Absolutely Continuous Compensators

Conference in Honor of Walter Schachermayer
Philip Protter
ORIE, Cornell

July 16, 2010

Based on work with Svante Janson and Sokhna M’Baye
Reduced Form Models

• Let τ be the random time an event of interest happens
• We do not know the distribution of τ
• We have a filtration \mathbb{F} of observable events, and a probability measure P
• We let $N_t = 1 \{t \geq \tau\}$ and let $A = (A_t)_{t \geq 0}$ be its compensator; that is
 \[N_t - A_t = \text{a martingale}. \]
• A common assumption is that A is of the form $A_t = \int_0^t \lambda_s ds$
• This depends on both \mathbb{F} and P
Examples from the Literature

- Eduardo Schwartz and Walter Torous, 1989: τ represents the time of prepayment of a mortgage
- Stanton, 1995: Extension of Schwartz and Torous (still mortgage prepayments)
- MHA Davis and Lischka, 1999: τ is the time of default of a convertible bond
- Hughston and Turnbull, 2001: Basic formal construction of the reduced form approach to Credit Risk
- Bakshi and Madan, 2002: Used in Catastrophe Loss models
- Ciochetti et al, 2003: τ is the default time of a commercial mortgage
Examples from the Literature, Continued

- Dassios and Jang, 2003: τ is the time of a catastrophic event, in reinsurance models
- Leif Andersen and Buffum, 2004: τ is the default time in convertible bond models
- Jarrow, Lando, and Yu, 2005: τ is the default time in commercial paper models
- Christopoulos, Jarrow and Yildirim, 2008: τ is the time a commercial mortgage loan is delinquent
- Chava and Jarrow, 2008: τ is the default time of a Loan Commitment, or Credit Line
- Jarrow, 2010: Catastrophe bonds
Structural Versus Reduced Form Models in Credit Risk (Merton, 1973)

- We begin with a filtered space $(\Omega, \mathcal{H}, P, \mathbb{H})$ where $\mathbb{H} = (\mathcal{H}_t)_{t \geq 0}$
- Let X be a Markov process on $(\Omega, \mathcal{H}, P, \mathbb{H})$ given by
 \[
 dX_t = 1 + \int_0^t \sigma(s, X_s) dB_s + \int_0^t \mu(s, X_s) ds
 \]
- In a structural model we assume we observe $G = (\sigma(X_s; 0 \leq s \leq t))_{t \geq 0}$ and so $G \subset \mathbb{H}$
- Default occurs when the firm’s value X crosses below a given threshold level process $L = (L_t)_{t \geq 0}$
- If L is constant, then the default time is $\tau = \inf\{t > 0 : X_t \leq L\}$, and τ is a predictable time for G and \mathbb{H}
Two objections to the Structural Model Approach

- It is assumed that the coefficients σ and μ in the diffusion equation are knowable.
- It is also assumed the level crossing that leads to default is knowable.
- The default time is a predictable stopping time.
The Reduced Form Approach (Jarrow, Turnbull, Duffie, Lando, Jeanblanc...)

- We assume that a stopping time τ is given, which is a default time
- We assume that τ is a totally inaccessible time
- This means that $M_t = 1\{t \geq \tau\} - A_t = \text{a martingale}$
- A is adapted, continuous, and non decreasing
- Usually it is **implicitly assumed** that A is of the form
 \[
 A_t = \int_0^t \lambda_s ds,
 \]
 where λ is the instantaneous likelihood of the arrival of τ
The Hybrid Approach (Giesecke, Goldberg, ...)

- We assume the structural approach, but instead of a level crossing time as a default time, we replace it with a random curve.
- This can make the stopping time totally inaccessible, and of the form found in the reduced form approach.
- Giesecke has also pointed out that the increasing process A need no longer have absolutely continuous paths.
The Filtration Shrinkage Approach (Çetin, Jarrow, Protter, Yildirim)

- τ can be the time of default for the structural approach
- One does not know the structural approach, so one models this by shrinking the filtration to the presumed level of observable events
- The result is that τ becomes totally inaccessible, and one recovers the reduced form approach
- **Advantage:** This relates the structural and reduced form approaches which facilitate empirical methods to estimate τ
- Motivates studying compensators of stopping times and their behavior under filtration shrinkage
When does the compensator A have absolutely continuous paths?

