Distal and non-distal ordered abelian groups

Allen Gehret Joint with Matthias Aschenbrenner and Artem Chernikov

University of California, Los Angeles

allen@math.ucla.edu

University of Notre Dame Model Theory Seminar December 5, 2017

Convention: ${\mathbb M}$ is a first order structure, possibly highly saturated.

Definition

A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is *A*-indiscernible if for all $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$ from *I* we have $a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}$

Convention: ${\mathbb M}$ is a first order structure, possibly highly saturated.

Definition

A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is *A*-indiscernible if for all $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$ from *I* we have $a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}$

- A strictly increasing sequence (q_n) in $(\mathbb{Q}, <)$
- A sequence (a_n) of algebraically independent numbers in $(\mathbb{C}; 0, 1, +, -, \cdot)$, for example, $(\exp(\sqrt{p_n}))$, where $p_n = n$ th prime.

Convention: ${\mathbb M}$ is a first order structure, possibly highly saturated.

Definition

A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is *A*-indiscernible if for all $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$ from *I* we have $a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}$

- A strictly increasing sequence (q_n) in $(\mathbb{Q}, <)$
- A sequence (a_n) of algebraically independent numbers in $(\mathbb{C}; 0, 1, +, -, \cdot)$, for example, $(\exp(\sqrt{p_n}))$, where $p_n = n$ th prime.

Definition (for monster model \mathbb{M})

 \mathbb{M} is NIP iff for every formula $\varphi(x, y)$, every indiscernible sequence $(a_i)_{i \in I}$ from $\mathbb{M}^{|x|}$ and every $b \in \mathbb{M}^{|y|}$, there is $\epsilon \in \{0, 1\}$ such that eventually $\models \varphi(a_i, b)^{\epsilon}$.

Definition (for monster model \mathbb{M})

 \mathbb{M} is NIP iff for every formula $\varphi(x, y)$, every indiscernible sequence $(a_i)_{i \in I}$ from $\mathbb{M}^{|x|}$ and every $b \in \mathbb{M}^{|y|}$, there is $\epsilon \in \{0, 1\}$ such that eventually $\models \varphi(a_i, b)^{\epsilon}$.

Example

The asymptotic couple (Γ_{log}, ψ) of the field of logarithmic transseries.

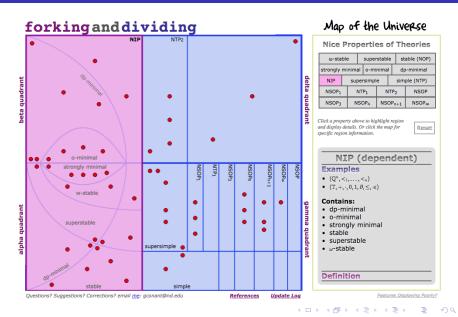
Definition (for monster model \mathbb{M})

 \mathbb{M} is NIP iff for every formula $\varphi(x, y)$, every indiscernible sequence $(a_i)_{i \in I}$ from $\mathbb{M}^{|x|}$ and every $b \in \mathbb{M}^{|y|}$, there is $\epsilon \in \{0, 1\}$ such that eventually $\models \varphi(a_i, b)^{\epsilon}$.

Example

The asymptotic couple (Γ_{log}, ψ) of the field of logarithmic transseries.

More examples of NIP theories



A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is **totally indiscernible (over** A) if for all distinct i_1, \ldots, i_m and distinct j_1, \ldots, j_m from I we have $a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}$

A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is **totally indiscernible (over** A) if for all distinct i_1, \ldots, i_m and distinct j_1, \ldots, j_m from I we have $a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}$

Definition (for monster)

Allen Gehret (UCLA)

 \mathbb{M} is **stable** if every indiscernible sequence is totally indiscernible.

A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is **totally indiscernible (over** A) if for all distinct i_1, \ldots, i_m and distinct j_1, \ldots, j_m from I we have $a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}$

Definition (for monster)

 ${\mathbb M}$ is ${\bf stable}$ if every indiscernible sequence is totally indiscernible.

Slogan: stable means that everything in sight is immune to being linearly ordered in any way

A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is **totally indiscernible (over** A) if for all distinct i_1, \ldots, i_m and distinct j_1, \ldots, j_m from I we have $a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}$

Definition (for monster)

 ${\mathbb M}$ is stable if every indiscernible sequence is totally indiscernible.

