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Hardy fields

Hardy fields are the natural domain of asymptotic analysis, where all rules
hold, without qualifying conditions
- Maxwell Rosenlicht
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Some nice properties of Hardy fields

Let K be a Hardy field and f € K
o If f # 0, then f does not have arbitrarily large zeros.
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Some nice properties of Hardy fields

Let K be a Hardy field and f € K
If £ # 0, then f does not have arbitrarily large zeros.

All derivatives of f are eventually monotone
limy— 100 F(x) € RU{£00} always exists!

e f > 0 eventually, or f = 0 eventually, or f < 0 eventually. Thus
every Hardy field is an ordered field

cos(x), sin(x) and most other common oscillating functions can't
belong to any Hardy field

e However... Hardy fields can contain “crypto-oscillation”, i.e.,
R(I"(x)/T(x) + x + Ae *sin x) is a Hardy field. This shows there
is no maximum Hardy field.
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Liouville extensions and closures

o A differential field is a characteristic zero field K equipped with
a derivation 9 : K — K (additive map satisfying Leibniz identity:
d(ab) = d(a)b+ ad(b)). Also define Cx = C = kerd, the
constant field of K.
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Liouville Extensions of Hardy fields

Let K be a Hardy field

Theorem (Robinson, 1972)

Define K'* = {g € G : g is continuous and algebraic over K} C G. Then
K’ is a Hardy field and a real closure of K. In the category of Hardy
fields, it is THE real closure of K.
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Define K'* = {g € G : g is continuous and algebraic over K} C G. Then
K’ is a Hardy field and a real closure of K. In the category of Hardy
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Theorem (Hardy 1912, Mari¢ 1972, Rosenlicht-Singer 1983)

If P(Y) € K(Y) and g € G is differentiable such that satisfies g’ = P(g),
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H-fields

o An H-field is an ordered differential field K such that:

(H1) for all f € K, if f > Cg, then o(f) > 0;
(H2) O = Cx + o where

O={geK:|g|l<cforsomece Cx}

and o is the maximal ideal of the convex subring O of K.
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Liouville closures of H-fields

If K is an H-field, by Liouville closure of K we now mean “H-field
extension of K that is also a Liouville closure of K in the previous sense”
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Theorem (Aschenbrenner, van den Dries, 2002)

Let K be an H-field. Then one of the following occurs:
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The valuation of an H-field

Let K be an H-field and let f, g € K
o Define f < g <= Jc e C2%: |f| < c|g]
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The valuation of an H-field

Let K be an H-field and let f, g € K
o Define f < g <= Jc e C2%: |f| < c|g]
o Also define equivalence relation < on K*:
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The Asymptotic Couple of an H-field

The derivation 9 induces a map
y=vf Ay =v(f): T7:=T\{0}—=T.
We set W= {y —y:vy€Tl7}. Then ¥ < (I>0Y.

¥
4 p
/ /
/’/
P 7 /7)(_\\‘\\\ - T
// = —n
/
/
/
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Trichotomy for H-fields

Exactly one of the following statements holds:

(1) W < 8 < (>0 for a (necessarily unique) 3. We call such a 3 a
gap in K. Example: K = R.

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 12 / 15



Trichotomy for H-fields

Exactly one of the following statements holds:

(1) W < 8 < (>0 for a (necessarily unique) 3. We call such a 3 a
gap in K. Example: K = R.

(2) W has a largest element. In this case we say that K is grounded.
Example: K = R(x, log x).

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 12 / 15



Trichotomy for H-fields

Exactly one of the following statements holds:

(1) W < 8 < (>0 for a (necessarily unique) 3. We call such a 3 a
gap in K. Example: K = R.

(2) W has a largest element. In this case we say that K is grounded.
Example: K = R(x, log x).

(3) sup VW does not exists; equivalently: I = (I'#). In this case we
say that K has asymptotic integration. Example:
K = R(x, log(x), log log(x), log log log(x), . ..).

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 12 / 15



Trichotomy for H-fields

Exactly one of the following statements holds:

(1) W < 8 < (>0 for a (necessarily unique) 3. We call such a 3 a
gap in K. Example: K = R.

(2) W has a largest element. In this case we say that K is grounded.
Example: K = R(x, log x).

