
Lecture notes for Math182: Algorithms

Draft: Last revised June 22, 2020

Allen Gehret

Author address:

Department of Mathematics, University of California, Los Ange-
les, Los Angeles, CA 90095

E-mail address: allen@math.ucla.edu

Contents

List of Figures vii

Introduction ix
Prerequisites xi
Conventions and notation xi
Acknowledgements xii

Chapter 1. Discrete mathematics and basic algorithms 1
1.1. Induction 1
1.2. Summations 2
1.3. Triangular number algorithms 5
1.4. Common functions 9
1.5. Fibonacci numbers 11
1.6. The Euclidean Algorithm 11
1.7. Exercises 11

Chapter 2. Asymptotics 13

Chapter 3. Sorting algorithms 15

Chapter 4. Divide-and-Conquer 17

Chapter 5. Data structures 19

Chapter 6. Dynamic programming 21

Chapter 7. Greedy algorithms 23

Chapter 8. Elementary graph algorithms 25

Chapter 9. Path algorithms and network flow 27

Chapter 10. The Gale-Shapley algorithm 29

Chapter 11. P vs. NP 31

Appendix A. Pseudocode conventions and Python 33
A.1. Pseudocode conventions 33
A.2. Python 34

Bibliography 35

Index 37

iii

Abstract

The objectives of this class is are as follows:

(1) Survey various well-known algorithms which solve a variety of common
problems which arise in computer science. This includes reviewing the
mathematical background involved in the algorithms and when possi-
ble characterizing the algorithms into one of several algorithm paradigms
(greedy, divide-and-conquer, dynamic,...).

(2) Use mathematics to analyze and determine the efficiency of an algorithm
(i.e., does the running time scale linearly, scale quadratically, scale expo-
nentially, etc. with the size of the input, etc.).

(3) Use mathematics to prove the correctness of an algorithm (i.e., prove that
it correctly does what it is supposed to do).

Portions of these notes are based on [4], [1], and [3]. Any and all questions, com-
ments, typos, suggestions concerning these notes are enthusiastically welcome and
greatly appreciated.

Last revised June 22, 2020.
2010 Mathematics Subject Classification. Primary .
The first author is supported by the National Science Foundation under Award No. 1703709.

v

List of Figures

vii

Introduction

What is an algorithm?

This is a tough question to provide a definitive answer to, but since it is the subject
of this course, we will attempt to say a few words about it. Generally speaking,
an algorithm is an unambiguous sequence of instructions which accomplishes some-
thing. As human beings, we are constantly following algorithms in our everyday
life. For instance, here is an algorithm for eating a banana:

(Step 1) Peel banana.
(Step 2) Eat banana.
(Step 3) Dispose of banana peel.

Many other routine tasks can also be construed as algorithms: tying your shoes,
driving a car, scheduling a Zoom meeting, etc.

Of course, since this is a mathematics class, we will narrow our focus to algorithms
which accomplish objectives of a more mathematical nature1. For instance:

(1) Given a very large list of numbers, how do you sort that list so the numbers
are in increasing order?

(2) Given two very large integers a and b, how do you compute the greatest
common divisor of a and b?

(3) Given a very large weighted graph, how do you find the shortest path
between two nodes?

Furthermore, as human beings with busy lives, we have no interest in actually
carrying out these tasks ourselves by hand. Instead, we will be interested in having
a computer do these things for us. This brings us to one of the main themes of this
class:

How can we leverage the decision-making facilities of a computer
to efficiently accomplish tasks for us of a mathematical nature?

In this context, an algorithm might as well be synonymous with computer program,
and indeed, this is essentially what we will be studying. With that said, this is
not a programming class and our goal will not be to develop competence with any
one particular programming language. Instead, we will be more concerned with
the logical essence of various computer programs and we will study to what extent
they efficiently solve the problem at hand.

Before we proceed any further, we will expand our answer to the original question:
what is an algorithm? An algorithm (specifically, an algorithm for a computer) is
typically characterized by the following five features:

1Here we take major liberties with what types of problems we consider to be of a mathematical

nature.

ix

x INTRODUCTION

(1) Finiteness. An algorithm must terminate after a finite number of steps.
After all, what good is an algorithm if it runs forever and never accom-
plishes the task it is meant to do? All of the algorithms we will study in
this class have this feature. One caveat: occasionally you may encounter
algorithms which run indefinitely and continually interact with their en-
vironment (for instance, various operating system or server algorithms).
We will ignore such algorithms in this class.

(2) Definiteness. Each step in the algorithm must be precisely and unam-
biguously defined. This means that any two people reading the step will
carry out the instruction in exactly the same way. Generally speaking,
instructions for the computer are written in a programming language (e.g.,
Python, C++, Java) which has the effect of providing unambiguous in-
structions. For us, we will often write our algorithms in pseudocode (see
Chapter A) or even sometimes in plain English.

(3) Input. An algorithm accepts zero or more inputs, either at the beginning
of the algorithm, or while the algorithm is running. The inputs are either
provided by the user (a human being), or some other algorithm. This is
analogous to saying that a function (in the mathematical sense) can take
as input any element from its specified domain.

