌫ in  ⇢ satisfying the following conditions:

(1) (�⇢, ⇢) has asymptotic integration;
(2) �<⇢(⌘) < �k,⌘ < ⇢(⌘), and s⇢(�k,⌘) = �k+1,⌘ for all k 2 Z and ⌘ < ⌫;
(3) �k,⌘

0

< �l,⌘
1

for all k, l 2 Z and ⌘
0

< ⌘
1

< ⌫;
(4)  ⇢ =  [ {�k,⌘ : k 2 Z, ⌘ < ⌫};
(5) for any embedding i : (�, ) ! (�

⇤, ⇤
) into a divisible H-asymptotic couple with asymptotic integration

and any family (�⇤
k,⌘)k2Z,⌘<⌫ in  ⇤ such that i

�
�

<⇢(⌘)
�
< �⇤

k,⌘ < i
�
⇢(⌘)

�
and s⇤(�⇤

k,⌘) = �⇤
k+1,⌘ for all

k 2 Z and ⌘ < ⌫, and �⇤
k,⌘

0

< �⇤
l,⌘

1

for all k, l 2 Z and ⌘
0

< ⌘
1

< ⌫, then there is a unique extension of
i to an embedding (�⇢, ⇢) ! (�

⇤, ⇤
) sending �k,⌘ to �⇤

k,⌘ for all k 2 Z and ⌘ < ⌫;
(6) if (�, ) is a model of T

0

, then so is (�⇢, ⇢).

Proof. We will prove this by transfinite induction on ⌫.
(⌫ = 0) In this case we set (�⇢, ⇢) := (�, ) and we are done.
(⌫ = ⌘ + 1) By the inductive hypothesis, we can construct an extension (�⇢�⌘, ⇢�⌘) of (�, ) which

satisfies properties (1)-(5) for the function ⇢ � ⌘ : ⌘ ! sded( ).

Claim 3.3.3. ⇢(⌘) is an s-cut in  ⇢�⌘, i.e., ⇢(⌘) 2 sded

op
( ⇢�⌘).

Proof of claim. By the inductive hypothesis,  ⇢�⌘ =  [ {�k,⌘
0

: k 2 Z, ⌘
0

< ⌘}, so it suffices to prove
that �k,⌘

0

< ⇢(⌘) for all k 2 Z and ⌘
0

< ⌘. This is clear because �k,⌘
0

< ⇢(⌘
0

) by (3) for (�⇢�⌘, ⇢�⌘) and
⇢(⌘

0

) 6 ⇢(⌘) because ⇢ is increasing. ⇤

Since ⇢(⌘) is also an s-cut in  ⇢�⌘, we can use Lemma 3.2.5 to add a copy of Z to (�⇢�⌘, ⇢�⌘) at ⇢(⌘).
Thus we set (�⇢, ⇢) :=

�
(�⇢�⌘)⇢(⌘), ( ⇢�⌘)⇢(⌘)

�
. As an extension of (�, ), it is clear that (�⇢, ⇢) satisfies

properties (1)-(4). Property (5) is satisfied because (�⇢�⌘, ⇢�⌘) satisfies property (5) over (�, ) and (�⇢, ⇢)

satisfies the universal property of Lemma 3.2.5 over (�⇢�⌘, ⇢�⌘).
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(⌫ limit ordinal) By the inductive hypothesis, for all ⌘
0

< ⌘
1

< ⌫ we can construct extensions
(�⇢�⌘i , ⇢�⌘i) of (�, ) (i = 1, 2) such that there is a unique embedding i⌘

0

,⌘
1

: (�⇢�⌘
0

, ⇢�⌘
0

) ! (�⇢�⌘
1

, ⇢�⌘
1

)

over (�, ) such that �k,⌘ 7! �k,⌘ for all k 2 Z and ⌘ < ⌘
0

.

(�⇢�⌘
0

, ⇢�⌘
0

)

i⌘
0

,⌘
1 //
(�⇢�⌘

1

, ⇢�⌘
1

)

(�, )

OO 77

Thus without loss of generality we may assume that for all ⌘
0

< ⌘
1

< ⌫ we have an increasing chain:

(�, ) ✓ (�⇢�⌘
0

, ⇢�⌘
0

) ✓ (�⇢�⌘
1

, ⇢�⌘
1

)

Therefore we may set (�⇢, ⇢) :=
�S

⌘<⌫ �⇢�⌘,
S
⌘<⌫  ⇢�⌘

�
and it is clear that this extension satisfies proper-

ties (1)-(4). Suppose that i : (�, ) ! (�

⇤, ⇤
) is an embedding such that (�⇤, ⇤

) is a divisible H-asymptotic
couple with asymptotic integration and there is a family (�⇤

k,⌘)k2Z,⌘<⌫ in  ⇤ satisfying the properties listed in
(5). Then for each ⌘ < ⌫ there is a unique extension of i to an embedding i⌘ : (�, ) ✓ (�⇢�⌘, ⇢�⌘) ! (�

⇤, ⇤
)

sending �k,⌘
0

to �⇤
k,⌘

0

for all k 2 Z and ⌘
0

< ⌘. Thus it is clear that i⌫ := [⌘<⌫i⌘ : (�⇢, ⇢) ! (�

⇤, ⇤
) is an

extension of i sending �k,⌘ to �⇤
k,⌘ for all k 2 Z and ⌘ < ⌫. Uniqueness of i⌫ follows from the observation

that the restriction of i⌫ to each (�⇢�⌘, ⇢�⌘) is uniquely determined by the universal property that each
(�⇢�⌘, ⇢�⌘) enjoys (by induction).

Finally, (6) is immediate from the above construction. ⇤

In Figure 3.2, we illustrate an instance of the construction done in Lemma 3.3.2 (over a model of T
0

). Here
we have the increasing function ⇢ : 4 ! sded( ) where ⇢(0) < ⇢(1) = ⇢(2) < ⇢(3). Since ⇢(1) = ⇢(2), (�k,1),
the copy of Z corresponding to ⇢(1), gets added to the same cut in  as (�k,2) the copy of Z corresponding
to ⇢(2). However, the construction ensures that (�k,1) gets added entirely to the left of (�k,2).

Figure 3.2. Example of Lemma 3.3.2 in action

� !

(�k,0) (�k,1) (�k,2) (�k,3)

⇢(0) ⇢(1) ⇢(2) ⇢(3)
0
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CHAPTER 4

Model theory of the asymptotic couple of the field of logarithmic

transseries

In this chapter we collect our results on the model theory of the asymptotic couple (�

log

, ). Most of this
material is from [14] and [15].

After reviewing relevant definitions from model theory in Section 4.1, we prove the main quantifier elim-
ination and model completeness results for (�

log

, ) in Section 4.2. Specifically, we identify first order
languages LAC ✓ LAC,log, axiomatize complete theories TAC = ThLAC (�, ) and its extension by definitions
TAC,log = ThLAC,log(�log, ), and prove that TAC,log has QE (Theorem 4.2.2) and TAC is model complete
(Corollary 4.2.3).

In Section 4.3 we analyze in detail the  -set of models TAC,log. In particular, we characterize all definable
functions  ! � (Theorem 4.3.3) and show that the definable set  is stably embedded (Corollary 4.3.14).

In Sections 4.4 and 4.5, we characterize all 1-types over arbitrary parameter sets in models of TAC,log

(Theorem 4.4.6), resulting in a proof that TAC has the non-independence property, or NIP, (Theorem 4.5.3).

We conclude the chapter with a few more minor model-theoretic results and observations in Section 4.6
concerning TAC and TAC,log, and a section on the relationship between models of TAC and the so-called
precontraction groups (Section 4.7).

4.1. Quantifier elimination and model completeness

In this section we recall the definitions of quantifier elimination and model completeness for first order
theories. We also state the relevant criteria to be used later for obtaining quantifier elimination and model
completeness results.

In the rest of this section L is a first-order language such that for each sort s there is a constant symbol of
sort s, M is an L-structure, and ⌃ is a set of L-sentences.

Definition 4.1.1. We say that ⌃ admits quantifier elimination (QE) if each formula '(x) with finite x

is ⌃-equivalent to a quantifier-free formula '0
(x). We also express this by saying “⌃ has QE” or “⌃ eliminates

quantifiers”. We say that M admits QE if Th(M) admits QE.

There are a variety of ways to prove that a theory T admits QE. The one which we will use in Section 4.2
below is the following:

ADH 4.1.2. [6, B.11.10] Suppose that for every M |= ⌃ and substructure A of M with A 6= M and every
embedding i of A into an |A|+-saturated model N of ⌃ there exist s 2 S and b 2 Ms \As such that i extends
to an embedding Ahbi ! N . Then ⌃ has QE.
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Example 4.1.3 (Quantifier elimination for divisible ordered abelian groups). Consider the one-sorted lan-
guage LOA = {6, 0,�,+} of ordered abelian groups and the LOA-theory TDOAG whose models are the
nontrivial divisible ordered abelian groups. It is well-known that TDOAG admits QE (see [6, B.11.12], for
example). It follows from the various embedding properties associated with QE from [6, §B.11] that if
�

0

✓ � and �⇤ are models of TDOAG such that �⇤ is |�
1

|+-saturated, and i : �
0

! �

⇤ is an embedding of
LOA-structures, then there is an embedding j : �

1

! �

⇤ of LOA-structures which extends i:

�

⇤

�

1

9j
66

�

0

``
i

FF

From QE we can often conclude that ⌃ is complete:

ADH 4.1.4. [6, B.11.7] Suppose ⌃ admits QE and has a model. Then ⌃ is complete iff some L-structure
(not necessarily a model of ⌃) embeds into every model of ⌃.

Associated with QE is the weaker notion of model complete:

Definition 4.1.5. ⌃ is said to be model complete if every formula is ⌃-equivalent to an existential formula.
We say that M is model complete if Th(M) is.

It is immediate that if ⌃ admits QE, then ⌃ is model complete. We also have an embedding criterion for
proving that a certain theory is model complete:

ADH 4.1.6. [6, B.10.4] The following are equivalent:

(1) ⌃ is model complete;
(2) for all models M , N of ⌃ with M ✓ N and every elementary extension M⇤ of M that is -saturated

for some  > |N |, there is an embedding N ! M⇤ that extends the natural inclusion M ! M⇤.

Model completeness can also be used to show that ⌃ is complete.

Definition 4.1.7. A prime model of ⌃ is a model of ⌃ that embeds elementarily into every model of ⌃.

ADH 4.1.8. [6, B.10] If ⌃ is model complete and M is a model of ⌃ that embeds into every model of ⌃,
then M is a prime model of ⌃ and therefore ⌃ is complete.

A consequence of a theory of being model complete is that it is inductive:

Definition 4.1.9. We call ⌃ inductive if the direct union of any directed family of models of ⌃ is a model
of ⌃.

ADH 4.1.10. [6, B.10.7] If ⌃ is model complete, then ⌃ is inductive.

Definition 4.1.11. Given L-structures M and N , we say that M is existentially closed in N if M ✓ N

and every existential LM -sentence true in N is true in M . An existentially closed model of ⌃ is a model
M of ⌃ that is existentially closed in every extension N |= ⌃ of M .
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In the rest of this section T is an inductive L-theory.

Definition 4.1.12. A model companion of T is a model complete L-theory T ⇤ ◆ T such that every model
of T embeds into a model of T ⇤.

ADH 4.1.13. [6, B.10.10] Let T ⇤ be an L-theory. Then T ⇤ is a model companion of T iff the models of T ⇤

are exactly the existentially closed models of T .

4.2. Quantifier elimination and model completeness for (�

log

, )

Let LAC be the “natural” language of asymptotic couples; LAC = {0,+,�, <, ,1} where 0,1 are constant
symbols, + is a binary function symbol, � and  are unary function symbols and < is a binary relation
symbol. We consider an asymptotic couple (�, ) as an LAC-structure with underlying set �1 and the
obvious interpretation of the symbols of LAC , with 1 as a default value:

�1 = � +1 = 1+ � = 1+1 =  (0) =  (1) = 1
for all � 2 �.

Let TAC be the LAC-theory whose models are the divisible H-asymptotic couples with asymptotic integration
such that

(1)  as an ordered subset of � has a least element s0,
(2) s0 > 0,
(3)  as an ordered subset of � is a successor set,
(4) for each ↵ 2  , the immediate successor of ↵ in  is s↵, and
(5) � 7! s� :  !  

>s0 is a bijection.

It is clear that (�

log

, ) and (�

Q
log

, ) are models of TAC . For a model (�, ) of TAC , we define the function
p :  

>s0 !  to be the inverse to the function � 7! s� :  !  

>s0. We extend p to a function �1 ! �1

by setting p(↵) := 1 for ↵ 2 �1 \ >s0.

Next, let LAC,log = LAC [ {s, p, �
1

, �
2

, �
3

, . . .} where s, p and �n for n > 1 are unary function symbols. All
models of TAC are considered as L-structures in the obvious way, again with 1 as a default value, and with
�n interpreted as division by n.

We let TAC,log be the LAC,log-theory whose models are the models of TAC . In Figure 4.1 we have attempted
to illustrate what we picture as a “typical” model of TAC,log, although in general the copies of Z beyond the
initial copy of N in the  -set may be indexed by any arbitrary linear order.
By adding function symbols s, p, �

1

, �
2

, . . . we have guaranteed the following:

Lemma 4.2.1. TAC,log has a universal axiomatization.

Since TAC,log has a universal axiomatization, if (�
1

, 
1

) |= TAC,log and (�

0

, 
0

) is an LAC,log-substructure of
(�

1

, 
1

), then (�

0

, 
0

) |= TAC,log. This fact is very convenient for our proof of QE in Theorem 4.2.2 below.
In Theorem 4.2.2, we actually use the embedding criteria ADH 4.1.2 which implies QE for TAC,log.

Theorem 4.2.2 (QE for TAC,log). Suppose that (�
0

, 
0

) ( (�

1

, 
1

) and (�

⇤, ⇤
) are models of TAC,log such

that (�

⇤, ⇤
) is |�

1

|+-saturated, and i : (�

0

, 
0

) ! (�

⇤, ⇤
) is an embedding of LAC,log-structures. Then

there is an element ↵ 2 �
1

\ �
0

such that i extends to an embedding (�, ) ! (�

⇤, ⇤
) where (�

0

, 
0

) ✓
(�, ) ✓ (�

1

, 
1

) and ↵ 2 �.
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Figure 4.1. A “typical” model of TAC,log

s

s
s

p

p
p

0

�!

| {z }
 

(�

>
)

0 ! (�

<
)

0

Proof. The general picture to keep in mind for this proof is the following:

(�

⇤, ⇤
)

(�

1

, 
1

)

(�, )
9?
⇠
//
(i�, ⇤|i�)

(�

0

, 
0

)

i

⇠
//
(i�

0

, ⇤|i�
0

)

Let  
1

:=  
1

(�

6=
1

),  
0

:=  
0

(�

6=
0

) and  ⇤
:=  ⇤�

(�

⇤
)

6=�. In particular,  
0

✓  
1

and the first two cases deal
with the situation that  

0

6=  
1

.
Case 1: There is � 2  

1

\ 
0

such that  
0

< �. Take such �, and define the family (�k)k2Z by �
0

:= �,
�n := sn�, and ��n := pn� for n > 1. Note that s�k = �k+1

for all k 2 Z. By Lemma 3.2.4 we may assume
that (�

0

, 
0

) ✓ (�⇧, ⇧) ✓ (�

1

, 
1

) with � 2 �⇧. By saturation of (�⇤, ⇤
), there is a family (�⇤

k)k2Z in �⇤

such that i( 
0

) < �⇤
0

and s(�⇤
k) = �⇤

k+1

for all k 2 Z, and so there is a unique extension of i to an embedding
(�⇧, ⇧) ! (�

⇤, ⇤
) sending �k to �⇤

k for all k 2 Z.
Case 2:  

1

6=  

0

and we are not in Case 1. Take � 2  

1

\  
0

, and define the set B := {↵ 2
 

0

: ↵ < �} and the family (�k)k2Z by �
0

:= �, �n = sn(�
0

), and ��n = pn(�
0

) for n > 1. Then
s(B) ✓ B, B < �k < �

>B
0

and s(�k) = �k+1

for all k 2 Z. Thus by Lemma 3.2.5 we may assume that
(�

0

, 
0

) ✓ (�

0,B , 0,B) ✓ (�

1

, 
1

). Again, by Lemma 3.2.5 and saturation of (�

⇤, ⇤
), there is a family

(�⇤
k)k2Z in �⇤ such that i(B) < �⇤

0

< i(�>B
0

) and s�⇤
k = �⇤

k+1

, and so there is a unique extension of
i : (�

0

, 
0

) ! (�

⇤, ⇤
) to an embedding (�

0,B , 0,B) ! (�

⇤, ⇤
) that sends �k to �⇤

k for all k 2 Z.
Case 3:  

0

=  

1

but [�

0

] 6= [�

1

]. Take ↵ 2 �
1

such that [↵] 62 [�

0

]. Let � =  
1

(↵) 2 �
0

. Define
C to be the cut in [�

0

] which is realized by [↵] in [�

1

]. By Lemma 3.1.7 there is an asymptotic couple
(�, ) = (�

0

+ Q↵, 
1

|
�+Q↵) extending (�

0

, 
0

) inside (�

1

, 
1

), and by saturation we can extend i to an
embedding (�, ) ! (�

⇤, ⇤
).
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Case 4: [�

0

] = [�

1

]. By QE for nontrivial divisible ordered abelian groups, Example 4.1.3, we get an
extension j : �

1

! �

⇤ of i as an embedding of ordered abelian groups:

�

⇤

�

1

j

66

�

0

``
i

FF

By Lemma 3.1.10, j is actually an embedding of divisible H-asymptotic couples with asymptotic integration.
Since  

0

=  

1

and i is an embedding of LAC,log-structures, j is as well. ⇤

In the next corollary we collect the usual consequences of a quantifier elimination result:

Corollary 4.2.3. TAC,log and TAC are complete, decidable, model complete, and inductive.

Proof. Model completeness of TAC,log follows immediately from QE, and completeness follows from ADH 4.1.4
and the observation in Example 3.2.2 that the LAC,log-structure (�

Q
log

, ) embeds into every model of TAC,log.
Model completeness of TAC follows from ADH 4.1.6. To verify (2) of ADH 4.1.6 we use the same proof

as in Theorem 4.2.2 above, except that all the asymptotic couples considered in the proof are construed as
LAC-structures.

Completeness for TAC follows from ADH 4.1.8 using that the LAC-structure (�

Q
log

, ) is a model of TAC

which embeds into every model of TAC by Example 3.2.2.
Decidability for both theories follows from completeness and the fact that these theories are formulated

in recursive languages (a finite language in the case of TAC) and that they have recursively enumerable
axiomatizations.

Finally, both theories are inductive by model completeness and ADH 4.1.10. ⇤

Example 4.2.4. Below are some quantifier-free definitions of several definable sets in models of TAC,log:

(1) The set  can be defined by the formula:

x = ps(x) ^ x 6= 1
(2) The set ( � )>0

:= {↵
1

� ↵
2

: ↵
1

,↵
2

2  and ↵
1

> ↵
2

} can be defined by the formula:

x = �p (x) + ps
�� (x� p (x))

� ^ x 6= 1
It follows from results in Section 4.3 that this last formula does indeed define the set ( � )>0.

The following example will be useful later in Section 8.3.

Example 4.2.5. Below are some existential definitions of several definable sets in models of TAC :

(1) The set  can be defined by the formula:

�
0

(x) := 9y�x =  (y) ^ x 6= 1�

(2) The set
ker s := {(x, y) 2 �21 : sx = sy} ✓ �1 ⇥ �1
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can be defined by the formula:

�
1

(x, y) := 9z(x = y = 1_ �
z 6= 1^ z =  (x� z) =  (y � z))

�

(3) The set �<s0 can be defined by the formula:

�
2

(x) := 9y�y 6= 1^  (y) = y ^ x < y
�

(4) Finally, we will define the set �1 \ with an existential formula. First, we have for x 2 �1:

x 62  () ⇥
x < s0

⇤
or

⇥
x = 1⇤

or
⇥
x 2 (�

>
)

0⇤ or
⇥9y(y 2  ^ x 6= y ^ sx = sy)

⇤

Thus the following formula defines �1 \ :

�
3

(x) :=

⇥
�
2

(x)
⇤ _ ⇥

x = 1⇤ _ ⇥9y(y > 0 ^ y +  (y) = x)
⇤ _ ⇥9y(�

0

(y) ^ x 6= y ^ �
1

(x, y))
⇤

By renaming variables which are being quantified over, and moving all quantifiers out to the front, we
obtain an existential formula which is equivalent to �

3

.

4.3. Definable functions on, and subsets of,  

For a language L and an L-structure M with underlying set M , we say that a set D ✓ Mx is definable if
it is “definable with parameters”, i.e., there is an L-formula '(x, y) and tuple b 2 Mx such that

D =

�
a 2 Mx : M |= '(a, b)

 
.

Given A ✓ M , a subset of Mx is definable over A if the parameter b above can be taken from Ax. A
function X ! My (X ✓ Mx) is definable (over A) if its graph is definable (over A).

In this section (�, ) is a model of TAC,log.

Definition 4.3.1. For k < 0 and x 2  , we set sk(x) := p�k
(x) 2  1. Also, s0(x) := x for all x 2  . A

function F :  ! �1 is an s-function if it is constant, or there are n > 1, k
1

< · · · < kn in Z, q
1

, . . . , qn 2 Q 6=

and � 2 � such that F (x) =
Pn

j=1

qjs
kj
(x)� � for all x 2  .

For an s-function F (x) =
Pn

j=1

qjs
kj
(x)� � as above with n > 1, define the set DF ✓  to be

DF =

8
<

:
[s�k

1

+1

0,1)

 

if k
1

< 0

 if k
1

> 0

and the set IF ✓  to be  \DF .
Note that IF < DF , and IF [DF =  . Furthermore, F takes the constant value 1 on IF and takes

only values in � on DF . It is also useful to observe that for x 2 DF and l 2 Z, if l > k
1

, then sl(x) 2  .
By convention, if we refer to an s-function F (x) =

Pn
j=1

qjs
kj
(x) � �, it is understood that n > 1,

k
1

< · · · < kn in Z, q
1

, . . . , qn 2 Q 6=, and � 2 �.

In general, the s-functions are rather well-behaved. To begin with, we get the following:

Lemma 4.3.2. Let F :  ! �1 be the s-function F (x) =
Pn

j=1

qjs
kj
(x)� �. If q

1

> 0, then F is strictly
increasing on DF , otherwise F is strictly decreasing on DF . In particular, the restriction of F to DF is
injective. Furthermore, if F changes sign on DF , then there is ↵ 2 DF such that sign

�
F (↵)

� 6= sign

�
F (s↵)

�
.

44



Proof. Let ↵
0

,↵
1

2 DF be such that ↵
0

< ↵
1

. Then

F (↵
1

)� F (↵
0

) = q
1

(sk1↵
1

� sk1↵
0

) + q
2

(sk2↵
1

� sk2↵
0

) + · · ·+ qn(s
kn↵

1

� skn↵
0

).

By Lemma 2.3.5, we compute  (skj↵
1

� skj↵
0

) = skj+1↵
0

for j = 1, . . . , n, and thus

[sk1↵
1

� sk1↵
0

] > [sk2↵
1

� sk2↵
0

] > · · · > [skn↵
1

� skn↵
0

].

Since sk1↵
1

> sk1↵
0

, we get that

sign

�
F (↵

1

)� F (↵
0

)

�
= sign(q

1

).

The second statement follows from an appeal to completeness of T
log

and the observation that it is obviously
true in (�

Q
log

, ). ⇤

The following theorem is one of the main results of this section. It says that all definable functions  ! �1

are given piecewise by s-functions.

Theorem 4.3.3. Let F :  ! �1 be a definable function. Then there is an increasing sequence s0 = ↵
0

<

↵
1

< · · · < ↵n�1

< ↵n = 1 in  1 such that for k = 0, . . . , n � 1, the restriction of F to [↵k,↵k+1

)

 

is
given by an s-function.

We first prove that for an s-function F (x), the compositions  
�
F (x)

�
, s

�
F (x)

�
are given piecewise by

s-functions.

The following lemma is a step in this direction:

Lemma 4.3.4. Let n > 1, q
1

, . . . , qn 2 Q 6=, ↵
1

, . . . ,↵n 2  , ↵
1

< · · · < ↵n, and ↵ =

Pn
j=1

qj↵j. Then

(1)
Pn

j=1

qj = 0 =)  (↵) = s(↵
1

),
(2)

Pn
j=1

qj 6= 0 =)  (↵) = s0.

Proof. By completeness of TAC,log, the lemma will follow from its validity for the case (�, ) = (�

Q
log

, ).
In (�

Q
log

, ), we may take integers 0 6 m
1

< · · · < mn such that ↵j =
Pmj

i=0

ei, for j = 1, . . . , n. Then

↵ =

nX

j=1

qj

 mjX

i=0

ei

!
=

m
1X

i=0

0

@
nX

j=1

qj

1

A ei +

m
2X

i=m
1

+1

0

@
nX

j=2

qj

1

A ei + · · ·+
mnX

i=mn�1

+1

qnei,

i.e., as an infinite tuple, ↵ has the form:

↵ = (

Pn
j=1

qj , . . . ,
Pn

j=1

qj
| {z }

m
1

+1

,
Pn

j=2

qj , . . . ,
Pn

j=2

qj
| {z }

m
2

�m
1

, . . .).

From this it is clear that if
Pn

j=1

qj 6= 0, then  (↵) = e
0

= s0. Otherwise, if
Pn

j=1

qj = 0, then q
1

=

�Pn
j=2

qj 6= 0, and so

 (↵) =

m
1

+1X

i=1

ei = ↵
1

+ em
1

+1

= s(↵
1

). ⇤

The Fixed Point Identity (Lemma 2.3.8) which relates  and s immediately gives us an s-analogue of
Lemma 4.3.4.

Corollary 4.3.5. Let n > 1, q
1

, . . . , qn 2 Q 6=, ↵
1

, . . . ,↵n 2  , ↵
1

< · · · < ↵n, and ↵ =

Pn
j=1

qj↵j. Then
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(1)
Pn

j=1

qj 6= 1 =) s(↵) = s0,
(2)

Pn
j=1

qj = 1 =) s(↵) = s(↵
1

).

Proof. Suppose that
Pn

j=1

qj 6= 1. Then
Pn

j=1

qj � 1 6= 0, so by Lemma 4.3.4,  (↵ � s0) = s0. Thus
s↵ = s0 by Lemma 2.3.8.

Next, suppose that
Pn

j=1

qj = 1. Then
Pn

j=1

qj � 1 = 0, so by Lemma 4.3.4,  (↵ � s↵
1

) = s↵
1

. Thus
s↵ = s↵

1

by Lemma 2.3.8. ⇤

In Theorem 4.3.6 below we give an explicit description of how compositions  
�
F (x)

�
behave in all possible

cases.

Theorem 4.3.6. Let F :  ! �1 be the s-function F (x) =

Pn
j=1

qjs
kj
(x) � �. Define the function

G :  ! �1 by G(x) =  
�
F (x)

�
. If x 2 IF , then G(x) = 1. Otherwise, if x 2 DF , then the values G(x)

are given in the following table (with q :=

Pn
j=1

qj):

� G(x) =  
�Pn

j=1

qjs
kj
(x)� �

�
(assuming x 2 DF )

if  (�) > s0 G(x) =

8
>>>>>><

>>>>>>:

s0 if q 6= 0

sk1

+1

(x) if q = 0 and sk1

+1

(x) <  (�)

G
�
s�k

1

�1

( (�))
�

if q = 0 and sk1

+1

(x) =  (�)

 (�) if q = 0 and sk1

+1

(x) >  (�)

if  (�) = s0 G(x) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

G(s�k
1s0) if sk1

(x) = s0

s0 if sk1

(x) > s0 and q = 0

sk1

+1

(x) if sk1

(x) > s0, q 6= 0,

and sk1

+1

(x) < s(q�1�)

G
�
s�k

1

�1s(q�1�)
�

if sk1

(x) > s0, q 6= 0,

and sk1

+1

(x) = s(q�1�)

s(q�1�) if sk1

(x) > s0, q 6= 0,

and sk1

+1

(x) > s(q�1�)

Proof. In the third, fifth and eighth cases in the table the computation is immediate since we are able
to solve for x in terms of �. For example, in the third case the assumption sk1

+1

(x) =  (�) gives x =

s�k
1

�1

�
 (�)

�
and so the function takes the value G

�
s�k

1

�1

( (�))
�
.

Otherwise, the idea is to do a computation of the form  (↵ � �) where ↵ =

Pn
j=1

qjs
kj
(x). In the

first, second, fourth and sixth cases, we can compute the  -value of ↵ by Lemma 4.3.4 and the assumptions
are such that the  -values of ↵ and � will be different so the  -value of their difference is immediate from
Fact 2.2.1.

For the seventh and ninth case, we have to compute

 
�
q
1

sk1

(x) + · · ·+ qns
kn
(x)| {z }

↵

���
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where by assumption  (�) =  (↵) = s0 since q 6= 0. Using (AC2), we can pivot to a situation where we can
use Lemma 2.3.5 and Corollary 4.3.5 to do the computation. I.e., by dividing by q we reduce to computing

 
�
q�1

(q
1

sk1

(x) + · · ·+ qns
kn
(x))| {z }

q�1↵

�q�1�
�
.

By Corollary 4.3.5, we know that s(q�1↵) = sk1

+1

(x). Our assumptions in cases seven and nine say precisely
that the s-values of q�1↵ and q�1� are different. From that point, it suffices to just use Lemma 2.3.5. ⇤

Corollary 2.3.6 allows us to easily transform Theorem 4.3.6 into an s-analogue. In the proof of Corollary 4.3.7
below we perform this transformation.

Corollary 4.3.7. Let F :  ! �1 be the s-function F (x) =

Pn
j=1

qjs
kj
(x) � �. Define the function

G :  ! �1 by G(x) = s
�
F (x)

�
. If x 2 IF , then G(x) = 1. Otherwise, if x 2 DF , then the values G(x)

are given in the following table:

� G(x) = s
�Pn

j=1

qjs
kj
(x)� �

�
(assuming x 2 DF )

if s(��) > s0 G(x) =

8
>>>>>><

>>>>>>:

s0 if q 6= 0

sk1

+1

(x) if q = 0 and sk1

+1

(x) < s(��)
G
�
s�k

1

�1

(s(��))� if q = 0 and sk1

+1

(x) = s(��)
s(��) if q = 0 and sk1

+1

(x) > s(��)

if s(��) = s0 G(x) =

8
>>>>>>>>><

>>>>>>>>>:

G(s�k
1s0) if sk1

(x) = s0

s0 if sk1

(x) > s0 and q = 0

sk1

+1

(x) if sk1

(x) > s0, q 6= 0 and sk1

+1

(x) < �
0

G(s�k
1

�1�
0

) if sk1

(x) > s0, q 6= 0 and sk1

+1

(x) = �
0

�
0

if sk1

(x) > s0, q 6= 0 and sk1

+1

(x) > �
0

where q :=

Pn
j=1

qj and for q 6= 0,

�
0

:=

8
>>>>>><

>>>>>>:

s0 if � = 0, q 6= 1

1 if � = 0, q = 1

s
�
(1� q)�1�

�
if � 6= 0, q 6= 1

 (�) if � 6= 0, q = 1.

Proof. It is clear that if x 2 IF , then sk1

(x) = 1 and so G(x) = 1 as a result. Thus from now on we
will assume that x 2 DF and we think of DF as a fixed subset of the  -set of �. Next we will take an
elementary extension (�

⇤, ) of (�, ) with an element � 2  
�

⇤ such that � >  . Now, if we take the table
from Theorem 4.3.6, but we replace � with � + � and have x range over DF ✓ �, then we get the following
table, computed in (�

⇤, ):
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� G(x) =  
�Pn

j=1

qjs
kj
(x)� � � �

�
(assuming x 2 DF ✓ �)

if  (� + �) > s0 G(x) =

8
>>>>>><

>>>>>>:

s0 if q 6= 0

sk1

+1

(x) if q = 0 and sk1

+1

(x) <  (� + �)

G
�
s�k

1

�1

( (� + �))
�

if q = 0 and sk1

+1

(x) =  (� + �)

 (� + �) if q = 0 and sk1

+1

(x) >  (� + �)

if  (� + �) = s0 G(x) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

G(s�k
1s0) if sk1

(x) = s0

s0 if sk1

(x) > s0 and q = 0

sk1

+1

(x) if sk1

(x) > s0, q 6= 0,

and sk1

+1

(x) < s
�
q�1

(� + �)
�

G
�
s�k

1

�1s(q�1

(� + �))
�

if sk1

(x) > s0, q 6= 0,

and sk1

+1

(x) = s
�
q�1

(� + �)
�

s
�
q�1

(� + �)
�

if sk1

(x) > s0, q 6= 0,

and sk1

+1

(x) > s
�
q�1

(� + �)
�

Since we are assuming that x 2 DF ✓ �, we can apply Corollary 2.3.6 to replace  
�Pn

j=1

qjs
kj
(x)� � � �

�

with s
�Pn

j=1

qjs
kj
(x)� �

�
and also  (� + �) =  (�� � �) with s(��). Finally, we set �

0

:= s
�
q�1

(� + �)
�

when q 6= 0. This gives us the desired table:

� G(x) = s
�Pn

j=1

qjs
kj
(x)� �

�
(assuming x 2 DF ✓ �)

if s(��) > s0 G(x) =

8
>>>>>><

>>>>>>:

s0 if q 6= 0

sk1

+1

(x) if q = 0 and sk1

+1

(x) < s(��)
G
�
s�k

1

�1

(s(��))� if q = 0 and sk1

+1

(x) = s(��)
s(��) if q = 0 and sk1

+1

(x) > s(��)

if s(��) = s0 G(x) =

8
>>>>>>>>><

>>>>>>>>>:

G(s�k
1s0) if sk1

(x) = s0

s0 if sk1

(x) > s0 and q = 0

sk1

+1

(x) if sk1

(x) > s0, q 6= 0, and sk1

+1

(x) < �
0

G(s�k
1

�1�
0

) if sk1

(x) > s0, q 6= 0, and sk1

+1

(x) = �
0

�
0

if sk1

(x) > s0, q 6= 0, and sk1

+1

(x) > �
0

However we are not done yet; currently �
0

is still an external parameter. We will show (or arrange) that
�
0

2  1 (and give an explicit formula for it), which will then yield the corollary. First, we assume that
� = 0. If q 6= 1, then �

0

= s(q�1�) = s0 by Corollary 4.3.5. If q = 1, then �
0

= s(�) >  and so �
0

62 �.
However, in this case, sk1

+1

(x) ? �
0

iff sk1

+1

(x) ?1 for ? 2 {<,=, >} because sk1

+1

(x) 2  and both s(�)

and 1 are >  . Thus we redefine �
0

:= 1 if � = 0 and q = 1. Now we assume that � 6= 0 and we take
yet another elementary extension (�

⇤⇤, ) of (�⇤, ) with an element e� 2  
�

⇤⇤ such that e� >  
�

⇤ . If q = 1,
then we have

�
0

= s(� + �) =  (� + � � e�) =  (�)
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by Fact 2.2.1 and Lemma 2.3.5 because  (�� e�) = s� >  (�) 2  . Otherwise, assume that q 6= 1. Then we
can multiply on the inside by (q�1 � 1)

�1 to compute

�
0

= s
�
q�1

(� + �)
�

=  
�
q�1

(� + �)� e�
�

=  (q�1� + q�1� � e�)

=  

✓
1

1� q
� +

q

1� q
(q�1� � e�)

◆
.

Next note that s
�
(1 � q)�1�

� 2  whereas s
�
q(1 � q)�1

(q�1� � e�)
�
= s� >  by Corollary 4.3.5. Thus

�
0

= s
�
(1� q)�1�

�
by Lemma 2.3.5. ⇤

Theorem 4.3.6 and Corollary 4.3.7 are the heart of the proof of Theorem 4.3.3. To round things out, we
need to make a few more minor observations before proceeding with our proof of Theorem 4.3.3.