Slogan: stable means that everything in sight is immune to being linearly ordered in any way

Example

ACF, every abelian group, infinite set, DCF

イロト 人間ト イヨト イヨト

A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is **totally indiscernible (over** A) if for all distinct i_1, \ldots, i_m and distinct j_1, \ldots, j_m from I we have $a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}$

Definition (for monster)

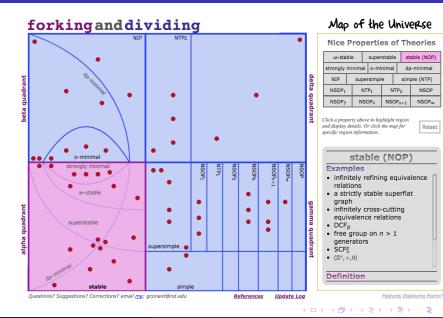
 ${\mathbb M}$ is stable if every indiscernible sequence is totally indiscernible.

Slogan: stable means that everything in sight is immune to being linearly ordered in any way

Example

ACF, every abelian group, infinite set, DCF

イロト 人間ト イヨト イヨト



We say that \mathbb{M} is distal if for every tuple d, for every indiscernible sequence $(a_i)_{i \in I}$ from \mathbb{M}^p such that

- $I = I_1 + (c) + I_2$, I_1 nonempty without greatest element, I_2 nonempty without least element,
- 2 $(a_i)_{i \in I_1 + I_2}$ is *d*-indiscernible,

then $(a_i)_{i \in I}$ is *d*-indiscernible.

Slogan: everything in sight is secretly governed by linear order(s) existing somewhere.

We say that \mathbb{M} is distal if for every tuple d, for every indiscernible sequence $(a_i)_{i \in I}$ from \mathbb{M}^p such that

- $I = I_1 + (c) + I_2$, I_1 nonempty without greatest element, I_2 nonempty without least element,
- ② $(a_i)_{i \in I_1 + I_2}$ is *d*-indiscernible,

then $(a_i)_{i \in I}$ is *d*-indiscernible.

Slogan: everything in sight is secretly governed by linear order(s) existing somewhere.

Example

• Any o-minimal theory, e.g. DLO, ODAG, RCF

We say that \mathbb{M} is distal if for every tuple d, for every indiscernible sequence $(a_i)_{i \in I}$ from \mathbb{M}^p such that

- $I = I_1 + (c) + I_2$, I_1 nonempty without greatest element, I_2 nonempty without least element,
- 2 $(a_i)_{i \in I_1 + I_2}$ is *d*-indiscernible,

then $(a_i)_{i \in I}$ is *d*-indiscernible.

Slogan: everything in sight is secretly governed by linear order(s) existing somewhere.

- Any o-minimal theory, e.g. DLO, ODAG, RCF
- $(\mathbb{R}, <, +, \cdot, 0, 1, 2^{\mathbb{Z}})$ is distal, whereas $(\mathbb{R}, <, +, \cdot, 0, 1, 2^{\mathbb{Q}})$ is not distal (Hieronymi, Nell, 2017)

We say that \mathbb{M} is distal if for every tuple d, for every indiscernible sequence $(a_i)_{i \in I}$ from \mathbb{M}^p such that

- $I = I_1 + (c) + I_2$, I_1 nonempty without greatest element, I_2 nonempty without least element,
- 2 $(a_i)_{i \in I_1 + I_2}$ is *d*-indiscernible,

then $(a_i)_{i \in I}$ is *d*-indiscernible.

Slogan: everything in sight is secretly governed by linear order(s) existing somewhere.

- Any o-minimal theory, e.g. DLO, ODAG, RCF
- $(\mathbb{R}, <, +, \cdot, 0, 1, 2^{\mathbb{Z}})$ is distal, whereas $(\mathbb{R}, <, +, \cdot, 0, 1, 2^{\mathbb{Q}})$ is not distal (Hieronymi, Nell, 2017)

We say that \mathbb{M} is distal if for every tuple d, for every indiscernible sequence $(a_i)_{i \in I}$ from \mathbb{M}^p such that

- $I = I_1 + (c) + I_2$, I_1 nonempty without greatest element, I_2 nonempty without least element,
- 2 $(a_i)_{i \in I_1 + I_2}$ is *d*-indiscernible,

then $(a_i)_{i \in I}$ is *d*-indiscernible.