(4) Output. An algorithm has one or more outputs. An output can be a
number, an answer to a question, or an indication that the algorithm has
accomplished some task. This is analogous to the elements in the range
of a (mathematical) function.

(5) Effectiveness. The instructions of an algorithm should be sufficiently basic
and concrete enough that they can, in principle and with enough time, be
carried out with paper and pencil by any well-trained clerical assistant who
otherwise has no insight into what task they are ultimately performing.

Finally, we conclude with a list of what we will not do or care about in this course:

(1) We will not be concerned with issues of software engineering. In par-
ticular, we will disregard issues of memory management, error/exception
handling, garbage collection, testing, debugging, etc.

(2) We will not be concerned with the idiosyncrasies of any one particular
programming language, or of what hardware we are working with. In fact,
the issues we will deal with are by-and-large both language independent
and hardware independent.

(3) We will not be concerned with the practical limitations of computers as
they exist in the year 2020. Indeed, computers are much faster and hold
more memory now than they did 50 years ago, and in 50 years from now
we expect them to be faster and better still. Nevertheless, we consider
the ideas we will be studying to be timeless, i.e., they are equally valid
and useful regardless of the particular era of computing we are living in.
As funny as it might sound, we will not be bothered if we find that an
algorithm may take 10100 years to run, or if it requires more bits of memory
than there are atoms in the entire universe (although our sympathies will
always be with faster algorithms which take up less space).

(4) We will not be concerned with numerical problems. I.e., using the com-
putational power of a computer to approximate the roots of a polynomial,
the value of a definite integral, or the solution to a differential equation,

CONVENTIONS AND NOTATION xi

etc. This is a very important subject, but not one we will pursue in this
class2. Instead we will be focused more on the logical abilities of a com-
puter to solve “nonnumerical” problems (i.e., sorting a list of numbers,
analyzing a graph, etc.). In fact, we will probably at no point in our algo-
rithms use numbers other than integers, and we will have no need to use
functions such as sin, cos, tan, etc. We will use functions such as ex and
log x in our analysis of algorithms, but that is a different story.

(5) We will primarily be interested in the worst-case running times of algo-
rithms. The average-case running times of algorithms are also important
in the analysis of algorithms, however this requires knowledge of proba-
bility theory which we are not assuming as a prerequisite. However, there
is no major harm in ignoring average running and focusing on the worst-
case running times since in practice the worst-case will happen quite fre-
quently. Furthermore, since we will not be doing any probability, we will
focus our attention to deterministic algorithms (as opposed to randomized
algorithms).

(6) We will only deal with with single-processor sequential algorithms, i.e.,
algorithms which execute in a sequential manner one step at a time with
a single flow of control. We will note be interested in parallel algorithms
(algorithms where multiple tasks can be done concurrently across differ-
ent processors) or distributed algorithms (algorithms run concurrently on
many computers communicating with each other distributed in a complex
graph-like network).

Prerequisites

The formal prerequisites for this class are Math 61 and one of Math 3C or 32A.

Math 61 is Introduction to Discrete Structures. While it is assumed you are gen-
erally familiar with the topics in Math 61, we will recall anything of particular
relevance and importance. You can refer to [2] to refresh and review topics from
that course. From Math 61 we will need: proofs, induction, recursion, summations,
sequences, functions, relations, graphs, counting, and perhaps a few other things.

Math 3C is Ordinary Differential Equations with Linear Algebra for Life Sciences
Students and Math 32A is Calculus of Several Variables. We will not have any need
for differential equations or calculus of several variables in this course. However,
these prerequisites ensure that you have a sufficient command of the basics of
calculus and pre-calculus to the extent we will use such things. From calculus we
will primarily need: limits of functions, properties of exponentials and logarithms,
and the occasional derivative, integral, and infinite summation.

Conventions and notation

In this section we establish various mathematical and expository conventions. For
pseudocode conventions, see Chapter A.

In this class the natural numbers is the set N = {0, 1, 2, 3, . . .} of nonnegative
integers. In particular, we will consider 0 to be a natural number.

2This is the subject studied in Math151A/B.

xii INTRODUCTION

Unless stated otherwise, the following convention will be in force throughout the
entire course:

Global Convention 0.0.1. Throughout, m and n range over N = {0, 1, 2, . . . }.

In a mathematical setting, when we write “X := Y ”, we mean that the object X
does not have any meaning or definition yet, and we are defining X to be the same
thing as Y . When we write “X = Y ” we typically mean that the objects X and Y
both already are defined and are the same. In other words, when writing “X := Y ”
we are performing an action (giving meaning to X) and when we write “X = Y ”
we are making an assertion of sameness.

In making definitions, we will often use the word “if” in the form “We say that . . .
if . . .” or “If . . ., then we say that . . .”. When the word “if” is used in this way
in definitions, it has the meaning of “if and only if” (but only in definitions!). For
example:

Definition 0.0.2. Given integer d, n ∈ Z, we say that d divides n if there exists
an integer k ∈ Z such that n = dk.

This convention is followed in accordance with mathematical tradition. Also, we
shall often write “iff” or “⇔” to abbreviate “if and only if.”