Lemma 4.3.8.  is a linearly independent subset of � as a vector space over Q.

Proof. Let n > 1, q
1

, . . . , qn 2 Q 6=, ↵
1

, . . . ,↵n 2  , ↵
1

< · · · < ↵n, and ↵ =

Pn
j=1

qj↵j . By Lemma 4.3.4,
either  (↵) = s0, or  (↵) = s↵

1

, and so ↵ 6= 0. ⇤

Lemma 4.3.9 describes the values an s-function can take in the set  :

Lemma 4.3.9. Let an s-function F (x) =
Pn

j=1

qjs
kj
(x) � � be given and let F ⇤ be its restriction to DF .

Then exactly one of the following is true:

(1) imageF ⇤ ✓  , � = 0, n = 1, and q
1

= 1,
(2)

��
(imageF ⇤

) \ �� = 2,
(3)

��
(imageF ⇤

) \ �� = 1,
(4)

��
(imageF ⇤

) \ �� = 0.

Proof. If � 62 spanQ ✓ �, then (imageF ⇤
) \ = ;. Thus assume for the rest of the proof that

� = q0
1

↵
1

+ · · ·+ q0m↵m

where q0
1

, . . . , q0m 2 Q 6=, ↵
1

, . . . ,↵m 2  and ↵
1

< · · · < ↵m.
The idea is that we are interested in which values of x will put the expression

q
1

sk1

(x) + · · ·+ qns
kn
(x)| {z }

↵(x)

� (q0
1

↵
1

+ · · ·+ q0m↵m)| {z }
�

into the set  . By the Q-linear independence of  , it is necessary that nearly all of the components of ↵(x)
and � will cancel. We will do this by a case distinction.

If m > n+1 or m < n�1, then for all x 2 DF , the value of F ⇤
(x) is a linear combination of two or more

elements of  with nonzero coefficients so (imageF ⇤
)\ = ;. Thus further assume that n� 1 6 m 6 n+1.

If m = 0 (so � = 0), then F ⇤
(x) 2  iff n = 1 and q

1

= 1, by the linear independence of  . So further
assume that m > 0. Now we look at three subcases:

Case 1: m = n� 1 and m > 0. In this case we can expand out F ⇤
(x) as follows:

F ⇤
(x) = q

1

sk1

(x) + · · ·+ qns
kn
(x)� q0

1

↵
1

� · · ·� q0n�1

↵n�1

.

In order for F ⇤
(x) above to be an element of  , it is necessary that either sk1

(x) = ↵
1

or skn
(x) = ↵n�1

,
otherwise the value of F (x) is a linear combination of two or more elements of  . Thus

��
(imageF ⇤

)\ �� 6 2

in this case.
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Case 2: m = n+ 1 and m > 0. This case is similar to Case 1 and
��
(imageF ⇤

) \ �� 6 2.
Case 3: m = n. We can expand F ⇤

(x) as follows:

F ⇤
(x) = q

1

sk1

(x) + · · ·+ qns
kn
(x)� q0

1

↵
1

� · · ·� q0n↵n.

In order for F ⇤
(x) 2  , it is necessary that skj

(x) = ↵j for j = 1, . . . , n. Otherwise the value of F ⇤
(x) is a

linear combination of two or more elements of  . Thus
��
(imageF ⇤

) \ �� 6 1 in this case. ⇤

Lemma 4.3.10. Let t(x) : �1 ! �1 be an LAC,log-term and let F :  ! �1 be the restriction t| of t
to  . Then there is an increasing sequence s0 = ↵

0

< ↵
1

< · · · < ↵n�1

< ↵n = 1 in  1 such that for
k = 0, . . . , n� 1, the restriction of F to [↵k,↵k+1

)

 

is given by an s-function.

Proof. We do this by induction on the complexity of the LAC,log-terms.
Easy Cases: By definition the constant term � for � 2 �1 is an s-function, and it is clear that the set

of s-functions is closed under +,� and �n for n > 1.
 Case: Let F (x) =

Pn
j=1

qjs
kj
(x)�� be an s-function. Then we can determine the value of  

�
F (x)

�

from Theorem 4.3.6. Note that whenever the expression sl(x) < � is not vacuous in the table of Theorem 4.3.6,
then it is equivalent to x < s�l� (similarly for = and >).

s Case: This is similar to the  case, except we use Corollary 4.3.7.
p Case: Let F (x) =

Pn
j=1

qjs
kj
(x)� � be an s-function. By Lemma 4.3.9, if � = 0, n = 1, q

1

= 1, then
F ⇤ is of the form sk(x) and so

p
�
F (x)

�
=

8
>>><

>>>:

1 if x 2 IF

1 if x = minDF and k 6 0

sk�1

(x) if x > minDF or k > 0.

Otherwise, F (x) 2  for 0, 1 or 2 values of x, so p
�
F (x)

�
= 1 for all x 2  with at most 0, 1 or 2

exceptions. ⇤

We say that a set I ✓  is an interval in  if there are ↵,� 2  1 with ↵ < � such that I = [↵,�)
 

. The
following is immediate from Theorem 4.2.2, and Lemmas 4.3.2 and 4.3.10:

Corollary 4.3.11. Every definable A ✓  is a finite union of intervals in  and singletons.

Proof of Theorem 4.3.3. It follows from quantifier elimination and the fact that TAC,log has a universal
axiomatization that there are LAC,log-terms t

1

(x), . . . , tn(x) such that on  we have F (x) = tk(x), for some
i 2 {1, . . . , k}. By Corollary 4.3.11, the set

Di :=

�
x 2  : F (x) = tk(x)

 ✓  
is a finite union of intervals and singletons. Furthermore, by Lemma 4.3.10, the restriction of F (x) to Di is
given piecewise by s-functions in the desired way. ⇤

Corollary 4.3.12 (Characterization of definable functions  !  ). Let F :  !  be definable in (�, ).
Then there is an increasing sequence s0 = ↵

0

< ↵
1

< · · · < ↵n�1

< ↵n = 1 in  1 such that for k = 1, . . . , n,
the restriction of F to [↵k�1

,↵k) is either constant or of the form x 7! sl(x) for some l 2 Z.

Proof. This follows from Theorem 4.3.3 and Lemma 4.3.9. ⇤
50



It is clear from Corollary 4.3.11 that each nonempty definable A ✓  has a least element. This gives us
definable Skolem functions for definable subsets of  n (see, for example, [40, p. 94]).

The following Theorem 4.3.13 follows immediately from Corollary 4.3.11 and the main result of [31]. For
the reader’s convenience we supply a more direct and self-contained proof. It is a variant of [39, Lemma
4.7], which itself is a variant of [18, Lemma 1].

Theorem 4.3.13. Let n > 1 and suppose that f :  

n !  is a definable function. Then f is definable in
the structure ( ;<).

Proof. We can arrange that (�, ) is @
0

-saturated.
The case n = 1 follows from Corollary 4.3.12.
Let n > 1. Let A be the finite set of parameters from � used to define f . For each a 2  we can define

the function fa : x 7! f(a, x) :  n�1 !  . By induction, fa is definable in the structure ( ;<), so we have
ca 2  Na and a set �a ✓  

Na+(n�1)+1 definable in ( ;<) such that �a(ca) = graph(fa). We can arrange
that �a is the graph of a function Fa :  

Na+(n�1) !  such that Fa(ca, x) = fa(x) for all x 2  . Next let
�a ✓  be the A-definable set of all b 2  such that the function fb :  

n�1 !  occurs as a section of Fa.
Note that a 2 �a since Fa(ca, x) = f(a, x). Thus

 =

[

a2 
�a

By saturation there are a
1

, . . . , ak 2  such that:

 =

k[

j=1

�j

where �j := �aj for j = 1, . . . , k. Let Fj := Faj , �j := �aj , cj := caj and Nj := Naj for j = 1, . . . , k and let
N = max

16j6k Nj . Extend each function Fj :  
Nj+(n�1) !  to a function F 0

j :  
N+(n�1) !  by setting

F 0
j(w1

, . . . , wN , x) := Fj(w1

, . . . , wNj , x) for all (w
1

, . . . , wN , x) 2  N+(n�1)

so the last N �Nj variables before x are dummy variables. Next define a function F :  

1+N+(n�1) !  by

F (v, w
1

, . . . , wN , x) =

8
>>>>>>>>><

>>>>>>>>>:

F 0
1

(w
1

, . . . , wN , x) if v = s0

F 0
2

(w
1

, . . . , wN , x) if v = s20
...

F 0
k�1

(w
1

, . . . , wN , x) if v = sk�1

0

F 0
k(w1

, . . . , wN , x) if v > sk0
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Finally, we note the following:

 =

Sn
j=1

�j ) for every a 2  there is j 2 {1, . . . , k} such that a 2 �j

) for every a 2  there is j 2 {1, . . . , k} and c 2  Nj

such that f(a, x) = Fj(c, x) for every x 2  
) for every a 2  there is j 2 {1, . . . , k} and c 2  N

such that f(a, x) = F 0
j(c, x) for every x 2  

) for every a 2  there is v 2  and c 2  N

such that f(a, x) = F (v, c, x) for every x 2  
) for every a 2  there is c 2  1+N

such that f(a, x) = F (c, x) for every x 2  
) 8a 2  9c 2  1+N 8x 2  �

f(a, x) = F (c, x)
�

By definability of Skolem functions, there is a definable function c = (c
0

, . . . , cN ) :  !  

1+N such that

8a 2  8x 2  �
f(a, x) = F (c(a), x)

�

From the base case of this lemma, ci :  !  is definable in ( ;<) for i = 0, . . . , N . Thus f(z, x) :  n !  

agrees with the function F
�
c(z), x

�
:  

n !  , which is definable in ( ;<). This concludes the proof of the
induction step. ⇤

Corollary 4.3.14. The subset  of � is stably embedded in (�, ).

4.4. Simple extensions and examples

In this section M = (M, , s, p, . . .) is a monster model of TAC,log. All other models considered will be small
submodels of M.

Simple extensions. In this subsection we consider an arbitrary small submodel � = (�, , s, p, . . .) of
cardinality 6  < (M). The element ↵ will range over M and we will assume ↵ 62 � to avoid some trivial
cases. Note that the set  =  

�

will always contain the initial copy of N together with at most -many
copies of Z, whereas the set  M \ is the union of all copies of Z in  M that are not part of  .

When considering simple extensions �h↵i of � (in the language LAC,log), it is useful to know whether the
ordered abelian group � � Q↵ is already closed under the primitives  and s. If it is not closed, then we
want to know how badly ��Q↵ fails to be closed under  and s. This motivates defining

Q 6=↵� � := {q↵� � : q 2 Q 6= and � 2 �}
as well as the following subsets of  M:

 (Q 6=↵� �) :=

�
 (q↵� �) : q 2 Q 6= and � 2 � 

s(Q 6=↵� �) :=

�
s(q↵� �) : q 2 Q 6= and � 2 � 

T
�

(↵) :=  (Q 6=↵� �) [ s(Q 6=↵� �).
Note that  (Q 6=↵� �) =  (↵� �) := �

 (↵� �) : � 2 � by (AC2).
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Since T
�

(↵) is defined using the primitives  and s, and ↵ 62 �, it is clear that T
�

(↵) ✓  M. If T
�

(↵) ✓
 =  

�

, then the ordered abelian group ��Q↵ is already closed under the primitives  and s. However, if
T
�

(↵)\ is nonempty, then ��Q↵ is not closed under  and s and then we are interested in the possibilities
of the set T

�

(↵) \ .

As we will show below in Corollary 4.4.4, the set T
�

(↵) \ is either empty, or contains a single element in
 M \  . At any rate, since T

�

(↵) ✓ �h↵i, all elements of T
�

(↵) \  must get added to � in order to have
any chance at closing off under s and  .

Remark 4.4.1. In fact, T
�

(↵) \ also measures the failure of ��Q↵ to be closed under p in the following
way: if p(q↵� �) 2  M \ , then q↵� � 2  M \ and in particular, s(q↵� �) 2  M \ . For such a q↵� �,
p(q↵ � �) and s(q↵ � �) are on the same copy of Z in  M \  . Thus if � � Q↵ is not closed under p, then
this failure is already detected by the fact that ��Q↵ is not closed under s.

In view of Corollary 2.3.6 which relates the functions  and s through a translation by an external parameter,
it may come as no surprise that  (Q 6=↵� �) and s(Q 6=↵� �) are very similar as the following two lemmas
show:

Lemma 4.4.2. Let � be either  (Q 6=↵� �) or s(Q 6=↵� �). Then for �
0

2 M, �
1

2 � such that �
0

< �
1

,
we have �

0

2  iff �
0

2 �. In particular, � \ is a downward closed subset of  and � \ consists of at
most one element �; furthermore, such � realizes the cut (� \ , \�) in  .

Proof. First, consider the case that � =  (Q 6=↵� �) =  (↵� �) and let �
0

2 M and �
1

2 � be arbitrary
such that �

0

< �
1

. Then �
1

=  (↵� �
1

) for some �
1

2 �. First suppose that �
0

2  . Then there is �
0

2 �
such that �

0

=  (�
0

) <  (↵� �
1

) = �
1

. Note that

�
0

=  (�
0

) =  
�
�
0

� (↵� �
1

)

�
=  

�
↵� (�

0

+ �
1

)

� 2 �.

Conversely, if �
0

2 �, then �
0

=  (↵ � �
0

) for some �
0

2 �. It then follows from �
0

=  (↵ � �
0

) <

 (↵� �
1

) = �
1

that

�
0

=  (↵� �
0

) =  
�
(↵� �

0

)� (↵� �
1

)

�
=  (�

1

� �
0

) 2  .
Next, consider the case that � = s(Q 6=↵ � �) and let �

0

2 M and �
1

2 � be arbitrary such that �
0

< �
1

.
Then �

1

= s(q
1

↵��
1

) for some q
1

2 Q 6= and �
1

2 �. We will also take �⇤ 2  M such that �⇤ >  
�h↵i. First

suppose that �
0

2  . Then �
0

=  (�
0

) for some �
0

2 � and thus �
0

=  (�
0

) < s(q
1

↵ � �
1

) = �
1

. Then by
Corollary 2.3.6,

�
0

=  (�
0

) = min

�
s(q

1

↵� �
1

), (�
0

)

�
= min

�
 (q

1

↵� �
1

� �⇤), (�
0

)

�

=  (q
1

↵� �
1

� �⇤ � �
0

) = s
�
q
1

↵� (�
1

+ �
0

)

� 2 �.

Conversely, if �
0

2 �, then �
0

= s(q
0

↵ � �
0

) for some q
0

2 Q 6= and �
0

2 �. Then �
0

= s(q
0

↵ � �
0

) <

s(q
1

↵� �
1

) = �
1

, and it follows that

�
0

=  (↵� q�1

0

�
0

� q�1

0

�⇤) <  (↵� q�1

1

�
1

� q�1

1

�⇤)

and so
�
0

=  
�
q�1

1

�
1

� q�1

0

�
0

+ (q�1

1

� q�1

0

)�⇤
�
.
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If q
0

= q
1

, then �
0

2  . Otherwise,

�
0

=  

✓
� q�1

1

q�1

1

� q�1

0

�
1

+

q�1

0

q�1

1

� q�1

0

�
0

� �⇤
◆

= s

✓
� q�1

1

q�1

1

� q�1

0

�
1

+

q�1

0

q�1

1

� q�1

0

�
0

◆
2  . ⇤

Lemma 4.4.3. s(Q 6=↵� �)\ =  (Q 6=↵� �)\ . Furthermore, s(Q 6=↵� �)4 (Q 6=↵� �) consists of at
most one element.

Proof. Suppose �
0

2 s(Q 6=↵ � �) \  . Let q 2 Q 6= and �
0

2 � be such that �
0

= s(q↵ � �
0

). Let �
1

2 �
be such that s(�

1

) > �
0

= s(q↵� �
0

). Then Lemma 2.3.5 gives

 
�
q↵� (�

1

+ �
0

)

�
=  

�
�
1

� (q↵� �
0

)

�
= s(q↵� �

0

) = �
0

and so �
0

2  (Q 6=↵� �) \ .
Next we consider two cases. First suppose s(Q 6=↵ � �) \  is cofinal in  . Since it is also downward

closed in  , it is necessarily the case that  = s(Q 6=↵� �) \ ✓  (Q 6=↵� �) \ ✓  , so we get equality
throughout.

Otherwise, by Lemma 4.4.2 we can take ⇢ 2  such that s(Q 6=↵� �) < ⇢. Let � 2 � be arbitrary such
that  (↵� �) 2  (Q 6=↵� �) \ . Then by choice of ⇢ 2  we have

s(↵� � + ⇢)| {z }
2s(Q 6=↵��)

< ⇢ < s(⇢).

Thus by Lemma 2.3.5 we have

 (↵� �) =  
�
(↵� � + ⇢)� ⇢

�
= s(↵� � + ⇢) 2 s(Q 6=↵� �)

and we conclude that  (Q 6=↵� �) \ ✓ s(Q 6=↵� �) \ .
Finally, suppose s(Q 6=↵��)\ = {�} where � 2  M\ . Then we will show that  (Q 6=↵��) ✓  [{�}.

Take �⇤ 2  M such that �⇤ >  
�h↵i and take q 2 Q 6= and � 2 � such that � = s(q↵� �) =  (q↵� � � �⇤).

Let � 2 � be arbitrary. Note that

 (q↵� � � �) =  
�
(q↵� � � �⇤)� (� � �⇤)

�

> min

�
 (q↵� � � �⇤), (� � �⇤)

�

= min

�
s(q↵� �), s(�)

�

= min

�
�, s(�)

�
.

But since � 62  and s(�) 2  , we actually get  (q↵����) = min

�
�, s(�)

�
. Since q 6= 0 and as � ranges over

�, � + � will also range over �, together with (AC2) this argument shows that  (Q 6=↵� �) ✓  [ {�}. ⇤

It follows that T
�

(↵) occurs in only three different ways:

Corollary 4.4.4. Exactly one of the following is true:

(1) T
�

(↵) = [s0,�]
 

=  

6� ✓  for some � 2  .
(2) T

�

(↵) = B where B ✓  is nonempty, downward closed and is such that s(B) ✓ B (i.e.,  \ B 2
sded

op
( )).

(3) T
�

(↵) = B[{�} where B ✓  is nonempty, downward closed and is such that s(B) ✓ B and � 2  M\ 
with B < � < ( \B).

In particular,
��T
�

(↵) \ �� 6 1.
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Note that if T
�

(↵) ✓  for a particular � and ↵ 2 M, then ��Q↵ as an ordered abelian subgroup of M is
closed under the functions  and s. In fact, it follows from Remark 4.4.1 that � � Q↵ is also closed under
p. Thus (��Q↵, , s, p, . . .) is an LAC,log-substructure of M which extends � and hence also is a model of
TAC,log since TAC,log has a universal axiomatization. In this case, �h↵i = (��Q↵, , s, p, . . .).

The following observation illustrates how the inductive step in Theorem 4.4.6 below will work:

Observation 4.4.5. Suppose that �
0

✓ �

1

✓ M are models of TAC,log and that ↵ 2 M \ �
1

. Then
T
�

0

(↵) ✓ T
�

1

(↵). In particular, if T
�

0

(↵) = B
0

[ {�
0

} as in case (3) of Corollary 4.4.4 above, and if
�

1

= �

0

h�
0

i = �
0

+

P
n Qsn�

0

+

P
n Qpn�

0

also has the property that T
�

1

(↵) = B
1

[ {�
1

} as in case (3) of
Corollary 4.4.4, then it must be the case that �

0

2 B
1

and thus sn�
0

< �
1

for all n.

Theorem 4.4.6. Let ↵ 2 M. Then �h↵i is isomorphic over � to one of the following:

(1) �⇢ for some increasing ⇢ : n ! sded

op
( ) \ { } and some n,

(2) �⇢ �Q↵ for some increasing ⇢ : n ! sded

op
( ) \ { } and some n,

(3) �⇢ �Q↵ for some increasing ⇢ : ! ! sded

op
( ) \ { }.

Proof. We will recursively construct a sequence of extensions � =: �

0

✓ �
1

✓ �
2

✓ · · · ✓ �h↵i of models
of TAC,log inside M. This sequence will either be finite or have order type ! + 1 and the last element of the
sequence will be �h↵i.

We will inductively assume that each �n constructed so far is isomorphic to some �⇢ for some increasing
⇢ : n ! sded

op
( ) \ { }. This is true for n = 0 since �

0

= � = �⇢ for the empty increasing function
⇢ : 0 ! sded

op
( )\{ }. Given �n for n < !, if ↵ 2 �n, then we are done, i.e., �h↵i = �n and so �h↵i ⇠

=

�⇢ for
some increasing ⇢ : n ! sded

op
( ) \ { }. Otherwise, consider the set T

�n(↵). If T
�n(↵) ✓  �n , then we set

�n+1

:= �n�Q↵ and we are done, i.e., �h↵i = �n+1

⇠
=

�⇢�Q↵ for some increasing ⇢ : n ! sded

op
( )\{ }.

Otherwise, we are in the case where T
�n(↵) = B [ {�} where B ✓  n is nonempty, downward closed

and is such that s(B) ✓ B and � 2  M \  n and B < � < ( n \ B) =  \ B. In this case we set
�n+1

:= �nh�i, i.e., we add to �n the element �, and with it, the entire copy of Z that � lives on, so
�n+1

= �n +

P
n Qpn� +

P
n Qsn�. Thus �n+1

⇠
=

(�n)
( n\B)

. By Observation 4.4.5 we actually have
�n+1

⇠
=

�⇢0 for some increasing ⇢0 : n + 1 ! sded

op
( ) \ { }. Now that we’ve constructed �n+1

, we keep
going.

Note that we either terminate the construction at a finite n or else
S

n �n is isomorphic to �⇢ inside
�h↵i for some increasing ⇢ : ! ! sded

op
( ) \ { }, by Observation 4.4.5. In the latter case, we note the

ordered abelian group �! := (

S
n �n)�Q↵ is automatically closed under  and s by construction and so we

are done: �h↵i = �! and so �h↵i ⇠
=

�⇢ �Q↵ for some increasing ⇢ : ! ! sded( ) \ { }. ⇤

Examples. In this section we give explicit examples of extensions of models of TAC,log which realize each
type of simple extension in Theorem 4.4.6.

First, we recall the useful notion of pseudocauchy sequences and pseudolimits from valuation theory, given
here only in the special context of asymptotic couples with valuation map  :

Definition 4.4.7. Let (�, ) be an asymptotic couple and let (↵⇢) be a well-indexed sequence in �. We say
that (↵⇢) is a pseudocauchy sequence (or pc-sequence in (�, )) if for some index ⇢

0

we have

⇢
0

< ⇢ < � < ⌧ =)  (↵⇢ � ↵�) <  (↵� � ↵⌧ ).
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For ↵ 2 �, the sequence (↵⇢) is said to pseudoconverge to ↵, and ↵ is a pseudolimit of (↵⇢) if for some
index ⇢

0

we have
⇢
0

< ⇢ < � < ⌫ =)  (↵� ↵⇢) <  (↵� ↵�).

The basic connection between pc-sequences and model theory is the following:

Lemma 4.4.8. Let (�, ) be an asymptotic couple, and suppose (↵⇢) a pc-sequence in �. Then there is an
elementary extension (�

⇤, ⇤
) of (�, ) and an element ↵ 2 �⇤ such that (↵⇢) pseudoconverges to ↵.

Proof. Suppose (↵⇢) is a pc-sequence in �. Let ⇢
0

be as in Definition 4.4.7. Consider the partial type given
by all formulas of the form

 (x� ↵⇢) <  (x� ↵�)

for ⇢
0

< ⇢ < �. Since every finite subset of this type is realized in (�, ), this type will be realized by
an element ↵ in an elementary extension (�

⇤, ⇤
) of (�, ). It easily follows that ↵ is a pseudolimit of the

pc-sequence (↵⇢). ⇤

Example 1. Consider the LAC,log-substructure (�

Q
log

, ) of (�
log

, ) with underlying group �Q
log

=

P
n Qen.

We have shown that (�

Q
log

, ) |= TAC,log, and in fact, (�Q
log

, ) is a prime model of TAC,log. Let ↵ be the
element

↵ :=

p
2e

2

= (0, 0,
p
2, 0, . . .) 2 �

log

\ �Q
log

.

An arbitrary element of Q 6=↵� �Q
log

looks like

(q
0

, q
1

, q
2

+ q
p
2| {z }

6=0,1

, q
3

, . . .)

where q 2 Q 6= and qn 2 Q, where qn = 0 for all but finitely many n. Since the third entry q
2

+ q
p
2 can

never be 0 or 1, a computation using Example 2.3.2 shows that

 (Q 6=↵� �Q
log

) = s(Q 6=↵� �Q
log

) = {s0, s20, s30}
and thus

T
(�

Q
log

, )(↵) = {s0, s20, s30} = [e
0

, e
0

+ e
1

+ e
2

]

 

(�

Q
log

, )

✓  
(�

Q
log

, ).

Therefore
(�

Q
log

, )h↵i = (�

Q
log

�Q↵, )

where the direct sum is taken inside �
log

and  is the restriction of the  -map of (�

log

, ). This is an
example of (2) from Theorem 4.4.6 with n = 0, and (1) from Corollary 4.4.4.

Example 2. The idea for this example is to adjoin the vector
✓
1,

1

2

,
1

3

,
1

4

,
1

5

, . . .

◆

to the asymptotic couple (�

log

, ). This can be made precise using the notions of pc-sequences and pseu-
dolimits as follows:

Consider the sequence (↵N )N<! :=

�PN
i=0

(1 + i)�1ei
�
N<!

in (�

log

, ). If N
0

< N
1

< !, then

↵N
0

� ↵N
1

= �PN
1

i=N
0

+1

(1 + i)�1ei, and thus:

 (↵N
0

� ↵N
1

) =

PN
0

+1

i=0

ei = sN0

+1

0, for all N
0

< N
1

< !(4.4.1)
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This shows (↵N )N<! is a pc-sequence in (�

log

, ). By Lemma 4.4.8, we get an elementary extension (�

⇤, ⇤
)

of (�

log

, ) and an element ↵ 2 �

⇤ such that ↵ is a pseudolimit of (↵N )N<!. In some sense ↵ can be
thought of as the vector above, especially when it comes to doing calculations. It follows from (4.4.1) and
the definition of pseudolimit that

(4.4.2)  (↵� ↵N ) = sN+1

0, for all N < !.

Let � =

P
n qnen 2 �

log

be arbitrary, where qn 2 Q for all n. Then take the unique N < ! such that
qn = (1 + n)�1 iff n < N . Next let M < ! be arbitrary and note that

 (� � ↵N+M ) =  
�P

n qnen �PM+N
n=0

(1 + n)�1en
�

=  
�P

n>N qnen �PN+M
n=N (1 + n)�1en

�

=  
�
(qN � (1 +N)

�1

)| {z }
6=0

eN +

P
n>N q⇤nen

�
(for some q⇤n 2 Q)

=

PN
n=0

en = sN0.

In light of (4.4.2), this computation shows that ↵ 2 �

⇤ \ �
log

. Using Fact 2.2.1 and the definition of
pseudolimit, the above computation also shows that

 (Q 6=↵� �
log

) =  

�

log

.

To compute s(Q 6=↵ � �
log

), let q 2 Q 6= and � =

P
n qnen 2 �

log

be arbitrary. Take the unique N < ! such
that qn = q(1 + n)�1 � 1 iff n < N . Then we have

q↵N+1

� � = e
0

+ · · ·+ eN�1

+

�
q(1 +N)

�1 � qN
�

| {z }
6=1

eN +

X

n>N

q⇤nen (for some q⇤n 2 Q)

and so s(q↵N+1

� �) = sN0. Furthermore, (4.4.2) gives

[q↵� q↵N+1

] < [eN ].

Thus, with eq :=

��
1� q(1 +N)

�1

+ qN
��/2 2 Q>, we have that

q↵N+1

� � � eqeN < q↵� � = (q↵� q↵N+1

) + (q↵N+1

� �) < q↵N+1

� � + eqeN ,

with all three quantities contained either entirely within
�
(�

⇤
)

<
�0 or entirely within

�
(�

⇤
)

>
�0. By Corol-

lary 2.3.7, it follows that s(q↵� �) = sN0. This computation shows that

s(Q 6=↵� �
log

) =  

�

log

.

We conclude that
T
(�

log

, )(↵) =  

�

log

and so
(�

log

, )h↵i = (�

log

�Q↵, )

where the direct sum is being taken inside �⇤ and  is the restriction of the  -map of (�⇤, ⇤
). This is an

example of (2) from Theorem 4.4.6 with n = 0, and (2) from Corollary 4.4.4.
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Example 3. In this example, we let (�, ) be an arbitrary model of TAC,log and we fix an extension (�⇢, ⇢)

for some increasing ⇢ : n ! sded

op
( ) \ { } for some n > 1. Consider an element ↵ 2 �⇢ such that

↵ := � +

n�1X

j=0

↵j

where � 2 � and ↵j 2 �
spanQ(�k,j)k2Z

� 6=, i.e., each ↵j is constructed from a nontrivial linear combination
of �k,j ’s from the jth copy of Z that was added to � in �⇢. We will show that ↵ has the property that
�h↵i = �⇢, and so it is in some sense a “primitive element” for the extension �⇢ of �.

First, since �h↵i = �h↵ � �i, we replace ↵ with ↵ � � to arrange ↵ =

Pn�1

j=0

↵j . By the Q-linear
independence of the (�k,j)k2Z,j<n (Lemma 4.3.8), we uniquely write ↵ =

PN
l=0

ql�l for some N > 0, with
q
0

, . . . , qN 2 Q 6= and (�l)l6N ✓ (�k,j)k2Z,j<n are such that �
0

< · · · < �N .
Next, if

PN
l=0

ql = 0, then  (↵) = s�
0

2 �h↵i, otherwise s
�
(

PN
l=0

ql)
�1↵

�
= s�

0

by Lemma 4.3.4 and
Corollary 4.3.5. Thus (sk�

0

)k2Z ✓ �h↵i and ↵ � q
0

�
0

=

PN
l=1

ql�l 2 �h↵i. In this way, we have “stripped
off” the least �k,j in ↵ and we have recovered the first copy of Z in the construction of �⇢. Continuing in
this manner we can recover all the other copies of Z.

It is also clear that all such “primitive elements” of �⇢ must take this form. This simple extension is an
example of (1) in Theorem 4.4.6 with arbitrary n.

Example 4. Finally we give an example of a simple extension of type (3) from Theorem 4.4.6. Let (�, ) be
an arbitrary model of TAC,log and we fix an extension (�⇢, ⇢) for some increasing ⇢ : ! ! sded

op
( ) \ { }

inside M. Let (�k,j)k2Z,j<! be the elements from the copies of Z’s that were added to � in �⇢.
Next, define the element ↵n :=

Pn
j=0

�
1,j ��0,j 2 �⇢�(n+1)

✓ �⇢ ✓ M. Note that from Example 3 above
we have �h↵ni = �⇢�(n+1)

. Also note that by Lemma 4.3.4, we have that

(4.4.3)  (↵n � ↵m) =  (
Pn

j=m+1

�
1,j � �

0,j) = s(�
0,m+1

) = �
1,m+1

, for all m < n < !,

and so the sequence (↵n)n<! is a pc-sequence. By saturation of M, we can take an element ↵ that is a
pseudolimit of (↵n).

We claim that �h↵i is of the form �⇢ �Q↵. First, by (4.4.3) and the definition of pseudolimit,

(4.4.4)  (↵� ↵n) = �
1,n+1

, for all n < !.

By Fact 2.2.1, (4.4.4), and Lemma 4.3.4, we get

 (↵) =  
�
(↵� ↵

0

) + ↵
0

�
= min

�
 (↵� ↵

0

), (↵
0

)

�
= min(�

1,1,�1,0) = �
1,0.

From this it is clear that in fact ↵
0

= �
1,0 � �

0,0 = �
1,0 � p�

1,0 2 �⇢�1 ✓ �h↵i. In general, if we show
that ↵

0

, . . . ,↵m 2 �⇢�(m+1)

✓ �h↵i, then we may consider the pc-sequence (↵n �Pm
j=0

↵m)n>m+1

which
pseudoconverges to ↵�Pm

j=0

↵m in �h↵i. Then we can recover �
1,m+1

and thus also ↵m+1

similar to above
by computing  (↵�Pm

j=0

↵m).
We have shown �⇢ ✓ �h↵i, from which it follows from the proof of Theorem 4.4.6 that in fact �h↵i =

�⇢ �Q↵ inside M.

4.5. Counting types and the non-independence property (NIP)

Counting Types in TAC,log. In this section we derive a consequence of Theorem 4.4.6 necessary for proving
NIP for TAC,log below:
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Corollary 4.5.1. If (�, ) |= TAC,log, then
��S1

(�)

�� 6 ded

�|�|�@0

.

Under the assumptions of Section 4.4, it follows from the quantifier elimination for TAC,log that two elements
↵,� 2 M \ � have the same type over � iff ↵ and � have the same isomorphism type over �, i.e., iff there
is an isomorphism �h↵i ⇠

=

�h�i over � which sends ↵ to �. This is how Corollary 4.5.1 will follow from
Theorem 4.4.6.

In the rest of this section M is a monster model of TAC,log and � is a small submodel of M of size . As a
warmup to proving Corollary 4.5.1, we first prove the following:

Lemma 4.5.2. There are at most ded()-many types of the form tp(↵|�) where ↵ 2 M \� has the property
that �h↵i = ��Q↵ inside M.

Proof. We have to count the isomorphism types of elements ↵ 2 M \ � that have the property that
�h↵i = ��Q↵. Let ↵ 2 M \ � have this property. There are two cases to consider:

Case 1: [��Q↵] = [�]. In this case the isomorphism type of ↵ over � is determined completely by its
cut over � by Corollary 3.1.11. In particular, there are at most ded()-many types that fall into this case.

Case 2: [��Q↵] 6= [�]. In this case, there are � 2 �, q 2 Q 6= such that � + q↵ > 0 and [� + q↵] 62 [�].
In this case, the isomorphism type of ↵ over � is completely determined by this choice of � 2 �, q 2 Q 6=, the
cut that [� + q↵] realizes in [�] and the element � 2  such that  (� + q↵) = �, by Corollary 3.1.12. Thus
there are at most  · @

0

· ded() ·  = ded()-many types that fall into this case. ⇤

Proof of Corollary 4.5.1. Let ↵ 2 M \ �. Then by Theorem 4.4.6, we have three cases:
Case 1: �h↵i ⇠

=

�⇢ for some increasing ⇢ : n ! sded

op
( ) \ { }, for some n. In this case, the

isomorphism type of ↵ over � is completely determined by the map ⇢ and the specific element of �⇢ which
maps to ↵. Since |�⇢| = |�|, for each n this gives ded()n ·  = ded()-many isomorphism types over �. In
total, Case 1 gives

P
n<! ded() = ded()-many types.

Case 2: �h↵i ⇠
=

�⇢ � Q↵ for some increasing ⇢ : n ! sded

op
( ) \ { }, for some n. In this case, the

isomorphism type of ↵ over � is determined by the map ⇢ and then the type of ↵ over the image of �⇢ in
M. By Lemma 4.5.2, Case 2 gives

P
n<! ded()

n · ded() = ded()-many types.
Case 3: �h↵i ⇠

=

�⇢ �Q↵ for some increasing ⇢ : ! ! sded

op
( ) \ { }. In this case, the isomorphism

type of ↵ over � is also determined by the map ⇢ and then the type of ↵ over the image of �⇢ in M. By
Lemma 4.5.2, Case 3 gives ded()@0 · ded() = ded()@0 -many types. ⇤

NIP. In this section we derive the main result of [15] as an immediate consequence of Corollary 4.5.1:

Theorem 4.5.3. TAC,log and TAC have NIP.