Slogan: everything in sight is secretly governed by linear order(s) existing somewhere.

- Any o-minimal theory, e.g. DLO, ODAG, RCF
- $(\mathbb{R}, <, +, \cdot, 0, 1, 2^{\mathbb{Z}})$ is distal, whereas $(\mathbb{R}, <, +, \cdot, 0, 1, 2^{\mathbb{Q}})$ is not distal (Hieronymi, Nell, 2017)

Theorem

Theorem

The ordered abelian group $(\mathbb{Q}^{>0}, \cdot, <)$ is not distal.

• Let G be monster model of $(\mathbb{Q}^{>0},\cdot,<)$, written additively.

Theorem

- Let G be monster model of ($\mathbb{Q}^{>0},\cdot,<$), written additively.
- G/pG is infinite for all (thus at least one) primes p, fix such a p.

Theorem

- Let G be monster model of ($\mathbb{Q}^{>0},\cdot,<$), written additively.
- G/pG is infinite for all (thus at least one) primes p, fix such a p.
- G has QE in the presburger language $(0, 1, +, -, <, (\equiv_m)_{m \ge 1})$, where $x \equiv_m y$ is interpreted as $x y \in mG$.

Theorem

- Let G be monster model of ($\mathbb{Q}^{>0},\cdot,<$), written additively.
- G/pG is infinite for all (thus at least one) primes p, fix such a p.
- G has QE in the presburger language $(0, 1, +, -, <, (\equiv_m)_{m \ge 1})$, where $x \equiv_m y$ is interpreted as $x y \in mG$.
- Using Ramsey, we construct indiscernible sequence $(a_i)_{i \in (-1,1)}$ which is rapidly increasing and $a_i \not\equiv_p a_j$ for $i \neq j$.

Theorem

The ordered abelian group $(\mathbb{Q}^{>0}, \cdot, <)$ is not distal.

- Let G be monster model of ($\mathbb{Q}^{>0},\cdot,<$), written additively.
- G/pG is infinite for all (thus at least one) primes p, fix such a p.
- G has QE in the presburger language $(0, 1, +, -, <, (\equiv_m)_{m \ge 1})$, where $x \equiv_m y$ is interpreted as $x y \in mG$.
- Using Ramsey, we construct indiscernible sequence $(a_i)_{i \in (-1,1)}$ which is rapidly increasing and $a_i \not\equiv_p a_j$ for $i \neq j$.
- Now make sequence $(b_i)_{i \in (-1,1]}$ such that
 - $(b_i)_{i\in(-1,1)}$ is the same as $(a_i)_{i\in(-1,1)}$
 - $b_1 > (b_i)_{i \in (-1,1)}$ and $b_1 \equiv_{\rho} b_0$
 - b_1 satisfies the same congruence relations as b_0 does with $(b_i)_{i \in (-1,0) \cup (0,1)}$ (uses fact that abelian groups are stable!)

Theorem

The ordered abelian group $(\mathbb{Q}^{>0}, \cdot, <)$ is not distal.

- Let G be monster model of ($\mathbb{Q}^{>0},\cdot,<$), written additively.
- G/pG is infinite for all (thus at least one) primes p, fix such a p.
- G has QE in the presburger language $(0, 1, +, -, <, (\equiv_m)_{m \ge 1})$, where $x \equiv_m y$ is interpreted as $x y \in mG$.
- Using Ramsey, we construct indiscernible sequence $(a_i)_{i \in (-1,1)}$ which is rapidly increasing and $a_i \not\equiv_p a_j$ for $i \neq j$.
- Now make sequence $(b_i)_{i \in (-1,1]}$ such that
 - $(b_i)_{i\in(-1,1)}$ is the same as $(a_i)_{i\in(-1,1)}$
 - $b_1 > (b_i)_{i \in (-1,1)}$ and $b_1 \equiv_{\rho} b_0$
 - b_1 satisfies the same congruence relations as b_0 does with $(b_i)_{i \in (-1,0) \cup (0,1)}$ (uses fact that abelian groups are stable!)