Acknowledgements

I am grateful to Julian Ziegler Hunts for his valuable feedback on these notes and
his help with this course in general.

CHAPTER 1

Discrete mathematics and basic algorithms

In this chapter we review various ideas from discrete mathematics which will be
relevant to our implementation and study of algorithms. We also take this chapter
as an opportunity to ease ourselves into a more rigorous understanding and analysis
of algorithms.

1.1. Induction

Our story starts with mathematical induction. Of course, you should already be
familiar with induction from Math 61, however we are choosing to review it for
several reasons:

(1) Induction is one of the main proof methods used in discrete mathematics.
(2) Induction is very algorithmic by nature.
(3) In fact, our understanding of a proof by induction often mirrors our under-

standing of how certain algorithms work. Indeed, induction will usually
be our go-to method for proving the correctness of an algorithm.

Before we get to induction, we need to state a more primitive and more important
property of the natural numbers which we will take for granted:

Well-Ordering Principle 1.1.1. Suppose S ⊆ N is such that S 6= ∅. Then S has
a least element, i.e., there is some a ∈ S such that for all b ∈ S, a ≤ b.

We will not give a proof of 1.1.1. In fact, usually it is something that can’t be
proved as it is typically built in to the definition1 of the natural numbers. Of
course, given our intuition for the natural numbers, there should be no issue with
accepting 1.1.1 as true.

One immediate practical consequence of the Well-Ordering Principle is the so-called
Division Algorithm. It is not an “algorithm” in the same sense that we will later use
this word, although it is typically the first result in the mathematical curriculum
with the moniker algorithm. It also serves as the basis for many other facts in
elementary number theory:

Division Algorithm 1.1.2. Given integers a, b ∈ Z, with b > 0, there exist unique
integers q, r ∈ Z satisfying

(1) a = bq + r
(2) 0 ≤ r < b.

The integer q is called the quotient and the integer r is called the remainder
in the division of a by b.

1See [5] for a careful construction of the natural numbers.

1

2 1. DISCRETE MATHEMATICS AND BASIC ALGORITHMS

Proof sketch. Consider the following set of natural numbers:

S := {a− bq : q ∈ Z and a− bq ≥ 0}

One can show that S 6= ∅ and that r := minS (which exists by 1.1.1) satisfies
0 ≤ r < b. Furthermore, the q ∈ Z for which a−bq = r has the property a = bq+r.
For full technical details, see [2, 1.4.2]. �

Principle of Induction 1.1.3. Suppose P (n) is a property that a natural number
n may or may not have. Suppose that

(1) P (0) holds (this is called the “base case for the induction”), and
(2) for every n ∈ N, if P (0), . . . , P (n) holds, then P (n+1) holds (this is called

the “inductive step”).

Then P (n) holds for every natural number n ∈ N.

Proof. Define the set:

S :=
{
n ∈ N : P (n) is false

}
⊆ N.

Assume towards a contradiction that P (n) does not hold for every natural number
n ∈ N. Thus S 6= ∅. By the Well-Ordering Principle, the set S has a least element
a := minS. Since P (0) holds by assumption, we know that 0 < a (so a−1 ∈ N). By
minimality of a, we also know that P (0), . . . , P (a−1) all hold. Thus by assumption
(2) we conclude that P (a) holds. This is a contradiction and so it must be the case
that P (n) is true for all n ∈ N. �

1.2. Summations

We will often be in a situation where we want to add a bunch of numbers together.
For instance, suppose a1, a2, . . . is a sequence of numbers and we are interested in
the sum

a1 + a2 + · · ·+ an.

This sum may be more compactly written in summation notation as

n∑
k=1

ak or
∑

1≤k≤n

ak.

By definition, if n above is zero (corresponding to the empty sum), then we define
the resulting summation to be 0. The letter k in our summations above is referred
to as a dummy variable or index variable. In general, the specific letter used
to denote the index variable doesn’t matter as long as it is not being used for
something which already has meaning. Thus the following sums are all equal:

n∑
k=1

ak =

n∑
i=1

ai =

n∑
j=1

aj = · · ·

For m,n ∈ Z, the notation
∑n
k=m ak is often called the delimited summation

notation and this notation tells us to include in the sum every number ak for
which m ≤ k ≤ n, e.g.,

10∑
k=5

ak = a5 + a6 + a7 + a8 + a9 + a10.

1.2. SUMMATIONS 3

The notation
∑

1≤k≤n ak is an example of generalized summation notation.
Generalized summation notation allows us to consider summations of the form:∑

P (k)

ak

where P (k) is some relation2 involving the integer k. This notation tells us to
include in the sum every number ak for which P (k) is true. For instance, in∑

1≤k≤n ak, the relation P (k) is “1 ≤ k ≤ n”. Most of the summation formu-
las we will consider are written with delimited notation, however it is often more
convenient to work with the generalized notation. For example, the sum of all odd
natural numbers below 100 can be written in both ways:

49∑
k=0

(2k + 1)2 =
∑

1≤k<100
k odd

k2

In this situation, the delimited form on the left might be easier to evaluate to a final
answer, but the generalized form on the right is easier to understand intuitively. In
some cases, there may be no good delimited form for a summation of interest, for
instance: ∑

0≤p≤20
p prime

p = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19

Another use for the generalized notation is that it makes it easy to shift indices
while avoiding errors:

n∑
k=1

ak =
∑

1≤k≤n

ak =
∑

1≤k+1≤n

ak+1 =
∑

0≤k≤n−1

ak+1 =

n−1∑
k=0

ak+1

and it also is helpful in interchanging the summations in certain “triangular”
double-sums:

n∑
i=1

n∑
j=i

aij =
∑

1≤i≤j≤n

aij =

n∑
j=1

j∑
i=1

aij .

