Equivalent Measure Changes for Jump-Diffusions

Damir Filipović

Swiss Finance Institute
Ecole Polytechnique Fédérale de Lausanne

(joint with Patrick Cheridito and Marc Yor)

Analysis, Stochastics, and Applications
Vienna, 13 July 2010
Outline

1 Problem

2 Result

3 Applications
 CIR Short Rate Model
 Stochastic Volatility Model
1 Problem

2 Result

3 Applications

CIR Short Rate Model
Stochastic Volatility Model
Ingredients

- \(m, d \in \mathbb{N} \)
- State space (open or closed) \(E \subseteq \mathbb{R}^m \)
- Locally bounded measurable mappings
 \[
 b : E \to \mathbb{R}^{m \times 1}, \quad \sigma : E \to \mathbb{R}^{m \times d}
 \]
- Transition kernel \(\nu \) from \(E \) to \(\mathbb{R}^m \) such that
 \[
 x \mapsto \int_{\mathbb{R}^m} \|\xi\| \wedge \|\xi\|^2 \nu(x, d\xi)
 \]
 is locally bounded on \(E \)
Ingredients

- \(m, d \in \mathbb{N} \)
- State space (open or closed) \(E \subseteq \mathbb{R}^m \)
- Locally bounded measurable mappings
 \[b : E \to \mathbb{R}^{m \times 1}, \quad \sigma : E \to \mathbb{R}^{m \times d} \]
- Transition kernel \(\nu \) from \(E \) to \(\mathbb{R}^m \) such that
 \[x \mapsto \int_{\mathbb{R}^m} \|\xi\| \wedge \|\xi\|^2 \nu(x, d\xi) \]
is locally bounded on \(E \)
Ingredients

- \(m, d \in \mathbb{N} \)
- State space (open or closed) \(E \subseteq \mathbb{R}^m \)
- Locally bounded measurable mappings

\[
b : E \to \mathbb{R}^{m \times 1}, \quad \sigma : E \to \mathbb{R}^{m \times d}
\]

- Transition kernel \(\nu \) from \(E \) to \(\mathbb{R}^m \) such that

\[
x \mapsto \int_{\mathbb{R}^m} \| \xi \| \wedge \| \xi \|^2 \nu(x, d\xi)
\]

is locally bounded on \(E \)
Ingredients

- \(m, d \in \mathbb{N} \)
- State space (open or closed) \(E \subseteq \mathbb{R}^m \)
- Locally bounded measurable mappings
 \[
 b : E \to \mathbb{R}^{m \times 1}, \quad \sigma : E \to \mathbb{R}^{m \times d}
 \]
- Transition kernel \(\nu \) from \(E \) to \(\mathbb{R}^m \) such that
 \[
 x \mapsto \int_{\mathbb{R}^m} \|\xi\| \wedge \|\xi\|^2 \nu(x, d\xi)
 \]
 is locally bounded on \(E \).
Special Semimartingale

- Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\)
- Carrying \(d\)-dimensional Brownian motion \(W\), and
- Random measure \(\mu(dt, d\xi)\) associated to the jumps of \(\ldots\)
- \(\ldots\) the special (for simplicity) semimartingale \(X\) with canonical decomposition

\[
X_t = X_0 + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s \\
+ \int_0^t \int_{\mathbb{R}^m} \xi(\mu(ds, d\xi) - \nu(X_s, d\xi)) \, ds
\]
Special Semimartingale

- Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\)
- Carrying \(d\)-dimensional Brownian motion \(W\), and
- Random measure \(\mu(dt, d\xi)\) associated to the jumps of
- \(\ldots\) the special (for simplicity) semimartingale \(X\) with canonical decomposition

\[
X_t = X_0 + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s \\
+ \int_0^t \int_{\mathbb{R}^m} \xi(\mu(ds, d\xi) - \nu(X_s, d\xi) \, ds)
\]
Special Semimartingale

- Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\)
- Carrying \(d\)-dimensional Brownian motion \(W\), and
- Random measure \(\mu(dt, d\xi)\) associated to the jumps of . . .
- . . . the special (for simplicity) semimartingale \(X\) with canonical decomposition

\[
X_t = X_0 + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s \\
+ \int_0^t \int_{\mathbb{R}^m} \xi(\mu(ds, d\xi) - \nu(X_s, d\xi)) \, ds
\]
Special Semimartingale

- Filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$
- Carrying d-dimensional Brownian motion W, and
- Random measure $\mu(dt, d\xi)$ associated to the jumps of . . .
- . . . the special (for simplicity) semimartingale X with canonical decomposition

$$X_t = X_0 + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s$$

$$+ \int_0^t \int_{\mathbb{R}^m} \xi \left(\mu(ds, d\xi) - \nu(X_s, d\xi) ds \right)$$
Density Process Heuristics I

- **Measurable mappings** . . .
 \[\lambda : E \to \mathbb{R}^{d \times 1}, \quad \kappa : E \times \mathbb{R}^{m} \to (0, \infty) \]

- . . . such that the local martingale \(L \) is well defined:

 \[
 L_t = \int_0^t \lambda(X_s)^\top dW_s \\
 + \int_0^t \int_{\mathbb{R}^m} (\kappa(X_s, \xi) - 1) (\mu(ds, d\xi) - \nu(X_s, d\xi) ds)
 \]

- **Assume** its stochastic exponential

 \[
 \mathcal{E}_t(L) = \exp \left(L_t - \frac{1}{2} \int_0^t \|\lambda(X_s)\|^2 ds \\
 + \int_0^t \int_{\mathbb{R}^m} (\log \kappa(X_s, \xi) - \kappa(X_s, \xi) + 1) \mu(ds, d\xi) \right)
 \]

 is a **true martingale**
Density Process Heuristics I

• Measurable mappings . . .

\[\lambda : E \to \mathbb{R}^{d \times 1}, \quad \kappa : E \times \mathbb{R}^m \to (0, \infty) \]

• . . . such that the local martingale \(L \) is well defined:

\[
L_t = \int_0^t \lambda(X_s)^\top dW_s + \int_0^t \int_{\mathbb{R}^m} (\kappa(X_s, \xi) - 1) (\mu(ds, d\xi) - \nu(X_s, d\xi)ds)
\]

• Assume its stochastic exponential

\[
\mathcal{E}_t(L) = \exp \left(L_t - \frac{1}{2} \int_0^t \|\lambda(X_s)\|^2 \, ds \right.
\]
\[
+ \int_0^t \int_{\mathbb{R}^m} \left(\log \kappa(X_s, \xi) - \kappa(X_s, \xi) + 1 \right) \mu(ds, d\xi)
\]

is a true martingale
Density Process Heuristics I

- Measurable mappings . . .
 \[\lambda : E \to \mathbb{R}^{d \times 1}, \quad \kappa : E \times \mathbb{R}^m \to (0, \infty) \]

- . . . such that the local martingale \(L \) is well defined:
 \[
 L_t = \int_0^t \lambda(X_s)^\top dW_s \\
 \quad + \int_0^t \int_{\mathbb{R}^m} (\kappa(X_s, \xi) - 1) \left(\mu(ds, d\xi) - \nu(X_s, d\xi) ds \right)
 \]

- Assume its stochastic exponential
 \[
 \mathcal{E}_t(L) = \exp \left(L_t - \frac{1}{2} \int_0^t \| \lambda(X_s) \|^2 ds \\
 \quad + \int_0^t \int_{\mathbb{R}^m} (\log \kappa(X_s, \xi) - \kappa(X_s, \xi) + 1) \mu(ds, d\xi) \right)
 \]
 is a true martingale
Heuristics II

- **Finite time horizon** T

- Define equivalent probability measure $Q \sim P$ on \mathcal{F}_T by

$$\frac{dQ}{dP} = \mathcal{E}_T(L)$$

- Girsanov’s theorem implies that

$$\tilde{W}_t = W_t - \int_0^t \lambda(X_s) \, ds, \quad t \in [0, T]$$

is a Q-Brownian motion, and the compensator of $\mu(dt, d\xi)$ under Q becomes

$$\tilde{\nu}(X_t, d\xi)dt = \kappa(X_t, \xi)\nu(X_t, d\xi)dt, \quad t \in [0, T].$$
• Finite time horizon T
• Define equivalent probability measure $\mathbb{Q} \sim \mathbb{P}$ on \mathcal{F}_T by