(3) sup VW does not exists; equivalently: I = (I'#). In this case we
say that K has asymptotic integration. Example:
K = R(x, log(x), log log(x), log log log(x), . ..).

e In case (1) there are two Liouville closures. Why? You can

integrate [ in such a way that its antiderivative is either infinite
or infinitesimal, your choice!

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 12 / 15



Trichotomy for H-fields

Exactly one of the following statements holds:

(1) W < 8 < (>0 for a (necessarily unique) 3. We call such a 3 a
gap in K. Example: K = R.

(2) W has a largest element. In this case we say that K is grounded.
Example: K = R(x, log x).

(3) sup VW does not exists; equivalently: I = (I'#). In this case we
say that K has asymptotic integration. Example:
K = R(x, log(x), log log(x), log log log(x), . ..).

e In case (1) there are two Liouville closures. Why? You can

integrate [ in such a way that its antiderivative is either infinite
or infinitesimal, your choice!

e In case (2) there is one Liouville closure.

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 12 / 15



Trichotomy for H-fields

Exactly one of the following statements holds:

(1) W < 8 < (>0 for a (necessarily unique) 3. We call such a 3 a
gap in K. Example: K = R.

(2) W has a largest element. In this case we say that K is grounded.
Example: K = R(x, log x).

(3) sup VW does not exists; equivalently: I = (I'#). In this case we
say that K has asymptotic integration. Example:
K = R(x, log(x), log log(x), log log log(x), . ..).

e In case (1) there are two Liouville closures. Why? You can
integrate [ in such a way that its antiderivative is either infinite
or infinitesimal, your choice!

e In case (2) there is one Liouville closure.

e What about case (3)?

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 12 / 15



Trichotomy for H-fields

Exactly one of the following statements holds:

(1) W < 8 < (>0 for a (necessarily unique) 3. We call such a 3 a
gap in K. Example: K = R.

(2) W has a largest element. In this case we say that K is grounded.
Example: K = R(x, log x).

(3) sup VW does not exists; equivalently: I = (I'#). In this case we
say that K has asymptotic integration. Example:
K = R(x, log(x), log log(x), log log log(x), . ..).

e In case (1) there are two Liouville closures. Why? You can
integrate [ in such a way that its antiderivative is either infinite
or infinitesimal, your choice!

e In case (2) there is one Liouville closure.

e What about case (3)?

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 12 / 15



Trichotomy for H-fields

Exactly one of the following statements holds:

(1) W < 8 < (>0 for a (necessarily unique) 3. We call such a 3 a
gap in K. Example: K = R.

(2) W has a largest element. In this case we say that K is grounded.
Example: K = R(x, log x).

(3) sup VW does not exists; equivalently: I = (I'#). In this case we
say that K has asymptotic integration. Example:
K = R(x, log(x), log log(x), log log log(x), . ..).

e In case (1) there are two Liouville closures. Why? You can
integrate [ in such a way that its antiderivative is either infinite
or infinitesimal, your choice!

e In case (2) there is one Liouville closure.

e What about case (3)?

Allen Gehret (UIUC) Liouville closures Kolchin Seminar 12 / 15



How do gaps occur in Liouville extensions?

Let K be a real closed H-field

e If K is Liouville closed, then K does not have a gap.
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How do gaps occur in Liouville extensions?

Let K be a real closed H-field

e If K is Liouville closed, then K does not have a gap.

o If L=K(y)withy' =f € K (y= [ f), then L has a gap if and
only if K has a gap.

o If L=K(z)withz#0,2/z=g€ K (z=exp [g), then L
may have a gap even if K does not have a gap.

In fact, one can detect in K already whether some g € K creates a gap
over K, i.e., z=-exp [ gis a gap in K(z)...
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Liouville closures of H-fields

Proposition

The following are equivalent, for a real closed H-field K:
(1) Vf3gllg| > Ck and f — g = g], where g™ :=9(g) /g
(2) K has asymptotic integration, and no element of K creates a gap.
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Let K be an H-field. Then
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(d) K has a gap.
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Proof sketch

e Assume K has asymptotic integration and is A-free. Want to
show that K has one Liouville closure up to isomorphism over K.
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