Basic summation operations. In this subsection, we state without proof
some general operations which are allowed with summations. The conventional
wisdom with summations says that summation identities are proved using mathe-
matical induction. This is true, however, as it turns out you can accomplish quite a
lot with summations by judiciously using rules 1.2.1, 1.2.2, 1.2.3, and 1.2.4 below.

Distributive Law 1.2.1. Suppose S(i) and R(j) are relations which may or may
not be true for integers i and j. Then∑

R(i)

ai

∑
S(j)

bj

 =
∑
R(i)

∑
S(j)

aibj

 .

As a special case of 1.2.1 where R(i) is “i = 0” and a0 = a, we get

a
∑
S(j)

bj =
∑
S(j)

abj ,

2At the moment, we are assuming that P (k) is only true for finitely many integers, as we
wish to only consider finite sums.

4 1. DISCRETE MATHEMATICS AND BASIC ALGORITHMS

i.e., summations commute with multiplication by scalars.

Change of Variable 1.2.2. Suppose R(i) is a relation and π : Z → Z is a
bijection. Then ∑

R(i)

ai =
∑

R(π(i))

aπ(i).

As a special case of 1.2.2 where π(i) := i+ 1 for i ∈ Z, we get∑
R(i)

ai =
∑

R(i+1)

ai+1.

Interchanging Order of Summation 1.2.3. Suppose R(i) and S(j) are relations
on integers. Then ∑

R(i)

∑
S(j)

aij =
∑
S(j)

∑
R(i)

aij .

As a special case of 1.2.3, we can derive∑
R(i)

bi +
∑
R(i)

ci =
∑
R(i)

(bi + ci)

i.e., the sum of two summations over the same index set can be combined. The
following shows how to combine sums over different index sets:

Manipulating the Domain 1.2.4. Suppose R(i) and S(i) are relations on inte-
gers. Then ∑

R(i)

ai +
∑
S(i)

ai =
∑

R(i) or S(i)

ai +
∑

R(i) and S(i)

ai.

Common summation formulas.

Geometric Sum 1.2.5. Suppose x 6= 1. Then∑
0≤j≤n

xj =
1− xn+1

1− x
.

Proof. Note that ∑
0≤j≤n

xj = 1 +
∑

1≤j≤n

xj by 1.2.4

= 1 + x
∑

1≤j≤n

xj−1 by 1.2.1

= 1 + x
∑

0≤j≤n−1

xj by 1.2.2

= 1 + x
∑

0≤j≤n

xj − xn by 1.2.4.

Comparing the first term with the last and solving for
∑

0≤j≤n x
j (which involves

dividing by 1−x, which is possible by assumption), yields the desired formula. �

Triangular Numbers 1.2.6. Suppose n ≥ 0. Then∑
0≤j≤n

j =
n(n+ 1)

2
.

1.3. TRIANGULAR NUMBER ALGORITHMS 5

Proof. Note that∑
0≤j≤n

j =
∑

0≤n−j≤n

(n− j) by 1.2.2

=
∑

0≤j≤n

(n− j) by simplifying the domain

=
∑

0≤j≤n

n−
∑

0≤j≤n

j by 1.2.3

= n(n+ 1)−
∑

0≤j≤n

j.

By comparing the first term with the last and solving for
∑

0≤j≤n j, we get the
desired formula. �

Infinite summations. We won’t have too much need for infinite sums (i.e.,
series), but here is the definition (in the delimited notation):

∞∑
k=0

ak := lim
n→∞

n∑
k=0

ak (if this limit exists)

The primary infinite series we will need is the geometric series:

Geometric Series 1.2.7. Suppose |x| < 1. Then

∞∑
k=0

xk =
1

1− x
.

Proof. By 1.2.5 we know that for each n ≥ 0 that

n∑
k=0

xk =
1− xn+1

1− x
.