$$
\frac{d\mathbb{Q}}{d\mathbb{P}} = \mathcal{E}_T(L)
$$

• Girsanov’s theorem implies that

$$
\widetilde{W}_t = W_t - \int_0^t \lambda(X_s) \, ds, \quad t \in [0, T]
$$

is a \mathbb{Q}-Brownian motion, and the compensator of $\mu(dt, d\xi)$ under \mathbb{Q} becomes

$$
\widetilde{\nu}(X_t, d\xi) dt = \kappa(X_t, \xi) \nu(X_t, d\xi) dt, \quad t \in [0, T].
$$
Heuristics II

- Finite time horizon T
- Define equivalent probability measure $\mathbb{Q} \sim \mathbb{P}$ on \mathcal{F}_T by
 \[
 \frac{d\mathbb{Q}}{d\mathbb{P}} = \mathcal{E}_T(L)
 \]
- Girsanov’s theorem implies that
 \[
 \tilde{W}_t = W_t - \int_0^t \lambda(X_s) \, ds, \quad t \in [0, T]
 \]
is a \mathbb{Q}-Brownian motion, and the compensator of $\mu(dt, d\xi)$ under \mathbb{Q} becomes
 \[
 \tilde{\nu}(X_t, d\xi) dt = \kappa(X_t, \xi) \nu(X_t, d\xi) dt, \quad t \in [0, T].
 \]
• Canonical decomposition of X under \mathbb{Q} reads

$$X_t = X_0 + \int_0^t \tilde{b}(X_s) \, ds + \int_0^t \sigma(X_s) \, d\tilde{W}_s + \int_0^t \int_{\mathbb{R}^m} \xi(\mu(ds, d\xi) - \tilde{\nu}(X_s, d\xi)) \, ds$$

• With modified drift function defined as

$$\tilde{b}(x) = b(x) + \sigma(x)\lambda(x) + \int_{\mathbb{R}^m} \xi(\kappa(x, \xi) - 1) \nu(x, d\xi).$$
Heuristics III

- Canonical decomposition of X under \mathbb{Q} reads

$$X_t = X_0 + \int_0^t \tilde{b}(X_s) \, ds + \int_0^t \sigma(X_s) \, d\tilde{W}_s + \int_0^t \int_{\mathbb{R}^m} \xi (\mu(ds, d\xi) - \tilde{\nu}(X_s, d\xi)) \, ds$$

- With modified drift function defined as

$$\tilde{b}(x) = b(x) + \sigma(x) \lambda(x) + \int_{\mathbb{R}^m} \xi (\kappa(x, \xi) - 1) \nu(x, d\xi).$$
Heuristics IV

• In other words: infinitesimal generator of X under \mathbb{Q} is

$$
\tilde{A}f(x) = \sum_{i=1}^{m} \tilde{b}_i(x) \frac{\partial f(x)}{\partial x_i} + \frac{1}{2} \sum_{i,j=1}^{m} (\sigma \sigma^\top)_{ij}(x) \frac{\partial^2 f(x)}{\partial x_i \partial x_j} + \int_{\mathbb{R}^m} \left(f(x + \xi) - f(x) - \sum_{i=1}^{m} \frac{\partial f(x)}{\partial x_i} \xi_i \right) \tilde{\nu}(x, d\xi)
$$

• Itô’s lemma implies: for any $f \in C^2_c(E)$,

$$
f(X_t) - f(X_0) - \int_0^t \tilde{A}f(X_s) \, ds
$$

is a \mathbb{Q}-martingale
Heuristics IV

• In other words: infinitesimal generator of X under \mathbb{Q} is

$$\tilde{A}f(x) = \sum_{i=1}^{m} \tilde{b}_i(x) \frac{\partial f(x)}{\partial x_i} + \frac{1}{2} \sum_{i,j=1}^{m} (\sigma \sigma^\top)_{ij}(x) \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

$$+ \int_{\mathbb{R}^m} \left(f(x + \xi) - f(x) - \sum_{i=1}^{m} \frac{\partial f(x)}{\partial x_i} \xi_i \right) \tilde{\nu}(x, d\xi)$$

• Itô’s lemma implies: for any $f \in C_c^2(E)$,

$$f(X_t) - f(X_0) - \int_0^t \tilde{A}f(X_s) \, ds$$

is a \mathbb{Q}-martingale
• QUESTION: when is $\mathcal{E}(L)$ a true martingale??

