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Overview

1 Hardy fields

2 H-fields
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Hardy fields

Hardy fields are the natural domain of asymptotic analysis, where all rules
hold, without qualifying conditions
- Maxwell Rosenlicht

Let G be the ring of germs of real valued functions whose domain
is a subset of R containing an interval (a,+∞) for some a ∈ R
A germ is said to be differentiable, continuous, etc. if it is the
germ of a function that is differentiable, continuous, etc.

Given differentiable g ∈ G, g ′ ∈ G is defined to be the germ of
the derivative of a differentiable representative of g

A Hardy field is a subring K of G such that K is a field, all
g ∈ K are differentiable, and g ′ ∈ K for all g ∈ K

Examples:
Q,Q(

√
2),R,Q(x),R(x),R(x ,

√
log x , ex , exp(x

√
log x + ex)), . . .
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Some nice properties of Hardy fields

Let K be a Hardy field and f ∈ K

If f 6= 0, then f does not have arbitrarily large zeros.

All derivatives of f are eventually monotone

limx→+∞ f (x) ∈ R ∪ {±∞} always exists!

f > 0 eventually, or f = 0 eventually, or f < 0 eventually. Thus
every Hardy field is an ordered field

cos(x), sin(x) and most other common oscillating functions can’t
belong to any Hardy field

However... Hardy fields can contain “crypto-oscillation”, i.e.,
R〈Γ′(x)/Γ(x) + x + λe−x sin x〉 is a Hardy field. This shows there
is no maximum Hardy field.
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Liouville extensions and closures

A differential field is a characteristic zero field K equipped with
a derivation ∂ : K → K (additive map satisfying Leibniz identity:
∂(ab) = ∂(a)b + a∂(b)). Also define CK = C = ker ∂, the
constant field of K .

A Liouville extension of a differential field K is a differential
field extension L of K such that CL is algebraic over CK and for
each a ∈ L there are t1, . . . , tn ∈ L with a ∈ K (t1, . . . , tn) and for
i = 1, . . . , n,

ti is algebraic over K (t1, . . . , ti−1), or
∂(ti) ∈ K (t1, . . . , ti−1), or
ti 6= 0 and ∂(ti)/ti ∈ K (t1, . . . , ti−1).

A differential field K is Liouville closed if it is real closed and
for every f , g ∈ K there is y ∈ K× such that y ′ + fy = g .
A Liouville closure of K is a Liouville closed differential field
extension L of K that is a Liouville extension. (provisional
definition)
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Liouville Extensions of Hardy fields

Let K be a Hardy field

Theorem (Robinson, 1972)

Define K rc = {g ∈ G : g is continuous and algebraic over K} ⊆ G. Then
K rc is a Hardy field and a real closure of K . In the category of Hardy
fields, it is THE real closure of K .

Theorem (Hardy 1912, Marić 1972, Rosenlicht-Singer 1983)

If P(Y ) ∈ K (Y ) and g ∈ G is differentiable such that satisfies g ′ = P(g),
then K (g) is a Hardy field.

Corollary

If f ∈ K , then K (R), K (
∫
f ), K (ef ), K (log(|f |)), K (exp(

∫
f )) are all

Hardy fields.

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 6 / 15



Liouville Extensions of Hardy fields

Let K be a Hardy field

Theorem (Robinson, 1972)

Define K rc = {g ∈ G : g is continuous and algebraic over K} ⊆ G. Then
K rc is a Hardy field and a real closure of K . In the category of Hardy
fields, it is THE real closure of K .
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Theorem (Hardy 1912, Marić 1972, Rosenlicht-Singer 1983)

If P(Y ) ∈ K (Y ) and g ∈ G is differentiable such that satisfies g ′ = P(g),
then K (g) is a Hardy field.

Corollary

If f ∈ K , then K (R), K (
∫
f ), K (ef ), K (log(|f |)), K (exp(

∫
f )) are all

Hardy fields.

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 6 / 15



Liouville closure of Hardy fields

Let K be a Hardy field containing R

Define Li(K ) :=

{g ∈ G : g lies in some Hardy field Liouville extension of K} ⊆ G

In other words, Li(K ) is obtained from K by closing off under
integration, exponential integration and real-closing

Li(K ) is itself a Hardy field and is a Liouville closure of K

In fact, in the category of Hardy fields, it is THE Liouville
closure of K
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H-fields

An H-field is an ordered differential field K such that:

(H1) for all f ∈ K , if f > CK , then ∂(f ) > 0;
(H2) O = CK + O where

O = {g ∈ K : |g | ≤ c for some c ∈ CK}

and O is the maximal ideal of the convex subring O of K .