Since |x| < 1, it follows that limn→∞ xn+1 = 0. Thus

∞∑
k=0

xk = lim
n→∞

1− xn+1

1− x
=

1

1− x
. �

1.3. Triangular number algorithms

In this section we encounter our first algorithms. As a follow-up to the previ-
ous section on summation, here we discuss two algorithms for computing the nth
triangular number:

n∑
j=0

j

Of course, there is nothing inherently difficult with writing an algorithm to com-
pute this summation. However, this simple example will allow us to introduce two
very important themes for this class: proving the correctness of an algorithm, and
analyzing the running time of an algorithm. To compute this summation by hand
(without using 1.2.6), you would need to start with 0. Then continually add num-
bers to your running partial sum until you add the last number n. The number
you end up with is the value you want. The following algorithm does exactly this:

6 1. DISCRETE MATHEMATICS AND BASIC ALGORITHMS

Triangle(n)

1 Sum = 0
2 // Initializes Sum to 0
3 for j = 0 to n
4 Sum = Sum + j
5 // Replaces the current value of Sum with Sum + j
6 // This has the effect of adding j to Sum
7 return Sum

Since this is our first algorithm example, let’s talk through what happens when we
run the algorithm Triangle for n = 2.

(1) We would first call Triangle(2), so n = 2 as we run through the algo-
rithm.

(2) In Line 1 we introduce a variable Sum and it gets assigned the value 0.
Thus n = 2 and Sum = 0.

(3) Line 2 is a comment. It has no official meaning except to provide readers
of the algorithm some commentary as to what is going on.

(4) Lines 3-6 is a for loop. Since n = 2, this means we will run Lines 4-6 (the
body of the for loop) three times: first with j = 0, again with j = 1, and
again with j = 2.

(5) The first time we run Line 4, we have j = 0 and currently Sum = 0. Thus
the expression Sum = Sum +0 means we compute Sum +0 (which equals
0 + 0 = 0), and then reassign Sum to this value. Thus our variable values
are Sum = 0, j = 0, n = 2. Lines 5-6 are comments, so they don’t do
anything.

(6) The second time we run Line 4, we have j = 1 and currently Sum = 0.
Thus we compute Sum + j = 0 + 1 = 1, and reassign Sum to be 1. Now
our variables are Sum = 1, j = 1, n = 2.

(7) The third and final time we run Line 4, we have j = 2 and currently
Sum = 1. Thus we compute Sum + j = 1 + 2 = 3, and reassign Sum to
be 3. Now our variables are Sum = 3, j = 2, n = 2.

(8) Technically, the variable j in the for loop gets increased one last time to
j = 3, and since 3 > 2, the for loop body does not run again and we
proceed to Line 7. (This feature is important for proving the correctness
of the algorithm below).

(9) Now our for loop is finished, so we run Line 7. The pseudocode

return Sum

tells us to output the current value of the variable Sum, which is 3.
(10) To summarize, if we run Triangle(2), the algorithm outputs the value

3. This indeed is the correct value, since
∑2
j=0 j = 0 + 1 + 2 = 3.

Algorithm correctness. At this point, there should be no doubt that Tri-
angle does what it is intended to do. However, we will illustrate how to formally
prove that it is correct. This introduces the important idea of a loop invariant.

Why is Triangle correct? Intuitively it is because for each time we run the for

loop on Lines 3-6 the value of Sum is the partial sum
∑j
i=1 i where j is the index

variable which runs from 0 to n. Thus, after the last iteration of the for loop, when

1.3. TRIANGULAR NUMBER ALGORITHMS 7

j = n, the value of Sum is
∑n
i=0 i, which is the value we are computing. We state

this formally as a loop invariant:

(Loop invariant for Triangle) At the start of each iteration
of the for loop on lines 3-6 the value of the variable Sum is∑max(j−1,0)
i=0 i.

Ultimately we want to know the loop invariant is true once the for loop is finished.
For this we need to prove three things about the loop invariant:

(1) Initializiation: We need to show that the loop invariant is true prior to
the first iteration of the loop. What this means is that at the moment
j = 0 the first time we encounter line 3, but prior to the first time we run
line 4 we need to show that the loop invariant is true. Usually this step
is easy and is analogous to the base case of an induction proof.

(2) Maintenance: We need to show that if the loop invariant is true before
an iteration of the loop, it remains true after the body of the for loop
is run another time and prior to the next iteration. Usually this step is
analogous to the inductive step of an induction proof.

(3) Termination: We need to show that after the loop terminates, the loop
invariant gives us a useful property that helps show that the algorithm is
correct.

We now take these ideas and package them into a proof of the correctness of Tri-
angle:

Theorem 1.3.1. The algorithm Triangle(n) outputs the summation
∑n
j=0 j.

Proof. The algorithm begins by assigning Sum = 0. Next, we will prove that the
above loop invariant is correct.

(Initialization) Just prior to the first iteration of the for loop, the variable j = 0

and Sum = 0 =
∑max(0,−1)
i=0 i.

(Maintenance) Suppose the loop invariant is true after an iteration in which
j = k for some 0 ≤ k < n. Now we have j = k + 1 just prior to running line 4
and since the loop invariant is assumed correct, this means current value of Sum is∑max(j−1,0)
i=0 i =

∑k
i=0 i. Now in line 4 we compute Sum + j =

∑k
i=0 i + (k + 1) =∑k+1

i=0 i, and reassign Sum to this value. Thus Sum =
∑k+1
i=0 i. Just prior to the

next iteration, we have j = k+ 2, and so Sum =
∑k+1
i=0 =

∑max(j−1,0)
i=0 i, as desired.