• EQUIVALENTLY: when is

$$\mathbb{E}[\mathcal{E}_T(L)] = 1$$

• Note: this does not depend on the filtration, but only on the law of X!
QUESTION: when is $\mathcal{E}(L)$ a true martingale??

EQUIVALENTLY: when is

$$\mathbb{E}[\mathcal{E}_T(L)] = 1$$

Note: this does not depend on the filtration, but only on the law of X!
QUESTION: when is $\mathcal{E}(L)$ a true martingale??

EQUIVALENTLY: when is

$$\mathbb{E}[\mathcal{E}_T(L)] = 1 \quad ?$$

Note: this does not depend on the filtration, but only on the law of X!
Outline

1 Problem

2 Result

3 Applications
 CIR Short Rate Model
 Stochastic Volatility Model
Martingale Problem

- Canonical basis: $\Omega = \text{space of càdlàg paths in } E$,

$$X_t(\omega) = \omega(t), \quad \mathcal{F}_t = \mathcal{F}^X_t$$

Definition 2.1.

A probability measure Q on (Ω, \mathcal{F}^X) is a solution of the martingale problem for \tilde{A} if for all $f \in C_c^2(E)$,

$$f(X_t) - f(X_0) - \int_0^t \tilde{A}f(X_s) \, ds$$

is a Q-martingale. The martingale problem for \tilde{A} is well-posed if for every probability distribution η on E there exists a unique solution Q with $Q \circ X_0^{-1} = \eta$.
Martingale Problem

- Canonical basis: \(\Omega = \text{space of càdlàg paths in } E \),
 \[
 X_t(\omega) = \omega(t), \quad \mathcal{F}_t = \mathcal{F}_t^X
 \]

Definition 2.1.
A probability measure \(\widetilde{Q} \) on \((\Omega, \mathcal{F}^X) \) is a solution of the martingale problem for \(\tilde{A} \) if for all \(f \in C^2_c(E) \),

\[
f(X_t) - f(X_0) - \int_0^t \tilde{A}f(X_s) \, ds
\]

is a \(\widetilde{Q} \)-martingale. The martingale problem for \(\tilde{A} \) is well-posed if for every probability distribution \(\eta \) on \(E \) there exists a unique solution \(\widetilde{Q} \) with \(\widetilde{Q} \circ X_0^{-1} = \eta \).
Main Result

Theorem 2.2.
Assume that $x \mapsto \lambda(x)$ and

$$x \mapsto \int_{\mathbb{R}^m} (\kappa(x, \xi) \log \kappa(x, \xi) - \kappa(x, \xi) + 1) \nu(x, d\xi)$$

are locally bounded on E, and that the martingale problem for \tilde{A} is well-posed. Then $\mathcal{E}(L)$ is a true martingale.
Proof I: Lépingle and Mémin [3]

- Localizing sequence of bounded stopping times $S_1 \leq S_2 \leq \cdots \uparrow \infty$ such that

\[
\Lambda_n := \frac{1}{2} \int_0^{S_n} \|\lambda(X_s)\|^2 \, ds \\
+ \int_0^{S_n} \int_{\mathbb{R}^d} (\kappa(X_s, \xi) \log \kappa(X_s, \xi) - \kappa(X_s, \xi) + 1) \nu(X_s, d\xi) \, ds
\]

is uniformly bounded

- Lépingle and Mémin [3, Théorème IV.3]:

\[
\mathcal{E}_{t \wedge S_n}(L) \text{ is a martingale}
\]
Proof I: Lépingle and Mémin [3]