In the rest of this section T is an arbitrary first-order theory with monster model M.

Definition 4.5.4. Let R ✓ Mm+n
= Mm ⇥ Mn be a definable relation. We say that R, and any LM-

formula �(x, y) that defines R, has the independence property (or IP) if there are (ai)i2N ✓ Mm and
(bI)I✓N ✓ Mn such that

R(ai, bI) () i 2 I, for all i 2 N and I ✓ N.

Otherwise we say that R, and any LM-formula �(x, y) that defines R, does not have the independence
property (or has NIP).
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We say that T has NIP if every definable relation R ✓ Mm+n for every m,n has NIP.

Definition 4.5.5. Define the stability function of T to be the function

gT () = sup

M |=T,|M |=

�����
[

n<!

Sn
(M)

����� = sup

M |=T,|M |=

��S1

(M)

�� .

The main result concerning NIP and the function gT () is the following:

Proposition 4.5.6. If T has NIP, then

gT () 6 ded()|T | for all ,

and if T has the independence property, then

gT () = 2

 for all .

Proposition 4.5.6 is a global form of [36, Theorem 4.10]. For additional accounts, also see [1, §4] or [37,
2.3.4].

In the presence of the Generalized Continuum Hypothesis (GCH), we have ded() = 2

 for all  and so we
cannot get a converse to Proposition 4.5.6. However, if we dare to reject CH, then we have [30, Corollary
4.3] at our disposal:

Proposition 4.5.7. Con(ZF) ! Con

�
ZFC, 2

@
0

= @!
1

, 2

@
1

= @+

!
1

, and ded(@
1

) < 2

@
1

�
.

Note that if we are in a model of ZFC where 2

@
0

= @!
1

, 2@1

= @+

!
1

and ded(@
1

) < 2

@
1 are true, then it

follows that ded(@
1

) 6 @!
1

and so

ded(@
1

)

@
0 6 @@

0

!
1

= (2

@
0

)

@
0

= 2

@
0

·@
0

= 2

@
0

= @!
1

< @+

!
1

= 2

@
1 .

In other words:

Corollary 4.5.8 (Mitchell). Con(ZF) ! Con

�
ZFC and ded(@

1

)

@
0 < 2

@
1

�
.

By absoluteness of NIP, Proposition 4.5.6 and Corollary 4.5.8, we get:

Proof of Theorem 4.5.3. Since TAC,log is countable in a recursive language with a recursively enumerable
axiomatization, the statement “TAC,log has NIP" is an arithmetic statement, i.e., via Gödel numbering
this statement is expressible by a sentence in Peano arithmetic. Any proof of such a sentence from ZFC
+

�
ded(@

1

)

@
0 < 2

@
1

�
can be converted into a (possibly much longer) proof from ZFC. Now, suppose we

are in a model of ZFC +

�
ded(@

1

)

@
0 < 2

@
1

�
. Then in such a model it follows from Corollary 4.5.1 that

gTAC,log(@1

) 6 ded(@
1

)

@
0 < 2

@
1 . Then by Proposition 4.5.6, TAC,log has NIP in that particular model, i.e.

ZFC +

�
ded(@

1

)

@
0 < 2

@
1

� ` T
log

has NIP

and thus
ZFC ` TAC,log has NIP,

or in other words, TAC,log has NIP. It follows that TAC also has NIP since every model of TAC can be
expanded into a model of TAC,log. ⇤
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4.6. Other model-theoretic results

In this section M is a monster model of TAC,log and (�, ) is a small submodel of M.

Variants of o-minimality. In contrast to the o-minimality of  (Corollary 4.3.11), it is important to note
that (�, ) is not even weakly o-minimal because the definable set  ✓ � is infinite and discrete. In fact,
(�, ) is not even locally o-minimal (in the sense of [38]) because the definable set ( � )>0 ✓ � does not
have the local o-minimality property at 0.

However, (�, ) is “o-minimal at infinity” in the following sense:

Lemma 4.6.1. If X ✓ � is definable in (�, ), then there is a 2 � such that (a,1) ✓ X or (a,1)\X = ;.

This is immediate from the following claim:

Claim 4.6.2. Let F : � ! �1 be a definable function. Then there is a 2 � such that on the restriction
(a,1), F is either constant, or of the form x 7! qx+ � for q 2 Q 6= and � 2 �.

Proof. By quantifier elimination and universal axiomatization of TAC,log, it suffices to prove the claim just
for L-terms t(x). This we can do by induction on the complexity of t(x).

The cases t(x) = � for some � 2 �1 is clear since this is already a constant function. The cases
t(x) = t

1

(x) + t
2

(x), t(x) = �t
1

(x), t(x) = �nt1(x) are also clear.
If t(x) is constant on (b,1) for some b 2 �, then so are  

�
t(x)

�
, s
�
t(x)

�
and p

�
t(x)

�
. If t(x) is qx+� on

(b,1), then t(x) is either strictly increasing and cofinal in �, or strictly decreasing and coinitial in �. Thus
 
�
t(x)

�
and s

�
t(x)

�
will eventually be the constant value s0 and p

�
t(x)

�
will eventually be the constant

value 1. ⇤

Strongly NIP, finite dp-rank, and dp-minimality. There are various strengthenings of NIP that would
be natural to consider. Among these are dp-minimality, having finite dp-rank, and being strongly NIP ;
see [10] for a definition of these notions.

As it turns out, TAC and TAC,log do not have any of these properties:

Theorem 4.6.3. Neither TAC nor TAC,log are strongly NIP. Therefore they also do not have finite dp-rank
nor are they dp-minimal.

It is sufficient to show that neither TAC nor TAC,log are strong, since if a theory is strongly NIP, then it is
strong (see [10]). To do this, we will use the following criterion:

Proposition 4.6.4. [10, 2.14] Suppose that M = (M ; +, <, . . .) is an expansion of a densely-ordered abelian
group. Let N be a saturated model of Th(M), and suppose that for every " > 0 in N there is an infinite
definable discrete set X ✓ N such that X ✓ (0, "). Then Th(M) is not strong.

Proof of Theorem 4.6.3. Let N be a saturated model of TAC or TAC,log. The infinite definable set  N

is discrete and has the property that for every ↵ 2  N , the set  >↵
N is also infinite and discrete. Let " > 0

and take ↵ 2  N such that
�
↵ + 2(s↵ � ↵)

� � ↵ = �2

R
↵ < ". Note that then ↵ + 2(s↵ � ↵) >  N by

Lemma 2.4.3. The definable infinite discrete set X :=  

>↵
N � ↵ has the desired property. ⇤
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The Steinitz exchange property. Given an arbitrary theory T , a parameter set A and an element a in
M, we say that a is algebraic over A if a belongs to a finite A-definable subset of M. Then we define the
algebraic closure of A in M as the set

acl(A) := {a 2 M : a is algebraic over A}.

Definition 4.6.5. A theory T is said to have the Steinitz exchange property if for all sets A and all
elements a, b 2 M, if a 62 acl(A) and b 62 acl(A), then

a 2 acl

�
A [ {b}� () b 2 acl

�
A [ {a}�.

If a theory T has the Steinitz exchange property, then the algebraic closure operator acl will be a so-called
pregeometry. For more on the role of pregeometries in model theory, we refer the reader to [29, Chapter 8].
For our theory TAC,log, the algebraic closure operator will not be a pregeometry:

Proposition 4.6.6. TAC,log does not have the Steinitz exchange property.

Proof. Since TAC,log has a universal axiomatization and is model complete, we have that for all A, acl(A) =

hAi. Let � be a small model and construct an elementary extension �⇢ of � for some ⇢ : 2 ! sded( ) inside M.
Let (�k,0) and (�k,1) be the two copies of Z which were added to � in �⇢. Let a = �

0,0 and b = �
0,0+�0,1. By

calculations done in Section 4.4, we have acl

�
�[ {b}� = �hbi = �⇢ whereas acl

�
�[ {a}� = �hai = �⇢�1. ⇤

4.7. Relation to precontraction groups

In this section (�, ) is an H-asymptotic couple with asymptotic integration, which we construe as an LAC-
structure.

In general, if (�, e ) is a (B, ")-shift of (�, ), then we do not expect these asymptotic couples, as LAC-
structures, to be elementarily equivalent. Indeed, if (�, ) |= TAC , then the (;,�s0)-shift (�, e ) will not be
a model of T

0

because min

e
 = 0 in that case. However, we do have the following:

Proposition 4.7.1. Suppose (�, ) |= TAC and B 2 sded( ) is such that B 6= ; and " 2 � is such that
 (") > B. Then the (B, ")-shift (�, e ) is also a model of TAC .

Proof. (�, e ) is a divisible H-asymptotic couple with asymptotic integration such that �+

e � � =

e . Let
es be the successor function of (�, e ). It is clear that e is a successor set with least element s0 = es > 0, since
the order types of  and e

 are the same and these  -sets have at least the first copy of N in common.

Claim 4.7.2. Suppose ↵ is such that  (↵) > B. Then es
� e (↵)

�
= s (↵) + ".

Proof of Claim. By the relation s =  �, which holds in every H-asymptotic couple with asymptotic
integration, and the fact that e� = �, we have

es
� e (↵)

�
=

e 
�
e�(↵)

�
=

e 
�
�(↵)

�
=  

�
�(↵)

�
+ " = s

�
 (↵)

�
+ ". ⇤

By the claim it follows that each ↵ 2 e
 has immediate successor es(↵) and that � 7! es� :

e
 ! e

 

>s0 is
a bijection. ⇤

In the rest of this section we will remark on the relationship between our asymptotic couples and the
precontraction groups of Kuhlmann. Precontraction groups arise as the value groups of certain ordered
exponential fields, and in this way they are similar in spirit to asymptotic couples which arise as the value
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groups of certain valued differential fields. We refer the interested reader to [21, 22] for a treatment of the
model theory of precontraction groups and to [24] for their connection to ordered exponential fields. For our
purposes, it suffices to recall the definition:

Definition 4.7.3. A precontraction group is a pair (�,�) where � is an ordered abelian group and
� : �! � satisfies for all ↵,� 2 �:

(1) �(↵) = 0 () ↵ = 0;
(2) ↵ 6 � =) �(↵) 6 �(�);
(3) �(�↵) = ��(↵);
(4) [↵] = [�] and sign(↵) = sign(�) =) �(↵) = �(�).

If in addition, for all ↵ 2 � 6=:

(5) |↵| > ���(↵)
��,

then (�,�) is said to be a centripetal precontraction group. Finally, we say that a precontraction group
(�,�) is divisible if the underlying ordered abelian group � is divisible.

We let LPG = {0,+,�, <,�} denote the natural first-order language of precontraction groups and construe
all precontraction groups (�,�) as LPG-structures in the obvious way.

If (�, ) is a divisible H-asymptotic couple with asymptotic integration, then we may associate to (�, ) a
divisible centripetal precontraction group (�,�PG) by defining for all ↵ 2 �,

�PG(↵) =

8
>>><

>>>:

�(↵) if ↵ < 0,

0 if ↵ = 0,

��(�↵) if ↵ > 0,

where � : � ! �

6 is the contraction map of (�, ) as defined in Definition 2.3.1. Thus every divisible
H-asymptotic couple with asymptotic integration yields a divisible centripetal precontraction group as a
reduct. Conversely, it is worth considering whether this process is reversible, i.e., given a divisible centripetal
precontraction group (�,�PG), can one define a  -map on � in the LPG-structure (�,�PG) such that (�, )
is a divisible H-asymptotic couple with asymptotic integration and such that the contraction map of (�, )
is �PG|�<. It turns out this is impossible for models of TAC :

Proposition 4.7.4. In no precontraction group (�,�) can one define, even allowing parameters, a function
 : �

6= ! � such that (�, ) is a model of TAC and �+  � � =  �<.

Proof. Suppose (�, ) |= TAC is such that we can define  in (�,�). We may assume that (�, ) is @
0

-
saturated. Take B 2 sded( ) large enough so that it is to the right of the  -set of the definable closure of
all the finitely-many parameters needed from � to define  in (�,�). Consider any (B, ")-shift e of  such
that  (") 2 B. Then (�, ) ⌘ (�, e ) and (�,�) = (�, e�). By completeness of TAC , the same formula that
defines  in (�,�) must define e in (�, e�) and so  =

e , a contradiction. ⇤

Our method of proof for Proposition 4.7.4 mirrors the proof given in [2, Prop 5.1] for the corresponding
result about closed asymptotic couples. A closed asymptotic couple is a divisible H-asymptotic couple
with asymptotic integration such that (�

<
)

0
=  (see [3]). There they use essentially the same trick with
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(B, ")-shifts, except they consider iterates of  instead of iterates of s. However, by Corollary 2.3.12, one
can see that this is essentially the same notion for elements ↵⌧ 0.

Furthermore, it seems likely that this trick can be used for any theory Th(�, ) of interest, where (�, ) is a
divisible H-asymptotic couple with asymptotic integration. Provided that the first order theory of (�, ) is
preserved under sufficiently subtle (B, ")-shifts, the same proof can be used. This leads us to the following:

Conjecture 4.7.5. In no nontrivial precontraction group (�,�) can one define, even allowing parameters,
a function  : �

6= ! � such that (�, ) is an H-asymptotic couple and �+  � � =  on �<.
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CHAPTER 5

Valued fields, differential fields, and valued differential fields

In this chapter we recall the theory of valued fields, differential fields, and various types of valued differential
fields which we will need for later chapters. We also include here various technical results which we could
have postponed to later chapters when they are actually used, but instead naturally fit in with the current
chapter due to the level of generality.

In Section 5.1, we recall many of the basic notions of valued fields. Much of this section is a review from [6],
although we do prove a useful generalization of Kaplansky’s Lemma (Lemma 5.1.4) to the setting of rational
functions.

In Section 5.2 we define differential fields without any additional structure, and also recall some basic
extension theory of differential fields.

Section 5.3 is essentially a crash course in different types of valued differential fields from [6] that we wish
to consider: valued differential fields, asymptotic fields, pre-differential-valued fields, differential-valued fields.
We also define some closely related ordered valued differential fields: the pre-H-fields and H-fields. Much
of the later chapters will deal almost exclusively with differential-valued fields and H-fields. We also give
precise definitions there of the concepts of w-free and newtonian; something we neglected to do in Chapter 1.

In Section 5.4, we extract information from an asymptotic differential Kaplansky Lemma [6, 11.3.8] to study
almost special elements in an asymptotic field extension.

Section 5.5 deals with extending the constant field of a differential-valued field.

Finally, in Section 5.6 we compute and study the eventual generic valuation veP for the differential polynomial
P (Y ) = Y 0 � sY .

5.1. Valued fields

In this section K is a valued field. Let OK denote its valuation ring, OK the maximal ideal of OK , v : K⇥ !
�K := v(K⇥

) its valuation with value group �K , and res : OK ! kK := OK/OK its residue map with
residue field kK , which we may also denote as res(K). We will suppress the subscript K when the valued
field K is clear from context. By convention we extend v to a map v : K ! �1 by setting v(0) := 1.

Given f, g 2 K we have the following relations:

f 4 g :() vf > vg (f is dominated by g)

f � g :() vf > vg (f is strictly dominated by g)

f ⇣ g :() vf = vg (f is asymptotic to g)
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For f, g 2 K⇥, we have the additional relation:

f ⇠ g :() v(f � g) > vf (f and g are equivalent)

Both ⇣ and ⇠ are equivalence relations on K and K⇥, respectively. We shall also use the following notation:

K�1

:= {f 2 K : f � 1} = OK

K41

:= {f 2 K : f 4 1} = OK

K�1

:= {f 2 K : f � 1} = K \ OK

Pseudocauchy sequences and a Kaplansky lemma. Let (a⇢) be a well-indexed sequence in K and
a 2 K. Then (a⇢) is said to pseudoconverge to a (written: a⇢  a) if for some index ⇢

0

we have
a � a� � a � a⇢ whenever � > ⇢ > ⇢

0

. In this case we also say that a is a pseudolimit of (a⇢). We say
that (a⇢) is a pseudocauchy sequence in K (or pc-sequence in K) if for some index ⇢

0

we have

⌧ > � > ⇢ > ⇢
0

=) a⌧ � a� � a� � a⇢.

If a⇢  a, then (a⇢) is necessarily a pc-sequence in K. A pc-sequence (a⇢) is divergent in K if (a⇢) does
not have a pseudolimit in K.

Suppose that (a⇢) is a pc-sequence in K and a 2 K is such that a⇢  a. Also let �⇢ := v(a � a⇢) 2 �1,
which is eventually in � and strictly increasing as a function of ⇢. Recall Kaplansky’s Lemma:

ADH 5.1.1. [6, Prop. 3.2.1] Suppose P 2 K[X] \K. Then P (a⇢)  P (a). Furthermore, there are ↵ 2 �
and i > 1 such that eventually v

�
P (a⇢)� P (a)

�
= ↵+ i�⇢.

Note that ADH 5.1.1 concerns polynomials P 2 K[X]. Below we give a version for rational functions, but
first a few remarks.

Roughly speaking, we think of the eventual nature of the sequence (�⇢) as a “rate of convergence” for the
pseudoconvergence a⇢  a. ADH 5.1.1 tells us that the rate of convergence for P (a⇢) P (a) is very similar
to that of a⇢  a. Indeed, (↵+ i�⇢) is just an affine transform of (�⇢) in �. We want to show that applying
rational functions to (a⇢) will also have this property. Before we can do this, we need to recall a few more
facts from valuation theory.

Suppose that (a⇢) is a pc-sequence in K. A main consequence of ADH 5.1.1 is that (a⇢) falls into one of two
categories:

(1) (a⇢) is of algebraic type over K if for some nonconstant P 2 K[X], v
�
P (a⇢)

�
is eventually strictly

increasing (equivalently, P (a⇢) 0).
(2) (a⇢) is of transcendental type over K if for all nonconstant P 2 K[X], v

�
P (a⇢)

�
is eventually

constant (equivalently, P (a⇢) 6 0).

Suppose (a⇢) is a pc-sequence of transcendental type over K. Then (a⇢) is divergent in K. Moreover, if
a⇢  b with b in a valued field extension of K, then b will necessarily be transcendental over K.

Now suppose that (a⇢) is a pc-sequence in K. Take ⇢
0

as in the definition of “pseudocauchy sequence” and
define �⇢ := v(a⇢0 � a⇢) 2 � for ⇢0 > ⇢ > ⇢

0

; this depends only on ⇢ and the sequence (�⇢)⇢>⇢
0

is strictly
increasing. We define the width of (a⇢) to be the following upward closed subset of �1:

width(a⇢) = {� 2 �1 : � > �⇢ for all ⇢ > ⇢
0

}
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The width of (a⇢) is independent of the choice of ⇢
0

. The following follows from various results in [6, Chapters
2 and 3]:

ADH 5.1.2. Let (a⇢) be a divergent pc-sequence in K and let b be an element of a valued field extension of
K such that a⇢  b. Then for �⇢ := v(b� a⇢) 2 �1, eventually �⇢ = �⇢ and

width(a⇢) = �

>v(b�K)

1 and v(b�K) = �

<width(a⇢)
1

where v(b�K) =

�
v(b� a) : a 2 K

 ✓ �.

Remark 5.1.3. Let b be an element of an immediate valued field extension of K. If b 62 K, then v(b�K) ✓ �
is a nonempty downward closed subset of � without a greatest element. We think of v(b �K) as encoding
how well elements from K can approximate b. Below we will consider various qualitative properties of such
a set v(b�K) and consider what these properties say about the element b itself.

We say that pc-sequences (a⇢) and (b�) in K are equivalent if they satisfy any of the following equivalent
conditions:

(1) (a⇢) and (b�) have the same pseudolimits in every valued field extension of K;
(2) (a⇢) and (b�) have the same width, and have a common pseudolimit in some valued field extension of

K;
(3) there are arbitrarily large ⇢ and � such that for all ⇢0 > ⇢ and �0 > � we have a⇢0 � b�0 � a⇢0 � a⇢, and

there are arbitrarily large ⇢ and � such that for all ⇢0 > ⇢ and �0 > � we have a⇢0 � b�0 � b�0 � b�.

See [6, 2.2.17] for details of this equivalence.

Now we assume that L is an immediate extension of K, a 2 L \ K, and (a⇢) is a pc-sequence in K of
transcendental type over K such that a⇢  a.

Lemma 5.1.4. Let R(X) 2 K(X) \K. Then there exists an index ⇢
0

such that for ⇢ > ⇢
0

:

(1) R(a⇢) 2 K (that is, R(a⇢) 6= 1);
(2) R(a⇢) R(a);
(3) v

�
R(a⇢)�R(a)

�
= ↵+ i�⇢, eventually, for some ↵ 2 � and i > 1;

(4) (↵+ i�⇢) is eventually cofinal in v
�
R(a)�K

�
, with ↵ and i as in (3);

(5)
�
R(a⇢)

�
is a divergent pc-sequence in K; and

(6) v
�
R(a)�K

�
=

�
↵+ iv(a�K)

�#, for some ↵ 2 � and i > 1.

Proof. Let R(X) = P (X)/Q(X) with P,Q 2 K[X]

6=. It is clear there exists ⇢
0

such that R(a⇢) 2 K for
all ⇢ > ⇢

0

. Fix such a ⇢
0

and assume ⇢ > ⇢
0

for the rest of this proof.
We first consider the case that R(X) = P (X) 2 K[X]\K is a polynomial. Then (2) and (3) follow from

ADH 5.1.1. We will prove (5) and then (4) and (6) will follow. Assume towards a contradiction that there is
b 2 K such that R(a⇢) b. Then R(a⇢)�b 0, so (a⇢) is of algebraic type in view of R(X)�b 2 K[X]\K.
This contradicts the assumption that (a⇢) is a pc-sequence of transcendental type.

Next consider the case that R(X) 2 K(X) \K[X]. In particular, Q(X) 2 K[X] \K and Q - P . Then
note that

v

✓
P (a⇢)

Q(a⇢)
� P (a)

Q(a)

◆
= v

✓
P (a⇢)Q(a)� P (a)Q(a⇢)

Q(a⇢)Q(a)

◆

= v
�
P (a⇢)Q(a)� P (a)Q(a⇢)

�� v
�
Q(a⇢)

�� v
�
Q(a)

�
.
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The quantity v
�
Q(a⇢)

�
is eventually constant since (a⇢) is of transcendental type. Next, set S(X) :=

P (X)Q(a) � P (a)Q(X) 2 K(a)[X]. Note that eventually S(a⇢) 6= 0 and thus S 6= 0 (otherwise, the
polynomial Q(X) � (Q/P )(a)P (X) would be identically zero since it would have infinitely many distinct
zeros, which would imply Q | P ). Furthermore, S(a) = 0, which shows that S 2 K(a)[X] \ K(a). By
ADH 5.1.1, it follows that S(a⇢)  S(a) = 0. In particular, v

�
S(a⇢)

�
is eventually strictly increasing and

there are ↵ 2 � and i > 1 such that eventually v
�
S(a⇢)

�
= ↵+ i�⇢. This shows (2) and (3).

Finally, we will prove (5), and then (4) and (6) will follow. Assume towards a contradiction that
R(a⇢) b with b 2 K. Then

v

✓
P (a⇢)

Q(a⇢)
� b

◆
= v

�
P (a⇢)� bQ(a⇢)

�� v
�
Q(a⇢)

�

is eventually strictly increasing. Since v
�
Q(a⇢)

�
is eventually constant, v

�
P (a⇢) � bQ(a⇢)

�
is eventually

strictly increasing, so (a⇢) is of algebraic type, a contradiction. ⇤

For pc-sequences of algebraic type, we have the following result from Kuhlmann [23, Theorem 1]. It concerns
“rates of convergences” of pc-sequences approximating elements in immediate algebraic extensions. Recall
that Kh is the henselization of K. We say that a pc-sequence (x⇢) from K is special if �<width(x⇢)

1 is
�-special for some nontrivial convex subgroup � of �.

ADH 5.1.5. [6, 3.4.24] For each x 2 Kh \K there is a divergent special pc-sequence (x⇢) in K and some
a 2 K⇥ such that x⇢  x/a. Moreover, for each x 2 Kh \K there is ↵ 2 � and a nontrivial convex subgroup
� of � such that (↵+�)

#
= v(x�K).

The Valuation Property. In this subsection K is a henselian valued field of equicharacteristic zero.

Proposition 5.1.6. Suppose L = K(x) is a valued field extension of K, where x is transcendental over K

and v(L) = ��Zv(x). Then for every f 2 L \K, there is a 2 K and h 2 L such that f = a+h and vh 62 �.

Proof. Let f 2 L \ K. We want to prove there is a 2 K such that v(f � a) 62 �. Assume towards a
contradiction that v(f �K) ✓ �.

Claim. v(f �K) ✓ � does not have a largest element.

Proof of claim. Take b 2 K and consider v(f � b) 2 v(f � K). As v(f � K) ✓ �, we can take a 2 K

such that f � b ⇣ a. Since res(K) = res(L) by [6, 3.1.30], there is c 2 K⇣1 such that f � b ⇠ ca. Thus
f � b� ca � f � b for such c. ⇤

Next, let (a⇢) be a well-indexed sequence such that v(f�a⇢) is strictly increasing and cofinal in v(f�K).
Then a⇢  f and (a⇢) is a divergent pc-sequence K. As K is henselian and of equicharacteristic zero, and
nv(x) 62 � for all n > 1, this contradicts [6, 3.3.24]. ⇤

5.2. Differential fields

A differential ring is by definition a commutative ring K containing Q, equipped with a derivation ∂ on K,
i.e., an additive map ∂ : K ! K which satisfies the Leibniz identity: ∂(ab) = ∂(a)b + a∂(b) for all a, b 2 K.
For a differential ring K with derivation ∂, when ∂ is clear from the context, we set a0 := ∂(a), and similarly,
a(n) = ∂n(a), with ∂n the nth iterate of ∂.
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A differential field is a differential ring whose underlying ring is a field (of characteristic 0 since it contains
Q). Let K be a differential field. For a 2 K⇥ we will denote the logarithmic derivative of a as a† :=

a0/a = ∂(a)/a. For a, b 2 K⇥, note that (ab)† = a† + b†, in particular, (ak)† = ka† for k 2 Z. We denote the
additive abelian group of logarithmic derivatives of K as:

K†
:= {a† : a 2 K⇥} = (K⇥

)

†

The set {a 2 K : a0 = 0} ✓ K is a subfield of K and is called the field of constants of K, and denoted
by CK (or just C if K is clear from the context). If c 2 C, then (ca)0 = ca0 for a 2 K. If a, b 2 K⇥, then
a† = b† iff a = bc for some c 2 C⇥.

The following is routine:

Lemma 5.2.1. Let K be a differential field. Suppose that y
0

, y
1

, ` 2 K are such that y
0

, y
1

62 C and y00i = `y0i
for i = 0, 1. Then there are c

0

, c
1

2 C such that c
0

6= 0 and y
1

= c
0

y
0

+ c
1

.

We will often be concerned with algebraic extensions and simple transcendental extensions of differential
fields. In these cases, the following are relevant:

ADH 5.2.2. [6, 1.9.2] Suppose K is a differential field and L is an algebraic field extension of K. Then ∂
extends uniquely to a derivation on L.

ADH 5.2.3. [6, 1.9.4] Suppose K is a differential field with field extension L = K(x) where x = (xi)i2I is
a family in L that is algebraically independent over K. Then there is for each family (yi)i2I in L a unique
extension of ∂ to a derivation on L with ∂(xi) = yi for all i 2 I.

If K is a differential field and s 2 K \∂(K), then ADH 5.2.3 allows us to adjoin an integral for s: let K(x) be
a field extension of K such that x is transcendental over K. Then by ADH 5.2.3 there is a unique derivation
on K(x) extending ∂ such that x0

= s. Likewise, if s 2 K \K†, then we can adjoin an exponential integral for
s: take K(x) as before and by ADH 5.2.3 there is a unique derivation on K(x) extending ∂ such that x0

= sx,
and thus x†

= s, i.e., “x = exp(

R
s)”. Adjoining integrals and exponential integrals are basic examples of

Liouville extensions:

A Liouville extension of K is a differential field extension L of K such that CL is algebraic over C and
for each a 2 L there are t

1

, . . . , tn 2 L with a 2 K(t
1

, . . . , tn) and for i = 1, . . . , n,

(1) ti is algebraic over K(t
1

, . . . , ti�1

), or
(2) t0i 2 K(t

1

, . . . , ti�1

), or
(3) ti 6= 0 and t†i 2 K(t

1

, . . . , ti�1

).

Differential polynomials. In the rest of this section K is a differential field with derivation ∂. We shall
briefly give some definitions concerning differential polynomials over K, and we refer the reader to [6, Chapter
4] for a more complete exposition. We let K{Y } denote the ring of differential polynomials in Y over
K. As a ring, K{Y } is just the polynomial ring K[Y, Y 0, Y 00, . . .] in the distinct indeterminates Y (n) over
K, where as usual we write Y, Y 0, Y 00 instead of Y (0), Y (1), Y (2). We consider K{Y } to be a differential ring
extension of K, equipped with the unique derivation ∂ such that ∂(Y (n)

) = Y (n+1) for every n. Furthermore,
K{Y } comes equipped with an evaluation rule: for P 2 K{Y } and y an element of a differential ring
extension of K, we let P (y) be the element of that extension obtained by substituting y, y0, . . . for Y, Y 0, . . .

in P , respectively.
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Given P = P (Y ) 2 K{Y } and f, g 2 K, define the following differential polynomials:
P
+f = P

+f (Y ) := P (f + Y ) 2 K{Y } (additive conjugate of P by f),
P⇥g = P⇥g(Y ) := P (gY ) 2 K{Y } (multiplicative conjugate of P by g).

Additive and multiplicative conjugation plays a role in finding zeros of a differential polynomial.

Compositional conjugation. In this subsection we let � range over K⇥. In this subsection we will define
the notion of compositional conjugation. We refer the reader to [6, §5.7] for more details.

We define K� to be the differential ring with the same underlying ring as K but with the derivation d given
by d(a) = ��1 · ∂(a) for a 2 K, so d = ��1∂. We call K� the compositional conjugate of K by �.

The compositional conjugate K� gives rise to the ring K�{Y } of differential indeterminates over K�. The
underlying ring of K�{Y } is the same as the underlying ring of K{Y }; however, the derivation of K�{Y }
extends the derivation d = ��1∂ of K�. In [6, §5.7] they define a certain K-algebra morphism

P (Y ) 7! P�(Y ) : K{Y } ! K�{Y }
where P� is called the compositional conjugate of P by �. We will not give a definition for this morphism
here, but we shall recall the following properties:

ADH 5.2.4. [6, §5.8] Let P 2 K{Y } and y 2 K. Then

(1) Y �
= Y and (Y 0

)

�
= �Y 0,

(2) P (y) = P�(y),
(3) (P�)

+y = (P
+y)

�, and
(4) (P�)⇥y = (P⇥y)

�.

In view of the last two identities we let P�
+y denote both (P�)

+y and (P
+y)

�, and let P�⇥y denote both
(P�)⇥y and (P⇥y)

�.

5.3. Valued differential fields

A valued differential field is a differential field K equipped with a valuation ring O ◆ Q of K. In
particular, all valued differential fields have chark = 0. We say that a valued differential field K has small
derivation if ∂O ✓ O.

An asymptotic differential field, or just asymptotic field, is a valued differential field K such that for
all f, g 2 K⇥ with f, g � 1,

(A) f � g () f 0 � g0.

If K is an asymptotic field, then C ✓ O and thus v(C⇥
) = {0}. The following consequence of Lemma 5.2.1

will be used in §6.7 to obtain the main result of Chapter 6:

Lemma 5.3.1. Let K be an asymptotic field. Suppose that y
0

, y
1

, ` 2 K are such that y
0

, y
1

62 C and
y00i = `y0i for i = 0, 1. Then y

0

� 1 iff y
1

� 1.

The value group of an asymptotic field always has a natural asymptotic couple structure associated to it:

ADH 5.3.2. [6, 9.1.3] Let K be a valued differential field. The following are equivalent:

(1) K is an asymptotic field;
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(2) there is an asymptotic couple (�, ) with underlying ordered abelian group � = v(K⇥
) such that for all

g 2 K⇥ with g 6⇣ 1 we have  (vg) = v(g†).

If K is an asymptotic field, we call (�, ) as defined in ADH 5.3.2(2), the asymptotic couple of K.

Convention 5.3.3. Let L be an expansion of an asymptotic field, and P a property that an asymptotic
couple may or may not have. Then “L has property P ”, means “the asymptotic couple of L has property P ”.
For instance, when we say L is “of H-type”, equivalently “is H-asymptotic”, we mean that the asymptotic
couple (�L, L) of L is H-type. Likewise for the properties “asymptotic integration”, “grounded”, etc.

We say that an asymptotic field K is pre-differential-valued, or pre-d-valued, if the following holds:

(PDV) for all f, g 2 K⇥, if f 4 1, g � 1, then f 0 � g†.

Every ungrounded asymptotic field is pre-d-valued by [6, 10.1.3].

Finally, we say that an asymptotic field field K is differential-valued, or d-valued, if it satisfies one of
the following three equivalent conditions:

(1) O = C + O;
(2)

�
res(a) : a 2 C

 
= k;

(3) for all f ⇣ 1 in K there exists c 2 C with f ⇠ c.

All differential-valued fields are necessarily pre-differential-valued, see [6, 9.1.3(iv)]. We shall often tacitly
use the following:

ADH 5.3.4. [6, 9.1.2] If L is an asymptotic extension of a d-valued field K with res(K) = res(L), then L

is d-valued, with CL = C.

Suppose K is a pre-d-valued field of H-type. Define the O-submodule

I(K) := {y 2 K : y 4 f 0 for some f 2 O}
of K. We say that K has integration if K = ∂K, has exponential integration if K = K†, has small
integration if I(K) = ∂O, and has small exponential integration if I(K) = (1 + O)†.

Lemma 5.3.5. Let K be a pre-d-valued field of H-type with small integration. Then K is d-valued.

Proof. Take f 2 K such that f ⇣ 1. Then f 0 2 I(K) = ∂O, so we have " 2 O such that f 0
= "0. Hence

f � " = c with c 2 C⇥ and thus f ⇠ c. ⇤

Ordered valued differential fields. A pre-H-field is an ordered pre-d-valued field K whose ordering,
valuation, and derivation interact as follows:

(PH1) the valuation ring O is convex with respect to the ordering;
(PH2) for all f 2 K, if f > O, then f 0 > 0.

It follows from (PH1) and (PH2) that pre-H-fields are necessarily of H-type. Any ordered differential field
with the trivial valuation is a pre-H-field.

An H-field is an ordered differential field K such that:

(H1) for all f 2 K, if f > C, then f 0>0;

71



(H2) O = C + O where O = {g 2 K : |g| 6 c for some c 2 C} and O is the maximal ideal of the convex
subring O of K.

We construe an H-field K as an ordered valued differential field by taking the valuation given by the valuation
ring O defined in (H2). An ordered valued differential field is an H-field iff it is a d-valued pre-H-field.

Example 5.3.6. Consider the field L = R(x) with x transcendental over R, equipped with the unique
derivation which has constant field R and x0

= 1. Furthermore, equip L with the trivial valuation and the
unique field ordering determined by requiring x > R. It follows that L is a pre-H-field with residue field
isomorphic to R(x). However, L is not an H-field. Indeed, the residue field is not even algebraic over the
image of the constant field R under the residue map.