Theorem

The ordered abelian group $(\mathbb{Q}^{>0}, \cdot, <)$ is not distal.

- Let G be monster model of ($\mathbb{Q}^{>0},\cdot,<$), written additively.
- G/pG is infinite for all (thus at least one) primes p, fix such a p.
- G has QE in the presburger language $(0, 1, +, -, <, (\equiv_m)_{m \ge 1})$, where $x \equiv_m y$ is interpreted as $x y \in mG$.
- Using Ramsey, we construct indiscernible sequence $(a_i)_{i \in (-1,1)}$ which is rapidly increasing and $a_i \not\equiv_p a_j$ for $i \neq j$.
- Now make sequence $(b_i)_{i \in (-1,1]}$ such that
 - $(b_i)_{i\in(-1,1)}$ is the same as $(a_i)_{i\in(-1,1)}$
 - $b_1 > (b_i)_{i \in (-1,1)}$ and $b_1 \equiv_{\rho} b_0$
 - b_1 satisfies the same congruence relations as b_0 does with $(b_i)_{i \in (-1,0) \cup (0,1)}$ (uses fact that abelian groups are stable!)

Let G be an OAG. For each n ≥ 1 we will define three new sorts S_n, T_n, and T⁺_n which encode uniformly definable families of convex subgroups of G. The so-called *auxiliary sorts*.

- Let G be an OAG. For each n ≥ 1 we will define three new sorts S_n, T_n, and T⁺_n which encode uniformly definable families of convex subgroups of G. The so-called *auxiliary sorts*.
- For a ∈ G \ nG, let H_a ⊆ G be the largest convex subgroup such that a ∉ H_a + nG; set H_a = {0} if a ∈ nG. Define S_n := G/ ~, with a ~ a' iff H_a = H_{a'}, and let s_n : G → S_n be the canonical map. (Yes, this actually is all definable)

- Let G be an OAG. For each n ≥ 1 we will define three new sorts S_n, T_n, and T⁺_n which encode uniformly definable families of convex subgroups of G. The so-called *auxiliary sorts*.
- For a ∈ G \ nG, let H_a ⊆ G be the largest convex subgroup such that a ∉ H_a + nG; set H_a = {0} if a ∈ nG. Define S_n := G/ ~, with a ~ a' iff H_a = H_{a'}, and let s_n : G → S_n be the canonical map. (Yes, this actually is all definable)
- For $b \in G$, set $H'_b := \bigcup_{\alpha \in S_n, b \notin G_\alpha} G_\alpha$, where the union over the empty set is $\{0\}$. Define $\mathcal{T}_n := G / \sim$, with $b \sim b'$ iff $H'_b = H'_{b'}$, and let $\mathfrak{t}_n : G \to \mathcal{T}_n$ be the canonical map.

- Let G be an OAG. For each n ≥ 1 we will define three new sorts S_n, T_n, and T⁺_n which encode uniformly definable families of convex subgroups of G. The so-called *auxiliary sorts*.
- For a ∈ G \ nG, let H_a ⊆ G be the largest convex subgroup such that a ∉ H_a + nG; set H_a = {0} if a ∈ nG. Define S_n := G/ ~, with a ~ a' iff H_a = H_{a'}, and let s_n : G → S_n be the canonical map. (Yes, this actually is all definable)
- For b ∈ G, set H'_b := ⋃_{α∈S_n, b∉G_α} G_α, where the union over the empty set is {0}. Define T_n := G / ~, with b ~ b' iff H'_b = H'_{b'}, and let t_n : G → T_n be the canonical map.
- For $\beta \in \mathcal{T}_n$, define $G_{\beta+} := \bigcup_{\alpha \in S_n, G_\alpha \supseteq G_\beta} G_\alpha$. We view $\beta+$ as being an element of a copy of \mathcal{T}_n which we denote by \mathcal{T}_n^+ .