- Localizing sequence of bounded stopping times \(S_1 \leq S_2 \leq \cdots \uparrow \infty \) such that

\[
\Lambda_n := \frac{1}{2} \int_0^{S_n} \| \lambda(X_s) \|^2 \, ds \\
+ \int_0^{S_n} \int_{\mathbb{R}^d} (\kappa(X_s, \xi) \log \kappa(X_s, \xi) - \kappa(X_s, \xi) + 1) \nu(X_s, d\xi) \, ds
\]

is uniformly bounded

- Lépingle and Mémin [3, Théorème IV.3]:

\[
\mathcal{E}_{t \wedge S_n}(L) \text{ is a martingale}
\]
Proof II: Stopped Martingale Problem

- Girsanov’s theorem implies that for any $f \in C^2_c(E)$:

$$f(X_{t\wedge S_n}^S) - f(X_0) - \int_0^{t\wedge S_n} \tilde{A}f(X_{s\wedge S_n}^S) \, ds$$

is a $\mathcal{E}_{S_n}(L) \cdot \mathbb{P}$-martingale

- Uniqueness of the stopped martingale problem (Ethier and Kurtz [2, Theorem 4.6.1]) implies that

$$\mathcal{E}_{S_n}(L) \cdot \mathbb{P} = \mathbb{Q} \quad \text{on } \mathcal{F}_{S_n}^X$$

where \mathbb{Q} is the solution of the martingale problem for \tilde{A} with $\mathbb{Q} = \mathbb{P}$ on \mathcal{F}_0^X
Proof II: Stopped Martingale Problem

- Girsanov’s theorem implies that for any \(f \in \mathcal{C}_c^2(E) \):
 \[
 f(X_{t \wedge S_n}) - f(X_0) - \int_0^{t \wedge S_n} \tilde{A} f(X_{s \wedge S_n}) \, ds
 \]
 is a \(\mathcal{E}_{S_n}(L) \cdot \mathbb{P} \)-martingale

- Uniqueness of the stopped martingale problem (Ethier and Kurtz [2, Theorem 4.6.1]) implies that
 \[
 \mathcal{E}_{S_n}(L) \cdot \mathbb{P} = \mathbb{Q} \quad \text{on } \mathcal{F}_{S_n}^X
 \]
 where \(\mathbb{Q} \) is the solution of the martingale problem for \(\tilde{A} \) with \(\mathbb{Q} = \mathbb{P} \) on \(\mathcal{F}_0^X \)
Proof III: Limit

- Monotone convergence theorem, and since \(\{ T < S_n \} \in \mathcal{F}^X_{T \wedge S_n} \):

\[
1 = \lim_{n \to \infty} Q[T < S_n] \\
= \lim_{n \to \infty} \mathbb{E}_P[\mathcal{E}_{T \wedge S_n}(L) 1_{\{T < S_n\}}] \\
= \lim_{n \to \infty} \mathbb{E}_P[\mathcal{E}_T(L) 1_{\{T < S_n\}}] \\
= \mathbb{E}_P[\mathcal{E}_T(L)]
\]
Equivalent Measure Changes for Jump-Diffusions

D. Filipović

Problem

Result

Applications

CIR Short Rate Model
Stochastic Volatility Model

Outline

1 Problem

2 Result

3 Applications

CIR Short Rate Model
Stochastic Volatility Model
Equivalent Measure Changes for Jump-Diffusions

D. Filipović

Outline

1 Problem

2 Result

3 Applications
 CIR Short Rate Model
 Stochastic Volatility Model
Cox–Ingersoll–Ross (CIR) Model

- Model for short rate under \mathbb{P}: square root ("CIR") process
 \[dX_t = (b + \beta X_t) \, dt + \sigma \sqrt{X_t} \, dW_t \]
- State space $E = (0, \infty)$
- Feller condition: 0 not attained iff $b \geq \sigma^2/2$
Cox–Ingersoll–Ross (CIR) Model

- Model for short rate under \(\mathbb{P} \): square root ("CIR") process
 \[
 dX_t = (b + \beta X_t) \, dt + \sigma \sqrt{X_t} \, dW_t
 \]
- State space \(E = (0, \infty) \)
- Feller condition: 0 not attained iff \(b \geq \sigma^2 / 2 \)
Cox–Ingersoll–Ross (CIR) Model