(Termination) After the for loop terminates, we have j = n + 1 and our loop

invariant is true. Thus in line 7 the value of Sum is
∑max(j−1,0)
i=0 i =

∑n
i=0 i. Since

the program outputs this value, the program is correct. �

Running time analysis. The next thing we are interested in is determining
how long it takes Triangle to run, as a function of n. This will foreshadow
various concepts we will make precise in Chapter 2. Ultimately we will count the
number of primitive computational steps that the computer does whenever we call
Triangle(n), as a function of the input size, which in this case is the number n.
For the pseudocode we’ve used so far, we will use the following rules for counting:

(1) Each line of code can be done in a constant number of steps each time it
is executed.

8 1. DISCRETE MATHEMATICS AND BASIC ALGORITHMS

(2) Since we don’t actually know (or care) what this constant number of steps
is, and it may differ depending on what the instruction is or specifics of
the computer architecture, each line will receive a different constant ci.

(3) for loop tests (i.e., line 3 in Triangle) get executed one additional time
than the body of the for loop gets executed.

(4) Comments are not actual instructions, so they count as zero time.

Applying these rules to the pseudocode of Triangle yields:

Triangle(n)

1 Sum = 0 cost: c1 times: 1
2 // Initializes... cost: 0 times: 1
3 for j = 0 to n cost: c2 times: n+ 2
4 Sum = Sum + j cost: c3 times: n+ 1
5 // Replaces the... cost: 0 times: n+ 1
6 // This has ... cost: 0 times: n+ 1
7 return Sum cost: c4 times: 1

Now to determine the running time of our algorithm, we sum up the costs of each
line times the number of times that line is run. The running time for Triangle(n)
is therefore:

c1 + c2(n+ 2) + c3(n+ 1) + c4 = (c2 + c3)n+ (c1 + 2c2 + c3 + c4)

This expression is a little nasty. The good news is that since we don’t care about
particular constants, we might as well write the running time as

an+ b

where a and b are constants which depend on c1, c2, c3, c4. Moreover, the only thing
we actually care about is that this is a linear function and that the dominating
term in this expression (as n gets very large) is n. In the parlance of Chapter 2 we
summarize our analysis with three statements:

(1) The running time is Θ(n). Informally: the running time is bounded above
and below by some linear function.

(2) The running time is O(n). Informally: the running time is bounded above
by some linear function (in this example, this is implied by (1)).

(3) The running time is Ω(n). Informally: the running time is bounded below
by some linear function (also implied by (1)).

In a nutshell, this is the game we play when it comes to analyzing the running time
of algorithms. We don’t care about constants or lower-order terms, just whether
the running time is linear, quadratic, exponential, etc. We will make all of these
notions precise in our discussion of asymptotics in the next chapter.

A faster triangular number algorithm. Before we end our discussion of
triangular numbers, it would be very remiss to not point out the obvious fact
that 1.2.6 tells us

n∑
j=0

j =
n(n+ 1)

2

which we can use to write a much faster algorithm for triangular numbers:

1.4. COMMON FUNCTIONS 9

TriangleFast(n)

1 Sum = n cost: c1 times: 1
2 // Initializes Sum to n cost: 0 times: 1
3 Sum = Sum · (n+ 1) cost: c2 times: 1
4 // Multiplies Sum by n+ 1 cost: 0 times: 1
5 Sum = Sum/2 cost: c3 times: 1
6 // Divides by 2 cost: 0 times: 1
7 return Sum cost: c4 times: 1

Performing a similar running-time analysis3 we find that the running time is a
constant:

c1 + c2 + c3 + c4

Again, we don’t care what constant this really is, just that it is a constant. We
summarize this analysis by saying the running time of TriangleFast is Θ(1)
(and also O(1) and Ω(1)). The takeaway here is that since any linear function will
eventually dominate a fixed constant, we can conclude that TriangleFast will
run faster (that is, finish in fewer steps) than Triangle for all sufficiently large
values of n.

This also illustrates another common theme for this class: using mathematics (the
formula 1.2.6 in this case), we can often come up with an algorithm which performs
better than the “naive” algorithm we would first think of (TriangleFast vs.
Triangle in this case).

Of course, we could just as easily perform the arithmetic operations done in Tri-
angleFast all at once, resulting in a much shorter program:

TriangleFastV2(n)

1 return n · (n+ 1)/2

This also runs in Θ(1) time and we might as well consider it equally fast as Tri-
angleFast which also runs in Θ(1) time.

1.4. Common functions

In this section we review some common mathematical functions which show up in
computer science and the analysis of algorithms.

Floors and ceilings. We will often be in a situation where we naturally want
to work with natural numbers and integers (i.e., with N and Z). For instance,
our algorithms will deal with integers and the size of inputs to our algorithms
will be expressed in natural numbers (number of elements in an array, number of
bits, number of nodes and edges, etc.). However, in the analysis of algorithms we
perform, we will often need to use techniques from calculus, which requires us to
leave the realm of whole numbers and deal with real numbers (i.e., with R). Thus,
we need a systematic way to convert between real numbers and integers.