- Let G be an OAG. For each n ≥ 1 we will define three new sorts S_n, T_n, and T⁺_n which encode uniformly definable families of convex subgroups of G. The so-called *auxiliary sorts*.
- For a ∈ G \ nG, let H_a ⊆ G be the largest convex subgroup such that a ∉ H_a + nG; set H_a = {0} if a ∈ nG. Define S_n := G/ ~, with a ~ a' iff H_a = H_{a'}, and let s_n : G → S_n be the canonical map. (Yes, this actually is all definable)
- For b ∈ G, set H'_b := ⋃_{α∈S_n, b∉G_α} G_α, where the union over the empty set is {0}. Define T_n := G / ~, with b ~ b' iff H'_b = H'_{b'}, and let t_n : G → T_n be the canonical map.
- For $\beta \in \mathcal{T}_n$, define $G_{\beta+} := \bigcup_{\alpha \in S_n, G_\alpha \supseteq G_\beta} G_\alpha$. We view $\beta+$ as being an element of a copy of \mathcal{T}_n which we denote by \mathcal{T}_n^+ .
- Define total preorder on $\bigcup_{n\geq 1} (S_n \cup \mathcal{T}_n \cup \mathcal{T}_n^+)$ by $\alpha \leq \alpha'$ iff $G_{\alpha} \subseteq G_{\alpha'}$.

- Let G be an OAG. For each n ≥ 1 we will define three new sorts S_n, T_n, and T⁺_n which encode uniformly definable families of convex subgroups of G. The so-called *auxiliary sorts*.
- For a ∈ G \ nG, let H_a ⊆ G be the largest convex subgroup such that a ∉ H_a + nG; set H_a = {0} if a ∈ nG. Define S_n := G/ ~, with a ~ a' iff H_a = H_{a'}, and let s_n : G → S_n be the canonical map. (Yes, this actually is all definable)
- For b ∈ G, set H'_b := ⋃_{α∈S_n, b∉G_α} G_α, where the union over the empty set is {0}. Define T_n := G / ~, with b ~ b' iff H'_b = H'_{b'}, and let t_n : G → T_n be the canonical map.
- For $\beta \in \mathcal{T}_n$, define $G_{\beta+} := \bigcup_{\alpha \in S_n, G_\alpha \supseteq G_\beta} G_\alpha$. We view $\beta+$ as being an element of a copy of \mathcal{T}_n which we denote by \mathcal{T}_n^+ .
- Define total preorder on $\bigcup_{n\geq 1} (S_n \cup \mathcal{T}_n \cup \mathcal{T}_n^+)$ by $\alpha \leq \alpha'$ iff $G_{\alpha} \subseteq G_{\alpha'}$.

- Let G be an OAG. For each n ≥ 1 we will define three new sorts S_n, T_n, and T⁺_n which encode uniformly definable families of convex subgroups of G. The so-called *auxiliary sorts*.
- For a ∈ G \ nG, let H_a ⊆ G be the largest convex subgroup such that a ∉ H_a + nG; set H_a = {0} if a ∈ nG. Define S_n := G/ ~, with a ~ a' iff H_a = H_{a'}, and let s_n : G → S_n be the canonical map. (Yes, this actually is all definable)
- For b ∈ G, set H'_b := ⋃_{α∈S_n, b∉G_α} G_α, where the union over the empty set is {0}. Define T_n := G / ~, with b ~ b' iff H'_b = H'_{b'}, and let t_n : G → T_n be the canonical map.
- For $\beta \in \mathcal{T}_n$, define $G_{\beta+} := \bigcup_{\alpha \in S_n, G_\alpha \supseteq G_\beta} G_\alpha$. We view $\beta+$ as being an element of a copy of \mathcal{T}_n which we denote by \mathcal{T}_n^+ .
- Define total preorder on $\bigcup_{n\geq 1} (S_n \cup \mathcal{T}_n \cup \mathcal{T}_n^+)$ by $\alpha \leq \alpha'$ iff $G_{\alpha} \subseteq G_{\alpha'}$.

• $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}_{(2)} \epsilon_q$ with the lexicographic order.