- Model for short rate under \mathbb{P}: square root ("CIR") process
 \[
 dX_t = (b + \beta X_t) \, dt + \sigma \sqrt{X_t} \, dW_t
 \]
- State space $E = (0, \infty)$
- Feller condition: 0 not attained iff $b \geq \sigma^2 / 2$
Market Price of Risk Specification

- Aim: MPR specification that preserves affine structure:

\[
dX_t = \left(b^Q + \beta^Q X_t \right) dt + \sigma \sqrt{X_t} \left(dW_t + \frac{\ell + \lambda X_t}{\sigma \sqrt{X_t}} \right)
\]

- MPR parameters:

\[
\ell = b - b^Q, \quad \lambda = \beta - \beta^Q
\]

- Formal density process \(\mathcal{E} \left(-\frac{\ell + \lambda X}{\sigma \sqrt{X}} \right) \bullet W \)

- Novikov condition not satisfied, since

\[
\mathbb{E} \left[e^{\frac{1}{2} \int_0^T \frac{1}{X_t} \, dt} \right] = \infty, \quad \mathbb{E} \left[e^{\frac{1}{2} \int_0^T X_t \, dt} \right] = \infty
\]

for \(T \) large enough in general
Market Price of Risk Specification

- Aim: MPR specification that preserves affine structure:

\[
dX_t = (b^Q + \beta^Q X_t) \, dt + \sigma \sqrt{X_t} \left(dW_t + \frac{\ell + \lambda X_t}{\sigma \sqrt{X_t}} \right)
\]

- MPR parameters:

\[
\ell = b - b^Q, \quad \lambda = \beta - \beta^Q
\]

- Formal density process \(E \left(-\frac{\ell + \lambda X}{\sigma \sqrt{X}} \right) \cdot W \)

- Novikov condition not satisfied, since

\[
E \left[e^{\frac{1}{2} \int_0^T X_t dt} \right] = \infty, \quad E \left[e^{\frac{1}{2} \int_0^T X_t dt} \right] = \infty
\]

for \(T \) large enough in general
Market Price of Risk Specification

- **Aim**: MPR specification that preserves affine structure:

\[dX_t = (b^Q + \beta^Q X_t) \, dt + \sigma \sqrt{X_t} \left(dW_t + \frac{\ell + \lambda X_t}{\sigma \sqrt{X_t}} \right) = dW_t^Q \]

- **MPR parameters**:

\[\ell = b - b^Q, \quad \lambda = \beta - \beta^Q \]

- **Formal density process** \[\mathcal{E} \left(-\frac{\ell + \lambda X}{\sigma \sqrt{X}} \right) \bullet W \]

- **Novikov condition not satisfied, since**

\[\mathbb{E} \left[e^{\frac{1}{2} \int_0^T \frac{1}{X_t} \, dt} \right] = \infty, \quad \mathbb{E} \left[e^{\frac{1}{2} \int_0^T X_t \, dt} \right] = \infty \]

for \(T \) large enough in general
Market Price of Risk Specification

• Aim: MPR specification that preserves affine structure:

\[dX_t = (b^Q + \beta^Q X_t) \, dt + \sigma \sqrt{X_t} \left(dW_t + \frac{\ell + \lambda X_t}{\sigma \sqrt{X_t}} \right) = dW_t^Q \]

• MPR parameters:

\[\ell = b - b^Q, \quad \lambda = \beta - \beta^Q \]

• Formal density process \(\mathcal{E} \left(-\frac{\ell + \lambda X}{\sigma \sqrt{X}} \right) \bullet W \)

• Novikov condition not satisfied, since

\[\mathbb{E} \left[e^{\frac{1}{2} \int_0^T \frac{1}{X_t} \, dt} \right] = \infty, \quad \mathbb{E} \left[e^{\frac{1}{2} \int_0^T X_t \, dt} \right] = \infty \]

for \(T \) large enough in general
CFY Condition

- Assume that Feller condition is also satisfied for b^Q:
 \[b^Q \geq \sigma^2/2 \]

- Then the martingale problem for
 \[\tilde{A}f(x) = \left(b^Q + \beta^Q x \right) f'(x) + \frac{1}{2} \sigma^2 x f''(x) \]

 is well-posed in $E = (0, \infty)$

- CFY Theorem implies that $\mathcal{E} \left(-\frac{\ell + \lambda X}{\sigma \sqrt{X}} \bullet W \right)$ is a true martingale
CFY Condition