Example 5.3.7. Consider the Hardy field Q. Using [34, Theorem 2] twice, we can extend to the Hardy
field Q(x) where x0

= 1, and further extend to the Hardy field K = Q
�
x, arctan(x)

�
where

�
arctan(x)

�0
=

1/(1 + x2

). Each of these three Hardy fields are pre-H-fields (see [6, §10.5]); however, Q and Q(x) are
H-fields whereas K is not an H-field: the constant field of K is Q whereas the residue field of K is Q(⇡).
Note that in this example the residue field Q(⇡) is also not algebraic over the image of the constant field
Q. For details of these Hardy field extensions and justification of the claims about K, see the table and
discussion below:

Hardy field Value group Residue field Constant field H-field?
Q {0} Q Q Yes

Q(x) Zv(x) Q Q Yes
K = Q

�
x, arctan(x)

�
(1) Zv(x) (1) Q(⇡) (2) Q No

(1) Note that limx!1 arctan(x) = ⇡/2, hence arctan(x) 4 1 and the residue field res(K) of K con-
tains Q(⇡). Recall that by the Lindemann-Weierstrass theorem [26], ⇡ is transcendental over Q, so
res

�
arctan(x)

�
= ⇡/2 is transcendental over res

�
Q(x)

�
= Q. It follows that arctan(x) is transcendental

over Q(x) (otherwise res(K) would be algebraic over res

�
Q(x)

�
= Q). By [6, 3.1.31], it follows that

�K = �Q(x) = Zv(x), and

res(K) = res

�
Q(x)

��
res(arctan(x))

�
= Q(⇡/2) = Q(⇡).

(2) As K is a pre-H-field, it follows that the constant field is necessarily a subfield of the residue field
Q(⇡). A routine brute force verification shows that 1/(1 + x2

) 62 ∂
�
Q(x)

�
. Thus the differential ring

Q(x)
⇥
arctan(x)

⇤
is simple by [6, 4.6.10] (see [6] for definitions of differential ring and simple differential

ring). Furthermore, as Q(x)
⇥
arctan(x)

⇤
is finitely generated as a Q(x)-algebra, it follows that CK is

algebraic over Q by [6, 4.6.12]. However, Q is algebraically closed in Q(⇡) (because ⇡ is transcendental
over Q) and so CK = Q.

Algebraic extensions. In this subsection K is an asymptotic field. We fix an algebraic field extension L

of K. By ADH 5.2.2 we equip L with the unique derivation extending the derivation ∂ of K. By Chevalley’s
Extension Theorem [6, 3.1.15] we equip L with a valuation extending the valuation of K. Thus L is a
valued differential field extension of K. We record here several properties that are preserved in this algebraic
extension:

ADH 5.3.8. The valued differential field L is an asymptotic field [6, 9.5.3]. Also:
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(1) If K is of H-type, then so is L.
(2) If K is pre-d-valued, then so is L [6, 10.1.22].
(3) K is grounded iff L is grounded.

(1) and (3) of ADH 5.3.8 follow from the corresponding facts about the divisible hull of an asymptotic couple;
see ADH 2.2.10.

Furthermore, assume that K is equipped with an ordering making it a pre-H-field, and L|K is an algebraic
extension of ordered differential fields.

ADH 5.3.9. There is a unique convex valuation ring of L extending the valuation ring of K [6, 3.5.18].
Equipped with this valuation ring, L is a pre-H-field extension of K [6, 10.5.4]. Furthermore, if K is an
H-field and L = Krc, a real closure of K, then L is also an H-field [6, 10.5.6].

w-freeness. In this subsection assume that K is an ungrounded H-asymptotic field with � 6= {0}. We review
here the important and robust property of w-freeness.

Definition 5.3.10. A logarithmic sequence (in K) is a well-indexed sequence (`⇢) in K�1 such that

(1) `0⇢+1

⇣ `†⇢, i.e., v(`⇢+1

) = �(v`⇢), for all ⇢;
(2) `⇢0 � `⇢ whenever ⇢0 > ⇢;
(3) (`⇢) is coinitial in K�1: for each f 2 K�1 there is an index ⇢ with `⇢ 4 f .

Such sequences exist and can be constructed by transfinite recursion. Next, we define the function:

! : K ! K, !(z) = �(2z0 + z2).

Definition 5.3.11. An w-sequence (in K) is a sequence of the form (w⇢) =
�
!(�(`††⇢ ))

�
where (`⇢) is a

logarithmic sequence in K.

It follows from results in [6, §11.7] that all w-sequences in K are pc-sequences, and are equivalent as pc-
sequences. Furthermore, the divergence of an w-sequence is actually a first order property:

ADH 5.3.12. [6, 11.7.8] The following conditions on K are equivalent:

(1) there is a divergent w-sequence in K;
(2) every w-sequence in K is divergent;
(3) for every f 2 K there is g � 1 in K with f � !(�g††) < (g†)2.

Definition 5.3.13. We say that an asymptotic field L is w-free (or has w-freeness) if L is ungrounded of
H-type with �L 6= {0}, and satisfies condition (3) in ADH 5.3.12 for L in the role of K

The following is immediate from the definition:

Lemma 5.3.14. If K is a directed union of w-free asymptotic subfields, then K is w-free.

Recall that T
log

= [nR[[Ln]] is a union of grounded H-asymptotic subfields. Thus in view of the following,
T
log

is w-free.

ADH 5.3.15. [6, 11.7.15] If K is a union of grounded H-asymptotic subfields, then K is w-free.

We will not dive into the details of w-freeness in this thesis. However, we will often include “w-free” as a
convenient hypothesis in results below. Here is one of the more compelling consequences of w-freeness:
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ADH 5.3.16. Suppose K is w-free. Then

(1) K has rational asymptotic integration (so K does not have a gap) [6, 11.7.3 and 11.6.8]; and
(2) if L is a pre-d-valued field extension of K of H-type which is d-algebraic over K, then L is w-free [6,

13.6.1].

ADH 5.3.16 above casts w-freeness as a very robust gap prevention property in the sense that if K is w-free
and L is a d-algebraic pre-d-valued extension of K of H-type, then L has no gap. In Chapter 6 we consider
a weaker gap prevention property: l-freeness.

Newtonianity. In this subsection K is a valued differential field.

Definition 5.3.17. Let P 2 K{Y } 6=. We define the dominant degree of P to be the natural number

ddegP := max

�
d : v(P ) = v(Pd)

 

and the dominant multiplicity of P to be the natural number

dmulP := min

�
e : v(P ) = v(Pe)

 
.

For valued differential fields, we have the notion of differential-henselian which is a differential analogue of
henselian for valued fields:

Definition 5.3.18. We say that K is differential-henselian if K has small derivation and every P 2
K{Y }6= such that ddegP = 1 has a zero in the valuation ring O of K.

Even though T
log

is a valued differential field with small derivation, it is not differential-henselian. Indeed,
the differential polynomial P (Y ) = 1� Y 0 has dominant degree 1, however it does not have a zero in OT

log

since `
0

� 1.

The recourse in this situation is to work with an “eventual” variant of differential-henselianity called newto-
nianity.

In the rest of this subsection K is an ungrounded H-asymptotic field with � 6= {0}. We say an element
� 2 K⇥ is active if v� 2  #.

ADH 5.3.19. [6, §11.1] Let P 2 K{Y }6=. Then there is an active �
0

2 K⇥ and M,N 2 N such that for
all active � 4 �

0

, M = dmul(P�) and N = ddeg(P�).

The natural number M from ADH 5.3.19 above is called the Newton multiplicity of P (notation: nmulP )
and the natural number N is called the Newton degree of P (notation: ndegP ). The values of M and N

do not depend on the choice of �
0

.

We are now in a position to define the most important notion from [6]:

Definition 5.3.20. We define P 2 K{Y } to be quasilinear if ndegP = 1, and we define K to be newto-
nian if every quasilinear P 2 K{Y } has a zero in O.

Newtonianity is an “eventual” variant of differential-henselianity in the sense that Newton degree is computed
in ADH 5.3.19 as an eventual quantity for sufficiently large v� for active � 2 K⇥.

The following is very useful for showing that specific asymptotic fields of interest are newtonian. In particular,
it shows that T

log

is newtonian:
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ADH 5.3.21. [6, 15.0.1] If K is d-valued with ∂K = K, and K is a directed union of spherically complete
grounded d-valued subfields, then K is newtonian.

We will also be interested in the following “fragments” of newtonianity:

Definition 5.3.22. We say that K is m-linearly newtonian if every P 2 K{Y }6= with degP = 1,
ndegP = 1, and order(P ) 6 m, has a zero in O. We say that K is linearly newtonian if K is m-linearly
newtonian for every m.

Assuming asymptotic integration, 1-linearly newtonian implies small integration and small exponential in-
tegration:

ADH 5.3.23. [6, 14.2.5] Assume K has asymptotic integration and is 1-linearly newtonian. Then K is
d-valued and ∂O = I(K) = (1 + O)†.

In fact, ADH 5.3.23 is perhaps (in retrospect) the original motivation for our fascination with small integra-
tion and small exponential integration in Chapters 6 and 7 below.

5.4. Almost special elements

In this section K is a valued differential field. We first recall two types of pc-sequences which can occur in
a valued differential field:

Let (a⇢) be a pc-sequence in K. We say that (a⇢) is of differential-algebraic type over K (or d-algebraic
type over K, for short) if G(b�)  0 for some G(Y ) 2 K{Y } and some pc-sequence (b�) in K equivalent
to (a⇢). A minimal differential polynomial of (a⇢) over K is a differential polynomial G(Y ) 2 K{Y }
with the following properties:

(1) G(b�) 0 for some pc-sequence (b�) in K equivalent to (a⇢) (so G 62 K);
(2) H(b�) 6 0 whenever H 2 K{Y } has lower complexity than G and the pc-sequence (b�) in K is

equivalent to (a⇢).

Thus (a⇢) is of d-algebraic type over K iff (a⇢) has a minimal differential polynomial over K.

We say that (a⇢) is of differential-transcendental type over K (or d-transcendental type over K,
for short) if it is not of d-algebraic type over K, that is, G(b�) 6 0 for each G 2 K{Y } and each pc-sequence
(b�) in K equivalent to (a⇢).

We now further assume K ✓ L is an immediate asymptotic extension of H-asymptotic fields with rational
asymptotic integration. First a consequence of [6, 11.3.8]:

Lemma 5.4.1. Let a 2 L \K and let F ✓ L{Y } \L be a finite set of differential polynomials. Then there is
a divergent pc-sequence (a⇢)⇢<� in K such that a⇢  a and for every ⇢, �⇢ := v(as(⇢) � a⇢) 2 � and ⇢ 7! �⇢

is strictly increasing, and for each G 2 F there is dG 2 N>1 such that

v
�
G(a⇢0)�G(a)

�� v
�
G(a⇢)�G(a)

�
= dG(�⇢0 � �⇢) + o(�⇢0 � �⇢) for every ⇢ < ⇢0.

In particular, G(a⇢) G(a) for each G 2 F .

Proof. This follows from the proof of [6, 11.3.8]. The " from the last display of that proof can be absorbed
into the o(�⇢0 � �⇢) by requiring the following in the course of that proof:

(1) �⇢ = o(�s(⇢) � �⇢) = o(�⇢0 � �⇢) whenever ⇢0 > ⇢,
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(2) vx⇢ = o(�⇢) for each ⇢, and
(3) "⇢ = o(�⇢) for each ⇢. ⇤

Let � be a nontrivial convex subgroup of �. We say that a 2 L \K is �-special (over K) (respectively,
almost �-special (over K)) if the set v(a�K) is�-special (respectively, almost�-special) as a subset of �,
in the sense of Section 2.1. We say that a 2 L\K is special (over K) (respectively, almost special (over
K)) if it is �-special over K (respectively, almost �-special over K) for some nontrivial convex subgroup �
of �. Finally, we say that an extension L ◆ K is special (respectively, almost special) if every a 2 L \K
is special over K (respectively, almost special over K).

Lemma 5.4.2. Suppose a 2 L\K is �-special over K and (a⇢) is a divergent pc-sequence in K with minimal
differential polynomial G(Y ) over K such that a⇢  a. Let P 2 K{Y } \K have lower complexity than G.
Then P (a) is almost �-special over K.

Proof. By Lemma 5.4.1, we may assume the divergent pc-sequence (a⇢) in K is such that �⇢ := v(as(⇢) �
a⇢) 2 � for every ⇢ < �, the map ⇢ 7! �⇢ is strictly increasing, P (a⇢)  P (a), and that there is d 2 N>1

such that

v
�
P (a⇢0)� P (a)

�� v
�
P (a⇢)� P (a)

�
= d(�⇢0 � �⇢) + o(�⇢0 � �⇢) for every ⇢ < ⇢0.

In particular,
�
P (a⇢)

�
is a pc-sequence in K, and since P has lower complexity than G,

�
P (a⇢)

�
is a divergent

pc-sequence in K (if there were b 2 K such that P (a⇢)  b, then P (a⇢) � b  0, but P � b 2 K{Y } \K
also has lower complexity than G).

Next, as a is �-special, the sequence (�⇢) is cofinal in �. Let ⇢
0

be some index such that �⇢
0

2 �>.
Then 0 < �⇢

0

< �⇢ for all ⇢
0

< ⇢ and so o(�⇢ � �⇢
0

) = o(�⇢) for all ⇢
0

< ⇢. For this fixed ⇢
0

we get for
⇢
0

< ⇢:

v
�
P (a⇢)� P (a)

�
= d�⇢ + o(�⇢)�

�
d�⇢

0

+ v(P (a⇢
0

)� P (a))
�

| {z }
:=↵

= d�⇢ + o(�⇢)� ↵

which increases cofinally through � � ↵. Together with the earlier observation that
�
P (a⇢)

�
is a divergent

pc-sequence in K, we conclude that P (a) is almost �-special over K. ⇤

Lemma 5.4.3. Suppose a 2 L \ K is �-special over K. Furthermore, suppose there is a divergent pc-
sequence (a⇢) in K with minimal differential polynomial G(Y ) over K such that a⇢  a. Further assume
that the order of G is at least 1. Then, given P,Q 2 K{Y } \K of lower complexity than G such that Q has
lower order than G, we have Q(a) 6= 0 and for R := P/Q, if R(a) 2 L \K, then R(a) is almost �-special
over K.

Proof. Without loss of generality, we may assume Q - P . Furthermore, we may arrange that (a⇢) satisfies
the conclusion of Lemma 5.4.1 with F =

�
P,Q, P (X)Q(a)�P (a)Q(X)

 
. Then as

�
Q(a⇢)

�
is a pc-sequence

in K, we get that Q(a⇢) 6= 0 eventually, and Q(a⇢) Q(a), so Q(a) 6= 0 since Q has lower complexity than
G. Thus we will pass to a cofinal subsequence and arrange that Q(a⇢) 6= 0 for all ⇢. Next note that

v

✓
P (a⇢)

Q(a⇢)
� P (a)

Q(a)

◆
= v

✓
P (a⇢)Q(a)� P (a)Q(a⇢)

Q(a⇢)Q(a)

◆

= v
�
P (a⇢)Q(a)� P (a)Q(a⇢)

�� v
�
Q(a⇢))� v(Q(a)

�
.
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The quantity v
�
Q(a⇢)

�
eventually takes a constant value in �. By an argument as in Lemma 5.4.2, we get

that
�
R(a⇢)

�
is a pc-sequence in K and that v

�
R(a⇢)� R(a)

�
eventually increases cofinally through �� ↵

for some ↵ 2 �. Finally, we must show that
�
R(a⇢)

�
is a divergent pc-sequence in K. Assume towards a

contradiction that there is b 2 K such that R(a⇢) b. Then

v

✓
P (a⇢)

Q(a⇢)
� b

◆
= v

�
P (a⇢)� bQ(a⇢)

�� v
�
Q(a⇢)

�

is eventually strictly increasing. Since v
�
Q(a⇢)

�
is eventually constant, v

�
P (a⇢) � bQ(a⇢)

�
is eventually

strictly increasing, i.e.,
�
P (a⇢)� bQ(a⇢)

�
is a pc-sequence and P (a⇢)� bQ(a⇢) 0. This is a contradiction

because P (X)� bQ(X) has lower complexity than G. ⇤

Note that in Lemma 5.4.3 above we did not require that G(a) = 0, and so we could not necessarily conclude
there that all elements of Khai \K were �-special over K (for instance, if a is d-transcendental over K, but
is approximated by a divergent pc-sequence of d-algebraic type). If we do assume G(a) = 0, then we get the
following:

Corollary 5.4.4. Suppose that a 2 L \ K is special over K. Furthermore, suppose (a⇢) is a divergent
pc-sequence in K with minimal differential polynomial G(Y ) over K such that a⇢  a and G(a) = 0. Then
every element in Khai \K is almost special over K.

5.5. Constant field extensions

In this section K is a d-valued field. We will first review the state of affairs when it comes to extending the
constant field of K.

First, if L is a differential field extension of K with constant field D ◆ C such that L = K(D), then K and
D are linearly disjoint over C by [6, 4.6.16].

Conversely, suppose L is a field extension of K with a subfield D ◆ C such that K and D are linearly disjoint
over C and L = K(D). Then by [6, 4.6.21] there is a unique derivation on L extending the derivation on K

that is trivial on D; with this derivation, the constant field of L is D.

In the rest of this section L is a differential field extension of K with constant field D ◆ C such that
L = K(D). In this case we can naturally make L ◆ K into an extension of d-valued fields:

ADH 5.5.1. [6, 10.5.15] There exists a unique valuation on the differential field L extending the valuation
of K which is trivial on D. This valuation has the same value group as K. Equipped with this valuation, L
is d-valued and thus L is a d-valued asymptotic extension of K.

We now consider L to be equipped with the valuation of ADH 5.5.1 for the rest of the section. Furthermore,
if K is an H-field and D comes equipped with an appropriate ordering on it, then there is a natural way to
make L ◆ K into an extension of H-fields:

ADH 5.5.2. [6, 10.5.16] Suppose K and D are equipped with orderings which make K an H-field and D

an ordered field extension of C. Then there is a unique field ordering of L extending the orderings of K and
D in which the valuation ring of L is convex. With this ordering L is an H-field and thus L ◆ K is an
extension of H-fields.
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The following shows that we can essentially reduce to a gaussian valuation in the current situation. It will
be useful when dealing with new constants, either algebraic or transcendental:

Lemma 5.5.3. Suppose c
0

, . . . , cn 2 CL are linearly independent over C and a
0

, . . . , an 2 K. Then

v

 
X

i

ciai

!
= min

i
v(ai).

Proof. We may assume that v(a
0

) 6 v(a
1

), . . . , v(an). It suffices to show that 1 ⇣ P
i ciai/a0. As K is

d-valued, there are di 2 C and "i 2 O such that ai/a0 = di + "i for i = 0, . . . , n. In particular, d
0

= 1. Thus
X

i

ciai/a0 =

X

i

cidi +
X

i

ci"i.

As the ci’s are C-linearly independent and not every di is equal to zero, it follows that
P

i cidi 2 C⇥
L and

P
i ci"i � 1. In particular,

P
i ciai/a0 ⇣ 1. ⇤

To motivate Proposition 5.5.4 below we present the following scenario. Suppose we have f 2 L \ K[D] =

K(D) \K[D] and we are interested in how well we can approximate f by elements from the ring K[D]. As
a simple example, suppose c 2 D is transcendental over C, and ⌘ 2 K is such that ⌘ � 1. Consider the
element:

f :=

⌘

⌘ � c
=

1

1� c"

for " := ⌘�1. By the geometric series we can very naively expand f as follows:

f = 1 + c"+ c2"2 + c3"3 + · · ·
With any luck, we might hope the following things are true:

(1) The sequence of partial sums (

Pn
i=0

ci"i) pseudoconverges to f but has no pseudolimit in K[D];
(2) f is �-special over K[D] i.e., v(f � K[D]) = (↵ + �)

# ✓ � for some ↵ 2 �, where � is the smallest
convex subgroup of � which contains v".

(3) Something analogous to (1) and (2) above holds for all elements of L \K[D].

Proposition 5.5.4 below gives us something along these lines, but with “does not decelerate” in place of
“�-special”. The main point is, we show that pc-sequences from K[D] which approximate elements from
K(D) \K[D] cannot have very exotic rates of pseudoconvergence.

Proposition 5.5.4. Suppose K is henselian and let f 2 L\K[D]. Then v
�
f�K[D]

� ✓ � does not decelerate
and has cofinality !.

Proof. We have ai, bj 2 K and ci, dj 2 D for 0 6 i 6 m and 0 6 j 6 n such that

f =

a
0

c
0

+ a
1

c
1

+ · · ·+ amcm
b
0

d
0

+ b
1

d
1

+ · · ·+ bndn
, where b

0

d
0

+ b
1

d
1

+ · · ·+ bndn 6= 0.

Next we define the subfield E
1

✓ K to be the algebraic closure of

E
0

:= C(a
0

, . . . , am, b
0

, . . . , bn)

inside K. In particular, E
1

is henselian, res(E
1

) = res(K) = res(C), and � := v(E
1

) ✓ � is countable, and
has finite rank because

trdegC E
0

= trdegC E
1

< 1
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and v(C) = {0} ✓ �. In general, � will not be a convex subgroup of �; however, � is contained in the
divisible hull of �

0

= v(E⇥
0

). Next, let E be a maximal immediate extension of E
1

inside of K (which exists
by Zorn). Note that E is henselian since K is henselian.

The setup now is the following:

K

v

!!{{
res(K) E

v

  ||

�

res(K) E
1

v

  ||

� (finite rank)

res(K) E
0

v

  ||

�

res(K) C

v

  ||

�

0

res(K) {0}
The idea now is that E is in some sense a best finite-rank subfield of K when it comes to approximating the
element f with pc-sequences.

Claim. For each h 2 K \ E, the set v(h� E) ✓ � has a maximum element in � \�.

Proof of claim. First assume towards a contradiction that v(h�E) ✓ � does not have a largest element.
Take a well-indexed sequence (e⇢) in E such that v(h � e⇢) is strictly increasing and cofinal in v(h � E).
Then (e⇢) is a pc-sequence in E and e⇢  h. By maximality of E inside K, there is e 2 E such that
e⇢  e. Then v(h� e) > v(f �E), a contradiction. Thus there is e 2 E such that v(h� e) = max v(h�E).
Suppose again towards a contradiction that v(h � e) 2 �. Then take e

0

2 E such that h � e ⇣ e
0

. By the
d-valued assumption on K, there is c 2 C ✓ E such that h� e ⇠ ce

0

, or rather, v(h� e� ce
0

) > v(h� e), a
contradiction. ⇤

Next we will show that elements from E[D] can approximate f just as well as elements from K[D] can:

Claim. The sets v
�
f � E[D]

�
and v

�
f �K[D]

�
are mutually cofinal as subsets of �, i.e., v

�
f � E[D]

�#
=

v
�
f �K[D]

�#.

Proof of claim. The direction v
�
f �E[D]

�# ✓ v
�
f �K[D]

�# is immediate from E ✓ K. Thus it suffices
to prove that for every h 2 K[D], there is g 2 E[D] such that v(f �g) > v(f �h). Let h 2 K[D] and assume
that h 62 E[D] to avoid the trivial case. In picture form:

9?h 2 K[D]

✓ // K(D)3 f

9?g 2 E[D]

✓ // E(D) 3 f

79



We have h =

P
i kici where all ki 2 K, ci 2 D and the cis are linearly independent over C. By the above

claim, for each ki, we may pick ei 2 E such that v(ki � ei) 2 �1 \ �. Then, setting g :=

P
i eici, by

Lemma 5.5.3 we have that

v(h� g) = v

 
X

i

ci(ki � ei)

!
= min

i
v(ki � ei) 2 � \�.

Note also that v(f � g) 2 � since f, g 2 E(D) and v(E(D)

⇥
) = �. Assume towards a contradiction that

v(f � g) < v(f � h). Then
v(f � g) = v(g � h),

but v(f � g) 2 � whereas v(g � h) 2 � \�, a contradiction. We conclude that v(f � g) > v(f � h). ⇤

To conclude our proof of the proposition, note that the subset v
�
f � E[D]

� ✓ � has cofinality ! since
� is countable. Furthermore, [� 6=

] is finite and so v
�
f � E[D]

� ✓ � does not decelerate by Lemma 2.1.10.
By Lemma 2.1.9, it follows that v

�
f �K[D]

�
does not decelerate either. ⇤

5.6. Eventual generic valuations of linear differential operators

In this section K is an w-free d-valued field, g ranges over K⇥, � over the active elements of K, and P (Y )

over K{Y }6=.

We first recall the definitions of other quantities and functions associated to a nonzero differential polynomial.
For existence of these quantities, see [6, §4.2, 4.5, and 11.1].

Definition 5.6.1. Given the isobaric decomposition P =

P
w P

[w]

of P , we define the dominant weight
of P to be

dwt(P ) := max

�
w : v(P

[w]

) = v(P )

 
.

We also define the function vP : �1 ! �1 by

vP (�) := v(P⇥g) if vg = �, and vP (1) := 1
which we call the generic valuation of P . We define the Newton weight of P to be

nwt(P ) := eventual value of dwt(P�).

Related to Newton weight is the function nwtP : �! N defined by

nwtP (�) := nwt(P⇥g) if vg = �.

We define the eventual generic valuation of P to be the function veP : �! � given by

veP (�) := eventual value of vP�(�)� nwtP (�)v(�).

Finally, if P is homogeneous of degree 1, we define the set of eventual exceptional values of P to be

E e
(P ) :=

�
� : nwtP (�) > 1

 ✓ �.

The w-free assumption on K gives us the following:

ADH 5.6.2. [6, 14.2.7] Suppose P is homogeneous of degree 1. Then the map � 7! veP (�) : � \ E e
(P ) ! �

is strictly increasing and surjective.
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By convention, we consider (veP )
�1 to be the inverse of the bijection veP : � \ E e

(P ) ! �.

In the rest of this section we fix s 2 K and assume there is an h 2 K⇥ such that

v(s� h†
) = max v(s�K†

) 2 ( 

# \ ) [ {1}.
Fix such an h. Then h† is a best approximation to s among the elements of K†. In terms of this h, we get
a more explicit version of [6, 9.7.2]:

Lemma 5.6.3. If g 6⇣ h, then

v(g† � s) = min

�
 (vg � vh), v(h† � s)

� 2  

#

and if g ⇣ h, then
v(g† � s) 2 (�

>
)

0 [ �
v(h† � s)

 
.

Proof. Note that v(g† � s) 6 v(h† � s) gives g† � h† 6⇠ s� h†. Assuming first g 6⇣ h,

g† � h†
= (g/h)†

gives
v(g† � h†

) =  (vg � vh).

Using
g† � s = (g† � h†

)� (s� h†
),

it follows that

v(g† � s) = min

�
v(g† � h†

)| {z }
2 

, v(s� h†
)| {z }

62 

�
= min

�
 (vg � vh), v(h† � s)

�
.

Next, suppose that g ⇣ h. Then g/h ⇣ 1 and so

v(g† � h†
) = v

�
(g/h)†

� 2 (�

>
)

0 [ {1}.
Thus

v(g† � s) = min

�
v(g† � h†

), v(s� h†
)

� 2 (�

>
)

0 [ �
v(s� h†

)

 
. ⇤

Note that in Lemma 5.6.3, if g 6⇣ h, then v(g† � s) depends only on vg.

We now compute several of the above quantities for the differential polynomial P (Y ) := Y 0 � sY :

Lemma 5.6.4. The function nwtP : �! N is given by:

nwtP (�) =

8
<

:
0 if � 6= vh or s 62 K†

1 if � = vh and s 2 K†

Thus the set of eventual exceptional values of P is:

E e
(P ) =

8
<

:
; if s 62 K†

{vh} if s 2 K†

81



Given � 2 � we have, eventually:

vP�(�) =

8
>>><

>>>:

� +  (� � vh) if  (� � vh) < v(h† � s) (so � 6= vh)

� + v(h† � s) if  (� � vh) > v(h† � s) (so s 62 K†)

� + v� if  (� � vh) = v(h† � s) (so s 2 K† and � = vh)

The function veP : �! � is given by:

veP (�) =

8
>>><

>>>:

� +  (� � vh) if  (� � vh) < v(h† � s)

� + v(h† � s) if  (� � vh) > v(h† � s)

� if  (� � vh) = v(h† � s)

Proof. Let � = vg. We need to study the eventual behavior of

P�⇥g =

�
gY 0

+ (g0 � gs)Y
��

= g
�
�Y 0

+ (g† � s)Y
�
.

By Lemma 5.6.3, if g 6⇣ h, then v(g† � s) 2  #, so g† � s � �, eventually. If h ⇣ g and s 62 K†, then
v(g† � s) 2  # \  by our assumption on h, and so g† � s � �, eventually. If h ⇣ g and s 2 K†, then
v(g† � s) 2 (�

>
)

0 [ {1}, so g† � s � �, eventually. ⇤

In the next corollary we set �P := � \ E e
(P ):

Corollary 5.6.5. Define the following sets:

C1

P :=

�
� < vh :  (� � vh) < v(h† � s)

 

C2

P :=

�
� 2 �P :  (� � vh) > v(h† � s)

 

C3

P :=

�
� > vh :  (� � vh) < v(h† � s)

 

Then C1

P < C2

P < C3

P , C1

P [ C2

P [ C3

P = �P , and for � 2 �P ,

� 2 C1

P [ C3

P =) veP (�) = � +  (� � vh)

� 2 C2

P =) veP (�) = � + v(h† � s).

Furthermore for i 2 {1, 2, 3}, define

IiP := veP (C
i
P ).

Then I1P < I2P < I3P and I1P [ I2P [ I3P = �. Also, for � 2 �,
� 2 I1P [ I3P =) (veP )

�1

(�) =
R
(� � vh) + vh

� 2 I2P =) (veP )
�1

(�) = � � v(h† � s).

Proof. C1

P < C2

P < C3

P follows from the observation that � 7!  (� � vh) : �

<vh ! � is an increasing
function and � 7!  (� � vh) : �

>vh ! � is a decreasing function, both of which are consequences of
(HC). The formula for (veP )

�1 is easily verified, considering the cases � 2 C1

P [ C3

P and � 2 C2

P separately.
Everything else follows from the fact that veP : �P ! � is a strictly increasing bijection. ⇤

Lemma 5.6.6 follows immediately from the observation that (veP )
�1 is a strictly increasing function:
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Lemma 5.6.6. Let S ✓ � be nonempty. Then the following conditions on S are equivalent:

(1) For cofinally many � 2 S, there is an " 2 �> such that (veP )�1

(� + "0) 2 S#;
(2) for all � 2 S#, there is an " 2 �> such that (veP )�1

(� + "0) 2 S#.

To motivate the following definition, suppose E e
(P ) = ;, � 2 �, and " 2 �

>. Then veP (�) < � + "0 by
Lemma 5.6.4. Applying (veP )

�1 to both sides of this inequality yields � < (veP )
�1

(� + "0). In other words, if
a nonempty subset S of � satisfies one of the two equivalent conditions of Lemma 5.6.6, then if you have an
element � 2 S, then you can increase upwards at least a distance of (veP )�1

(�+ "0)�� > 0, for some " 2 �>,
and still remain in S#.

Definition 5.6.7. We say that S ✓ � has the veP -yardstick property if it is nonempty and satisfies one
of the two equivalent conditions of Lemma 5.6.6.

Proposition 5.6.8. Suppose S ✓ � has the veP -yardstick property. Then one of the following holds:

(1) S# is �-fluent for some nontrivial convex subgroup �;
(2) S#

= �

<vh.

In particular, S does not have a largest element.

Proof. Without loss of generality, we may assume that S = S#.
Case 1: For cofinally many � 2 S, there is " 2 �> such that � + "0 2 I1P and (veP )

�1

(� + "0) 2 S. Then
this holds for all � 2 S. Let � 2 S, and take " 2 �> such that � + "0 2 I1P and (veP )

�1

(� + "0) 2 S. By the
veP -yardstick property we have

R �
(� + "0)� vh

�
+ vh 2 S.

Then by Lemma 2.5.10
� < � � �(� � vh) <

R �
(� + "0)� vh

�
+ vh,

and so S has the vh-yardstick property. Therefore by Lemma 2.5.6, either S = �

<vh (if S happens to be
jammed), or else S is �-fluent for some nontrivial convex subgroup � of �.

Case 2: For cofinally many � 2 S, there is " 2 �> such that � + "0 2 I2P and (veP )
�1

(� + "0) 2 S. Then
this holds for all � 2 S: given �

1

, �
2

2 � such that �
1

6 �
2

and "
2

2 �>, we can take "
1

> "
2

in � such that
�
1

+ "0
1

= �
2

+ "0
2

.
From I2P 6= ; we get C2

P 6= ;, so v(h† � s) 2  #. By the veP -yardstick property, we obtain " > 0 in �
such that � + "0 � v(h† � s) 2 S. Since s

�
v(h† � s)

�
< "0, we have

� + s
�
v(h† � s)

�� v(h† � s) 2 S.

However, from v(h† � s) 2  # we get s
�
v(h† � s)

�� v(h† � s) > 0. Let � be a nontrivial convex subgroup
of � such that � < s

�
v(h† � s)

�� v(h† � s). Then S is �-fluent.
Case 3: For cofinally many � 2 S, there is " 2 �> such that � + "0 2 I3P and (veP )

�1

(� + "0) 2 S. Then
this holds for all � 2 S, as in Case 2. Now the argument of Case 1 works. ⇤
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CHAPTER 6

l-freeness and the number of Liouville closures of an H-field

Most of this chapter is directly from [16].

In Section 6.1 we give a survey of the property of l-freeness, citing many definitions and results from [6,
§11.5 and §11.6]. Many of these results we cite, and later use, involve situations where l-freeness is preserved
in certain valued differential field extensions. The main result of this section is Proposition 6.1.18 which
shows that a rather general type of asymptotic field extension preserves l-freeness. Proposition 6.1.18 is
related to the yardstick property of Section 2.5.

In Sections 6.2, 6.3, and 6.4, we show that under various circumstances, if a pre-differential-valued field or
a pre-H-field K is l-free, and we adjoin an integral or an exponential integral to K for an element in K

that does not already have an integral or exponential integral, then the resulting field extension will also be
l-free. The arguments in all three sections mirror one another and the main results, Propositions 6.2.2, 6.3.3,
and 6.4.3 are all instances of Proposition 6.1.18.

In Sections 6.5, and 6.6 we give two minor applications of the results of Sections 6.2, 6.3, and 6.4. In
Section 6.5, we show that l-freeness is preserved when passing to the differential-valued hull of a l-free pre-
d-field K (Theorem 6.5.2). In Section 6.6, we show that for l-free d-valued fields K, the minimal henselian,
integration-closed extension K(

R
) of K is also l-free (Theorem 6.6.2).

In Section 6.7 we prove the main result of this chapter, Theorem 6.7.1. Combining this with Section 6.5,
we also give a generalization of Theorem 6.7.1 to the setting of pre-H-fields (Corollary 6.7.3). Finally, we
provide proofs of claims made in [4] and [5] (Corollary 6.7.6 and Remark 6.7.7).

6.1. l-freeness

In this section K is an ungrounded H-asymptotic field with � 6= {0}.
l-sequences and l-freeness.

Definition 6.1.1. A l-sequence (in K) is a sequence of the form (l⇢) =

� � (`††⇢ )

�
where (`⇢) is a

logarithmic sequence in K.

ADH 6.1.2. [6, 11.5.2] Every l-sequence is a pc-sequence of width {� 2 �1 : � >  }.

ADH 6.1.3. [6, 11.5.3] All l-sequences are equivalent as pc-sequences.

In the rest of this section we fix in K a distinguished logarithmic sequence (`⇢) along with its corresponding
l-sequence (l⇢). Nothing that we will discuss depends on the choice of this l-sequence.

ADH 6.1.4. [6, 11.6.1] The following conditions on K are equivalent:

(1) (l⇢) has no pseudolimit in K;
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(2) for all s 2 K there is g 2 K�1 such that s� g†† < g†.

Definition 6.1.5. An asymptotic field L is said to be l-free (or has l-freeness) if it is ungrounded of
H-type with �L 6= {0} and satisfies condition (2) in ADH 6.1.4 for L in the role of K.

The following is immediate from the definition of l-freeness and is a remark made after [6, 11.6.4]:

ADH 6.1.6. Suppose L is an H-asymptotic extension of K such that  is cofinal in  L. If L is l-free,
then so is K.

ADH 6.1.7. [6, 11.6.4] If K is a union of grounded asymptotic subfields, then K is l-free.