3Here we are pretending that integer addition, multiplication and division can all be done in

constant time. As a rule of thumb, for integers with a small number of digits this is generally true

and we will be happy to assume this in this class, although if your integers have a large number
of digits (e.g., a million digits) then you need to consider efficient arithmetic algorithms. This is

a story for another time.

10 1. DISCRETE MATHEMATICS AND BASIC ALGORITHMS

The way we do this is with the floor (greatest integer) operation and ceiling (least
integer) operation. For x ∈ R these are defined as follows:

bxc := the greatest integer less than or equal to x (floor of x)

dxe := the least integer greater than or equal to x (ceiling of x)

For example, b2.5c = 2, b−2.5c = −3, d10e = 10 and d−0.5e = 0. The floor
operation has the effect of always rounding down, and the ceiling operation has the
effect of always rounding up; hence the names floor and ceiling.

From a logical point of view, the floor and ceiling operators can be a little tricky
to master, but they are very useful functions and most programming languages
include them as primitive operations (along with +, ·,−, /) so it is worthwhile to
become familiar with them. One nice feature of these functions is that they serve
as an indicator for when a real number is secretly an integer. For x ∈ R we have:

bxc = x ⇐⇒ x is an integer ⇐⇒ dxe = x.

The following inequalities get used all the time: for x ∈ R,

x− 1 < bxc ≤ x ≤ dxe < x+ 1

Finally, we have the following reflection principles which allow us to convert be-
tween ceilings and floors: for x ∈ R,

b−xc = −dxe and d−xe = −bxc
All of these properties are useful when proving facts about floors and ceilings, as
well as the following ten properties:

Fact 1.4.1. Suppose x ∈ R and k ∈ Z. Then

(1) bxc = k iff k ≤ x < k + 1
(2) bxc = k iff x− 1 < k ≤ x
(3) dxe = k iff k − 1 < x ≤ k
(4) dxe = k iff x ≤ k < x+ 1
(5) bx+ kc = bxc+ k
(6) dx+ ke = dxe+ k
(7) x < k iff bxc < k
(8) k < x iff k < dxe
(9) x ≤ k iff dxe ≤ k

(10) k ≤ x iff k ≤ bxc

The following example shows how to go about proving something with floors:

Fact 1.4.2. For x ∈ R, if x ≥ 0, then⌊√
bxc
⌋

=
⌊√

x
⌋

Proof. Let m =
⌊√
bxc
⌋
. Then by Fact 1.4.1(1) we have

0 ≤ m ≤
√
bxc < m+ 1.

Squaring both sides yields m2 ≤ bxc < (m + 1)2. Next, by Fact 1.4.1(10) and (7)
we have m2 ≤ x < (m + 1)2. Next, we take a square root of this inequality which
yields m ≤

√
x < m+ 1. Finally, by Fact 1.4.1(1) again we get b

√
xc = m. Thus⌊√

bxc
⌋

= m =
⌊√

x
⌋

1.7. EXERCISES 11

and our assertion is proven. �

The modulus operator.

Logarithms and exponential functions.

1.5. Fibonacci numbers

Fibonacci algorithms.

Fibonacci(n)

1 if n == 0 or n == 1
2 return n
3 else
4 return Fibonacci(n− 1) + Fibonacci(n− 2)

FibonacciFast(n)

1 if n ≤ 1
2 return n
3 let F [0 . . n] be a new array
4 // initializes an array with n+ 1 empty entries
5 // F will store all Fibonacci numbers from F0 to Fn
6 F [0] = 0
7 F [1] = 1 // Assign first two Fibonacci numbers to first two array entries
8 for j = 2 to n
9 F [j] = F [j − 1] + F [j − 2]

10 // Use recursive formula for jth Fibonacci number to fill in jth entry
11 return F [n]

1.6. The Euclidean Algorithm

1.7. Exercises

Exercise 1.7.1. Write out the following two sums in full:

(1)
∑

0≤k≤5 ak
(2)

∑
0≤k2≤5 ak2

Exercise 1.7.2. Evaluate the following summation:
n∑
k=1

k2k.

Hint: rewrite as a double sum.

Exercise 1.7.3. Suppose x 6= 1. Prove that
n∑
j=0

jxj =
nxn+1 − (n+ 1)xn+1 + x

(x− 1)2
.

Challenge: do this without using mathematical induction.

Exercise 1.7.4. Suppose m,n ∈ Z are such that m > 0. Prove that⌈ n
m

⌉
=

⌊
n+m− 1

m

⌋

12 1. DISCRETE MATHEMATICS AND BASIC ALGORITHMS

This gives us another reflection principle between floors and ceilings when the
argument is a rational number.

Exercise 1.7.5. Find a necessary and sufficient condition on the real number n > 1
such that

blogb xc = blogb bxcc
holds for all real numbers x ≥ 1.

Exercise 1.7.6. Suppose 0 < α < β and 0 < x are real numbers. Find a closed
formula for the sum of all integer multiples of x in the closed interval [α, β].

Exercise 1.7.7. How many of the numbers 2m, for 0 ≤ m ≤M (where m,M ∈ N),
have leading digit 1 when written in decimal notation? Your answer should be a
closed formula.