- Assume that Feller condition is also satisfied for b^Q:
 \[b^Q \geq \sigma^2 / 2 \]

- Then the martingale problem for
 \[
 \tilde{A}f(x) = \left(b^Q + \beta^Q x \right) f'(x) + \frac{1}{2} \sigma^2 x f''(x)
 \]
 is well-posed in $E = (0, \infty)$

- CFY Theorem implies that $\mathcal{E} \left(-\frac{\ell + \lambda x}{\sigma \sqrt{x}} \right) \mathcal{W}$ is a true martingale
CFY Condition

• Assume that Feller condition is also satisfied for b^Q:

$$b^Q \geq \sigma^2 / 2$$

• Then the martingale problem for

$$\tilde{A}f(x) = \left(b^Q + \beta^Q x \right) f'(x) + \frac{1}{2} \sigma^2 xf''(x)$$

is well-posed in $E = (0, \infty)$

• CFY Theorem implies that $\mathcal{E} \left(-\frac{\ell + \lambda X}{\sigma \sqrt{X}} \right) W$ is a true martingale
Outline

1 Problem

2 Result

3 Applications
 CIR Short Rate Model
 Stochastic Volatility Model
Stochastic Volatility

- Model for volatility: GARCH diffusion

\[dX_t = (b + \beta X_t) \, dt + X_t \, dW_t^1 \]

- State space \(E = (0, \infty) \); that is, \(b \geq 0 \)

- Model for discounted S&P 500 index process:

\[\frac{dS_t}{S_t} = X_t \left(\rho \, dW_t^1 + \sqrt{1 - \rho^2} \, dW_t^2 \right) \]

- Leverage effect: non-positive correlation \(\rho \leq 0 \) between

\[d[X, \log S]_t = X_t^2 \rho \leq 0 \]
Stochastic Volatility

- Model for volatility: GARCH diffusion
 \[dX_t = (b + \beta X_t) \, dt + X_t \, dW^1_t \]

- State space \(E = (0, \infty) \); that is, \(b \geq 0 \)

- Model for discounted S&P 500 index process:
 \[\frac{dS_t}{S_t} = X_t \left(\rho \, dW^1_t + \sqrt{1 - \rho^2} \, dW^2_t \right) \]

- Leverage effect: non-positive correlation \(\rho \leq 0 \) between
 \[d[X, \log S]_t = X_t^2 \rho \leq 0 \]
Stochastic Volatility

- Model for volatility: GARCH diffusion
 \[dX_t = (b + \beta X_t) \, dt + X_t \, dW^1_t \]

- State space \(E = (0, \infty) \); that is, \(b \geq 0 \)

- Model for discounted S&P 500 index process:
 \[\frac{dS_t}{S_t} = X_t \left(\rho \, dW^1_t + \sqrt{1 - \rho^2} \, dW^2_t \right) \]

- Leverage effect: non-positive correlation \(\rho \leq 0 \) between
 \[d[X, \log S]_t = X_t^2 \rho \leq 0 \]
Stochastic Volatility

- Model for volatility: GARCH diffusion
 \[dX_t = (b + \beta X_t) \, dt + X_t \, dW^1_t \]

- State space \(E = (0, \infty) \); that is, \(b \geq 0 \)

- Model for discounted S&P 500 index process:
 \[\frac{dS_t}{S_t} = X_t \left(\rho \, dW^1_t + \sqrt{1 - \rho^2} \, dW^2_t \right) \]

- Leverage effect: non-positive correlation \(\rho \leq 0 \) between
 \[d[X, \log S]_t = X_t^2 \rho \leq 0 \]
Martingality of S

- Question: is S a true martingale? (vital for pricing!)
- Write S as stochastic exponential

$$S_t = S_0 \mathcal{E}_t \left(\lambda(X)^T \cdot W \right)$$

with

$$\lambda(x) = x \left(\frac{\rho}{\sqrt{1 - \rho^2}} \right)$$

- Novikov condition fails:

$$\mathbb{E} \left[e^{\frac{1}{2} \int_0^T X_t^2 dt} \right] = \infty$$
Martingality of S