3

10 / 14

An example

G = ⊕_{q∈Q} Z₍₂₎ ε_q with the lexicographic order.
Given a = ∑_{q∈Q} r_q ε_q ∈ G, let q₀ = min{q : r_q ≠₂ 0}, then:

$$H_a = G_{\mathfrak{s}_2(a)} := \sum_{q > q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$$

글에 귀절에 드릴

$$H_{\mathsf{a}} = G_{\mathfrak{s}_2(\mathsf{a})} := \sum_{q > q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$$

• Let $q_0 = \min\{q : r_q \neq 0\}$, then $H'_a = G_{t_2(a)} = \sum_{q > q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$

$$H_{a} = G_{\mathfrak{s}_{2}(a)} := \sum_{q > q_{0}} \mathbb{Z}_{(2)} \epsilon_{q} \subseteq G$$

• Let $q_0 = \min\{q : r_q \neq 0\}$, then $H'_a = G_{t_2(a)} = \sum_{q > q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$ • Let $q_0 = \min\{q : r_q \neq 0\}$, then $G_{t_2(a)+} = \sum_{q \ge q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$

$$H_{a} = G_{\mathfrak{s}_{2}(a)} := \sum_{q > q_{0}} \mathbb{Z}_{(2)} \epsilon_{q} \subseteq G$$

- Let $q_0 = \min\{q : r_q \neq 0\}$, then $H'_a = G_{\mathfrak{t}_2(a)} = \sum_{q > q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$
- Let $q_0 = \min\{q: r_q \neq 0\}$, then $G_{\mathfrak{t}_2(a)+} = \sum_{q \geq q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$
- The above shows that $\mathcal{S}_2, \mathcal{T}_2, \mathcal{T}_2^+$ are order-isomorphic to $(\mathbb{Q}, <)$.

$$H_{a} = G_{\mathfrak{s}_{2}(a)} := \sum_{q > q_{0}} \mathbb{Z}_{(2)} \epsilon_{q} \subseteq G$$

- Let $q_0 = \min\{q : r_q \neq 0\}$, then $H'_a = G_{t_2(a)} = \sum_{q > q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$
- Let $q_0 = \min\{q : r_q \neq 0\}$, then $G_{\mathfrak{t}_2(a)+} = \sum_{q \geq q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$
- The above shows that $\mathcal{S}_2, \mathcal{T}_2, \mathcal{T}_2^+$ are order-isomorphic to $(\mathbb{Q}, <)$.
- For a prime $p \neq 2$, since G = pG, S_p , \mathcal{T}_p , \mathcal{T}_p^+ are trivial.

$$H_{a} = G_{\mathfrak{s}_{2}(a)} := \sum_{q > q_{0}} \mathbb{Z}_{(2)} \epsilon_{q} \subseteq G$$

- Let $q_0 = \min\{q : r_q \neq 0\}$, then $H'_a = G_{t_2(a)} = \sum_{q > q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$
- Let $q_0 = \min\{q : r_q \neq 0\}$, then $G_{\mathfrak{t}_2(a)+} = \sum_{q \geq q_0} \mathbb{Z}_{(2)} \epsilon_q \subseteq G$
- The above shows that $\mathcal{S}_2, \mathcal{T}_2, \mathcal{T}_2^+$ are order-isomorphic to $(\mathbb{Q}, <)$.
- For a prime $p \neq 2$, since G = pG, S_p , \mathcal{T}_p , \mathcal{T}_p^+ are trivial.

• The rest of the language is technical, but it essentially allows you to have the presburger language on all quotients G/G_{α} where α is from an auxiliary sort.

- The rest of the language is technical, but it essentially allows you to have the presburger language on all quotients G/G_{α} where α is from an auxiliary sort.
- There are also unary predicates on the auxiliary sorts which encode when quotients are discrete and to tell you the dimensions of various canonical vector spaces you can define.

- The rest of the language is technical, but it essentially allows you to have the presburger language on all quotients G/G_{α} where α is from an auxiliary sort.
- There are also unary predicates on the auxiliary sorts which encode when quotients are discrete and to tell you the dimensions of various canonical vector spaces you can define.
- They call their language L_{qe} .

- The rest of the language is technical, but it essentially allows you to have the presburger language on all quotients G/G_{α} where α is from an auxiliary sort.
- There are also unary predicates on the auxiliary sorts which encode when quotients are discrete and to tell you the dimensions of various canonical vector spaces you can define.
- They call their language L_{qe} .