Lemma 6.1.8. If K is a directed union of l-free asymptotic subfields, then K is l-free.

Proof. This follows easily from the ADH 6.1.4(2) characterization of l-freeness. ⇤

Algebraic extensions. Ultimately, we will show that l-freeness is preserved under arbitrary Liouville
extensions of H-fields. For the time being, we have the following results concerning l-freeness for algebraic
extensions:

ADH 6.1.9. [6, 11.6.7] If K is l-free, then so is its henselization Kh.

ADH 6.1.10. [6, 11.6.8] K is l-free iff the algebraic closure Ka of K is l-free.

Lemma 6.1.11. Suppose K is equipped with an ordering making it a pre-H-field. If K is l-free, then so is
its real closure Krc.

Proof. This follows from ADH 6.1.10 and 6.1.6, using the fact that  Ka

=  Krc

=  . ⇤

Big exponential integration. The “big” exponential integral extensions considered here complement the
Liouville extensions considered in §6.2, §6.3, and §6.4 below. In particular, we fix an element s 2 K that
does not have an exponential integral in K, i.e., s 62 K†, and we assume that s is bounded away from the
logarithmic derivatives in K in the sense that

S :=

�
v(s� a†) : a 2 K⇥ ✓  #.

Then under the following circumstances, l-freeness is preserved when adjoining an exponential integral for
such an s:

ADH 6.1.12. [6, 11.6.12] Suppose K is l-free and � is divisible, and let f†
= s, where f 6= 0 lies in an

H-asymptotic field extension of K. Suppose

(1) S does not have a largest element, or
(2) S has a largest element and [� + vf ] 62 [�] for some � 2 �.

Then K(f) is l-free.

ADH 6.1.13. [6, 10.5.20 and 11.6.13] Suppose K is equipped with an ordering making it a real closed H-field
such that s < 0. Let L = K(f) be a field extension of K such that f is transcendental over K, equipped with
the unique derivation extending the derivation of K such that f†

= s. Then there is a unique pair consisting
of a valuation of L = K(f) and a field ordering on L making it a pre-H-field extension of K with f > 0.
With this valuation and ordering L is an H-field and  is cofinal in  L. Furthermore, if K is l-free, then
so is L.
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Gap creators. Let s 2 K. We say that s creates a gap over K if vf is a gap in K(f), for some element
f 6= 0 in some H-asymptotic field extension of K with f†

= s.

ADH 6.1.14. [6, 11.6.1 and 11.6.8] If K is l-free, then K has rational asymptotic integration, and no
element of K creates a gap over K.

Remark 6.1.15. ADH 6.1.14 suggests that one way to view l-freeness is as a gap prevention property. How
good is l-freeness as a gap prevention property? Already the above results show that it is impossible to
create a gap from algebraic extensions and certain exponential integral extensions of a l-free field. However,
we can do a little bit better than that: by our results Propositions 6.2.2, 6.3.3, and 6.4.3 below, it follows that
l-freeness is also safely preserved (and so gaps are prevented) when passing to much more general Liouville
extensions of a l-free field.

On the other hand, not being l-free does not bode well for preventing a gap:

ADH 6.1.16. Suppose K has asymptotic integration, � is divisible, and l⇢  l 2 K. Then s = �l creates
a gap over K. Furthermore, for every H-asymptotic extension K(f) of K such that f†

= s, vf is a gap in
K(f).

Proof. The first claim is [6, 11.5.14] and the second claim is a remark after [6, 11.5.14]. ⇤

The following will be our main method of producing gaps in Liouville extensions of H-fields in Section 6.7
below:

ADH 6.1.17. Suppose that K is equipped with an ordering making it a real closed H-field with asymptotic
integration, and l⇢  l 2 K. Let L = K(f) be a field extension of K with f transcendental over K equipped
with the unique derivation extending the derivation of K such that f†

= �l. Then there is a unique pair
consisting of a valuation of L and a field ordering on L making it an H-field extension of K with f > 0.
With this valuation and ordering, vf is a gap in L.

Proof. By [6, 11.5.13] we can apply [6, 10.5.20] with either �l or l playing the role of s, whichever one is
negative. Either way, a positive exponential integral f of �l will be adjoined. By ADH 6.1.16, vf is a gap
in L. ⇤

The yardstick argument. Assume that L = K(y) is an immediate H-asymptotic extension of K where
y is transcendental over K. In particular, v(y �K) is a nonempty downward closed subset of � without a
greatest element.

Proposition 6.1.18. Assume K is henselian and l-free, and v(y�K) ✓ � has the yardstick property. Then
L = K(y) is l-free.

Proof. Assume towards a contradiction that L is not l-free. Take l 2 L \ K such that l⇢  l. By
ADH 6.1.2, ADH 5.1.2, and Lemma 2.4.4, v(l �K) =  

# is jammed. Furthermore, v(l �K) does not have
a supremum in Q� because K is l-free and hence has rational asymptotic integration. By the henselian
assumption and Lemma 5.1.4, there are ↵ 2 � and n > 1 such that v(l � K) =

�
↵ + nv(y � K)

�#. Thus
by Lemmas 2.1.6 and 2.1.5, v(y �K) is jammed as well. Since v(y �K) also has the yardstick property, by
Lemma 2.5.6 we have v(y �K) = �

<. However, since v(l �K) does not have a supremum in Q�, neither
does v(y �K) by Lemma 2.1.1, a contradiction. ⇤
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6.2. Small exponential integration

In this section K is a henselian pre-d-valued field of H-type and s 2 K \ K† is such that v(s) 2 (�

>
)

0.
In particular, K does not have small exponential integration. Take a field extension L = K(y) with y

transcendental over K, equipped with the unique derivation extending the derivation of K such that (1+y)† =

y0/(1 + y) = s.

ADH 6.2.1. [6, 10.4.3 and 10.5.18] There is a unique valuation of L that makes it an H-asymptotic extension
of K with y 6⇣ 1. With this valuation L is pre-d-valued, and is an immediate extension of K with y � 1.
Furthermore, if K is equipped with an ordering making it a pre-H-field, then there is a unique ordering on
L making it a pre-H-field extension of K.

In the rest of this section L is equipped with this valuation. Here is the main result of this section:

Proposition 6.2.2. If K is l-free, then so is L = K(y).

The proof of Proposition 6.2.2 is delayed until the end of the section. The following nonempty set will be of
importance in our analysis:

S :=

⇢
v

✓
s� "0

1 + "

◆
: " 2 K�1

�
✓ (�

>
)

0 ✓ �.

ADH 6.2.3. The set S does not have a largest element.

Proof. This is Claim 1 in the proof of [6, 10.4.3]. ⇤

Lemma 6.2.4. S is a downward closed subset of (�>)0; in particular, S is convex.

Proof. Let "
1

� 1 in K and ↵,� 2 (�

>
)

0 be such that

↵ < v

✓
s� "0

1

1 + "
1

◆
= �.

Let � � 1 in K be such that v(�0) = ↵ and set "
0

:= � + "
1

+ �"
1

. Note that

"0
1

1 + "
1

� "0
0

1 + "
0

=

"0
1

1 + "
1

� (1 + � + "
1

+ �"
1

)

†

=

"0
1

1 + "
1

� �
(1 + �)(1 + "

1

)

�†

=

"0
1

1 + "
1

� �0

1 + �
� "0

1

1 + "
1

= � �0

1 + �

and thus
v

✓
"0
1

1 + "
1

� "0
0

1 + "
0

◆
= v

✓
�0

1 + �

◆
= ↵.

Finally,

v

✓
s� "0

0

1 + "
0

◆
= v

✓✓
s� "0

1

1 + "
1

◆
+

✓
"0
1

1 + "
1

� "0
0

1 + "
0

◆◆
= min(�,↵) = ↵ 2 S. ⇤

The next lemma shows that S is a transform of the positive portion of v(y �K).

Lemma 6.2.5.
�
v(y �K)

>0

�0
= S.
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Proof. (✓) Let " 2 K be such that v(y � ") > 0. Then necessarily " � 1 since y � 1 and so it suffices to
prove that

�
v(y � ")

�0
= v(y0 � "0) 2 S. By (PDV) it follows that (y � ")0 � "0(y � "). Thus

s� "0

1 + "
=

y0

1 + y
� "0

1 + "
=

y0(1 + ")� "0(1 + y)

(1 + y)(1 + ")
=

(1 + ")(y � ")0 � "0(y � ")

(1 + y)(1 + ")

⇣ (1 + ")(y � ")0 � "0(y � ") ⇣ y0 � "0.

We conclude that v(y0 � "0) =
�
v(y � ")

�0 2 S.
For the (◆) direction, suppose that ↵ = v

�
s� "0/(1 + ")

� 2 S where " 2 K�1. Then the calculation in
reverse shows that ↵ = v(y0 � "0) =

�
v(y � ")

�0 2 �
v(y �K)

>0

�0. ⇤

The next lemma gives us a “definable yardstick” that we can use for going up the set S. If K has small
integration, then we can obtain a longer yardstick in the sense of Lemma 2.5.2, however the shorter yardstick
will be good enough for our purposes.

Lemma 6.2.6. Suppose K has asymptotic integration. Then for all � 2 S we have � < � � R
s� 2 S. If

I(K) = ∂O, then for all � 2 S we have � < � +

R
� 2 S. Thus S has the derived yardstick property and so

v(y �K)

>0 and v(y �K) both have the yardstick property.

Proof. Let � 2 S and take " � 1 in K such that � = v
�
s � "0/(1 + ")

�
. Next take b � 1 in K such that

v(b0) =
�
v(b)

�0
= � (and so v(b) =

R
�). Take u 2 K with s� "0/(1 + ") = ub0, so u ⇣ 1. Next let � � 1 be

such that (1 + ")(1 + ub) = 1 + �. Now note that

s� �0

1 + �
= s� �

(1 + ")(1 + ub)
�†

= s� "0

1 + "
� (ub)0

1 + ub

= ub0 � (ub)0

1 + ub

=

u2bb0 � u0b

1 + ub
.

However, since  3 s2� < v(u0
) 2 �> , we have

v(u0b) = v
�
u0b0(b†

��1

)

= v(u0
)�  

R
� + �

> s2� � s� + �

= � R
s� + � (by Lemma 2.3.3),

and so by Lemma 2.5.2,

v

✓
s� �0

1 + �

◆
> min

�
v(u2bb0), v(u0b)

�

> min(� +

R
�,� R

s� + �)

= � � R
s� > �.

Finally, by Lemma 6.2.4, it follows that � � R
s� 2 S.

If I(K) = ∂O, then we can arrange u = 1 above and thus

s� �0

1 + �
=

bb0

1 + b
⇣ bb0
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and so v(bb0) = � +

R
�.

The claim about v(y �K)

>0 now follows from Lemma 6.2.5 and Proposition 2.5.8. ⇤

Proposition 6.2.2 now follows immediately from Lemma 6.2.6 and Proposition 6.1.18.

6.3. Small integration

In this section K is a henselian pre-d-valued field of H-type and s 2 K is such that v(s) 2 (�

>
)

0 and s 62 ∂O.
In particular, K does not have small integration. Define the following nonempty set:

S :=

�
v(s� "0) : " 2 K�1

 ✓ (�

>
)

0 ✓ �.

As K is pre-d-valued, we have the following, which elaborates on [6, 10.2.5(iii)]:

Lemma 6.3.1. S has no largest element and is a downward closed subset of (�>)0; in particular, S is convex.

Proof. First note that v(s) 2 S. Next take � 2 S with � > v(s); then � = v(s� "0) where " � 1 in K. As
� 2 (�

>
)

0, we have b � 1 in K such that v(b0) = �. Thus for some u ⇣ 1 in K we have v(s� "0 � ub0) > �.
By (PDV), v(u0b) > v(b0) = � and so v

�
s� "0 � (ub)0

�
> �. This shows that S has no largest element. The

claim that S is a downward closed subset of (�>)0 follows easily from S ✓ (�

>
)

0. ⇤

Take a field extension L = K(y) with y transcendental over K, equipped with the unique derivation extending
the derivation of K such that y0 = s.

ADH 6.3.2. [6, 10.2.4 and 10.5.8] There is a unique valuation of L that makes it an H-asymptotic extension
of K with y 6⇣ 1. With this valuation L is an immediate extension of K with y � 1 and L is pre-d-valued.
Furthermore, if K is equipped with an ordering making it a pre-H-field, then there is a unique ordering on
L making it a pre-H-field extension of K.

In the rest of this section L is equipped with this valuation. Here is the main result of this section:

Proposition 6.3.3. If K is l-free, then so is L = K(y).

We delay the proof of Proposition 6.3.3 until the end of the section.

In the rest of this section we assume that K has asymptotic integration.

Lemma 6.3.4.
�
v(y �K)

>0

�0
= S.

Proof. (✓) Let " 2 K be such that y� " � 1. Then necessarily " � 1 because y � 1. Let ↵ = v(y� "). We
want to show that ↵0 2 S. From y � " 6⇣ 1 we get

↵0
=

�
v(y � ")

�0
= v(y0 � "0) = v(s� "0) 2 S.

For the (◆) direction, let ↵ = v(s�"0) with " � 1. By arguing as above, v(y�") > 0 and (v(y�"))0 = ↵. ⇤

Lemma 6.3.5. Suppose K has asymptotic integration. Then for all � 2 S we have � < � � R
s� 2 S. If

I(K) = (1 + O)†, then for all � 2 S we have � < � +
R
� 2 S. Thus S has the derived yardstick property and

so v(y �K)

>0 and v(y �K) both have the yardstick property.
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Proof. Suppose � 2 S and take " � 1 in K such that � = v(s� "0). As � 2 (�

>
)

0, we may take b � 1 in K

such that b0 ⇣ s� "0. Thus there is u ⇣ 1 in K such that ub0 = s� "0. By (PDV), it follows that v(u0
) >  .

Thus

v
�
s� ("� ub)0

�
= v(s� "0 � ub0 � u0b)

= v(u0b)

= v
�
u0b0(b†)�1

�

= v(u0
)�  

R
� + �

> s2� � s� + �

= � R
s� + �.

Next, assume that (1 + O)† = I(K). Since s� "0 2 I(K), there is � � 1 such that s� "0 = (1 + �)†, i.e.,

s� "0 =

�0

1 + �
.

Now note that
s� ("+ �)0 = s� "0 � �0 =

�0

1 + �
� �0 =

��0�
1 + �

⇣ �0�

and so
S 3 v

�
s� ("+ �)0

�
= v(�0�) = � +

R
�.

The claim about v(y �K)

>0 now follows from Lemma 6.3.4 and Proposition 2.5.8. ⇤

Proposition 6.3.3 now follows immediately from Lemma 6.3.5 and Proposition 6.1.18.

6.4. Big integration

In this section K is a henselian pre-d-valued field of H-type and s 2 K is such that

S :=

�
v(s� a0) : a 2 K

 ✓ (�

<
)

0 ✓ �.

Thus s 62 ∂K and v(s) 2 (�

<
)

0.

Lemma 6.4.1. S is downward closed and does not have a largest element.

Proof. Let � = v(s � a0) 2 S with a 2 K. Suppose � < � in �. Take f 2 K such that v(f 0
) = � and so

� = v
�
s� (a+ f)0

� 2 S. Next, using S ✓ (�

<
)

0, take b 2 K�1 such that b0 ⇣ s� a0, and then take u ⇣ 1 in
K with ub0 = s� a0. By (PDV), u0b � b0 and thus � < v

�
s� a0 � (ub)0

� 2 S. ⇤

Take a field extension L = K(y) with y transcendental over K, equipped with the unique derivation extending
the derivation of K such that y0 = s.

ADH 6.4.2. [6, 10.2.6 and 10.5.8] There is a unique valuation of L making it an H-asymptotic extension
of K. With this valuation L is an immediate extension of K with y � 1 and L is pre-d-valued. Furthermore,
if K is equipped with an ordering making it a pre-H-field, then there is a unique ordering on L making it a
pre-H-field extension of K.

In the rest of this section L is equipped with this valuation. Here is the main result of this section:

Proposition 6.4.3. If K is l-free, then so is L = K(y).
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We delay the proof of Proposition 6.4.3 until the end of the section.

In the rest of this section we assume that K has asymptotic integration.

Lemma 6.4.4.
�
v(y �K)

�0
= S.

Proof. Let � = v(y � a) with a 2 K. Then v(y0 � a0) = v(s � a0) 2 S ✓ (�

<
)

0 and so y � a � 1. Thus
�0 =

�
v(y � a)

�0
= v(y0 � a0) = v(s � a0) 2 S. Conversely, for a 2 K we have v(s � a0) = v(y0 � a0) =

�
v(y � a)

�0. ⇤

Below we fix g 2 K�1 such that g0 ⇠ s; such g exists by Lemma 6.4.1 and because v(s) 2 S.

Lemma 6.4.5. S>v(s) is cofinal in S, and

S>v(s)
=

�
v((g(1 + "))0 � s) : " 2 K�1

 
.

Proof. S>v(s) is cofinal in S since v(s) 2 S and S does not have a largest element. Suppose " 2 K�1.
Then by (PDV),

�
g(1 + ")

�0
= g0 + "0g + "g0 ⇠ g0 ⇠ s and so

�
g(1 + ")

�0 � s � s. Conversely, suppose
� = v(x0 � s) > vs. Then x0 ⇠ s and so x0 ⇠ g0, i.e., x0 � g0 � g0. As g � 1, we get x � g � g and so
x = g(1 + ") for some " 2 K�1. ⇤

Lemma 6.4.6. Suppose K has asymptotic integration. If � 2 S>v(s), then � < � � R
s� 2 S. Thus S has

the derived yardstick property and so v(y �K) has the yardstick property.

Proof. Let � = v
�
(g(1 + "))0 � s

�
with " 2 K�1. Note that
�
g(1 + ")

�0 � s = g0 + g"0 + g0"� s.

Next take a 2 K�1 such that
a0 ⇣ g0 + g"0 + g0"� s,

so v(a0) = �, and take u ⇣ 1 in K such that

ua0 = g0 + g"0 + g0"� s.

Then a0 � g0 ⇣ s and so a � g, i.e., a/g � 1. Furthermore, u† � a†, so u0a � ua0. Now consider the following
element of S>v(s):

� := v
�
(g(1 + "� ua/g))0 � s

�
.

Note that:
�
g(1 + "� ua/g)

�0 � s = (g + g"� ua)0 � s

= g0 + g"0 + g0"� u0a� ua0 � s

= (g0 + g"0 + g0"� s� ua0)� u0a

= �u0a.
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Thus we can use that v(u0
) >  and � = v(a) + v(a†) to get the yardstick:

v(�u0a) = v
�
u0
(a†)�1a0

�

= v
�
u0
(a†)�1

�
+ �

= v(u0
)�  

R
� + �

= v(u0
)� s� + �

> s2� � s� + �

= � R
s� + �

The claim about v(y �K) now follows from Lemma 6.4.4 and Proposition 2.5.8. ⇤

Proposition 6.4.3 follows immediately from Lemma 6.4.6 and Proposition 6.1.18.

6.5. The differential-valued hull and H-field hull

In this section K is a pre-d-valued field of H-type.

ADH 6.5.1. [6, 10.3.1] K has a d-valued extension dv(K) of H-type such that any embedding of K into
any d-valued field L of H-type extends uniquely to an embedding of dv(K) into L.

The d-valued field dv(K) as in ADH 6.5.1 above is called the differential-valued hull of K.

Theorem 6.5.2. If K is l-free, then dv(K) is l-free.

Proof. Assume K is l-free. By iterating applications of ADH 6.1.9, Proposition 6.3.3, and Lemma 6.1.8,
we get an immediate henselian l-free H-asymptotic extension L of K which has small integration. By
Lemma 5.3.5, L will also be d-valued. Thus by ADH 6.5.1, dv(K) can be identified with a subfield of L

which contains K. Finally, by Lemma 6.1.6 it follows that dv(K) is l-free. ⇤

Definition 6.5.3. A gap � in K is said to be a true gap if no b ⇣ 1 in K satisfies v(b0) = �, and is said to
be a fake gap otherwise (that is, there is b ⇣ 1 in K such that v(b0) = �).

Remark 6.5.4. Suppose K has a gap �. Then the asymptotic couple (�, ) “believes” it can make a
choice about �, in the sense of Remark 3.1.3. However, if � is a fake gap, then this choice is completely
predetermined by K itself. Indeed, if L is a d-valued extension of K of H-type and � is a fake gap, then
there is " 2 OL such that v("0) = �. However, if � is a true gap, then both options of this choice are still
available to K, see [6, 10.3.2(ii), 10.2.1, and 10.2.2].

Lemma 6.5.5. If K is d-valued and has a gap �, then � is a true gap.

Proof. Let K be a d-valued field and consider � 2 �. Suppose that there is b ⇣ 1 in K such that v(b0) = �.
Then there are c 2 C⇥ and " � 1 in K⇥ such that b = c + " and thus v(b0) = v("0) = � 2 (�

>
)

0. In
particular, � is not a gap. ⇤

Corollary 6.5.6. The differential-valued hull of K has the following properties:

(1) If K is grounded, then dv(K) is grounded.
(2) If K has a fake gap, then dv(K) is grounded.
(3) If K has a true gap, then dv(K) has a true gap.
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(4) If K has asymptotic integration and is not l-free, then dv(K) has asymptotic integration and is not
l-free.

(5) If K is l-free, then dv(K) is l-free.

Proof. (1)-(4) are a restatement of [6, 10.3.2]. (5) is Theorem 6.5.2. ⇤

The H-field hull of a pre-H-field. In this subsection we further assume that K is equipped with an
ordering making it a pre-H-field.

ADH 6.5.7. [6, 10.5.13] A unique field ordering on dv(K) makes dv(K) a pre-H-field extension of K. Let
H(K) be dv(K) equipped with this ordering. Then H(K) is an H-field and embeds uniquely over K into any
H-field extension of K.

The H-field H(K) in ADH 6.5.7 above is called the H-field hull of K. We have the following H-field
analogues of Theorem 6.5.2 and Corollary 6.5.6:

Corollary 6.5.8. If K is l-free, then H(K) is l-free.

Corollary 6.5.9. The H-field hull of K has the following properties:

(1) If K is grounded, then H(K) is grounded.
(2) If K has a fake gap, then H(K) is grounded.
(3) If K has a true gap, then H(K) has a true gap.
(4) If K has asymptotic integration and is not l-free, then H(K) has asymptotic integration and is not

l-free.
(5) If K is l-free, then H(K) is l-free.

6.6. The integration closure

In this section K is a d-valued field of H-type with asymptotic integration.

ADH 6.6.1. [6, 10.2.7] K has an immediate asymptotic extension K(

R
) such that:

(1) K(

R
) is henselian and has integration;

(2) K(

R
) embeds over K into any henselian d-valued H-asymptotic extension of K that has integration.

Furthermore, given any such K(

R
) with the above properties, the only henselian asymptotic subfield of K(

R
)

containing K and having integration is K(

R
).

Theorem 6.6.2. If K is l-free, then so is K(

R
).

Proof. Assume K is l-free. By iterating Lemma 6.1.8, ADH 6.1.9, and Propositions 6.3.3 and 6.4.3, we
obtain a l-free d-valued immediate H-asymptotic extension L of K that is henselian and has integration.
Using ADH 6.6.1 to identify K(

R
) with a subfield of L which contains K, K(

R
) is l-free by ADH 6.1.6. ⇤

6.7. The number of Liouville closures

In this section K is a pre-H-field. K is said to be Liouville closed if it is a real closed H-field with
integration and exponential integration. A Liouville closure of K is a Liouville closed H-field extension of
K which is also a Liouville extension of K.

Theorem 6.7.1. Suppose K is an H-field. Then K has at least one and at most two Liouville closures up
to isomorphism over K. In particular,
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(1) K has exactly one Liouville closure up to isomorphism over K iff
(a) K is grounded, or
(b) K is l-free.

(2) K has exactly two Liouville closures up to isomorphism over K iff
(c) K has a gap, or
(d) K has asymptotic integration and is not l-free.

Theorem 6.7.1 will follow from the following Proposition, whose proof we delay until later in the section:

Proposition 6.7.2. Suppose K is an H-field.

(1) If K is l-free, then K has exactly one Liouville closure up to isomorphism over K.
(2) If K has asymptotic integration and is not l-free, then K has at least two Liouville closures up to

isomorphism over K.

Proof of Theorem 6.7.1 assuming Proposition 6.7.2. It is clear that K will be in case (a), (b), (c)
or (d), and all four cases are mutually exclusive. If K is in case (a), then K has exactly one Liouville closure
up to isomorphism over K, by [6, 10.6.23]. If K is in case (c), then K has exactly two Liouville closures
up to isomorphism over K, by [6, 10.6.25]. Cases (b) and (d) are taken care of by Proposition 6.7.2 and [6,
10.6.12]. ⇤

In general, a pre-H-field which is not also an H-field might not have any Liouville closures at all. For
instance, the pre-H-field L from Example 5.3.6 cannot have any Liouville closures: a Liouville closure of L
would necessarily contain H(L), but H(L) cannot be contained inside any Liouville extension of L because
CH(L)

is not an algebraic extension of CL = R. In such a situation, the next best thing is to consider
Liouville closures of the H-field hull:

Corollary 6.7.3. H(K) has at least one and at most two Liouville closures up to isomorphism over K. In
particular,

(1) H(K) has exactly one Liouville closure up to isomorphism over K iff
(a) K is grounded, or
(b) K has a fake gap, or
(c) K is l-free.

(2) H(K) has exactly two Liouville closures up to isomorphism over K iff
(d) K has a true gap, or
(e) K has asymptotic integration and is not l-free.

Proof. If we replace in the statement of Corollary 6.7.3 all instances of “up to isomorphism over K” with
“up to isomorphism over H(K)”, then this would follow from Corollary 6.5.9 and Theorem 6.7.1. Now,
to strengthen the statements to “up to isomorphism over K”, use that H(K) is determined up-to-unique-
isomorphism in Proposition 6.5.7. ⇤

Liouville towers. In this subsection K is an H-field. The primary method of constructing Liouville closures
of an H-field is with a Liouville tower. A Liouville tower on K is a strictly increasing chain (K�)�6µ of
H-fields, indexed by the ordinals less than or equal to some ordinal µ, such that

(1) K
0

= K;
(2) if � is a limit ordinal, 0 < � 6 µ, then K� =

S
◆<�K◆;
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(3) for � < �+ 1 6 µ, either
(a) K� is not real closed and K�+1

is a real closure of K�,
or K� is real closed, K�+1

= K�(y�) with y� 62 K� (so y� is transcendental over K�), and one of the
following holds, with (��, �) the asymptotic couple of K� and  � :=  �(�

6=
� ):

(b) y0� = s� 2 K� with y� � 1 and v(s�) is a gap in K�,
(c) y0� = s� 2 K� with y� � 1 and v(s�) is a gap in K�,
(d) y0� = s� 2 K� with v(s�) = max �,
(e) y0� = s� 2 K� with y� � 1, v(s�) 2 (�

>
� )

0, and s� 6= "0 for all " 2 K�1

� ,
(f) y0� = s� 2 K� such that S� :=

�
v(s� � a0) : a 2 K�

 
< (�

>
� )

0, and S� has no largest element,
(g) y†� = s� 2 K� with y� ⇠ 1, v(s�) 2 (�

>
� )

0, and s� 6= a† for all a 2 K⇥
� ,

(h) y†� = s� 2 K<
� with y� > 0, and v(s� � a†) 2  #

� for all a 2 K⇥
� .

The H-field Kµ is called the top of the tower (K�)�6µ. We say that a Liouville tower (K�)�6µ is maximal
if it cannot be extended to a Liouville tower (K�)�6µ+1

on K. Given a Liouville tower (K�)�6µ on K,
0 6 � < �+ 1 6 µ, we say K�+1

is an extension of type (⇤) for (⇤) 2 �
(a), (b), . . . , (h)

 
if K�+1

and K�

satisfy the properties of item (⇤) as in the definition of Liouville tower.

ADH 6.7.4. (1) Let (K�)�6µ be a Liouville tower on K. Then:
(a) Kµ is a Liouville extension of K;
(b) the constant field Cµ of Kµ is a real closure of C if µ > 0;
(c) |Kµ| = |K|, hence µ < |K|+.

(2) There is a maximal Liouville tower on K.
(3) The top of a maximal Liouville tower on K is Liouville closed, and hence a Liouville closure of K.
(4) If (K�)�6µ is a Liouville tower on K such that no K� with � < µ has a gap, and if Kµ is Liouville

closed, then Kµ is the unique Liouville closure of K up to isomorphism over K.

Proof. (1) is [6, 10.6.13], (2) follows from (1)(c), (3) is [6, 10.6.14], and (4) is [6, 10.6.17]. ⇤

For a set ⇤ ✓ �
(a), (b), . . . , (h)

 
with (a) 2 ⇤, the definition of a ⇤-tower on K is identical to that of

Liouville tower on K, except that in clause (3) of the above definition only the items from ⇤ occur. Thus
every ⇤-tower on K is also a Liouville tower on K. Note that by Zorn’s Lemma and ADH 6.7.4(1)(c),
maximal ⇤-towers exist on K.

Proof of Proposition 6.7.2. (1) Assume K is l-free. By ADH 6.7.4(4), it suffices to find a Liouville
tower (K�)�6µ on K such that Kµ is Liouville closed and no K� with � < µ has a gap. Take a maximal
�
(a),(e),(f),(g),(h)

 
-tower (K�)�6µ on K. By Lemmas 6.1.8, 6.1.11, Propositions 6.2.2, 6.3.3, 6.4.3 and

ADH 6.1.13, K� is l-free for every � 6 µ. In particular, no K� with � < µ has a gap. Finally, by
maximality, it follows that Kµ is Liouville closed.

(2) Assume that K has asymptotic integration and is not l-free. First consider the case that K does
not have rational asymptotic integration. Then K

1

= Krc has a gap. By [6, 10.6.25] K
1

has two Liouville
closures which are not isomorphic over K

1

. As K
1

is a real closure of K, they are not isomorphic over
K either because the real closure is unique up-to-unique-isomorphism. Thus K has at least two Liouville
closures which are not isomorphic over K.

Next, consider the case that K is real closed. In this case, if L is a Liouville closure of K, then CL = C

since C is necessarily real closed. As K is not l-free, there is l 2 K such that l⇢  l. Next, let K
1

= K(f)
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be the H-field extension from ADH 6.1.17 such that f†
= �l and v(f) is a gap in K

1

. Again by [6, 10.6.25],
K

1

has two Liouville closures L
1

and L
2

which are not isomorphic over K
1

. There is ey 2 L�1

1

such that
ey0 = f whereas every y 2 L

2

such that y0 = f has the property that y � 1. Furthermore, as both L
1

and L
2

are Liouville closed, they both contain nonconstant elements y such that y00 = �ly0.

Claim. If y 2 L
1

\C is such that y00 = �ly0, then y 4 1. If y 2 L
2

\C is such that y00 = �ly0, then y � 1.

Proof of Claim. Suppose y 2 L
1

\ C is such that y00 = �ly0. Let ey 2 L�1

1

be such that ey0 = f . Then
ey 2 L

1

\C since f 6= 0. Furthermore ey00 = �ley0 so there are c
0

2 C⇥ and c
1

2 C such that y = c
0

ey + c
1

, by
Lemma 5.3.1. It follows that y 4 1.

Next, let y 2 L
2

\C and let ey 2 L
2

be such that ey0 = f . Then ey 62 C because ey � 1 and ey00 = �ley0. As
in the first case, it will follow from Lemma 5.3.1 that y � 1. ⇤

It follows from the claim that L
1

and L
2

are not isomorphic over K.
Finally, consider the case that K is not real closed, and has rational asymptotic integration. By the

above case, the real closure Krc has two Liouville closures L
1

and L
2

which are not isomorphic over Krc.
These two Liouville closures will also not be isomorphic over K, as real closures are unique-up-to-unique-
isomorphism. ⇤

The next lemma concerns the appearances of gaps in arbitrary Liouville H-field extensions, not necessarily
extensions occurring as the tops of Liouville towers.

Lemma 6.7.5. Suppose K is grounded or is l-free and L is a Liouville H-field extension of K. Then L

does not have a gap.

Proof. We first consider the case that K is l-free. Let M be the Liouville closure of K which was
constructed in the proof of Proposition 6.7.2. We claim that  is cofinal in  M . This follows from the
fact that M is constructed as the top of an

�
(a),(e),(f),(g),(h)

 
-tower on K: the  -set remains unchanged

when passing to extensions of type (a), (e), (f) or (g) and for extensions of type (h), the original  -set
is cofinal in the larger  -set by ADH 6.1.13. Finally, as M is the unique Liouville closure of K up to
isomorphism over K, we may identify L with a subfield of M which contains K. Thus  L is cofinal in  M .
As M is l-free, so is L by ADH 6.1.6. In particular, L has rational asymptotic integration and so it does
not have a gap.

We next consider the case that K is grounded. Let M be the Liouville closure of K as constructed in the
proof of [6, 10.6.24] and the remarks following it. In particular, using the notation from the remarks following
the proof of [6, 10.6.24], M =

S
n<! `

n
(K) where `0(K) = K and for each n, `n+1

(K) is a grounded Liouville
H-field extension of K such that max `n+1

(K)

= s(max `n(K)

). It follows that the set
�
sn(max ) : n < !

 

is a cofinal subset of  M . We now identify L with a subfield of M that contains K and consider two cases:
Case 1:

�
sn(max ) : n < !

 6✓  L. In this case there is a least N < ! such that sN (max ) 2  L

but s
�
sN (max )

� 2  M \  L. Thus the element sN (max ) 2  L cannot be asymptotically integrated in
L. The only way this can happen is if sN (max ) = max L. In particular, L is grounded and does not have
a gap.

Case 2:
�
sn(max ) : n < !

 ✓  L. In this case  L is cofinal in  M and so L is l-free by ADH 6.1.6.
In particular, L has rational asymptotic integration and therefore does not have a gap. ⇤

We also give a characterization of the dichotomy of Theorem 6.7.1 entirely in terms of gaps appearing in
Liouville towers and arbitrary Liouville extensions:
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Corollary 6.7.6. The following are equivalent:

(1) K has exactly two Liouville closures up to isomorphism over K,
(2) there is a Liouville tower (K�)�6µ on K such that some K� has a gap,
(3) every maximal Liouville tower (K�)�6µ on K has some K� with a gap,
(4) there is a Liouville tower (K�)�6µ on K with µ > ! such that either K

0

,K
1

or K
2

has a gap,
(5) there is an H-field L which has a gap and is a Liouville extension of K.

Proof. (4) ) (2) and (3) ) (2) are clear. (1) ) (3) and (1) ) (5) follow from ADH 6.7.4(4).
(1) ) (4): If K has exactly two Liouville closures up to isomorphism over K, then in particular K itself

is not Liouville closed. A routine argument shows that every maximal Liouville tower (K�)�6µ has µ > !.
By Theorem 6.7.1 either K has a gap or K has asymptotic integration and is not l-free. If K has a gap,
then for any maximal Liouville tower (K�)�6µ, K

0

has a gap. Otherwise, the proof of Proposition 6.7.2
shows how we can arrange either K

1

or K
2

to have a gap.
(2) ) (1): We will prove the contrapositive. Suppose that K has exactly one Liouville closure up to

isomorphism over K and let (K�)�6µ be a Liouville tower on K. We will prove by induction on � that K�

is either grounded or l-free, and thus no K� has a gap. The case � = 0 is clear and the limit ordinal case is
taken care of by ADH 6.1.7 and Lemma 6.1.8. Suppose � = ⌫ + 1 for some ordinal 0 6 ⌫ < µ. If K� is a
real closure of K⌫ , then K� will be grounded if K⌫ is and K� will be l-free if K⌫ is by Lemma 6.1.11. By
the inductive hypothesis, K� will never be an extension of type (b) or (c). If K� is an extension of type (d),
then K� will also be grounded by [6, 10.2.3]. Extensions of type (e), (f) and (g) are necessarily immediate
extensions, so if K⌫ is grounded, then so is K� and if K⌫ is l-free, then so is K� by Propositions 6.2.2, 6.3.3,
and 6.4.3. Finally, if K� is an extension of type (h) and if K⌫ is grounded, then so is K� by [6, 10.5.20], and
if K⌫ is l-free, then so is K� by ADH 6.1.13.