Example: A Hardy field K ⊇ R is an H-field, with

O = {f ∈ K : limx→+∞ f ∈ R}, the bounded elements, and
O = {f ∈ K : limx→+∞ f = 0}, the infinitesimal elements

Other examples: various fields of transseries such as T and Tlog

Conway’s No, the ordered field of surreal numbers is a proper
class-sized H-field when equipped with the Berarducci-Mantova
derivation ∂BM
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Liouville closures of H-fields

If K is an H-field, by Liouville closure of K we now mean “H-field
extension of K that is also a Liouville closure of K in the previous sense”

Theorem (Aschenbrenner, van den Dries, 2002)

Let K be an H-field. Then one of the following occurs:

(I) K has exactly one Liouville closure up to isomorphism over K ,

(II) K has exactly two Liouville closures up to isomorphism over K .

What causes one or two Liouville closures?
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The valuation of an H-field

Let K be an H-field and let f , g ∈ K

Define f 4 g :⇐⇒ ∃c ∈ C>0
K : |f | ≤ c |g |

Also define equivalence relation � on K×:
f � g :⇐⇒ f 4 g and g 4 f

The equivalence classes vf are elements of an ordered abelian
group ΓK := v(K×):

vf + vg = v(fg), vf ≥ vg ⇐⇒ f 4 g .

The map f 7→ vf : K× → Γ is a valuation.

Example: in K = R(x , arctan(x)), x 4 x2 and arctan(x) � π
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The Asymptotic Couple of an H-field

The derivation ∂ induces a map

γ = vf 7→ γ′ = v(f ′) : Γ6= := Γ \ {0} → Γ.

We set Ψ := {γ′ − γ : γ ∈ Γ 6=}. Then Ψ < (Γ>0)′.

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 11 / 15



Trichotomy for H-fields

Exactly one of the following statements holds:

(1) Ψ < β < (Γ>0)′ for a (necessarily unique) β. We call such a β a
gap in K . Example: K = R.

(2) Ψ has a largest element. In this case we say that K is grounded.
Example: K = R(x , log x).

(3) sup Ψ does not exists; equivalently: Γ = (Γ 6=)′. In this case we
say that K has asymptotic integration. Example:
K = R(x , log(x), log log(x), log log log(x), . . .).

In case (1) there are two Liouville closures. Why? You can
integrate β in such a way that its antiderivative is either infinite
or infinitesimal, your choice!

In case (2) there is one Liouville closure.

What about case (3)?
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How do gaps occur in Liouville extensions?

Let K be a real closed H-field

If K is Liouville closed, then K does not have a gap.

If L = K (y) with y ′ = f ∈ K (y =
∫
f ), then L has a gap if and

only if K has a gap.

If L = K (z) with z 6= 0, z ′/z = g ∈ K (z = exp
∫
g), then L

may have a gap even if K does not have a gap.

In fact, one can detect in K already whether some g ∈ K creates a gap
over K , i.e., z = exp

∫
g is a gap in K (z)...
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Liouville closures of H-fields

Proposition

The following are equivalent, for a real closed H-field K :

(1) ∀f ∃g [|g | > CK and f − g †† < g †], where g † := ∂(g)/g .

(2) K has asymptotic integration, and no element of K creates a gap.

We say that K is λ-free if it satisfies condition (1) in the proposition.

Theorem (G.)

Let K be an H-field. Then

(1) K has exactly one Liouville closure up to isomorphism over K iff

(a) K is grounded, or
(b) K has asymptotic integration and is λ-free

(2) K has exactly two Liouville closures up to isomorphism over K iff

(c) K has asymptotic integration and is not λ-free, or
(d) K has a gap.
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(2) K has exactly two Liouville closures up to isomorphism over K iff

(c) K has asymptotic integration and is not λ-free, or
(d) K has a gap.
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Proof sketch

Assume K has asymptotic integration and is λ-free. Want to
show that K has one Liouville closure up to isomorphism over K .

Proof by procrastination!

The primary source of Two Liouville Closures is the occurrence of
gaps.

λ-freeness is a gap prevention property in the sense that you
can’t create a gap in “the next step”

I proved that λ-freeness is preserved under adjoining integrals and
adjoining exponential integrals

Thus we “kick the can down the road”: in constructing a
Liouville closure, we are forever λ-free, so we are always at least
two steps away from creating a gap, so a gap never gets created!
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