CHAPTER 2

Asymptotics

13

CHAPTER 3

Sorting algorithms

15

CHAPTER 4

Divide-and-Conquer

17

CHAPTER 5

Data structures

19

CHAPTER 6

Dynamic programming

21

CHAPTER 7

Greedy algorithms

23

CHAPTER 8

Elementary graph algorithms

25

CHAPTER 9

Path algorithms and network flow

27

CHAPTER 10

The Gale-Shapley algorithm

29

CHAPTER 11

P vs. NP

31

APPENDIX A

Pseudocode conventions and Python

When discussing algorithms in a theoretical context (which is what we do in this
class), it is often beneficial to describe the algorithms in as human-readable a form
as possible. Thus, instead of specifying an algorithm in a language like C, C++,
Java, or Python, we will instead write it in pseudocode. Pseudocode is in many
ways similar to the syntax any number of modern computer languages, except that
it emphasizes clarity and readability and it downplays technical issues of software
engineering, memory management, or specific idiosyncrasies of any one particular
language.

A.1. Pseudocode conventions

In these notes we will follow the same pseudocode conventions as in [1]. The
textbook summarizes the conventions on pages 20-22, although we will elaborate
a little more here. We also present the conventions in the order in which they get
used for our algorithms.

Assignment. A variable in mathematics is typically some symbol which rep-
resents an unknown quantity of some type which we want to solve for. In an
algorithm, a variable is a symbol or name which gets assigned some specific value.
For example, in the algorithm Triangle in Section 1.3 we introduce a variable
Sum which initially is assigned the value 0, but during the course of the algorithm
its value is constantly updated as our index increases. We initially assigned the
variable Sum with the value 0 in Line 1 using the code:

Sum = 0

Here the = symbol is performing the action of assignment. In general, a line of
pseudocode of the form

variable = expression

has the effect of first evaluating whatever expression refers to, then assigning (or
reassigning) the variable to be that value.

As an example, consider the following two lines of pseudocode:

1 number = 1
2 number = number + 1

What does this code do? The first line assigns the variable number the value of 1.
Next the second line first computes the expression number + 1, which is 1 + 1 = 2,
then it (re)assigns this value to the variable number . After these two lines of code
are finished, the value of number is 2, not 1.

33

34 A. PSEUDOCODE CONVENTIONS AND PYTHON

The moral of the story here is that the expression = in pseudocode is not an
assertion of equality (like it is in mathematics). Instead it is an instruction for a
certain action to be performed (the action of assignment).

Comments. In line 2 of the algorithm Triangle in Section 1.3 we had the
pseudocode

1 // Initializes Sum to 0

This is referred to as a comment. A comment in pseudocode (or regular code) is a
non-executable statement which serves no purpose other than to give commentary
to the human reader of the pseudocode what is going on. In the real world, it is
very important to document your code with comments to help explain what your
code does to the next person who needs read and edit your code (which might be
yourself a few years later).

For Loops.

Boolean expressions and equality.

If-then-else.

A.2. Python

Bibliography

1. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein, Introduction to

algorithms, MIT press, 2009.
2. Allen Gehret, Lecture notes for Math61: Introduction to Discrete Structures, 2020, URL:

https://www.math.ucla.edu/~allen/61W20_lecture_notes.pdf. Last revised March 10, 2020.

3. Jon Kleinberg and Eva Tardos, Algorithm design, Pearson Education India, 2006.
4. Donald E. Knuth, The art of computer programming, vol. 1, Pearson Education, 1997.

5. Yiannis Moschovakis, Notes on set theory, second ed., Undergraduate Texts in Mathematics,

Springer, New York, 2006. MR 2192215

35

https://www.math.ucla.edu/~allen/61W20_lecture_notes.pdf

Index

assignment, 31

chain of variable for summations, 4

delimited summation notation, 2

distributive law, 3

Division Algorithm, 1
dummy variable, 2

generalized summation notation, 3
geometric series, 5

geometric sum, 4

index variable, 2
initialization, 7

interchanging order of summation, 4

loop invariant, 7

maintenance, 7

Principle of Induction, 2

pseudocode, 31

quotient, 1

remainder, 1

summation notation, 2

termination, 7

Well-Ordering Principle, 1

37

	List of Figures
	Introduction
	Prerequisites
	Conventions and notation
	Acknowledgements

	Chapter 1. Discrete mathematics and basic algorithms
	1.1. Induction
	1.2. Summations
	1.3. Triangular number algorithms
	1.4. Common functions
	1.5. Fibonacci numbers
	1.6. The Euclidean Algorithm
	1.7. Exercises

	Chapter 2. Asymptotics
	Chapter 3. Sorting algorithms
	Chapter 4. Divide-and-Conquer
	Chapter 5. Data structures
	Chapter 6. Dynamic programming
	Chapter 7. Greedy algorithms
	Chapter 8. Elementary graph algorithms
	Chapter 9. Path algorithms and network flow
	Chapter 10. The Gale-Shapley algorithm
	Chapter 11. P vs. NP
	Appendix A. Pseudocode conventions and Python
	A.1. Pseudocode conventions
	A.2. Python

	Bibliography
	Index