(5) ) (1): Suppose K has a Liouville H-field extension with a gap. Then by Lemma 6.7.5, K has a
gap or K has asymptotic integration and is not l-free. By Theorem 6.7.1, it follows that K has exactly two
Liouville closures up to isomorphism over K. ⇤

Remark 6.7.7. The implication (2) ) (1) of our Corollary 6.7.6 above occurs without proof in [4] (see item
(II) before [4, 6.11]). Also, (1) , (5) of our Corollary 6.7.6 is stated without proof in [5] (see the paragraph
after [5, 4.3]).
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CHAPTER 7

LD-fields

Recall from Chapter 1 that the main difference between T
log

and T is that T
log

only has partial exponential
integration, whereas T has full exponential integration. In this chapter we turn our attention to studying
the set of logarithmic derivatives T†

log

of T
log

. More generally, we introduce the framework of LD-fields for
studying certain d-valued fields K with a distinguished set LD ✓ K. First, some motivation:

Our eventual goal is model completeness for T
log

(in some natural language). In particular, all definable sets
need to be existentially definable. Clearly the set of logarithmic derivatives T†

log

is existentially definable:

f 2 T†
log

() there exists g 2 T⇥
log

such that g† = f

What about the complement, T
log

\T†
log

? In other words, can we find an existential answer to the following
question:

Question. When is f 2 T
log

not a logarithmic derivative?

To answer the above question, we first give an explicit description of T†
log

:

Lemma 7.0.1. Given a logarithmic transseries f 2 T
log

,

f 2 T†
log

() v
�
supp(f)

� ✓  
log

[ (�

>
log

)

0.

Proof. ()) Let g 2 T⇥
log

be arbitrary. By factoring out the dominant monomial d(g), we see that

g = c`r0
0

· · · `rnn (1 + ")

for some c 2 R⇥, some n, some r
0

, . . . , rn 2 R and " 2 T�1

log

. Thus

g† = r
0

`�1

0

+ · · ·+ rn`
�1

0

· · · `�1

n +

"0

1 + "
,

and so v
�
supp(g†)

� ✓  
log

[ (�

>
log

)

0.

(() Conversely, first suppose v
�
supp(f)

� ✓  

log

. Since there is an upper bound on n such that `n
which can occur in the support of f (because T

log

is a certain direct union), we have

f = r
0

`�1

0

+ · · ·+ rn`
�1

0

· · · `�1

n

for suitable n and r
0

, . . . , rn 2 R. Thus

f = (`r0
0

· · · `rnn )

† 2 T†
log

.

Next, suppose that v
�
supp(f)

� ✓ (�

>
log

)

0. Then f 2 I(T
log

) = (1 + O
log

)

† ✓ T†
log

by ADH 5.3.23 since T
log

is
newtonian.

Finally, for arbitrary f 2 T
log

such that v
�
supp(f)

� ✓  

log

[ (�

>
log

)

0, there are g, h 2 T
log

such that
f = g+h and v

�
supp(g)

� ✓  
log

and v
�
supp(h)

� ✓ (�

>
log

)

0. As T†
log

is closed under addition, it follows that
f 2 T†

log

. ⇤
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Now, suppose that f 62 T†
log

. As a series, we write

f =

X

m2�
log

fmm.

Next, we extract the following subseries from f :

f† :=

X

m2 
log

[(�

>
log

)

0

fmm

By Lemma 7.0.1, it follows that f† 2 T†
log

. Furthermore, f � f† 6= 0 and

v
�
supp(f � f†)

� ✓  

#
log

\ 
log

.

In particular,
v(f � f†) 2  

#
log

\ 
log

.

We summarize the above calculation in the following “existential” answer:

Answer. Given a logarithmic transseries f 2 T
log

,

f 62 T†
log

() there exists g 2 T⇥
log

such that v(f � g†) 2  #
log

\ 
log

.

In other words, if a logarithmic transseries f is not a logarithmic derivative, then there is a logarithmic
derivative g which witnesses f 62 T†

log

. In particular, this witnessing only relies on the valuation v and a
set definable in the asymptotic couple (�

log

, ). Furthermore, this witnessing does not refer to the non-first
order notion of support.

In the parlance of this chapter (see Example 7.1.12 below), we will summarize this phenomenon as follows:

The H-field T
log

is  -closed.

In Section 7.1, we introduce LD-fields. An LD-field is a pair (K,LD) where K is a certain type of d-valued
field and LD ✓ K is a distinguished subset which captures the essence of “being a logarithmic derivative in
an appropriate extension”. This is analogous to the theory of formally real fields, where one considers pairs
(F, P ) where F is a formally real field and P ✓ F is a so-called positive cone which captures the essence of
“being a square in an appropriate real closed extension of F ” (e.g., see [32]).

Intuitively, an LD-field is a pair (K,LD) which satisfies many of the same universal properties as the pair
(T

log

,T†
log

). We pay close attention to when the pair (K,LD) satisfies the same witnessing property given
in the Answer above. Indeed, we define (K,LD) to be  -closed in this case. We also consider a useful
generalization of being  -closed, a property we call being full.

The rest of this chapter after Section 7.1 is a study in the extension theory of LD-fields. In particular,
we are interested in showing that if (K,LD) is a full LD-field, and L is a d-valued extension of K with
certain properties, then there is a unique subset LD

⇤ ✓ L such that (L,LD⇤
) is a full LD-field such that

LD = LD

⇤ \K. We accomplish this in many cases of interest.

7.1. LD-fields

In this section K is a d-valued field of H-type with asymptotic integration.

Recall that I(K) := {y 2 K : y 4 f 0 for some f 2 O}. It follows that I(K) = {h 2 K : vh >  }.
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Definition 7.1.1. An LD-set (on K) is a subset LD ✓ K satisfying the following conditions:

(LD1) LD is a CK-vector subspace of K;
(LD2) K† ✓ LD;
(LD3) I(K) ✓ LD; and
(LD4) v(LD) ✓  [ (�

>
)

0 [ {1}.
If LD ✓ K is an LD-set on K, then we call the pair (K,LD) an LD-field; if in addition K is equipped with
an ordering making it an H-field, then we call the pair (K,LD) an LD-H-field.

In general, if we refer to a pair (L,LD) as an LD-field (respectively, an LD-H-field) it is implied that L is
a d-valued field of H-type with asymptotic integration (respectively, an H-field with asymptotic integration)
and LD is an LD-set on L.

Here are some basic properties of LD-fields:

Lemma 7.1.2. Suppose (K,LD) is an LD-field and let a, b 2 K. Then:

(1) v(LD) =  [ (�

>
)

0 [ {1};
(2) if v(a� LD) 6< (�

>
)

0, then a 2 LD;
(3) if b 2 LD and v(a� b) 2  # \ , then a 62 LD and v(a� b) = max v(a� LD); and
(4) if v(a� b) >  , then a 2 LD iff b 2 LD.

Proof. (1) follows from (LD2), (LD3), and (LD4). For (2), if a 2 K and b 2 LD are such that v(a�b) >  ,
then a � b 2 LD by (LD3) and thus a 2 LD by (LD1). For (3), if b 2 LD and v(a � b) 2  # \  , then
a� b 62 LD by (LD4) and so a 62 LD by (LD1). For (4), if v(a� b) >  , then a� b 2 LD and so a 2 LD iff
b 2 LD by (LD1). ⇤

Minimal and maximal LD-sets. It is not clear that K has any LD-sets on it at all. The following is a
natural candidate for a smallest LD-set on K:

Definition 7.1.3. LD(K) := CK†
+ I(K). Note that LD(K) automatically satisfies (LD1), (LD2) and

(LD3).

One condition that guarantees that LD(K) is an LD-set on K is being closed under powers:

Definition 7.1.4. We say that K is closed under powers if for every c 2 C and f 2 K⇥ there is y 2 K⇥

such that y† = cf†.

Lemma 7.1.5. Suppose K is closed under powers. Then LD(K) is an LD-set on K. Furthermore, LD(K)

is smallest among all LD-sets on K.

Proof. It remains to check (LD4). Let f =

Pn
i=1

cif
†
i + g be an arbitrary element of LD(K) where ci 2 C,

fi 2 K⇥ for i = 1, . . . , n and g 2 I(K). By the assumption that K is closed under powers, there is y 2 K⇥

such that y† =
Pn

i=1

cif
†
i . It follows that v(y† + g) 2  [ (�

>
)

0 [ {1}. The minimality property is clear by
(LD1), (LD2) and (LD3). ⇤

The following is clear:

Lemma 7.1.6. The union of a nonempty chain of LD-sets on K is an LD-set on K.
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Lemma 7.1.7. Suppose K has an LD-set. Then K has a maximal LD-set and LD(K) is the smallest LD-set
on K.

Proof. That K has a maximal LD-set is clear from Zorn’s Lemma. Let LD ✓ K be any LD-set on K. Then
LD(K) ✓ LD. It suffices to check that that LD(K) satisfies (LD4), but this follows from LD(K) ✓ LD. ⇤

Lemma 7.1.8. Let (K,LD) be an LD-field. The following conditions on (K,LD) are equivalent:

(1) LD is a maximal LD-set on K;
(2) for every a 2 K there is b 2 LD such that v(a� b) 62  ;
(3) for every a 2 K \ LD there is b 2 LD such that v(a� b) 2  # \ .

Proof. (1 ) 2) To prove the contrapositive, assume (2) is false. Take a 2 K such that v(a� LD) ✓  , so
a 2 K \ LD. It suffices to prove the following:

Claim. Ca+ LD is an LD-set on K properly containing LD.

Proof of claim. (LD1), (LD2), and (LD3) are clear. For (LD4), take b 2 LD and c 2 C⇥. Then
v(ca+ b) = v(a+ c�1b) 2  since v(a� LD) ✓  . ⇤

(2 ) 3) Suppose a 2 K \ LD and take b 2 LD such that v(a � b) 62  . If v(a � b) >  , then
a� b 2 I(K) ✓ LD, so a 2 LD by (LD1). Thus v(a� b) 2  # \ .

(3 ) 1) Suppose a 2 K \LD and LD

⇤ is an LD-set on K with LD ✓ LD

⇤. Then (3) gives b 2 LD ✓ LD

⇤

such that v(a � b) 2  # \  , and so a � b 62 LD

⇤ by (LD4). By (LD1) we conclude that a 62 LD

⇤ since
b 2 LD

⇤. ⇤

Definition 7.1.9. We say that an LD-field (K,LD) is full if (K,LD) satisfies any of the equivalent conditions
in Lemma 7.1.8.

Definition 7.1.10. We say that an LD-field (K,LD) is  -closed if it is full and LD = K†. We say that
the d-valued field K is  -closed if

(1) K† is an LD-set on K, and
(2) (K,K†

) is  -closed as an LD-field.

Note that if an LD-field is  -closed, then it is automatically closed under powers.

Example 7.1.11. Suppose K is equipped with an ordering making it a Liouville closed H-field. Then
K = K† and �1 =  [ (�

>
)

0 [ {1}. It follows that (K,K) = (K,K†
) is a  -closed LD-H-field and that K

is a  -closed H-field. Conversely, given an LD-H-field (K,LD), if ∂K = K, (K,LD) is  -closed, and (�, )

is closed, then K is Liouville closed.

Example 7.1.12. The pair (T
log

,T†
log

) is a  -closed LD-H-field, and thus T
log

is a  -closed H-field.
Property (LD1) follows from the fact that T

log

is closed under powers, a consequence of newtonianity and
ADH 5.3.23. Everything else should be clear from the discussion at the beginning of this chapter.

A convenient consequence of fullness is that LD is “closed under pseudolimits” in the following sense:

Lemma 7.1.13. Suppose (K,LD) is full and let (a⇢) be a pc-sequence in K such that a⇢ 2 LD for all ⇢.
Further suppose b 2 K is such that a⇢  b. Then there is a 2 LD such that a⇢  a.
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Proof. If b 2 LD we are done, so assume b 62 LD. Take a 2 LD such that v(b�a) 2  #\ . For ⇢ big enough
and � > ⇢ we have v(b � a⇢) = v(a� � a⇢) 62  # \  by (LD4), so v(b � a⇢) 6= v(b � a) eventually. Assume
towards a contradiction that v(b� a⇢) > v(b� a) eventually. Then eventually v(a⇢ � a) = v(b� a) 2  # \ 
contradicting (LD4). Thus v(b� a) > v(b� a⇢) eventually and so a⇢  a. ⇤

Suppose L is a d-valued H-asymptotic extension of K with asymptotic integration, LD
0

is an LD-set on K,
and LD

1

is an LD-set on L. Then we say that (L,LD
1

) is an extension of (K,LD
0

) (notation: (K,LD
0

) ✓
(L,LD

1

)), if LD
1

\K = LD

0

. A similar definition applies to extension of LD-H-fields.

Suppose the LD-fields (L,LD
1

) and (M,LD
2

) are extensions of (K,LD
0

) and i : L ! M is an embedding
over K of valued differential fields. Then we say that i : (L,LD

1

) ! (M,LD
2

) is an embedding over K

of LD-fields if i�1

(LD

2

) = LD

1

. A similar definition applies to embedding of LD-H-fields.

The following is routine:

Lemma 7.1.14. Let I be a nonempty ordered set and for all i 2 I, let (Ki,LDi) be an LD-field such
that (Ki,LDi) ✓ (Kj ,LDj) for all indices i < j. Then LD := [i2I LDi is the unique LD-set LD

⇤ on
L := [i2IKi such that (Ki,LDi) ✓ (L,LD⇤

) for all i 2 I. Furthermore, (L,LD) is full if (Ki,LDi) is full
and  L \ �Ki =  Ki for all i 2 I.

7.2. Immediate extensions

In this section (K,LD) is an LD-field.

Lemma 7.2.1. Suppose L is an immediate asymptotic extension of K. Then LD

⇤
:= LD+ I(L) is an LD-set

on L such that (K,LD) ✓ (L,LD⇤
). Furthermore, LD⇤ is the smallest LD-set LD

1

on L with the property
that (K,LD) ✓ (L,LD

1

).

Proof. We first show that LD

⇤ is an LD-set on L. (LD1) follows from CL = CK . (LD3) and (LD4) are
clear. For (LD2), let f 2 L⇥ be arbitrary. Then f = gu with g 2 K and u 2 L⇣1 since �L = �K . Then
f†

= g† + u† 2 K†
+ I(L) ✓ LD+ I(L) = LD

⇤.
Next, we must show that (L,LD⇤

) is an LD-field extension of (K,LD). It is clear that LD

⇤ \K ◆ LD.
Suppose towards a contradiction that there is h 2 (LD

⇤ \K) \ LD. Then h = f + g for some f 2 LD and
g 2 I(L). Then g = h� f 2 K \ I(L), so vg >  and thus g 2 I(K) ✓ LD. By (LD1) it follows that h 2 LD,
a contradiction.

The minimality of LD

⇤ is clear since every LD-set LD

1

on L such that (K,LD) ✓ (L,LD
1

) must
necessarily contain both LD and I(L). ⇤

The next proposition gives a sufficient condition for fullness to be preserved by an immediate extension.

Proposition 7.2.2. Suppose (K,LD) is full and L is an immediate asymptotic extension of K. Set LD⇤
:=

LD+ I(L). If for all f 2 L \K,

(1) v(f �K) <  , or
(2) the set v(f �K) \ has a maximum, or
(3) v(f � g) >  for some g 2 K,

then (L,LD⇤
) is full.
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Proof. We will prove the contrapositive; assume f 2 L\K is such that v(f �LD

⇤
) ✓  . We will show that

f cannot satisfy (1), (2), or (3). Note that ; 6= v(f � LD) ✓ v(f � LD

⇤
) ✓  . As v(f � LD) ✓ v(f �K), f

cannot satisfy (1).

Claim. v(f � LD) = v(f � LD) \ does not have a largest element.

Proof of claim. Let a 2 LD. Then v(f � a) 2  and so we have g 2 K 6⇣1 such that f � a ⇣ g†. As K

is d-valued and L ◆ K is immediate, we get c 2 CK = CL such that f � a ⇠ cg†. Then a + cg† 2 LD and
v(f � a) < v(f � a� cg†) 2  . ⇤

Claim. v(f � LD) \ is downward closed as a subset of  .

Proof of claim. Let g � 1 and a 2 LD be such that v(g†) < v(f � a). Then a + g† 2 LD by (LD1) and
(LD2), and so v(f � a� g†) = v(g†) 2 v(f � LD) \ . ⇤

Claim. v(f � LD) \ = v(f �K) \ .

Proof of claim. Assume towards a contradiction that g 2 K is such that v(f � g) 2  and v(f � g) >

v(f � LD) \  . By the first claim we can take a well-indexed sequence (a⇢) in LD such that v(f � a⇢) is
strictly increasing and cofinal in v(f � LD). Then a⇢  f and a⇢  g since v(f � g) is in the width of (a⇢).
By Lemma 7.1.13, there is a 2 LD such that a⇢  a. Thus v(f � a) > v(f � LD), a contradiction. ⇤

As v(f � K) \  = v(f � LD) \  does not have a maximum, f cannot satisfy (2). Finally, assume
towards a contradiction that f satisfies (3); we have g 2 K such that v(f � g) >  . Since (K,LD) is full,
we get a 2 LD such that v(g � a) 62  . Then v(f � a) 62  and a 2 LD

⇤, contradicting the assumption that
v(f � LD

⇤
) ✓  . Thus f cannot satisfy (3). ⇤

We do not know if Proposition 7.2.2 gives a necessary condition for preserving fullness when passing to an
immediate extension, even in the special case (�, ) |= TAC , where TAC is as defined in Chapter 4.

7.3. Almost Special Immediate Extensions

In this section (K,LD) is a full LD-field. We consider here a general type of immediate extensions: the
almost special extensions; see §5.4.

Definition 7.3.1. We say that an H-asymptotic couple (�

⇤, ⇤
) has the successor property if it has

asymptotic integration and for every ↵,� 2  ⇤, if ↵ < �, then s↵ 6 �. Furthermore, we say that such
(�

⇤, ⇤
) has the predecessor property if it has asymptotic integration and for every ↵ 2 conv( 

⇤
), there

is � 2 ( 

⇤
)

6↵ such that s� > ↵.

Note that if (Q�⇤, ⇤
) |= TAC , then (�

⇤, ⇤
) has the successor and predecessor properties.

Lemma 7.3.2. Suppose (�, ) has the successor and predecessor properties, and L is an almost special
immediate asymptotic extension of K. Then there is a unique LD-set LD

⇤ on L such that (K,LD) ✓
(L,LD⇤

), namely LD

⇤
:= LD+ I(L); and with this LD-set, (L,LD⇤

) is full.

Proof. By Lemma 7.2.1, LD⇤
:= LD+ I(L) is an LD-set on L such that (K,LD) ✓ (L,LD⇤

). For unique-
ness, it is sufficient to establish that (L,LD⇤

) is full. To do this we will use Proposition 7.2.2. Suppose
that f 2 L \ K. By assumption, we have ↵ 2 � and a nontrivial convex subgroup � of � such that
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v(f �K) = (↵+�)

#. If ↵+� <  or ↵+� >  , then we are done, so for the rest of the proof we assume
that (↵+�) \ conv( ) 6= ;.

Assume first that (↵ +�) \  = ;. Then ↵ 2 conv( ), so the predecessor property gives � 2  such
that � < ↵ and s� > ↵. Then the successor property yields � = max(↵+�)

# \ and we are done.
Finally, assume that (↵+�) \ 6= ;. If (↵+�) \ = {�}, then � is the maximum of v(f �K) \ ,

and we are done. Otherwise, we have distinct �, � 2 (↵ +�) \  . We may assume that � < � and by the
successor property and convexity of �, we may also assume that � = s�. Thus n(s� � �) 2 � for every n

and so � + 2(s� � �) 2 ↵ +�. However, by Lemma 2.4.3, � + 2(s� � �) 2 (�

>
)

0. Therefore ↵ +� 6✓  

#

and we are done. ⇤

Proposition 7.3.3. Suppose (�, ) has the successor and predecessor properties, L is an asymptotic exten-
sion of K, and a 2 L \K is special over K. Furthermore, suppose (a⇢) is a divergent pc-sequence from K

of d-algebraic type with minimal differential polynomial G(Y ) over K such that a⇢  a and G(a) = 0. Then
there is a unique LD-set LD

⇤ on Khai such that (K,LD) ✓ �
Khai,LD⇤ �, namely LD

⇤
:= LD+ I

�
Khai�,

and
�
Khai,LD⇤ � is full.

Proof. By Corollary 5.4.4, Khai ◆ K is an almost special immediate extension. The rest follows from
Lemma 7.3.2. ⇤

7.4. Algebraic extensions

In this section (K,LD) is an LD-field and L ◆ K is an algebraic asymptotic extension. Since (�L, L) ✓
(Q�, ), L is necessarily of H-type and  L =  . We will show that if L is d-valued with asymptotic
integration, then there is always an LD-set LD⇤ on L such that (K,LD) ✓ (L,LD⇤

). Under some additional
technical assumptions, we will show that if (K,LD) is full, then so is (L,LD⇤

). We do this by considering
three types of algebraic extensions.

Lemma 7.4.1 (Unramified extensions). Suppose that [L : K] = [CL : C] < 1. Then L is d-valued with
asymptotic integration, and LD

⇤
:= CL LD is an LD-set on L such that (K,LD) ✓ (L,LD⇤

). Furthermore, if
(K,LD) is full, then (L,LD⇤

) is full, and there is no LD-set LD
1

6= LD

⇤ on L such that (K,LD) ✓ (L,LD
1

).

Proof. First we will show that L is d-valued. Since K is d-valued, res(C) = res(K) and we have an
extension of fields res(C) ✓ res(CL) ✓ res(L). By [6, 3.1.8],

[L : K] = [CL : C] =

⇥
res(CL) : res(C)

⇤
6

⇥
res(L) : res(C)

⇤
=

⇥
res(L) : res(K)

⇤
6 [L : K].

Thus res(CL) = res(L). In particular, L is d-valued. It also follows from [6, 3.1.8] that �L = � and so L has
asymptotic integration.

Next we will show that LD

⇤
:= CL LD is an LD-set on L. (LD1) is clear. For (LD3), suppose that

f =

P
i ciai 2 I(L), where the ci 2 CL are C-linearly independent, and ai 2 K for all i. Then vf = mini vai

by Lemma 5.5.3. Since vf >  , we get vai >  for all i and so ai 2 I(K) ✓ LD for all i. It follows that
f 2 LD

⇤. For (LD2), take f 2 L⇥. Since �L = � we have f = ua with u ⇣ 1 and a 2 K⇥, so f†
= a† + u† 2

K†
+ I(L) ✓ LD

⇤. For (LD4), take an arbitrary f =

P
i ciai 2 LD

⇤ with ci 2 CL, and ai 2 LD. We may
again assume that the ci 2 C⇥

L are C-linearly independent. Therefore vf = mini vai 2  [ (�

>
L )

0 [ {1}.
To show that (L,LD⇤

) is an LD-field extension of (K,LD), take a basis 1, c
1

, . . . , cn of CL as a vector
space over C. Then 1, c

1

, . . . , cn is also a basis of L as a vector space over K because K and CL are linearly
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disjoint over C and [L : K] = [CL : C]. In particular, if f = a
0

+ c
1

a
1

+ · · · + cnan 2 LD

⇤ \K where each
ai 2 LD, then necessarily f = a

0

2 LD.
Finally, suppose (K,LD) is full. It remains to show that (L,LD⇤

) is full, which also shows uniqueness
by maximality. Let f 2 L \ LD⇤ be arbitrary. Then f =

P
i ciai with C-linearly independent ci 2 C⇥

L and
ai 2 K. Since (K,LD) is full, we can take bi 2 LD with v(ai � bi) 62  for each i. Then for b :=

P
i cibi we

have f � b =
P

i ci(ai � bi), so v(f � b) = mini v(ai � bi) 62  , by Lemma 5.5.3. ⇤

Lemma 7.4.2 (Purely ramified extensions). Suppose K has rational asymptotic integration and L =

K(w1/p
) is an extension of K with prime p and v(w) 62 p� (and thus [L : K] = [�L : �] = p). Then L is d-

valued with asymptotic integration, and LD

⇤
:= LD+ I(L) is an LD-set on L such that (K,LD) ✓ (L,LD⇤

).
Furthermore, if (K,LD) is full, then (L,LD⇤

) is full, and there is no LD-set LD

1

6= LD

⇤ on L such that
(K,LD) ✓ (L,LD

1

).

Proof. The rational asymptotic integration assumption of K ensures that L has asymptotic integration.
By [6, 3.1.8],

⇥
res(L) : res(K)

⇤
= 1, and so res(CL) = res(L). In particular, L is d-valued with CL = C.

Next we will show that LD

⇤
:= LD+ I(L) is an LD-set on L. (LD1) and (LD3) are clear. For (LD2),

let f 2 L⇥ be arbitrary. Then f = wi/pug with i 2 {0, . . . , p� 1}, g 2 K⇥ and u ⇣ 1. Then

f†
=

i

p
w†

+ g† + u† 2 LD+ I(L).

(LD4) follows from the fact that (K,LD) satisfies (LD4) and v
�
I(L)

�
>  .

To show that (L,LD⇤
) is an LD-field extension of (K,LD), take an element

f = g + a
0

+ a
1

w1/p
+ · · ·+ ap�1

w(p�1)/p 2 LD

⇤ \K
such that g 2 LD and

a
0

+ a
1

w1/p
+ · · ·+ ap�1

w(p�1)/p 2 I(L)

with every ai 2 K. Then necessarily ai = 0 for i > 1. Thus a
0

2 I(L), which gives va
0

>  and so a
0

2 I(K).
We conclude that f = g + a

0

2 LD.
Finally, suppose (K,LD) is full. It remains to show that (L,LD⇤

) is full, which also shows uniqueness
by maximality. Let f 2 L \ K be arbitrary. We want to find b 2 LD

⇤ such that v(f � b) 62  . We have
f = a+h where a 2 K and vh 62 � ◆  =  L. If vf 62  we can set b := 0 and we are done. Otherwise, since
(K,LD) is full we can take b 2 LD such that v(a� b) 2 �1 \ . Then v(f � b) = min

�
v(a� b), vh

� 62  . ⇤

Lemma 7.4.3 (Immediate algebraic extensions). Suppose L is an immediate extension of K. Then L is d-
valued with asymptotic integration, and LD

⇤
:= LD+ I(L) is an LD-set on L such that (K,LD) ✓ (L,LD⇤

).
Furthermore, if (K,LD) is full and (�, ) has the successor and predecessor properties, then (L,LD⇤

) is full,
and there is no LD-set LD

1

6= LD

⇤ on L such that (K,LD) ✓ (L,LD
1

).

Proof. The first claim is a special case of Lemma 7.2.1. By ADH 5.1.5, L is almost special over K. The
second claim now follows from Lemma 7.3.2. ⇤

Lemma 7.4.4 (Algebraic closure). Suppose K has rational asymptotic integration and L = Ka is an
algebraic closure of K. Then L is d-valued with asymptotic integration, and there is an LD-set LD

⇤ on L

such that (K,LD) ✓ (L,LD⇤
). Furthermore, if (K,LD) is full and (�, ) has the successor and predecessor

properties, then there is a unique LD-set LD

⇤ on L such that (K,LD) ✓ (L,LD⇤
), and (L,LD⇤

) is full for
this LD

⇤.
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Proof. We will prove both claims simultaneously (the first claim is mere existence, the second claim is
uniqueness and fullness with stronger assumptions on (K,LD) and (�, )). Note that the assumptions on
the asymptotic couple in the second claim are inherited by every algebraic extension of K. We go from
(K,LD) to L in three steps.

First, Lemma 7.4.3, gives us an LD-set LD
1

on the henselization Kh of K such that (K,LD) ✓ (Kh,LD
1

).
Under the assumptions of the second claim (Kh,LD

1

) is full.
Next, Lemmas 7.4.1 and 7.1.14 gives us an LD-set LD

unr

on the maximal unramified extension (Kh

)

unr of
Kh such that (Kh,LD

1

) ✓ �
(Kh

)

unr,LD
unr

�
. Under the assumptions of the second claim

�
(Kh

)

unr,LD
unr

�

is full. Note that in this step, (Kh

)

unr is reached from Kh by a direct union which we are suppressing, which
is why we need Lemma 7.1.14.

Finally, we obtain L as a purely ramified extension of (Kh

)

unr by [6, 3.3.48], so Lemmas 7.4.2 and 7.1.14
yield an LD-set LD

⇤ on L such that
�
(Kh

)

unr,LD
unr

� ✓ (L,LD⇤
). Under the assumptions of the second

claim, (L,LD⇤
) is full. In this step, L is likewise reached from (Kh

)

unr by a direct union which we are
suppressing.

The uniqueness part of the second claim follows in a routine way from the uniqueness parts of Lem-
mas 7.4.1, 7.4.2, and 7.4.3. ⇤

Proposition 7.4.5 (Arbitrary algebraic extensions). Suppose K has rational asymptotic integration and L

is a d-valued extension of K. Then L has asymptotic integration, and there is an LD-set LD⇤ on L such that
(K,LD) ✓ (L,LD⇤

). Furthermore, if (K,LD) is full and (�, ) has the successor and predecessor properties,
then there is a unique LD-set LD⇤ on L such that (K,LD) ✓ (L,LD⇤

), and (L,LD⇤
) is full for this LD

⇤.

Proof. We may view L as a subfield of Ka

= La. By Lemma 7.4.4, there is an LD-set LD

1

on Ka such
that (K,LD) ✓ (Ka,LD

1

). Define LD

⇤
:= LD

1

\L. It is clear that LD

⇤ is an LD-set on L. Furthermore,
LD

⇤ \K = (LD

1

\L) \K = LD

1

\K = LD and so (K,LD) ✓ (L,LD⇤
).

For the second claim, we will now show that LD⇤ above is the unique LD-set on L such that (K,LD) ✓
(L,LD⇤

). Suppose that LD⇤⇤ is an LD-set on L such that (K,LD) ✓ (L,LD⇤⇤
). Then by the existence part

of Lemma 7.4.4, there is an LD-set LD
2

on Ka such that (L,LD⇤⇤
) ✓ (Ka,LD

2

). Thus (K,LD) ✓ (Ka,LD
2

),
and so LD

1

= LD

2

by the uniqueness part of Lemma 7.4.4 for (K,LD). It follows that LD

⇤⇤
= LD

2

\L =

LD

1

\L = LD

⇤.
To show that (L,LD⇤

) is full, assume that LD

⇤⇤ ◆ LD

⇤ is a maximal LD-set on L. Then (K,LD) ✓
(L,LD⇤⇤

) since (K,LD) is full. Thus LD

⇤⇤
= LD

⇤ by the uniqueness shown above. ⇤

In the case where K is an H-field and L is the H-field real closure of K, then Proposition 7.4.5 gives the
following:

Corollary 7.4.6 (Real closure). Suppose K has rational asymptotic integration and is equipped with an
ordering making it an H-field, and L is a real closure of K equipped with the unique convex valuation ring
extending the valuation ring of K, hence making L an H-field extension of K. Then there is an LD-set
LD

rc on L such that (K,LD) ✓ (L,LDrc

). Furthermore, if (K,LD) is full and (�, ) has the successor and
predecessor properties, then there is a unique LD-set LDrc on L such that (K,LD) ✓ (L,LDrc

), and (L,LDrc

)

is full for this LD

rc.
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7.5. Transcendental constant extension

In this section (K,LD) is an LD-field. Let L = K(D) be a differential field extension of K with constant
field D = CL. Furthermore, assume that L is equipped with the valuation from ADH 5.5.1 making L a
d-valued asymptotic extension of K. Note that L will have the same value group as K.

Lemma 7.5.1. LD

⇤
:= D LD+ I(L) is an LD-set on L such that (K,LD) ✓ (L,LD⇤

). Furthermore, if
(K,LD) is full, K is henselian, and (�, ) has the successor and predecessor properties, then (L,LD⇤

) is full,
and so there is no LD-set LD

1

6= LD

⇤ on L such that (K,LD) ✓ (L,LD
1

).

Proof. We first show that LD

⇤ is an LD-set on L. (LD1) and (LD3) are clear. (LD2) follows from writing
arbitrary f 2 L⇥ as f = gu where g 2 K⇥ and u 2 L⇣1. Then f†

= g† +u† 2 K†
+I(L) ✓ LD

⇤. For (LD4),
write f 2 LD

⇤ as f =

Pn
i=1

ciai + z where all ai 2 LD, the ci 2 D are C-linearly independent and z 2 I(L).
Then vf 2 {va

1

, . . . , van} [ (�

>
)

0 [ {1} by Lemma 5.5.3.
We will now show that (K,LD) ✓ (L,LD⇤

). Let f 2 LD

⇤ \K. We have f = a
0

+

Pn
i=1

ciai + z where
a
0

, a
1

, . . . , an 2 LD, va
1

, . . . , van < (�

>
)

0, 1, c
1

, . . . , cn 2 D are C-linearly independent, and z 2 I(L). If
n = 0, then f �a

0

= z 2 K \ I(L) = I(K), so f 2 LD. The case n > 1 does not occur: in that case we would
have

v(f � a
0

) = min

16i6n
vai < (�

>
)

0,

and taking residues gives

1 =

nX

i=1

res

�
ciai/(f � a

0

)

�
+ res

�
z/(f � a

0

)

�
| {z }

=0

=

nX

i=1

res

�
ai/(f � a

0

)

�
| {z }

2res(K)

⇠
=

C

ci,

contradicting that 1, c
1

, . . . , cn are C-linearly independent.
Next we assume that K is henselian, (�, ) has the successor and predecessor properties, and (K,LD)

is full. It remains to show that (L,LD⇤
) is full. We assume towards a contradiction that f 2 L \K is such

that v(f � LD

⇤
) ✓  . In particular, v(f �D LD) ✓  .

Note that v(f �D LD) ✓  does not have a largest element: given the element v(f �P
i cibi) where all

ci 2 D and bi 2 LD, take g 2 K⇥ such that v(g†) = v(f �P
i cibi). Since L is d-valued, there is c 2 D such

cg† ⇠ f �P
i cibi, and so f �P

i cibi � cg† � f �P
i cibi

Hence v(f �D LD) decelerates as a subset of � by the successor property and Corollary 2.4.5.

Claim. v
�
f �K[D]

�
< (�

>
)

0.

Proof of claim. Assume towards a contradiction that g 2 K[D] is such that v(f � g) >  . We have
g =

Pn
i=1

ciai, n > 1, where c
1

, . . . , cn 2 D are C-linearly independent and a
1

, . . . , an 2 K. Since (K,LD)

is full we can take b
1

, . . . , bn 2 LD with v(ai � bi) 62  for all i. Then h :=

P
i cibi 2 D LD gives g � h =

P
i ci(ai � bi), so v(g � h) = mini v(ai � bi) 62  . In view of f � h = (f � g) + (g � h) we get v(f � h) 62  ,

a contradiction. ⇤

Claim. The sets v(f �D LD) and v
�
f �K[D]

�
are mutually cofinal as subsets of �, i.e., v(f �D LD)

#
=

v
�
f �K[D]

�#.

Proof of claim. The following is obvious:

v(f �D LD) ✓ v
�
f �K[D]

�
< (�

>
)

0

107



Next suppose that ↵ = v(f �P
i ciai) 2 v

�
f �K[D]

� \  , with ci 2 D and ai 2 K. We may assume that
the tuple (ci) is linearly independent over C. Then we can choose bi 2 LD such that v(ai � bi) 62  , since
(K,LD) is full. Thus v

�P
i ci(ai � bi)

� 62  . Then v(f �P
i cibi) 2  gives

v(f �P
i cibi) = v

�
(f �P

i ciai)�
P

i ci(ai � bi)
�

= ↵

and so
v
�
f �K[D]

� \ = v(f �D LD).