- **Question:** is S a true martingale? (vital for pricing!)
- **Write** S as stochastic exponential

$$S_t = S_0 \mathcal{E}_t \left(\lambda(X)^\top \cdot W \right)$$

with

$$\lambda(x) = x \left(\frac{\rho}{\sqrt{1 - \rho^2}} \right)$$

- **Novikov condition fails:**

$$\mathbb{E} \left[e^{\frac{1}{2} \int_0^T X_t^2 \, dt} \right] = \infty$$
• Question: is S a true martingale? (vital for pricing!)
• Write S as stochastic exponential

$$S_t = S_0 \mathcal{E}_t \left(\lambda(X)^\top \cdot W \right)$$

with

$$\lambda(x) = x \left(\frac{\rho}{\sqrt{1 - \rho^2}} \right)$$

• Novikov condition fails:

$$\mathbb{E} \left[e^{\frac{1}{2} \int_0^T X_t^2 \, dt} \right] = \infty$$
CFY Condition

- Apply auxiliary change of measure with density process

\[\frac{S_t}{S_0} = \mathcal{E}_t \left(\lambda(X)^\top \cdot W \right) \]

- Formally, the generator of \(X \) becomes

\[\tilde{A}f(x) = \left(b + \beta x + \rho x^2 \right) f'(x) + \frac{1}{2} xf''(x) \]

- Inspection shows: the martingale problem for \(\tilde{A} \) is well-posed in \(E = (0, \infty) \)

- CFY Theorem implies that \(S \) is a true martingale
CFY Condition

- Apply auxiliary change of measure with density process
 \[\frac{S_t}{S_0} = \mathcal{E}_t \left(\lambda(X)^\top \cdot W \right) \]

- Formally, the generator of X becomes
 \[\tilde{A}f(x) = \left(b + \beta x + \rho x^2 \right) f'(x) + \frac{1}{2} x f''(x) \]

- Inspection shows: the martingale problem for \tilde{A} is well-posed in $E = (0, \infty)$

- CFY Theorem implies that S is a true martingale
CFY Condition

- Apply auxiliary change of measure with density process
 \[\frac{S_t}{S_0} = \mathcal{E}_t \left(\lambda(X) \cdot W \right) \]

- Formally, the generator of \(X \) becomes
 \[\tilde{A}f(x) = \left(b + \beta x + \rho x^2 \right) f'(x) + \frac{1}{2} xf''(x) \]

- Inspection shows: the martingale problem for \(\tilde{A} \) is well-posed in \(E = (0, \infty) \)

- CFY Theorem implies that \(S \) is a true martingale
CFY Condition

- Apply auxiliary change of measure with density process

\[\frac{S_t}{S_0} = \mathcal{E}_t \left(\lambda(X)^\top \cdot W \right) \]

- Formally, the generator of \(X \) becomes

\[\tilde{A}f(x) = \left(b + \beta x + \rho x^2 \right) f'(x) + \frac{1}{2} xf''(x) \]

- Inspection shows: the martingale problem for \(\tilde{A} \) is well-posed in \(E = (0, \infty) \)

- CFY Theorem implies that \(S \) is a true martingale
P. Cheridito, D. Filipović, and M. Yor.
Equivalent and absolutely continuous measure changes for jump-diffusion processes.

S. N. Ethier and T. G. Kurtz.
Markov processes.
Characterization and convergence.

D. Lépingle and J. Mémin.
Sur l’intégrabilité uniforme des martingales exponentielles.
References

P. Cheridito, D. Filipović, and M. Yor.
Equivalent and absolutely continuous measure changes for jump-diffusion processes.

S. N. Ethier and T. G. Kurtz.
Markov processes.
Characterization and convergence.

D. Lépingle and J. Mémin.
Sur l’intégrabilité uniforme des martingales exponentielles.
P. Cheridito, D. Filipović, and M. Yor.
Equivalent and absolutely continuous measure changes for jump-diffusion processes.

S. N. Ethier and T. G. Kurtz.
Markov processes.
Characterization and convergence.

D. Lépingle and J. Mémin.
Sur l’intégrabilité uniforme des martingales exponentielles.