- **Ethier-Kurtz Criterion:** $A_0 = 0$ and suppose for $s \leq t$

 $$E\{A_t - A_s \mid \mathcal{G}_s\} \leq K(t - s)$$

 then A is of the form $A_t = \int_0^t \lambda_s ds$

- **Yan Zeng, PhD Thesis, Cornell, 2006:** There exists an increasing process D_t with $dD_t \ll dt$ a.s. and

 $$E\{A_t - A_s \mid \mathcal{G}_s\} \leq E\{D_t - D_s \mid \mathcal{G}_t\},$$

 then A is of the form $A_t = \int_0^t \lambda_s ds$
Shrinkage Result; M. Jacobsen, 2005

- Suppose $1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds$ is a martingale in \mathcal{H}
- Suppose also τ is a stopping time in \mathcal{G} where $\mathcal{G} \subset \mathcal{H}$. Then
 \[
 1_{\{t \geq \tau\}} - \int_0^t \circ \lambda_s ds
 \]
 is a martingale in \mathcal{G}

where $\circ \lambda$ denotes the optional projection of the process λ onto the filtration \mathcal{G}
Is there a general condition such that all stopping times have absolutely continuous compensators?

- Let X be a strong Markov process; suppose it also a Hunt process.
- (Çinlar and Jacod, 1981) On a space $(\Omega, \mathcal{F}, \mathbb{F}, P^x)$, up to a change of time and space, if X is a semimartingale we have the representation

$$X_t = X_0 + \int_0^t b(X_s)ds + \int_0^t c(X_s)dW_s$$

$$+ \int_0^t \int_{\mathbb{R}} k(X_s-z)1_{\{|k(X_s-z)| \leq 1\}}[n(ds, dz) - ds\nu(dz)]$$

$$+ \int_0^t \int_{\mathbb{R}} k(X_s-z)1_{\{|k(X_s-z)| > 1\}} n(ds, dz)$$
Lévy system of a Hunt process

- For a Hunt process semimartingale X with measure P^{μ} a Lévy system (K, H) where K is a kernel on \mathbb{R} and H is a continuous additive functional of X, satisfies the following relationship:

$$E^{\mu} \left(\sum_{0<s\leq t} f(X_{s^-}, X_s) 1 \{ X_{s^-} \neq X_s \} \right)$$

$$= E^{\mu} \left(\int_{0}^{t} dH_s \int_{\mathbb{R}} K(X_{s^-}, dy) f(X_s, y) \right)$$

- For X a strong Markov process as in the Činlar-Jacod theorem, we can take the continuous additive functional H to be $H_t = t$
In a “natural” Markovian space, all compensators of stopping times have absolutely continuous paths

Theorem: Let \mathbb{F} be the natural (completed) filtration of a Hunt process X on a space $(\Omega, \mathcal{F}, P^{\mu})$ and let (K, H) be a Lévy system for X. If $dH_t \ll dt$ then for any totally inaccessible stopping time τ the compensator of τ has absolutely continuous paths a.s. That is, there exists an adapted process λ such that

$$1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds$$

is an \mathbb{F} martingale. (1)

Moreover if dH_t is not equivalent to dt, then there exists a stopping time ν such that (1) does not hold.
Jumping Filtrations

- Jacod and Skorohod define a **jumping filtration** \mathbb{F} to be a filtration such that there exists a sequence of stopping times $(T_n)_{n=0,1,...}$ increasing to ∞ a.s. with $T_0 = 0$ and such that for all $n \in \mathbb{N}$, $t > 0$, the σ-fields \mathcal{F}_t and \mathcal{F}_{T_n} coincide on \{ $T_n \leq t < T_{n+1}$ \}
Jumping Filtrations

- Jacod and Skorohod define a jumping filtration \mathbb{F} to be a filtration such that there exists a sequence of stopping times $(T_n)_{n=0,1,\ldots}$ increasing to ∞ a.s. with $T_0 = 0$ and such that for all $n \in \mathbb{N}$, $t > 0$, the σ-fields \mathcal{F}_t and \mathcal{F}_{T_n} coincide on $\{T_n \leq t < T_{n+1}\}$

- **Theorem:** Let $N = (N_t)_{t \geq 0}$ be a point process without explosions that generates a quasi-left continuous jumping filtration, and suppose there exists a process $(\lambda_s)_{s \geq 0}$ such that

$$N_t - \int_0^t \lambda_s \, ds = \text{a martingale.} \quad (2)$$

Let $\mathbb{D} = (\mathcal{D}_t)_{t \geq 0}$ be the (automatically right continuous) filtration generated by N and completed in the usual way. Then for any \mathbb{D} totally inaccessible stopping time R we have that the compensator of $1_{\{t \geq R\}}$ has absolutely continuous paths, a.s.
Increasing Processes