Since v(f �D LD) does not have a largest element, this shows v
�
f �K[D]

�
and v(f �D LD) are mutually

cofinal using the predecessor property. ⇤

We now arrive at our overall contradiction. By Proposition 5.5.4, v
�
f �K[D]

�
does not decelerate in �,

whereas v(f �D LD) does. However, by the last claim these sets are mutually cofinal in �, a contradiction
by Lemma 2.1.9. ⇤

7.6. Big exponential integration

In this section (K,LD) is an LD-field with divisible value group and s 2 LD \K†. We further assume that
L = K(f) is a d-valued extension of K of H-type with asymptotic integration such that f is transcendental
over K, f†

= s, vf /2 �, and  =  L. In particular, CL = CK .

Lemma 7.6.1. Suppose K is algebraically closed. Then LD

⇤
:= LD+ I(L) is an LD-set on L such that

(K,LD) ✓ (L,LD⇤
). Furthermore, if (K,LD) is full, then (L,LD⇤

) is full, and there is no LD-set LD
1

6= LD

⇤

on L such that (K,LD) ✓ (L,LD
1

).

Proof. (LD1), (LD3), and (LD4) are clear. It is also clear that LD

⇤ \K = LD. To prove (LD2), since K

is algebraically closed, it suffices to show that (f � a)† 2 LD

⇤ for arbitrary a 2 K. If f � a, then

(f � a)† =

�
(f/a)� 1

�†
+ a† =

(f/a)0

(f/a)� 1

+ a†,

which is in LD

⇤ since a† 2 K† ✓ LD ✓ LD

⇤ and (f/a)0/
�
(f/a)� 1

� 2 I(L) ✓ LD

⇤. The case f � a procedes
as before, using

(f � a)† = s+
�
1� (a/f)

�†
= s� (a/f)0

1� (a/f)
.

Now suppose that (K,LD) is full. It is sufficient to prove that (L,LD⇤
) is full. Let g 2 L\K. Proposition 5.1.6

gives a 2 K and h 2 L such that g = a + h and vh 62 � ◆  L. Since (K,LD) is full, we can take b 2 LD

such that v(a� b) 62  =  L. Then v(g � b) = v
�
(a� b) + h

� 62  =  L since vh 62 �. ⇤

In the rest of this section K is equipped with an ordering making (K,LD) a real closed LD-H-field.

Lemma 7.6.2. Suppose L is equipped with an ordering making it an H-field extension of K. Then there is
an LD-set LD⇤ on L such that (K,LD) ✓ (L,LD⇤

). Furthermore, if (K,LD) is full, then there is a unique
LD-set LD⇤ on L such that (K,LD) ✓ (L,LD⇤

), and (L,LD⇤
) is full for this unique LD

⇤.

Proof. Consider the d-valued extension K(f)[i] = K[i](f) of L = K(f). This will contain the algebraically
closed d-valued field K[i], an algebraic closure of K. By Lemma 7.4.1, there is an LD-set LD

0

on K[i] such
that (K,LD) ✓ �

K[i],LD
0

�
.

Next, s 62 K[i]†, so we can apply Lemma 7.6.1 to the extension K[i] ✓ K[i](f) to get an LD-set LD
1

on
the d-valued field K[i](f) such that

�
K[i],LD

0

� ✓ �
K[i](f),LD

1

�
.
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Set LD

⇤
:= LD

1

\K(f) ✓ K(f).

�
K[i](f),LD

1

�

�
K[i],LD

0

� �
K(f),LD

1

\K(f)
�
= (L,LD⇤

)

(K,LD)

It is clear that LD

⇤ is an LD-set on K(f). Furthermore, note that

LD

⇤ \K =

�
LD

1

\K(f)
� \K = LD

1

\K = LD

since (K,LD) ✓ �
K[i](f),LD

1

�
, as witnessed by the left side of the extension diagram. Thus (K,LD) ✓

(L,LD⇤
).

For the second claim assume (K,LD) is full. We will now show that there is no LD-set LD

⇤⇤ 6= LD

⇤

on L such that (K,LD) ✓ (L,LD⇤⇤
). Suppose that LD

⇤⇤ is an LD-set on L such that (K,LD) ✓ (L,LD⇤⇤
).

Then by the existence part of Proposition 7.4.5, there is an LD-set LD

⇤
1

on K[i](f) such that (L,LD⇤⇤
) ✓

�
K[i](f),LD⇤

1

�
. In particular, (K,LD) ✓ �

K[i](f),LD⇤
1

�
. However, by the uniqueness parts of Lemma 7.4.1

and 7.6.1, and fullness for (K,LD), we have LD

1

= LD

⇤
1

and so LD

⇤
= LD

⇤⇤.
Finally, to show (L,LD⇤

) is full, assume LD

⇤⇤ ◆ LD

⇤ is a maximal LD-set on L. Then (K,LD) ✓
(L,LD⇤⇤

) since (K,LD) is full. Therefore LD

⇤⇤
= LD

⇤ by the uniqueness shown above. ⇤

For later use, we summarize the results in this section as follows:

Corollary 7.6.3. Assume K is l-free and v(s � K†
) ✓  

#. Take a field extension K(y) of K with y

transcendental over K equipped with the unique derivation extending the derivation of K such that y† = s.
Then there is a unique pair consisting of a valuation of K(y) and a field ordering on K(y) making it a
pre-H-field extension of K with y > 0. With this valuation and ordering we have:

(1) K(y) is an H-field, hence d-valued of H-type;
(2) vy 62 �;
(3)  =  K(y);
(4) K(y) is l-free.

Furthermore, there is an LD-set LD

⇤ on K(y) such that (K,LD) ✓ �
K(y),LD⇤ �. If (K,LD) is full, then

there is a unique LD-set LD

⇤ on K(y) such that (K,LD) ✓ �
K(y),LD⇤ �, and

�
K(y),LD⇤ � is full for this

unique LD

⇤.

Proof. [6, 10.5.20] gives the unique pair consisting of a valuation of K(y) and a field ordering on K(y)

making it a pre-H-field extension of K with y > 0. With that valuation and ordering, [6, 10.5.20] also gives
(1) and (2). To show  =  K(y), the proof of [6, 10.5.20] gives

 K(y) =  [ {v(a† + js) : a 2 K⇥ and j 2 Z 6=} < (�

>
)

0.

However, for a 2 K⇥ and j 2 Z 6=, we have a† + js 2 LD and so necessarily v(a† + js) 2  . Items (3) and
(5) follow from ADH 6.1.13. The statement about LD-sets follows from Lemma 7.6.2. ⇤
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7.7. Small exponential integration

We begin with a lemma for asymptotic couples. Lemma 7.7.1 will also be used in Section 7.8 below.

Lemma 7.7.1. Assume (�, ) |= TAC . Suppose S ✓ � is nonempty, does not have a greatest element, has
the yardstick property, and 0 2 S#. Let ↵ 2 � and n > 1. Then exactly one of the following holds:

(1) (↵+ nS)# <  ;
(2) the set (↵+ nS)# \ has a maximum;
(3) (↵+ nS)# 6✓  #.

Proof. It is clear that conditions (1), (2) and (3) are mutually exclusive. We will assume that neither (1)
nor (2) holds. If ↵ >  , then we are done since S>0 6= ;. Thus we assume that ↵ 2  #. In particular,
(↵ + nS)# \  >↵ 6= ; by TAC , the assumption that neither (1) nor (2) holds, and the observation that
↵ 2 (↵+nS)#. Here and below we let � range over  \ (↵+nS)#. Take � = �(�) 2 S# such that ↵+n� = �,
i.e., � = (� � ↵)/n. By increasing � and �, we may arrange � > ↵ and thus � > 0. By increasing � and �

further, we arrange that � > s2↵ > s↵ > ↵. Then the yardstick property gives

� < � + s�† � �† = � + s (� � ↵)�  (� � ↵) 2 S#.

Applying the appropriate affine transformation to the above, and Lemma 2.3.5 gives

� < ↵+ n� + ns (� � ↵)� n (� � ↵) = � + ns2↵� ns↵ 2 (↵+ nS)#.

Now note that
R
(� + ns2↵� ns↵) = � + ns2↵� ns↵� s(� + ns2↵� ns↵) (by Lemma 2.3.3)

= � + ns2↵� ns↵� s2↵ (by Lemma 4.3.5)

= � + (n� 1)s2↵� ns↵

= (� � s↵) + (n� 1)(s2↵� s↵)

> 0.

We conclude that � + ns2↵� ns↵ 2 (�

>
)

0 and thus (↵+ nS)# 6✓  . ⇤

In the rest of this section (K,LD) is a henselian LD-field and s 2 I(K) \ K†. Let L = K(f) be a field
extension of f with f transcendental over K, equipped with the unique derivation extending the derivation
of K such that f†

= s. Using ADH 6.2.1 we equip L with the unique valuation that makes it an H-asymptotic
extension of K with f � 1 6⇣ 1. With this valuation, L is d-valued, and an immediate extension of K with
f ⇠ 1.

Proposition 7.7.2. LD

⇤
:= LD+ I(L) is an LD-set on L such that (K,LD) ✓ (L,LD⇤

). Furthermore, if
(K,LD) is full and (�, ) |= TAC , then (L,LD⇤

) is full, and there is no LD-set LD
1

6= LD

⇤ on L such that
(K,LD) ✓ (L,LD

1

).

Proof. By Lemma 7.2.1, LD

⇤ is an LD-set on L such that (K,LD) ✓ (L,LD⇤
). For the second claim

assume that (K,LD) is full and (�, ) |= TAC . It suffices to establish that (L,LD⇤
) is full. To do this, we

will use Proposition 7.2.2. Let g 2 L \ K be arbitrary. Then by Lemma 5.1.4 there are ↵ 2 � and n > 1

such that v(g�K) = (↵+ nS)# where S := v(f �K). From f ⇠ 1 we get 0 2 S, and so S has the yardstick
property by Lemma 6.2.6. The conclusion now follows from Lemma 7.7.1 ⇤
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Let K be equipped with an ordering making it an H-field. Then we have the following LD-H-field version
of the above, which for later use we combine with [6, 10.4.3, 10.5.8 and 10.5.18]:

Corollary 7.7.3. Take a differential field extension K(y) of K with y transcendental over K equipped with
the unique derivation extending the derivation of K such that y† = s. Then there is a unique pair consisting
of a valuation of K(y) and a field ordering on K(y) making it a pre-H-field extension of K with y ⇠ 1.
Equipped with this valuation and ordering we have:

(1) K(y) is an H-field, hence d-valued of H-type;
(2) K(y) is an immediate extension of K and hence has asymptotic integration;
(3) if K is l-free, then so is K(y) by Proposition 6.2.2.

Furthermore, LD⇤
:= LD+ I(L) is an LD-set on L such that (K,LD) ✓ (L,LD⇤

), and if (K,LD) is full and
(�, ) |= TAC , then (L,LD⇤

) is full, and there is no LD-set LD
1

6= LD

⇤ on L such that (K,LD) ✓ (L,LD
1

).

7.8. Small integration

In this section (K,LD) is a henselian LD-field and s 2 I(K) \ ∂K. Let L = K(f) be a field extension of
K with f transcendental over K, equipped with the unique derivation extending the derivation of K such
that f 0

= s. Then by ADH 6.3.2 we can equip L with the unique valuation that makes it an H-asymptotic
extension of K with f 6⇣ 1. With this valuation L is an immediate extension of K with f � 1 and L is
d-valued.

Proposition 7.8.1. LD

⇤
:= LD+ I(L) is an LD-set on L such that (K,LD) ✓ (L,LD⇤

). Furthermore, if
(K,LD) is full and (�, ) |= TAC , then (L,LD⇤

) is full, and there is no LD-set LD
1

6= LD

⇤ on L such that
(K,LD) ✓ (L,LD

1

).

Proof. The proof is identical to that of Proposition 7.7.2 except that it uses Lemmas 6.3.4 and 6.3.5. ⇤

The statement of ADH 6.3.2 also gives us an H-field version:

Corollary 7.8.2. Suppose K is equipped with an ordering making it an H-field and that L is equipped with
the unique ordering making it a pre-H-field extension of K. Then LD

⇤
:= LD+ I(L) is an LD-set on L such

that (K,LD) ✓ (L,LD⇤
). Furthermore, if (K,LD) is full and (�, ) |= TAC , then (L,LD⇤

) is full, and there
is no LD-set LD

1

6= LD

⇤ on L such that (K,LD) ✓ (L,LD
1

).

7.9. The  -closure

In this section (K,LD) is an LD-H-field.

Definition 7.9.1. A  -closure of (K,LD) is an LD-H-field extension (K ,LD ) of (K,LD) such that
K is real closed, (K ,LD ) is  -closed and (K ,LD ) embeds over K into any LD-H-field extension of
(K,LD) that is real closed and  -closed.

The main result of this section is the following:

Theorem 7.9.2. Suppose (K,LD) is full, K is l-free, and (�, ) |= TAC . Then (K,LD) has up to isomor-
phism over K a unique  -closure (K ,LD ).

Theorem 7.9.2 will be proven below in Lemmas 7.9.6, 7.9.7, and 7.9.8 using the notion of LD-H-towers.
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LD-H-towers. In this subsection further suppose (�, ) |= TAC , K is l-free, and (K,LD) is full. An LD-
H-tower on (K,LD) is a strictly increasing chain

�
(K�,LD�)

�
�6µ

of LD-H-fields, indexed by the ordinals
less than or equal to some ordinal µ, such that

(1) (K
0

,LD
0

) = (K,LD);
(2) if � is a limit ordinal, 0 < � 6 µ, then K� =

S
◆<�K◆ and LD� =

S
◆<� LD◆;

(3) for � < �+ 1 6 µ, either
(a) K� is not real closed and K�+1

is a real closure of K�,
or, K� is real closed, K�+1

= K�(y�) with y� 62 K� (so y� is transcendental over K�), and one of the
following holds,
(b) y†� = s� 2 I(K�) \K†

� with y� ⇠ 1,
(c) y†� = s� 2 LD

<0

� \K†
� with y� > 0 and v(s� �K†

�) ✓  #
�.

The LD-H-field (Kµ,LDµ) is called the top of the tower
�
(K�,LD�)

�
�6µ

.

Lemma 7.9.3. If
�
(K�,LD�)

�
�6µ

is an LD-H-tower on (K,LD), then for all � 6 µ

(1) K� is l-free, hence has rational asymptotic integration;
(2) (K�,LD�) is full;
(3)  � =  

0

;
(4) if K� is real closed, then (��, �) |= TAC .

Proof. These follow from transfinite induction using Lemmas 6.1.8, 6.1.11, 7.1.14, and 7.6.3, Proposi-
tion 6.2.2, Corollaries 7.4.6, and 7.7.3, and ADH 6.1.13. ⇤

Note that if
�
(K�,LD�)

�
�6µ

is an LD-H-tower, then the “reduct” (K�)�6µ is a Liouville tower. Thus:

Lemma 7.9.4. If
�
(K�,LD�)

�
�6µ

is an LD-H-tower on (K,LD), then

(1) the constant field Cµ of Kµ is a real closure of C if µ > 0; and
(2) |Kµ| = |K|, hence µ < |K|+.

We say that an LD-H-tower
�
(K�,LD�)

�
�6µ

on K is maximal if it cannot be extended to an LD-H-tower
�
(K�,LD�)

�
�6µ+1

on K.

The following is a consequence of Lemma 7.9.4(2):

Lemma 7.9.5. Maximal LD-H-towers on K exist.

We now fix a maximal LD-H-tower
�
(K�,LD�)

�
�6µ

on K. We claim that the top (Kµ,LDµ) is a  -closure
of (K,LD).

Lemma 7.9.6. (Kµ,LDµ) is real closed and  -closed.

Proof. By maximality and Corollary 7.4.6, it follows that (Kµ,LDµ) is real closed. Likewise, by maximality,
Corollaries 7.6.3 and 7.7.3, it follows that (Kµ,LDµ) is  -closed. ⇤

Lemma 7.9.7. (Kµ,LDµ) embeds over K into any  -closed real closed LD-H-field extension of (K,LD).

Proof. Let (L,LD⇤
) be a  -closed real closed extension of (K,LD). The embedding of (Kµ,LDµ) over

K into (L,LD⇤
) can be constructed by transfinite recursion going up the tower

�
(K�,LD�)

�
�6µ

. At limit
stages use Lemma 7.1.14. At successor stages, use the uniqueness of the LD-set extension given in Corollar-
ies 7.4.6, 7.6.3, and 7.7.3. ⇤
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Lemma 7.9.8. Suppose (L,LD⇤
) is a  -closure of (K,LD). Then (Kµ,LDµ) is isomorphic to (L,LD⇤

)

over K. In particular, (L,LD⇤
) is d-algebraic over K and its asymptotic couple models TAC .

Proof. By the semiuniversal property of a  -closure, we embed (L,LD⇤
) into (Kµ,LDµ) over K, thus

identifying (L,LD⇤
) with a subfield of (Kµ,LDµ) which contains (K,LD). It suffices to show that L = Kµ.

This follows from arguing by transfinite induction that K� ✓ L for all � 6 µ. ⇤

7.10. Full newtonianity from linear newtonianity

In this section K is a d-valued field of H-type with asymptotic integration. We give here a method of
extending LD-sets on K nicely to a certain newtonian extension of K (Corollary 7.10.8), provided that we
have a way of handling the case where K is not linearly newtonian (Conjecture 7.10.4).

Recall that a newtonization of K is a newtonian extension of K that embeds over K into every newtonian
extension of K. We also say that K is asymptotically d-algebraically maximal if it has no proper
immediate d-algebraic asymptotic extension. We begin with some facts about newtonizations when K is
w-free with divisible value group:

ADH 7.10.1. Suppose K is w-free with divisible value group.

(1) K has a newtonization [6, 14.5.2 and 14.5.4].
(2) Any two newtonizations of K are isomorphic over K; this permits us to speak of the newtonization

Knt of K [6, §14.5 and 14.3.12].
(3) Knt is an immediate d-algebraic extension of K, and no proper differential subfield of Knt containing

K is newtonian [6, §14.5 and 14.3.12].
(4) Knt is asymptotically d-algebraically maximal [6, 14.5.2].

Linear newtonianity allows us to reduce the problem to considering special pc-sequences, which are often
easier to work with:

Lemma 7.10.2. Suppose that K is l-free, linearly newtonian, and every special pc-sequence in K of d-
algebraic type over K has a pseudolimit in K. Then K is newtonian.

Proof. Let � 2 K be active. Then the valuation ring of (K�, v[�) is linearly surjective by [6, 14.2.1]. Note
that every special pc-sequence in (K�, v[�) of d-algebraic type over (K�, v[�) is also a special pc-sequence of
K of d-algebraic type over K and hence has a pseudolimit in K by assumption. Thus by [6, 2.2.21 and
7.2.11] we conclude that (K�, v[�) is d-henselian, and so K is newtonian by [6, 14.1.4]. ⇤

Lemma 7.10.3. Let K be w-free with divisible value group. Let (a⇢) be a divergent pc-sequence in K with
minimal differential polynomial G(Y ) over K. Then there is a 2 Knt \K such that a⇢  a and G(a) = 0.

Proof. By compactness, we can take an element ` in an elementary extension of K such that a⇢  `.
By [6, 11.4.13], G is an element of Z(K, `) of minimal complexity. Then by [6, 11.4.8], K has an immediate
d-algebraic asymptotic extension Khfi with G(f) = 0 such that a⇢  f .
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Next we can consider the newtonizations of both K and Khfi. By the defining property of the new-
tonization of K, there is an embedding i : Knt ! Khfint over K.

Khfint

Knt

-
�

i
;;

Khfi

K

Then the extension Khfint ◆ i(Knt

) is an immediate d-algebraic extension. As i(Knt

) is asymptotically
d-algebraically maximal, we have i(Knt

) = Khfint. Thus f 2 i(Knt

). Then a := i�1

(f) 2 Knt \K has the
desired properties. ⇤

In the rest of this section (K,LD) ranges over w-free full LD-H-fields with (�, ) |= TAC . Thus if L is an
immediate d-algebraic asymptotic extension of K, then L is d-valued, LD+ I(L) is an LD-set on L with
(K,LD) ✓ �

L,LD+ I(L)
�
, and L has a unique ordering making it an H-field extension of K. Here is our

key conjecture about non-linearly newtonian K:

Conjecture 7.10.4 (Linear Newtonian Conjecture). Every  -closed but non-linearly newtonian (K,LD)

has a proper d-algebraic immediate asymptotic extension L such that
�
L,LD+ I(L)

�
is full.

This conjecture allows us (Corollary 7.10.8) to handle the entire non-newtonian case . . . and then some.
First, we must recall some facts about the so-called Newton-Liouville closure from [6]:

Definition 7.10.5. Let E be an w-free H-field. A Newton-Liouville closure of E is a newtonian Liouville
closed H-field extension of E which embeds over E into every newtonian Liouville closed H-field extension
of E.

ADH 7.10.6. Suppose E is an w-free H-field. Then:

(1) E has a Newton-Liouville closure [6, 14.5.10];
(2) Any such Newton-Liouville closure of E is d-algebraic over E, thus w-free, and its constant field is a

real closure of CE [6, 14.5.10];
(3) Any two Newton-Liouville closures of E are isomorphic over E; this permits us to speak of the Newton-

Liouville closure Enl of E [6, 16.2.2].

The next definition is an adaptation of the definition of Newton-Liouville closure to the non-Liouville closed
setting of (K,LD) and TAC :

Definition 7.10.7. A Newton- -closure of (K,LD) is an LD-H-field extension (K ,nt,LD ,nt
) of (K,LD)

with the following properties:

(1) K ,nt is real closed, w-free, and newtonian;
(2) (K ,nt,LD ,nt

) is  -closed and the asymptotic couple of (K ,nt,LD ,nt
) is a model of TAC ;

(3) (K ,nt,LD ,nt
) embeds over K into any real closed,  -closed, newtonian extension (K⇤,LD⇤

) of
(K,LD).
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Of course, K has a Newton-Liouville closure, since it is an w-free H-field by ADH 7.10.6(1) with K in the
role of E; but taking a Newton-Liouville closure of K completely changes the model theory of the asymptotic
couple of K in an irreversible way. However, a Newton-Liouville closure of K does serve as a convenient
bound on certain d-algebraic extensions of K, and it is in this sense that we will use it in Corollary 7.10.8:

Corollary 7.10.8. Suppose Conjecture 7.10.4 holds. Then a Newton- -closure (K ,nt,LD ,nt
) of (K,LD)

exists. Any such K ,nt is d-algebraic over K, thus w-free, and its constant field is a real closure of C.

Proof. We are given a full w-free LD-H-field (K,LD) with (�, ) |= TAC . Consider a strictly increasing
chain

�
(K�,LD�)

�
�<⌫

of full LD-H-fields indexed by the ordinals less than some ordinal ⌫ > 0, such that:

(a) (K
0

,LD
0

) = (K,LD);
(b) whenever � < ⌫ is an infinite limit ordinal, then (K�,LD�) =

S
◆<�(K◆,LD◆);

(c) whenever � < �+ 1 < ⌫, then either
(i) (K�,LD�) is not  -closed and (K�+1

,LD�+1

) is a  -closure of (K�,LD�), or
(ii) (K�,LD�) is  -closed and K�+1

is an immediate d-algebraic extension of K� with LD�+1

=

LD�+I(K�+1

)

An easy induction shows that then for all � < ⌫: K� is d-algebraic over K (hence w-free), its asymptotic
couple is a model of TAC , and if � > 0, its constant field C� is a real closure of C. Moreover, if (K⇤, LD⇤

)

is any real closed,  -closed, newtonian extension of (K,LD), then Theorem 7.9.2 and Lemma 7.10.2 yield
by transfinite recursion embeddings i� : (K�,LD�) ! (K⇤, LD⇤

) for � < ⌫ such that that i
0

is the natural
inclusion and i�

1

extends i�
0

whenever �
0

< �
1

< ⌫. In particular, this holds when K⇤
= Knl, the Newton-

Liouville closure of K, with LD

⇤
= (K⇤

)

†. This last fact shows that among the chains considered above there
is a maximal one, i.e., there is a strictly increasing chain

�
(K�,LD�)

�
�<⌫

of full LD-H-fields with properties
(a)-(c) that cannot be extended to a strictly increasing chain

�
(K�,LD�)

�
�<⌫+1

of full LD-H-fields with
properties (a)-(c).

Assume now that our chain is maximal. Then ⌫ = µ+1 for some ordinal µ, and so we have a last member
(Kµ,LDµ) in our chain, which is necessarily  -closed. So far we did not use the Linear Newtonian Conjecture.
Assuming this conjecture now, it is clear that (Kµ,LDµ) is linearly newtonian. By Proposition 7.3.3 and
Lemma 7.10.2 it is even newtonian, and so it is a Newton- -closure of (K,LD). ⇤

In Section 8.2 we will generalize the notion of Newton- -closure to arbitrary LD-H-fields, in a way that covers
both the Newton- -closure of (K,LD) as well as the Newton-Liouville closure of E, when the asymptotic
couple of E is closed. We shall also generalize ADH 7.10.6(3) to this setting as well.

7.11. The linear newtonian conjecture in a very special case

In this section K is a w-free d-valued field with divisible value group. We let a, b, s, t range over K, g range
over K⇥, and � range over the active elements of K.

We begin with a more explicit version of [6, 13.6.10]:

Lemma 7.11.1. Let P 2 K{Y }6= be homogeneous of degree 1. Suppose a 6= 0 and choose g such that
vg = (veP )

�1

(va). Then
P�⇥g ⇣ a, eventually.

Proof. By convention, vg = (veP )
�1

(va) gives veP (vg) = va and vg 62 E e
(P ), i.e., nwtP (vg) = 0. In

particular, eventually v(P�⇥g) = vP�(vg) = veP (vg) + nwtP (vg)v� = veP (vg) = va. ⇤
115



Definition 7.11.2. Let P 2 K{Y } 6=. We say that P is in newton position at a if nmulP
+a = 1. Suppose

P is in newton position at a. By the discussion in the beginning of [6, §14.3], if P (a) 6= 0, then there is
a g such that eventually P (a) = (P

+a)
�
1,⇥g, and as vg does not depend on the choice of such g, we set

ve(P, a) := vg. If P (a) = 0, then we set ve(P, a) = 1 2 �1. Intuitively, we think of ve(P, a) as the distance
from a where we would expect to find a zero of P in an appropriate immediate extension. Note that if P is
degree 1 and P (a) 6= 0, then ve(P, a) = (veP

1

)

�1

(vP (a)) by Lemma 7.11.1.

In the rest of this section let P (Y ) = Y 0 � sY � t and set A := P
1

= Y 0 � sY .

Lemma 7.11.3. Suppose that P is in newton position at a. Then vs < v
�
P (a)

�
or  < v

�
P (a)

�
.

Proof. By definition of newton position, nmulP
+a = 1. This means that

P�
+a =

�
Y 0 � sY + P (a)

��
= �Y 0 � sY + P (a)

has dominant multiplicity 1, eventually. Thus either vs < v
�
P (a)

�
or  < v

�
P (a)

�
. ⇤

Lemma 7.11.4. Suppose P is in newton position at a and P (a) 6= 0. Then there exists b such that:

(1) P is in newton position at b, v(a� b) = ve(P, a), and P (b) � P (a);
(2) for all b⇤ 2 K with v(a� b⇤) > ve(P, a): P (b⇤) � P (a) , a� b ⇠ a� b⇤;
(3) for all b⇤ 2 K, if a� b ⇠ a� b⇤, then P is in newton position at b⇤ and ve(P, b⇤) > ve(P, a);
(4) (Yardstick) we have

v
�
P (b)

�
> ve(P, a) + ,

and if P (b) 6= 0, then there is " 2 �> such that

v
�
P (b)

�
= ve(P, a) + "0.

Proof. We follow the proof of [6, 14.3.2]. Since P (a) 6= 0, by Lemma 7.11.1 we have g such that vg =

(veA)
�1

�
vP (a)

�
and P (a) ⇣ A�⇥g, eventually; fix such a g. Let Q = P

+a and � = vg. Thus Q
1

= A, so

P (a) ⇣ Q�
1,⇥g, eventually.

In particular, we have

Q�
⇥g = P�

+a,⇥g = g�Y 0
+A(g)Y| {z }

(Q�⇥g)1=A�⇥g

+P (a), eventually,

and so A(g) ⇣ P (a) and g�Y 0 � P (a), eventually. Taking y = �P (a)/A(g) gives y ⇣ 1 and

Q(gy) = Q�
(gy) = Q�

⇥g(y) = g�d(y) 4 g� � P (a), eventually,

where d := ��1∂ is the (necessarily small) derivation of K�. Note that since P (a) � A�, eventually, and
P (a) ⇣ A�⇥g, eventually, we have g � 1 (see the discussion at the beginning of [6, §14.3]). With b := a+ gy,
this satisfies automatically properties (1), (2) and (3) by the proof [6, 14.3.2]. We just need to show (4).
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First we compute:

P (b)

g
=

A(gy) + P (a)

g

= (g�1A⇥g)(y) + g�1P (a)

= y0 + g†y � sy + g�1P (a)

= y0 +
P (a)

g
� (g† � s)P (a)

A(g)

= y0 +
A(g)P (a)

gA(g)
� (g0 � sg)P (a)

gA(g)

= y0

where we used the identity g�1A⇥g = Y 0
+ (g† � s)Y for the third equality. Finally, we note that v(y0) 2

(�

>
)

0 [ {1} because �P (a)/A(g) = y ⇣ 1. ⇤

This next lemma now follows from [6, 14.3.3] and its proof:

Lemma 7.11.5. Suppose P is in newton position at a and there is no b with P (b) = 0 and v(a�b) = ve(P, a).
Then there exists a divergent pc-sequence (a⇢) in K such that P (a⇢)  0, and (a⇢) has the following
properties:

(1) P is in newton position at a⇢, for all ⇢,
(2) v(a� � a⇢) = ve(P, a⇢) whenever ⇢ < �,
(3) P (a�) � P (a⇢) and ve(P, a�) > ve(P, a⇢) whenever ⇢ < �,
(4) finally, whenever ⇢ < �, there is "⇢,� 2 �> such that

v
�
P (a�)

�
= ve(P, a⇢) + "0⇢,�,

and thus
v
�
P (a�)

�
> ve(P, a⇢) + .

In the rest of the section we assume that K is henselian and  -closed. Let P , a, and (a⇢) be as in
Lemma 7.11.5. Since K is henselian, (a⇢) is not of algebraic type over K, and so has P as a minimal differ-
ential polynomial over K. Choose a pseudolimit f 2 Knt of (a⇢) such that P (f) = 0 (see Lemma 7.10.3).
Furthermore, define �⇢ := v(a��a⇢) = ve(P, a⇢) = (veA)

�1

�
vP (a⇢)

� 2 � for � > ⇢, so �⇢ is strictly increasing
as a function of ⇢ by Lemma 7.11.5(3). Applying (veA)

�1 to the equality in Lemma 7.11.5(4) gives

(veA)
�1

�
vP (a�)

�
= �� = (veA)

�1

(�⇢ + "0⇢,�), for ⇢ < �,

which shows that v(f �K) has the veA-yardstick property. This allows us to apply Proposition 5.6.8 in the
proof of the result below.

Proposition 7.11.6. Suppose  = {sn0 : n > 1}. Then there is a unique LD-set LD

⇤ on K(f) such that
(K,K†

) ✓ �
K(f),LD⇤ �, namely LD

⇤
:= K†

+ I

�
K(f)

�
, and

�
K(f),LD⇤ � is full.

Proof. This reduces to showing that
�
K(f),LD⇤ � is full. By Proposition 7.2.2, it suffices to establish the

following: ⇤

Claim 7.11.7. Let h 2 K(f) \K = Khfi \K. Then exactly one of the following holds:

(1) v(h�K) <  ;
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(2) the set v(h�K) \ has a maximum;
(3) v(h� g) >  for some g 2 K.

Proof of Claim. By Lemma 7.11.5, v(f�K) has the veA-yardstick property. By Proposition 5.6.8, v(f�K)

is either �-fluent for some nontrivial convex subgroup � of � or is the form �

<↵ for some ↵ 2 � . By
Lemma 2.1.13, the same is true for all affine translates of v(f � K). In view of Lemma 5.1.4 the desired
result now follows from Lemma 2.5.11. ⇤
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CHAPTER 8

Towards a model theory of logarithmic transseries

In this chapter we mimic parts of [6, Chapter 16] to obtain some results for T
log

that are analogous to results
for T in [6]. We also state some conjectures that we believe to be true, and derive some of their consequences.

In Section 8.1 we generalize many of the results of [6, §16.1] to an appropriate “ -closed” setting. This
gives further evidence that the notion of an H-field being  -closed is of independent interest. In particular,
Theorem 8.1.6 can be used to show that Newton- -closures are unique, whenever they exist.

In Section 8.2 we give a more general definition of Newton- -closure for LD-H-fields, and show that they
are unique up to isomorphism whenever they exist.

In Section 8.3 we first give an axiomatization for a theory T
log

in a certain language L
LD

, such that T
log

|= T
log

and T
log

is the conjectured complete theory of T
log

. Then we state some additional conjectures, beyond the
Linear Newtonian Conjecture, which we need for model completeness of T

log

. Finally, we give a proof of
model completeness for T

log

from these conjectures.

In the final section, Section 8.4, we conjecture an Ax-Kochen-Ersov theorem for H-fields which involves the
 -closed property, Conjecture 8.4.1.

8.1. Consequences of  -closed

We believe that the condition of being  -closed is of independent interest, apart from its role in our current
strategy to obtain a model completeness result for T

log

. As evidence in this direction, we present here
 -closed generalizations of results from [6, §16.1]. There the authors assume that the K below is Liouville
closed. Here we replace that assumption with “ -closed” and an additional assumption about the extension
of asymptotic couples, and everything still goes through.

In this section K is an w-free, newtonian,  -closed d-valued field with divisible value group. Furthermore,
L is a d-valued field extension of K of H-type, and the asymptotic couple of K is existentially closed in
the asymptotic couple (�L, L) of L (as LAC-structures). In particular, K is asymptotically d-algebraically
maximal.

Note that we do not equip here either K or L with an LD-set. It follows from Definition 7.1.10 that a
d-valued field E of H-type with asymptotic integration is  -closed iff

(1) E† is a CE-vector subspace of E,
(2) I(E) ✓ E†, and
(3) for every a 2 E \ E†, there is b 2 E† such that v(a� b) 2  #

E \ E .

The existentially closed assumption gets us the famous Property (B) from [3, §4] almost for free (using [6,
Lemma 9.9.3]):
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Lemma 8.1.1. Suppose n > 1, ↵
1

, . . . ,↵n 2 �. Define functions ( L)↵
1

,...,↵i : �L,1 ! �L,1 for 1 6 i 6 n

by recursion on i:

( L)↵
1

(�) :=  L(� � ↵
1

), ( L)↵
1

,...,↵i(�) :=  L

�
( L)↵

1

,...,↵i�1

(�)� ↵i

�
for i > 2.

Suppose q
1

, . . . , qn 2 Q and � 2 �L are such that

( L)↵
1

,...,↵n(�) 6= 1 (so ( L)↵
1

,...,↵i(�) 6= 1 for i = 1, . . . , n), and

� + q
1

( L)↵
1

(�) + · · ·+ qn( L)↵
1

,...,↵n(�) 2 � (computed in Q�L).

Then � 2 �.

In Lemmas 8.1.2, 8.1.3, and 8.1.4 below, we derive more consequences from the assumption of being existen-
tially closed.

Lemma 8.1.2.  L \ � =  and (�

>
L )

0 \ � = (�

>
)

0.

Proof. Apply the definition of existentially closed to the appropriate LAC,�-sentences. ⇤

Lemma 8.1.3. L† \K = K†.