Theorem (Cluckers, Halupczok)

In the theory of ordered abelian groups, each L_{qe} -formula $\psi(\bar{x}, \bar{\eta})$, where \bar{x} are home sort variables, and $\bar{\eta}$ are auxiliary sort variables, is equivalent to an L_{qe} -formula $\phi(\bar{x}, \bar{\eta})$ in family union form:

$$\phi(ar{x},ar{\eta}) = igvee_{i=1}^k \exists ar{ heta}(\xi_i(ar{\eta},ar{ heta}) \wedge \psi_i(ar{x},ar{ heta})),$$

where $\bar{\theta}$ are auxiliary sort variables, the formulas $\xi_i(\bar{\eta}, \bar{\theta})$ live purely in the auxiliary sorts, each $\psi_i(\bar{x}, \bar{\theta})$ is a conjunction of literals (i.e., of atoms and negated atoms), and for any ordered abelian group G and any $\bar{\beta}$ in the auxiliary sort of G corresponding to $\bar{\eta}$, the $L_{qe}(G)$ -formulas $\{\xi_i(\bar{\beta}, \bar{\alpha}) \land \psi_i(\bar{x}, \bar{\alpha}) : 1 \le i \le k, \bar{\alpha} \in auxiliary \text{ sorts of } G\}$ are pairwise inconsistent.

Theorem (Cluckers, Halupczok)

In the theory of ordered abelian groups, each L_{qe} -formula $\psi(\bar{x}, \bar{\eta})$, where \bar{x} are home sort variables, and $\bar{\eta}$ are auxiliary sort variables, is equivalent to an L_{qe} -formula $\phi(\bar{x}, \bar{\eta})$ in family union form:

$$\phi(ar{x},ar{\eta}) = igvee_{i=1}^k \exists ar{ heta}(\xi_i(ar{\eta},ar{ heta}) \wedge \psi_i(ar{x},ar{ heta})),$$

where $\bar{\theta}$ are auxiliary sort variables, the formulas $\xi_i(\bar{\eta}, \bar{\theta})$ live purely in the auxiliary sorts, each $\psi_i(\bar{x}, \bar{\theta})$ is a conjunction of literals (i.e., of atoms and negated atoms), and for any ordered abelian group G and any $\bar{\beta}$ in the auxiliary sort of G corresponding to $\bar{\eta}$, the $L_{qe}(G)$ -formulas $\{\xi_i(\bar{\beta}, \bar{\alpha}) \land \psi_i(\bar{x}, \bar{\alpha}) : 1 \le i \le k, \bar{\alpha} \in auxiliary \text{ sorts of } G\}$ are pairwise inconsistent.

Corollary: Definable functions in G are piecewise linear.

Theorem (Cluckers, Halupczok)

In the theory of ordered abelian groups, each L_{qe} -formula $\psi(\bar{x}, \bar{\eta})$, where \bar{x} are home sort variables, and $\bar{\eta}$ are auxiliary sort variables, is equivalent to an L_{qe} -formula $\phi(\bar{x}, \bar{\eta})$ in family union form:

$$\phi(ar{x},ar{\eta}) = igvee_{i=1}^k \exists ar{ heta}(\xi_i(ar{\eta},ar{ heta}) \wedge \psi_i(ar{x},ar{ heta})),$$

where $\bar{\theta}$ are auxiliary sort variables, the formulas $\xi_i(\bar{\eta}, \bar{\theta})$ live purely in the auxiliary sorts, each $\psi_i(\bar{x}, \bar{\theta})$ is a conjunction of literals (i.e., of atoms and negated atoms), and for any ordered abelian group G and any $\bar{\beta}$ in the auxiliary sort of G corresponding to $\bar{\eta}$, the $L_{qe}(G)$ -formulas $\{\xi_i(\bar{\beta}, \bar{\alpha}) \land \psi_i(\bar{x}, \bar{\alpha}) : 1 \le i \le k, \bar{\alpha} \in auxiliary \text{ sorts of } G\}$ are pairwise inconsistent.

Corollary: Definable functions in G are piecewise linear.

Theorem

Suppose G is an ordered abelian group such that S_p is finite for all primes p. Then the following are equivalent:

- G is distal.
- **2** G/pG is finite for all primes p.
- G is dp-minimal. [(2) \Leftrightarrow (3) Jahnke, Simon, Walsberg (2017)]

Theorem

Suppose G is an ordered abelian group such that S_p is finite for all primes p. Then the following are equivalent:

- G is distal.
- G/pG is finite for all primes p.
- G is dp-minimal. [(2) \Leftrightarrow (3) Jahnke, Simon, Walsberg (2017)]

Proof.