- **Theorem:** Z is an increasing process; suppose there exists λ such that

$$Z_t - \int_0^t \lambda_s ds = a \text{ martingale}$$
Increasing Processes

Theorem: Z is an increasing process; suppose there exists λ such that

$$Z_t - \int_0^t \lambda_s ds = \text{a martingale}$$

Let R be a stopping time such that $P(\Delta Z_R > 0 \cap \{R < \infty\}) = P(R < \infty)$; then R too has an absolutely continuous compensator; that is, there exists a process μ such that

$$1_{\{t \geq R\}} - \int_0^t \mu_s ds = \text{a martingale}$$
Increasing Processes

• **Theorem:** \(Z \) is an increasing process; suppose there exists \(\lambda \) such that

\[
Z_t - \int_0^t \lambda_s ds = \text{a martingale}
\]

• Let \(R \) be a stopping time such that

\[
P(\Delta Z_R > 0 \cap \{ R < \infty \}) = P(R < \infty) \] ; then \(R \) too has an absolutely continuous compensator; that is, there exists a process \(\mu \) such that

\[
1\{t \geq R\} - \int_0^t \mu_s ds = \text{a martingale}
\]

• **Consequence:** If \(N \) is a Poisson process with parameter \(\lambda \), and \(R \) is a totally inaccessible stopping time on the minimal space generated by \(N \), then the compensator of \(R \) has absolutely continuous paths.
Filtration Shrinkage and Compensators

- **Dellacherie’s Theorem:** Let R be a nonnegative random variable with $P(R = 0) = 0$, $P(R > t) > 0$ for each $t > 0$. Let $\mathcal{F}_t = \sigma(t \land R)$. Let F denote the law of R. Then the compensator $A = (A_t)_{t \geq 0}$ of the process $1_{\{R \geq t\}}$ is given by

$$A_t = \int_0^t \frac{1}{1 - F(u-)} dF(u).$$

If F is continuous, then A is continuous, R is totally inaccessible, and $A_t = -\ln(1 - F(R \land t))$.
Filtration Shrinkage and Compensators

- **Dellacherie’s Theorem:** Let \(R \) be a nonnegative random variable with \(P(R = 0) = 0, P(R > t) > 0 \) for each \(t > 0 \). Let \(\mathcal{F}_t = \sigma(t \wedge R) \). Let \(F \) denote the law of \(R \). Then the compensator \(A = (A_t)_{t \geq 0} \) of the process \(1_{\{R \geq t\}} \) is given by

\[
A_t = \int_0^t \frac{1}{1 - F(u-)} dF(u).
\]

If \(F \) is continuous, then \(A \) is continuous, \(R \) is totally inaccessible, and \(A_t = -\ln(1 - F(R \wedge t)) \).

- We know by Jacobsen’s theorem, that once a compensator is absolutely continuous, it still is in any smaller filtration.
• It is *a priori* possible that a stopping time R has a singular compensator in a filtration \mathcal{F}, but an absolutely continuous compensator in a smaller filtration
• It is a priori possible that a stopping time R has a singular compensator in a filtration \mathcal{H}, but an absolutely continuous compensator in a smaller filtration

• **Conjecture:** If a stopping time R has an absolutely continuous law, then it has an absolutely continuous compensator in any filtration rendering it totally inaccessible.
• It is *a priori* possible that a stopping time R has a singular compensator in a filtration \mathbb{H}, but an absolutely continuous compensator in a smaller filtration.

• **Conjecture:** If a stopping time R has an absolutely continuous law, then it has an absolutely continuous compensator in any filtration rendering it totally inaccessible.

• **This conjecture is false.** A stopping time can be constructed with Brownian local time at zero as its compensator. In its minimal filtration, the compensator is absolutely continuous with respect to $t \mapsto E(L_t)$, which is absolutely continuous with respect to dt.
Equivalent Probabilities

- Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

\[
M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}
\]
Equivalent Probabilities

- Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

- Let Q be equivalent to P, a situation which often arises in Mathematical Finance, with risk neutral measures; let $Z = \frac{dQ}{dP}$ and $Z_t = E\left\{\frac{dQ}{dP} \middle| \mathcal{F}_t\right\}$
Equivalent Probabilities

- Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

- Let Q be equivalent to P, a situation which often arises in Mathematical Finance, with risk neutral measures; let $Z = \frac{dQ}{dP}$ and $Z_t = E\left\{\frac{dQ}{dP} | \mathcal{F}_t\right\}$

- Then τ has an absolutely continuous compensator, given by the relation

$$1\{t \geq \tau\} - \int_0^t \lambda_s ds - \int_0^t \frac{1}{Z_s} d\langle Z, M \rangle_s = \text{a martingale}$$
Equivalent Probabilities

• Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

• Let Q be equivalent to P, a situation which often arises in Mathematical Finance, with risk neutral measures; let $Z = \frac{dQ}{dP}$ and $Z_t = E\left\{\frac{dQ}{dP} | \mathcal{F}_t\right\}$

• Then τ has an absolutely continuous compensator, given by the relation

$$1\{t \geq \tau\} - \int_0^t \lambda_s ds - \int_0^t \frac{1}{Z_s} d\langle Z, M \rangle_s = \text{a martingale}$$

• **Note:** Since $[M, M]_t = 1\{t \geq \tau\}$ we have that $\langle M, M \rangle_t = \int_0^t \lambda_s ds$, and the result follows by the Kunita-Watanabe inequality.
Initial Enlargement

• Again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds = \text{a martingale}$$
Initial Enlargement

- Again, let τ be a stopping time on a space $(\Omega, F, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

- Suppose we expand \mathbb{F} by adding a random variable L, with law $\eta(dx)$, to \mathcal{F}_0 and \mathcal{F}_t for all $t > 0$.

Again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds = \text{a martingale}$$

Suppose we expand \mathbb{F} by adding a random variable L, with law $\eta(dx)$, to \mathcal{F}_0 and \mathcal{F}_t for all $t > 0$.

Let $Q_t(\omega, dx)$ be the conditional distribution of L given \mathcal{F}_t, and suppose further that $Q_t(\omega, ds) \ll \eta(dx)$ and we write $Q_t(\omega, dx) = q^*_{t} \eta_t(dx)$
Initial Enlargement

• Again, let \(\tau \) be a stopping time on a space \((\Omega, \mathcal{F}, P, \mathbb{F}) \) and suppose it has an absolutely continuous compensator; that is,

\[
M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds = \text{a martingale}
\]

• Suppose we expand \(\mathbb{F} \) by adding a random variable \(L \), with law \(\eta(dx) \), to \(\mathcal{F}_0 \) and \(\mathcal{F}_t \) for all \(t > 0 \).

• Let \(Q_t(\omega, dx) \) be the conditional distribution of \(L \) given \(\mathcal{F}_t \), and suppose further that \(Q_t(\omega, ds) \ll \eta(dx) \) and we write \(Q_t(\omega, dx) = q^x_t \eta_t(dx) \)

• We write

\[
\langle q^x, M \rangle_t = \int_0^t k^x_s q^x_s d\langle M, M \rangle_s
\]
The compensator of τ under the enlarged filtration \mathbb{G} given by $G_t = \mathcal{F}_t \vee \sigma(t \wedge T)$ is

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds - \int_0^t k_s^L d\langle M, M \rangle_s$$
• The compensator of τ under the enlarged filtration \mathbb{G} given by $G_t = \mathcal{F}_t \vee \sigma(t \wedge T)$ is

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds - \int_0^t k_s^L d\langle M, M \rangle_s$$

• Again, note that $\langle M, M \rangle_t = \int_0^t \lambda_s ds$, so that the compensator is absolutely continuous
Progressive Expansion of Filtrations

• Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds = \text{a martingale}$$
Progressive Expansion of Filtrations

- Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds = \text{a martingale}$$

- We assume L is a positive random variable, and that L avoids all \mathbb{F} stopping times; that is, if T is an \mathbb{F} stopping time, then $P(L = T) = 0$
Progressive Expansion of Filtrations

• Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

• We assume L is a positive random variable, and that L avoids all \mathbb{F} stopping times; that is, if T is an \mathbb{F} stopping time, then $P(L = T) = 0$

• We enlarge the filtration \mathbb{F} with L such that the new filtration, \mathbb{G} makes L a stopping time; the method of expansion is called **progressive expansion**. We call the enlarged filtration \mathbb{G}
Progressive Expansion of Filtrations

• Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

• We assume L is a positive random variable, and that L avoids all \mathbb{F} stopping times; that is, if T is an \mathbb{F} stopping time, then $P(L = T) = 0$

• We enlarge the filtration \mathbb{F} with L such that the new filtration, \mathbb{G} makes L a stopping time; the method of expansion is called progressive expansion. We call the enlarged filtration \mathbb{G}

• Then τ has an absolutely continuous compensator in \mathbb{G} as well.
Analogous Results for the Entire Space

- We will say that on a space \((\Omega, \mathcal{G}, P, \mathcal{G})\) that a probability \(Q\) has **Property AC** if under \(Q\), all totally inaccessible stopping times have absolutely continuous compensators.