Proof. Assume towards a contradiction that f 2 (L† \K) \K†. Since K is  -closed, we may take y 2 K⇥

such that v(f � y†) 2  # \  . We may also take z 2 L⇥ such that z† = f . Then v(f � y†) = v(z† � y†) =

v
�
(z/y)†

� 2 �
 L [ (�

>
L )

0� \ � = ( L \ �) [ �
(�

>
L )

0 \ �� =  [ (�

>
)

0 by Lemma 8.1.2, contradicting that
v(f � y†) 2  # \ . ⇤

In the rest of this section we further assume CL = C.

Lemma 8.1.4. Suppose y 2 L⇥ and y† 2 K. Then y 2 K⇥.

Proof. By Lemma 8.1.3, we can take z 2 K⇥ such that z† = y†. Then 0 = y† � z† = (y/z)†. In particular,
y/z 2 CL = C ✓ K and so y 2 K. ⇤

The following Lemma 8.1.5 generalizes [6, 16.1.1]:

Lemma 8.1.5. Suppose there is no y 2 L \ K for which Khyi is an immediate extension of K and let
f 2 L \K. Then the Q-vector space Q�Khfi/� is infinite-dimensional, so f is d-transcendental over K.

Proof. We claim there is no divergent pc-sequence in K with a pseudolimit in L. To see this, suppose (y⇢)

is a divergent pc-sequence in K. It cannot be of d-algebraic type, since K is asymptotically d-algebraically
maximal (see [6, 11.4.8 and 11.4.13]). So it is of d-transcendental type, and if it had a pseudolimit y 2 L,
then Khyi would be an immediate extension of K (see [6, 11.4.7 and 11.4.13]). This proves our claim.

Thus for each y 2 L \ K the set v(y � K) ✓ �L has a largest element. Given y 2 L \ K, a best
approximation in K to y is by definition an element y

0

2 K such that v(y � y
0

) = max v(y �K).

Claim. Suppose y 2 L \K and y
0

is a best approximation in K to y. Then v(y � y
0

) 62 �.

Proof of Claim. Assume towards a contradiction that v(y � y
0

) 2 �. Then we have a 2 K⇥ such that
y � y

0

⇣ a. Since CL = C ✓ K and L is d-valued, we get c 2 CL = C such that y � y
0

⇠ ca, and so
y � y

0

� ca � y � y
0

, contradicting v(y � y
0

) = max v(y �K). ⇤

Claim. Suppose y 2 L† \K. Then there is b 2 K† such that b is a best approximation in K to y.
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Proof of Claim. Let b⇤ be a best approximation in K to y. If b⇤ 2 K†, we can set b := b⇤ and we are
done. Otherwise, since K is  -closed, we can find a 2 K⇥ such that v(b⇤ � a†) 2  # \ . Since b⇤ is a best
approximation in K to y, we have

v(y � b⇤) > v(y � a†).

Assume towards a contradiction that v(y � b⇤) > v(y � a†). Then

v
�
(y � b⇤)� (y � a†)

�
= v(b⇤ � a†) = v(y � a†) 2  # \ .

However, y = z†, with z 2 L⇥, so

v(y � a†) = v(z† � a†) = v
�
(z/a)†

� 2  L [ (�

>
L )

0,

a contradiction since
�
 L [ (�

>
L )

0� \ ( 

# \ ) = ; by Lemma 8.1.2. Thus v(y � b⇤) = v(y � a†) and we may
take b := a† 2 K† to be a best approximation in K to y. ⇤

Pick a best approximation b
0

in K to f
0

:= f , and set f
1

:= (f
0

� b
0

)

† 2 Khfi. Then f
1

2 Khfi† \K
by Lemma 8.1.4.

By the above claim, we can take an element a
1

2 K⇥ such that b
1

:= a†
1

is a best approximation in
K to f

1

. Continuing this way, we obtain a sequence (fn) in Khfi \ K and sequences (an)n>1

in K⇥ and
(bn)n>0

in K such that:

(1) bn is a best approximation in K to fn for all n,
(2) fn+1

= (fn � bn)
† 2 Khfi† \K for all n,

(3) bn = a†n 2 K† for all n > 1,
(4) v(fn � bn) 62 � for all n.

Claim. v(f
0

� b
0

), v(f
1

� b
1

), v(f
2

� b
2

), . . . are Q-linearly independent over �.

Proof of claim. Note that

fn � bn = (fn�1

� bn�1

)

† � a†n =

0

BB@
fn�1

� bn�1

an| {z }
6⇣1

1

CCA

†

for n > 1. Then with ↵n := van 2 � for n > 1 we get

v(fn � bn) =  L

�
v(fn�1

� bn�1

)� ↵n

�
,

so by an easy induction on n,
v(fn � bn) = ( L)↵

1

,...,↵n

�
v(f

0

� b
0

)

�

for n > 1. Suppose towards a contradiction that v(f
0

� b
0

), . . . , v(fn � bn) are Q-linearly dependent over �.
Then we have m < n and qm+1

, . . . , qn 2 Q such that

v(fm � bm) + qm+1

v(fm+1

� bm+1

) + · · ·+ qnv(fn � bn) 2 �.

For � := v(fm � bm) 2 �L \ � this gives

� + qm+1

( L)↵m+1

(�) + · · ·+ qn( L)↵m+1

,...,↵n(�) 2 �,

which contradicts Lemma 8.1.1. ⇤
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We conclude that Q�Khfi/� is an infinite-dimensional Q-vector space. In view of [6, 3.1.11], it follows
that f is d-transcendental over K. ⇤

Here is a generalization of [6, 16.0.3]:

Theorem 8.1.6. K has no proper d-algebraic d-valued extension F with the same constant field such that
the asymptotic couple of K is existentially closed in the asymptotic couple of F .

Proof. Assume F is a proper d-valued extension of K with CF = C and the asymptotic couple of K is
existentially closed in the asymptotic couple of F . Take f 2 F \K. Then by Lemma 8.1.5 applied to L = F ,
f is necessarily d-transcendental over K. In particular, F cannot be a d-algebraic extension of K. ⇤

In the rest of this section we let K, L and f be as in Lemma 8.1.5 above. Elaborating on the proof of this
lemma we shall obtain a complete description of Khfi as a d-valued extension of K generated by f . For
this we use the notations in that proof, and set �n := v(fn � bn) � ↵n+1

2 �Khfi. Thus �
0

,�
1

,�
2

, . . . are
Q-linearly independent over � (because the last claim of the proof of Lemma 8.1.5 showed that the sequence
(�n + ↵n+1

)n>0

is Q-linearly independent over �, but the ↵n+1

’s are in �).

Here is a generalization of [6, Lemma 16.1.2]:

Lemma 8.1.7. The asymptotic couple of Khfi has the following properties:

(1) �Khfi = ��L
n Z�n (internal direct sum);

(2) �†
n 62 � for all n, and �†

m 6= �†
n for all m 6= n;

(3)  (�6=Khfi) =  [ {�†
n : n = 0, 1, 2, . . .};

(4) [�Khfi] = [�] [ �
[�n] : n = 0, 1, 2, . . .

 
;

(5) �< is cofinal in �<Khfi, and �†
0

< �†
1

< �†
2

< · · · .
Proof. Consider the “monomials” mn := (fn � bn)/an+1

with v(mn) = �n. Then

mn+1

=

fn+1

� bn+1

an+2

=

(fn � bn)
† � bn+1

an+2

=

(an+1

mn)
† � bn+1

an+2

=

a†n+1

+m†
n � bn+1

an+2

=

m†
n

an+2

,

and so m0
n = an+2

mnmn+1

. Thus f = b
0

+ a
1

m
0

gives f 0
= b0

0

+ a0
1

m
0

+ a
1

a
2

m
0

m
1

, and continuing by
induction on n gives

f (n)
= Fn(m0

, . . . ,mn), Fn(Y0

, . . . , Yn) 2 K[Y
0

, . . . , Yn], degFn 6 n+ 1.

As f is d-transcendental over K, for P 2 K{Y }6= of order 6 r we have

P (f) =

X

i2I

aim
i
0

0

· · ·mir
r

where the sum is over a finite nonempty set I of tuples i = (i
0

, . . . , ir) 2 N1+r, and ai 2 K⇥ for all i 2 I.
Since v(m

0

) = �
0

, v(m
1

) = �
1

, . . . are Q-linearly independent over �, we obtain v
�
P (f)

� 2 � +

P
n N�n,

which proves (1).
We have �†

n 62 � because by the proof of Lemma 8.1.5,

�†
n =  

�
v(fn � bn)� ↵n+1

�
= v(fn+1

� bn+1

) = �n+1

+ ↵n+2

62 �.
Since �

1

,�
2

,�
3

, . . . are Q-linearly independent, so are �†
0

,�†
1

,�†
2

, . . . by these equalities. This proves (2),
which in view of (1) and  being a valuation yields (3). From (2) and (HC) we get [�n] 62 [�] for all n, and
[�m] 6= [�n] for all m 6= n. Again in view of (1), this gives (4).
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To get (5), assume towards a contradiction that �< is not cofinal in �<Khfi. Then by (4) we get n with
[�n] < [↵] for all ↵ 2 � 6=, hence  < �†

n < (�

>
)

0. Then [�†
n � ↵] 2 [�] for all ↵ 2 �, by [6, 9.8.6]. For

↵ := ↵n+2

this means [�†
n �↵n+2

] = [�n+1

] 2 [�], contradicting (2). Thus �< is indeed cofinal in �<Khfi. For
any n we can therefore take ↵ 2 � 6= with [↵] < [�n]. Also [�n+1

] 62 [�] and �†
n � ↵† 2 (�+ Z�n+1

) \ �, and
by [6, 2.4.4 and 6.5.4(ii)],

[�n+1

] 6 [�†
n � ↵†

] < [�n � ↵] = [�n].

So we have a strictly decreasing sequence [�
0

] > [�
1

] > [�
2

] > · · · in [�Khfi], and therefore a strictly
increasing sequence �†

0

< �†
1

< �†
2

< · · · in view of (2). ⇤

Corollary 8.1.8. Khfi is w-free.

Proof. Khfi is of H-type since L is, and Lemma 8.1.7(5) implies that Khfi is ungrounded since K is.
As K is w-free, the pc-sequence (w⇢) in K is divergent. If Khfi was not w-free, then there would be an
w 2 Khfi such that w⇢  w, and so necessarily w 2 L \K. This contradicts the beginning of the proof of
Lemma 8.1.5. ⇤

In the rest of this section we further assume that K and L are equipped with orderings making K an H-field
and L an H-field extension of K. Furthermore, assume that M is an H-field extension of K such that the
asymptotic couple of K is also existentially closed in the asymptotic couple of M .

In this H-field setting, we have the following partial generalization of [6, 16.1.4]:

Lemma 8.1.9. Suppose g in M realizes the same cut in the ordered set K as f does. Then v(g � b
0

) =

max v(g �K) 62 �, and g
1

:= (g � b
0

)

† realizes the same cut in the ordered set K† as f
1

= (f � b
0

)

†.

Proof. Establishing that v(g � b
0

) = max v(g � K) 62 � proceeds exactly as it does in the proof of [6,
16.1.4].

Following that same proof, to get that (g�b
0

)

† 62 K, assume towards a contradiction that (g�b
0

)

† 2 K.
By Lemma 8.1.3 with M in the role of L, we have (g � b

0

)

† 2 K†. This means (g � b
0

)

†
= a† with a 2 K⇥

and so g � b
0

= ca for some c 2 C⇥
M , and thus v(g � b

0

) = va 2 �, a contradiction.
Finally, to get that g

1

and f
1

realize the same cut in the ordered set K†, we assume towards a contra-
diction that there is � 2 K> such that (f � b

0

)

† < �† in L and �† < (g � b
0

)

† in M , and proceed as in the
proof of [6, 16.1.4]. Similarly for the other case. ⇤

We believe that in Lemma 8.1.9 above g
1

and f
1

realize the same cut in the ordered set K in general, as a
consequence of the existentially closed extension. Up until this point, the only consequences of “existentially
closed” that we have used are Lemmas 8.1.1 and 8.1.2. For the rest of the section we restrict our attention
to the main case of interest, (�, ) |= TAC , where we will use additional instances of the assumption of being
existentially closed:

Lemma 8.1.10. Suppose (�, ) |= TAC . Then f
1

and g
1

realize the same cut in the ordered set K.

Proof. By Lemma 8.1.9, f
1

and g
1

realize the same cut in the ordered abelian group K†. Thus f⇤
:= f

1

�a†
1

and g⇤ := g
1

� a†
1

also realize the same cut in K†. It suffices to show that f⇤ and g⇤ realize the same cut
in K. Note that vf⇤

= �†
0

2  Khfi \ � and so vg⇤ 2  M \ � as well. Furthermore, vf⇤ and vg⇤ realize the
same cut in the set  . Since (�, ) |= TAC , there are four cases of cuts in  to consider, although only one
of them can actually correspond to the cut of vf⇤ in  :
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Case 1: vf⇤ < s0. Then
(�Khfi, L) |= 9x⇥ (x) < s0

⇤

and so the same existential sentence must be true in (�, ), contradicting (�, ) |= TAC .
Case 2: There is ↵ 2  such that ↵ < vf⇤ < s↵ in �Khfi. Then

(�Khfi, L) |= 9x⇥↵ <  (x) ^  (x) < s↵
⇤

and so the same existential sentence must be true in (�, ), contradicting (�, ) |= TAC .
Case 3: There is a nonempty B 2 sded( ) such that B 6=  , and B < vf⇤ <  \B. In this case, B is

mutually cofinal in � with �<�
>B

and  \B is mutually coinitial in � with �>B . Thus vf⇤ and vg⇤ realize
the same cut in �. As vf⇤, vg⇤ 62 �, and f⇤ and g⇤ have the same sign since 0 2 K†, it follows that f⇤ and
g⇤ realize the same cut in K.

Case 4: vf⇤ >  . Then �< is not cofinal in �<Khfi, which contradicts Lemma 8.1.7(5). ⇤

The proof of Corollary 8.1.11 proceeds exactly as in [6, 16.1.5]:

Corollary 8.1.11. Suppose (�, ) |= TAC and g in M realizes the same cut in the ordered set K as f does.
Then there is an embedding Khfi ! M of H-fields over K sending f to g.

8.2. Uniqueness of Newton- -closure

In this section (K,LD) is an LD-H-field and all asymptotic couples are construed as LAC-structures in the
natural way. As an application of the results of the previous section, we generalize [6, 16.2.1 and 16.2.2] to
the  -closed setting. We first give a more general definition of a Newton- -closure of (K,LD).

Definition 8.2.1. A Newton- -closure of (K,LD) is a d-algebraic LD-H-field extension (K ,nt,LD ,nt
)

of (K,LD) such that:

(1) K ,nt is real closed and newtonian;
(2) (K ,nt,LD ,nt

) is  -closed;
(3) the asymptotic couple of K ,nt is an elementary extension of the asymptotic couple of K; and
(4) given any LD-H-field extension (L,LD⇤

) of (K,LD) with real closed, newtonian L, and  -closed
(L,LD⇤

), such that the asymptotic couple of L is an elementary extension of the asymptotic cou-
ple of K, there is an embedding i : (K ,nt,LD ,nt

) ! (L,LD⇤
) of LD-H-fields over K such that the

asymptotic couple of K ,nt is existentially closed in the asymptotic couple of L.

At this point, this is just a definition and a Newton- -closure of (K,LD) need not exist. We saw in
Section 7.10 that the Linear Newtonian Conjecture implies the existence of a Newton- -closure of (K,LD)

in the case where K is w-free, (�, ) |= TAC and (K,LD) is full. The Newton-Liouville closure gives another
example of a Newton- -closure provided K is w-free and (�, ) is closed.

Proposition 8.2.2. Suppose K is w-free, (K,LD) is full, and (�, ) is a closed asymptotic couple (so
LD = K). Let L be an H-field extension of K. Then the following are equivalent:

(1) L is a Newton-Liouville closure of K;
(2) (L,L) is a Newton- -closure of (K,LD).

Proof. Suppose that L is a Newton-Liouville closure of K. Then L is newtonian, and since it is Liouville
closed, it is also real closed and (L,L) is a  -closed LD-H-field by Example 7.1.11. In particular, (L,L) is an
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LD-H-field extension of (K,LD). The asymptotic couple of L is also closed, so it is an elementary extension
of the asymptotic couple of K, by model completeness for closed asymptotic couples (see [3]). Finally, given
an LD-H-field extension (L⇤,LD⇤

) of (K,LD) with real closed, newtonian L⇤, and  -closed (L⇤,LD⇤
) such

that the asymptotic couple of L⇤ is an elementary extension of the asymptotic couple of K, it follows that
L⇤ is in fact a newtonian Liouville closed H-field extension of K such that LD

⇤
= L⇤ by Example 7.1.11.

By the semiuniversal property of the Newton-Liouville closure, there is an embedding L ! L⇤ over K. This
will give rise to an embedding of LD-H-fields i : (L,L) ! (L⇤,LD⇤

) over K. Since all asymptotic couples
here are closed asymptotic couples, we have that the asymptotic couple of i(L) is existentially closed in the
asymptotic couple of L⇤.

Conversely suppose that (L,L) is a Newton- -closure of (K,LD). Then L is a newtonian Liouville
closed d-algebraic H-field extension of K by Example 7.1.11. This makes L a Newton-Liouville closure of K
by [6, 16.2.1]. ⇤

We now generalize [6, 16.2.1 and 16.2.2]. In particular, we show that a Newton- -closure (if one exists) is
unique up to isomorphism.

Lemma 8.2.3. Let (E,LD
0

) be a Newton- -closure of (K,LD) and i : (E,LD
0

) ! (L,LD
1

) an embedding
of LD-H-fields over K into an LD-H-field (L,LD

1

) such that CL ✓ i(E) and (�i(E)

, L) is existentially
closed in (�L, L). Then

i(E) =

�
f 2 L : f is d-algebraic over i(K)

 
.

Proof. By definition of Newton- -closures, E is a d-algebraic over K. Thus every element of i(E) is d-
algebraic over i(K). Furthermore, i(E) is a newtonian,  -closed H-subfield of L with the same constants as
L. Since (�i(E)

, L) is existentially closed in (�L, L), every f 2 L that is d-algebraic over i(E) lies in i(E)

by Theorem 8.1.6. ⇤

Corollary 8.2.4. Any two Newton- -closures of (K,LD) are isomorphic over (K,LD). If (E,LD
0

) is
a Newton- -closure of (K,LD), then (E,LD

0

) does not have any proper real closed newtonian  -closed
LD-H-subfield containing (K,LD).

Proof. Let (E,LD
0

) and (L,LD
1

) be Newton- -closures of (K,LD). Then there exists an embedding
i : (E,LD

0

) ! (L,LD
1

) over (K,LD) such that the asymptotic couple of i(E) is existentially closed in
the asymptotic couple of L, and any such embedding is necessarily surjective by Lemma 8.2.3, as L is a d-
algebraic extension of K. The minimality property of (E,LD

0

) also follows from Lemma 8.2.3 by considering
embeddings (E,LD

0

) ! (E,LD
0

) over (K,LD). ⇤

8.3. Model completeness for T
log

modulo some conjectures

In this section we give our proof of model completeness of T
log

, modulo some conjectures which still need to
be established. First, let

L := {0, 1,+,�, ·, ∂,6,4}
be the language of ordered differential fields. We augment L by adding a unary predicate symbol LD, to
obtain the language L

LD

:= L [ {LD}. We will construe LD-H-fields as L
LD

-structures in the obvious way.

Next, let T
log

be the L
LD

-theory whose models are precisely the LD-H-fields (K,LD) such that:

(1) K is real closed, w-free, and newtonian;
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(2) (K,LD) is  -closed; and
(3) (�, ) |= TAC , where (�, ) is the asymptotic couple of K.

The main result of this section is the following:

Theorem 8.3.1. If Conjectures 7.10.4, 8.3.6, and 8.3.9 hold, then the theory T
log

is model complete.

This theorem refers to the Linear Newtonian Conjecture as well as Conjectures 8.3.6 and 8.3.9 which we
introduce below. We will now formulate a more precise form of our conjecture:

Let T
LD

be the L
LD

-theory whose models are precisely the LD-H-fields (K,LD) such that:

(1) K is w-free;
(2) (K,LD) is full; and
(3) (Q�, ) |= TAC , where (�, ) is the asymptotic couple of K.

By Lemmas 5.3.14, 7.1.14, and Corollary 4.2.3, T
LD

is an inductive theory. Thus by ADH 4.1.13 we will
actually show the following:

Theorem 8.3.2. Suppose Conjectures 7.10.4, 8.3.6, and 8.3.9 hold. Then T
log

is the model companion of
the theory T

LD

and thus the models of T
log

are exactly the existentially closed models of T
LD

.

Without relying on any conjectures, we already have the easy direction of Theorem 8.3.2:

Proposition 8.3.3. Suppose (K,LD) is an existentially closed model of T
LD

. Then (K,LD) |= T
log

.

Proof. The extension (Krc,LDrc

) of (K,LD) given by Corollary 7.4.6 is a real closed model of T
LD

. Thus
(K,LD) is real closed and � is divisible, hence (�, ) |= TAC . Next, let Knt be the newtonization of K,
equipped with the unique ordering which makes it an H-field extension of K. Furthermore, let LD

⇤ be a
maximal LD-set on Knt which contains LD+ I(Knt

). Then (Knt,LD⇤
) is a newtonian model of T

LD

which
extends (K,LD). Thus K is newtonian. ⇤

Remark 8.3.4. Usually for model completeness, one aims for a language where every symbol has a natural
role. For instance, in [6, Chapter 16] it is shown that T as an ordered valued differential field is model
complete, whereas T as just an ordered differential field is not model complete; [6, 16.2.6].

We have seen that the symbol LD has a natural role in specifying “good” substructures of models of
T
log

, but it could be dropped for the sake of model completeness: Suppose (K,LD) |= T
log

. Then the set
LD = K† is clearly defined in the L-structure K by an existential L-formula that does not depend on
(K,LD). It is also defined in K by a universal L-formula independent of (K,LD): this reduces to showing
that the condition “v(x) 2  # \ ” can be expressed by an existential L-formula independent of (K,LD), by
the “Answer” given in the introduction to Chapter 7. However, the set  # \ is existentially definable in the
asymptotic couple since TAC is model complete (e.g. see Example 4.2.5), and such an existential definition
can be lifted to K to existentially define “v(x) 2  # \ ”.

In spite of all this, the language L
LD

is still more convenient for us since it allows us to state all of the
embedding lemmas we use from Chapter 7. Furthermore, the predicate LD will likely be useful for QE.

Remark 8.3.5. Another approach to model completeness of T
log

would be to work in a certain 3-sorted
language. Let L

log

be a 3-sorted language with sorts f (the LD-H-field sort), r (the differential residue field
sort), and v (the asymptotic couple sort). This language consists of the one-sorted language L

LD

for the
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sort f, the one-sorted language L
dr

= {0, 1,�,+, ·, ∂} of differential rings for the sort r, and the one-sorted
language LAC,log = LAC [ {s, p, �

1

, �
2

, . . .} for the sort v, together with a function symbol v of sort fv (for
the valuation) and a function symbol res of sort fr (for the residue map).

Given an LD-H-field (K,LD) such that (�, ) |= TAC , we may naturally view it as an L
log

-structure
(K,CK ,�; . . .) and then we can consider the L

log

-theory T
log,frv whose models are precisely the L

log

-structures
that arise from models of T

log

. A variant of Proposition 8.3.11 and its proof below will also go through in
this 3-sorted setting, showing that if T

log

is model complete, then so is T
log,frv.

This 3-sorted setting seems to be the natural starting point for doing QE. In a proof of QE for T
log

, it
is not clear how to mimic the useful role that the functions s and p play in QE for TAC,log (Theorem 4.2.2)
without having a separate sort for the asymptotic couple. Furthermore, the predicates ⇤ and ⌦ which are
used to get QE for T ([6, 16.0.1]) will also need to be taken into account.

Conjectures we still need. In this subsection (K,LD) is a model of T
log

. We already stated and studied
the consequences of the Linear Newtonian Conjecture in Section 7.10. To round things out, we will state
and discuss two more conjectures that we need for model completeness of T

log

. The first conjecture involves
differentially-transcendental immediate extensions:

Conjecture 8.3.6 (Differentially-Transcendental Immediate Extension Conjecture). Suppose (L,LD⇤
) is an

LD-H-field extension of (K,LD) such that (L,LD⇤
) |= T

log

, and suppose y 2 L \K is such that Khyi is an
immediate extension of K (so y is necessarily differentially transcendental over K since K is asymptotically
d-algebraically maximal). Then

�
Khyi,LDy

�
is full, where LDy := LD+ I

�
Khyi�.

Remark 8.3.7. Conjecture 8.3.6 gives a best case scenario. A weaker version would actually be good
enough for our purpose: assume the hypothesis of Conjecture 8.3.6, and note that then Zorn’s Lemma gives
an LD-set LD

⇤ on Khyi such that (Khyi,LD⇤
) is full; the weaker version just says that then any two such

LD

⇤ are conjugate by some K-automorphism of Khyi. Since Conjecture 8.3.6 gets used only in Case 5 of
the proof of Proposition 8.3.11, we may also assume in this conjecture (and in its weaker version) that both
K and Khyi are w-free.

The next conjecture involves adding copies of Z to the  -set of (�, ). For the purpose of stating the
conjecture, we first give a “non-divisible” version of Lemma 3.3.1:

Lemma 8.3.8. Suppose (�

0

, 
0

) is a divisible H-asymptotic couple with asymptotic integration, and let
B 2 sded( 

0

) be such that B 6= ;. Then there is an H-asymptotic couple (�B , B) ◆ (�

0

, 
0

) with a family
(�k)k2Z in �B satisfying the following conditions:

(1) (�B , B) has rational asymptotic integration;
(2) B < �k < �>B

0

, and sB(�k) = �k+1

for all k;
(3)  B =  

0

[ {�k : k 2 Z};
(4) for any embedding i : (�

0

, 
0

) ! (�

⇤, ⇤
) into an H-asymptotic couple with rational asymptotic inte-

gration and any family (�⇤
k)k2Z in  ⇤ such that i(B) < �⇤

k < i(�>B
0

) and s⇤(�⇤
k) = �⇤

k+1

for all k, there
is a unique extension of i to an embedding (�B , B) ! (�

⇤, ⇤
) sending �k to �⇤

k for all k.

Conjecture 8.3.9 (Copy of Z Conjecture). Suppose B 2 sded( ) is nonempty. Then there is an w-free full
LD-H-field extension (KB ,LDB) of (K,LD) with the following properties:

(1) the asymptotic couple of KB is (�B , B) from Lemma 8.3.8 with family (�k)k2Z;
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(2) for any LD-H-field extension (L,LD⇤
) of (K,LD) such that (L,LD⇤

) |= T
log

and family (�⇤
k)k2Z in  L

with B < �⇤
k < �>B and s(�⇤

k) = �⇤
k+1

for all k, there is an embedding (KB ,LDB) ! (L,LD⇤
) over K

inducing the asymptotic couple embedding (�B , B) ! (�L, L) over � that sends �k to �⇤
k for all k.

Remark 8.3.10. We actually view Conjecture 8.3.9 as two qualitatively distinct conjectures:

(1) the case where B =  , i.e., where we need to adjoin a copy of Z to the end of the  -set; and
(2) the case where B 6=  , i.e., where we need to insert a copy of Z in the middle of the  -set.

The asymptotic couple extensions involved in (1) and (2) above have seemingly distinct proofs (Lemma 3.2.4
versus Lemma 3.2.5). This suggests that (1) and (2) will need to be handled separately. For case (1), it
seems that results in [6, §13.4] concerning adjoining a gap, as well as the construction of Fw in [6, §11.7]
may come in handy. For case (2), note that Corollary 8.1.11 already gives a construction of adjoining a copy
of N with a certain semiuniversal property. In fact, we do not think the construction of KB or the LD-set
LDB will be too difficult, the harder part will be establishing the desired semiuniversal property.

Model completeness of T
log

modulo some conjectures. The following embedding property immedi-
ately establishes Theorems 8.3.1 and 8.3.2 in view of ADH 4.1.6.

Proposition 8.3.11. Assume Conjectures 7.10.4, 8.3.6, and 8.3.9 hold. Let (K,LD) and (L,LD
1

) be
models of T

log

and suppose (E,LD
0

) is a full w-free LD-H-subfield of (K,LD) such that (Q�E , ) |= TAC .
Let i : (E,LD

0

) ! (L,LD
1

) be an embedding of LD-H-fields. Assume (L,LD
1

) is |K|+-saturated. Then i

extends to an embedding (K,LD) ! (L,LD
1

) of LD-H-fields.

Proof. Assume E 6= K. It suffices to show that i can be extended to an embedding (F,LD⇤
) ! (L,LD

1

)

for some w-free LD-H-subfield (F,LD⇤
) of (K,LD) properly extending (E,LD

0

) such that (F,LD⇤
) is full

and (Q�F , ) |= TAC . The picture to keep in mind is the following:

(L,LD
1

)

(K,LD)

(F,LD⇤
)

9?
⇠
//
�
i(F ), i(LD⇤

)

�

(E,LD
0

)

i

⇠
//
�
i(E), i(LD

0

)

�

We consider several cases:
Case 1: E is not real closed or E is not  -closed. We set (F,LD⇤

) := (E ,LD 
0

), the  -closure of
(E,LD

0

) inside (K,LD), which exists by Theorem 7.9.2. By the semiuniversal property of the  -closure, i
extends to an embedding (F,LD⇤

) ! (L,LD
1

) of LD-H-fields. Since F is d-algebraic over E, it is w-free.
Finally, (F,LD⇤

) is full and (�F , ) |= TAC also by Theorem 7.9.2.
Case 2: E is henselian and CE 6= C. The real closed constant field CL is |C|+-saturated, so the ordered

field embedding i|CE : CE ! CL extends to an ordered field embedding j : C ! CL. Then ADH 5.5.1
and 5.5.2 gives an extension of the underlying ordered valued differential field embedding of i to an embedding
of H-fields F := E(C) ! L that agrees with j on C. Since F is d-algebraic over E, it is w-free. Furthermore,
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�F = �E , so (Q�F , ) |= TAC . Finally, by Lemma 7.5.1 and the assumption that E is henselian, there is
a unique LD-set LD

⇤ on F such that (E,LD
0

) ✓ (F,LD⇤
). With this LD-set, (F,LD⇤

) is full and j is an
embedding of LD-H-fields.

Note: Cases 1 and 2 did not rely on any conjectures. In the cases below, we assume that CE = C, and
E is both real closed and  -closed.

Case 3: E is not newtonian. We set (F,LD⇤
) := (E ,nt,LD ,nt

), the Newton- -closure of (E,LD
0

)

inside of (K,LD). This uses Corollary 7.10.8 which depends on Conjecture 7.10.4. It is clear that F is w-free
and that (�F , ) |= TAC . By the seminuniversal property of the Newton- -closure, there is an embedding
j : (F,LD⇤

) ! (L, ,LD
1

) which extends i.
Case 4: (E,LD

0

) |= T
log

and there is no y 2 K \ E such that Khyi is an immediate extension of K.
Take y 2 K \E. By Lemma 8.1.5 and 8.1.7, it follows that  Ehyi 6=  E . In particular, there is an entire copy
of Z in  Ehyi which is not present in  E . We will add this entire copy of Z. Let B 2 sded( E) be the s-cut
determined by this copy of Z. Let F := EB be the H-field extension of K given by Conjecture 8.3.9, which
we can take inside of K by the semiuniversal property of Conjecture 8.3.9. Furthermore, by saturation of
L we can extend the underlying ordered valued differential field embedding of i : E ! L to an embedding
j : EB ! L over E. Finally, by Conjecture 8.3.9, we equip EB with the unique LD-set LDB such that
(E,LD

0

) ✓ (EB ,LDB); this conjecture also says that (EB ,LDB) is full. The uniqueness implies that
j : (EB ,LDB) ! (L,LD⇤

) is an embedding of LD-H-fields.
Note that by the proof of Case 4, if we are not in Cases 1-4, then necessarily  E =  and so we are in

Case 5 below.
Case 5: (E,LD

0

) |= T
log

,  E =  , and there is y 2 K \ E such that Khyi is an immediate extension
of K. Given such a y, we set F := Ehyi, which is w-free since K is w-free and  E =  . We take a divergent
pc-sequence (a⇢) in E such that a⇢  y. Since E is asymptotically d-algebraically maximal, (a⇢) is of
d-transcendental type over E. The saturation assumption of L gives z 2 L such that i(a⇢)  z. Then [6,
Lemma 11.4.7] gives a valued differential field embedding j : F ! L that extends the underlying valued
differential field embedding of i and sends y to z. By [6, 10.5.8] and the assumption that Khyi is an immediate
extension of K, this embedding F ! L is an embedding of ordered valued differential fields. Finally, by
Conjecture 8.3.6 there is a unique LD-set LDy on F such that (E,LD) ✓ (F,LDy). Conjecture 8.3.6 also
says that (F,LDy) is full. The uniqueness of this LD-set implies that j is an embedding of LD-H-fields. ⇤

8.4. An Ax-Kochen-Ersov conjecture for H-fields

We conclude this thesis on a positive, optimistic note: a conjectured Ax-Kochen-Ersov (AKE) Theorem for
H-fields. An AKE theorem is a theorem that gives conditions under which the first-order theory of a valued
field-like object is completely determined by the theory of its residue field and value group. This was done
for various types of valued fields by Ax-Kochen [7] and Ersov [12]. Also of interest here is the AKE theorem
by Scanlon [35] for the differential-henselian valued differential fields with many constants, a theorem later
generalized by Hakobyan [17].

There are not yet any known AKE theorems for the category of H-fields. We conjecture the following:

Conjecture 8.4.1. Suppose K and L are real closed, w-free, newtonian,  -closed H-fields. Then K ⌘ L

as ordered valued differential fields iff (�K , ) ⌘ (�L, ) as asymptotic couples (i.e., as LAC-structures).
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Of course, one direction of Conjecture 8.4.1 is trivial: if K ⌘ L as ordered valued differential fields, then
(�K , ) ⌘ (�L, ) as LAC-structures, since the asymptotic couple of an asymptotic field is interpretable in
that asymptotic field.

Furthermore, if K and L are real closed H-fields, then the residue fields res(K) and res(L) will necessarily
be real closed since the valuation ring of an H-field is convex with respect to the ordering (see [6, 3.5.16]).
Since all real closed fields are already elementarily equivalent, it is unnecessary to reference the residue fields
of K and L in the statement of Conjecture 8.4.1.

The main result from [6] already provides us with two pieces of evidence in support of Conjecture 8.4.1:

Evidence 8.4.2. Suppose K and L are real closed, w-free, newtonian,  -closed H-fields. If (�K , ) and
(�L, ) are closed asymptotic couples such that s0 > 0, then K ⌘ L as ordered valued differential fields.

Proof. Let K and L be as in the statement. Newtonianity implies that both K and L are closed under
integration. The  -closed condition, together with the assumption that the asymptotic couples are closed
asymptotic couples imply that K and L are both closed under exponential integration. Thus both K and
L are Liouville closed. In particular, K and L are both models of the (incomplete) L-theory T nl of w-
free newtonian Liouville closed H-fields, where L = {0, 1,+,�, ·, ∂,6,4} is the language of ordered valued
differential fields. That s0 > 0 in the asymptotic couple implies that both K and L have small derivation.
Thus they are both models of the same complete L-theory T nl

small

. In particular, K ⌘ L as ordered valued
differential fields. ⇤

Similarly, we also have the “large” version:

Evidence 8.4.3. Suppose K and L are real closed, w-free, newtonian,  -closed H-fields. If (�K , ) and
(�L, ) are closed asymptotic couples such that s0 < 0, then K ⌘ L as ordered valued differential fields.

Furthermore, model completeness of T
log

(Theorem 8.3.1) would also contribute to the evidence for Conjec-
ture 8.4.1, once the relevant conjectures are resolved.
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