(1) \Rightarrow (2) Thanks to the assumptions on S_p , we can arrange full QE for G. Then the argument generalizes the one for ($\mathbb{Q}^{>0}, \cdot, <$).

Theorem

Suppose G is an ordered abelian group such that S_p is finite for all primes p. Then the following are equivalent:

- G is distal.
- **2** G/pG is finite for all primes p.
- G is dp-minimal. [(2) \Leftrightarrow (3) Jahnke, Simon, Walsberg (2017)]

Proof.

(1) \Rightarrow (2) Thanks to the assumptions on S_p , we can arrange full QE for G. Then the argument generalizes the one for $(\mathbb{Q}^{>0}, \cdot, <)$. (3) \Rightarrow (1) It is a fact that all dp-minimal totally ordered 1-sorted structures are distal; Simon (2013).

Theorem

Suppose G is an ordered abelian group such that S_p is finite for all primes p. Then the following are equivalent:

- G is distal.
- **2** G/pG is finite for all primes p.
- G is dp-minimal. [(2) \Leftrightarrow (3) Jahnke, Simon, Walsberg (2017)]

Proof.

(1) \Rightarrow (2) Thanks to the assumptions on S_p , we can arrange full QE for G. Then the argument generalizes the one for ($\mathbb{Q}^{>0}, \cdot, <$). (3) \Rightarrow (1) It is a fact that all dp-minimal totally ordered 1-sorted structures are distal; Simon (2013).

The assumptions include the *strongly dependent* ordered abelian groups. To my knowledge, all known ordered abelian groups that have full QE in a natural language fall under these assumptions.

Theorem

Suppose G is an ordered abelian group such that S_p is finite for all primes p. Then the following are equivalent:

- G is distal.
- **2** G/pG is finite for all primes p.
- G is dp-minimal. [(2) \Leftrightarrow (3) Jahnke, Simon, Walsberg (2017)]

Proof.

(1) \Rightarrow (2) Thanks to the assumptions on S_p , we can arrange full QE for G. Then the argument generalizes the one for ($\mathbb{Q}^{>0}, \cdot, <$). (3) \Rightarrow (1) It is a fact that all dp-minimal totally ordered 1-sorted structures are distal; Simon (2013).

The assumptions include the *strongly dependent* ordered abelian groups. To my knowledge, all known ordered abelian groups that have full QE in a natural language fall under these assumptions. • We believe the ordered abelian group $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}_{(2)} \epsilon_q$ is distal, even though G/2G is infinite.

- We believe the ordered abelian group $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}_{(2)} \epsilon_q$ is distal, even though G/2G is infinite.
- Idea: $G/2G \cong \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}/2\mathbb{Z}$ as abelian groups, which is stable. Usually this would yield non-distality since modding out by 2 "destroys" the order. However in this case, the map \mathfrak{s}_2 on Ggives a definable valuation $G/2G \to \Gamma_{\infty}$, where $\Gamma \cong (\mathbb{Q}, <)$, so the quotient is still being governed by a linear order somewhere.

- We believe the ordered abelian group $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}_{(2)} \epsilon_q$ is distal, even though G/2G is infinite.
- Idea: G/2G ≅ ⊕_{q∈Q} Z/2Z as abelian groups, which is stable. Usually this would yield non-distality since modding out by 2 "destroys" the order. However in this case, the map s₂ on G gives a definable valuation G/2G → Γ_∞, where Γ ≅ (Q, <), so the quotient is still being governed by a linear order somewhere.
- Obstruction: QE

- We believe the ordered abelian group $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}_{(2)} \epsilon_q$ is distal, even though G/2G is infinite.
- Idea: G/2G ≅ ⊕_{q∈Q} Z/2Z as abelian groups, which is stable. Usually this would yield non-distality since modding out by 2 "destroys" the order. However in this case, the map s₂ on G gives a definable valuation G/2G → Γ_∞, where Γ ≅ (Q, <), so the quotient is still being governed by a linear order somewhere.
- Obstruction: QE