- A class of examples with **Property AC** are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous.

- Theorem: Suppose that \((\Omega, \mathcal{G}, P, \mathcal{G}, X)\) is a given system, and that there exists a probability \(Q^*\) equivalent to \(P\) such that \(Q^*\) has **Property AC**. Then if \(Q\) is the set of all probability measures equivalent to \(P\), we have that **Property AC** holds under any \(Q \in Q\).

- This last theorem is especially useful for applications in Finance.
Analogous Results for the Entire Space

- We will say that on a space \((\Omega, \mathcal{G}, P, \mathcal{G})\) that a probability \(Q\) has **Property AC** if under \(Q\), all totally inaccessible stopping times have absolutely continuous compensators.

- A class of examples with Property AC are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous.
Analogous Results for the Entire Space

- We will say that on a space $(\Omega, \mathcal{G}, P, \mathcal{G})$ that a probability Q has **Property AC** if under Q, all totally inaccessible stopping times have absolutely continuous compensators.

- A class of examples with Property AC are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous.

- **Theorem**: Suppose that $(\Omega, \mathcal{G}, P, \mathcal{G}, X)$ is a given system, and that there exists a probability Q^* equivalent to P such that Q^* has Property AC. Then if Q is the set of all probability measure equivalent to P, we have that Property AC holds under any $Q \in Q$. This last theorem is especially useful for applications in Finance.
Analogous Results for the Entire Space

- We will say that on a space \((\Omega, \mathcal{G}, P, \mathbb{G})\) that a probability \(Q\) has **Property AC** if under \(Q\), all totally inaccessible stopping times have absolutely continuous compensators.

- A class of examples with Property AC are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous.

- **Theorem**: Suppose that \((\Omega, \mathcal{G}, P, \mathbb{G}, X)\) is a given system, and that there exists a probability \(Q^*\) equivalent to \(P\) such that \(Q^*\) has Property AC. Then if \(Q\) is the set of all probability measure equivalent to \(P\), we have that Property AC holds under any \(Q \in Q\).

- This last theorem is especially useful for applications in Finance.
• **Theorem:** Under initial expansion, we have an analogous result. Expand \(\mathcal{G} \) by adding a random variable \(L \) initially to obtain \(\mathcal{H} \). If there exists \(Q^* \in \mathcal{Q} \) with Property AC under \(\mathcal{G} \), then \(Q^* \) has Property AC in \(\mathcal{H} \), and so all \(Q \in \mathcal{Q} \).
• **Theorem**: Under initial expansion, we have an analogous result. Expand \mathcal{G} by adding a random variable L initially to obtain \mathcal{H}. If there exists $Q^* \in \mathcal{Q}$ with Property AC under \mathcal{G}, then Q^* has Property AC in \mathcal{H}, and so all $Q \in \mathcal{Q}$.

• **Theorem**: Let L be a positive random variable and progressively expand \mathcal{G} with L to get a filtration \mathcal{J}. If $Q^* \in \mathcal{Q}$ has Property AC for \mathcal{G}, then it also does for \mathcal{J} as long as we restrict ourselves to totally inaccessible stopping times in \mathcal{G}. Moreover this is true for any $Q \in \mathcal{Q}$.
• **Theorem:** Under initial expansion, we have an analogous result. Expand \mathcal{G} by adding a random variable L initially to obtain \mathcal{H}. If there exists $Q^* \in \mathcal{Q}$ with Property AC under \mathcal{G}, then Q^* has Property AC in \mathcal{H}, and so all $Q \in \mathcal{Q}$.

• **Theorem:** Let L be a positive random variable and progressively expand \mathcal{G} with L to get a filtration \mathcal{J}. If $Q^* \in \mathcal{Q}$ has Property AC for \mathcal{G}, then it also does for \mathcal{J} as long as we restrict ourselves to totally inaccessible stopping times in \mathcal{G}. Moreover this is true for any $Q \in \mathcal{Q}$.

• In general, whether this extends to all of \mathcal{J} depends on the nature of the compensator of L.
Thank you