Optimal Portfolio Liquidation with Dynamic Coherent Risk

Andrey Selivanov1 Mikhail Urusov2

1Moscow State University and Gazprom Export
2Ulm University

Analysis, Stochastics, and Applications. A Conference in Honour of Walter Schachermayer – Vienna University, July 12–16, 2010
Outline

Optimal Portfolio Liquidation

Dynamic Risk

Main Result
Outline

Optimal Portfolio Liquidation

Dynamic Risk

Main Result
A trader sells \(x > 0 \) shares of a stock in an illiquid market. In selling the price falls from \(S_- \) to

\[
S_+ = S_- - \frac{1}{q} x.
\]

The trader gets the payout

\[
x \left(S_- - \frac{1}{2q} x \right)
\]

average price per share

instead of \(xS_- \)
How to sell optimally X_0 shares until time N?

X_0, N are specified by a client, X_0 is very big

Time horizon is usually short

A strategy is a sequence $x = (x_i)_{i=0}^N$, where all $x_i \geq 0$ and $\sum_{i=0}^N x_i = X_0$

x_i means the number of shares to sell at time i, $i = 0, \ldots, N$

\mathcal{X} (resp., \mathcal{X}_{det}) denotes the set of adapted (resp., deterministic) strategies
Model for unaffected price
A random walk \((S_n)\) (short time horizon)

Model for price impact
A block-shaped limit order book with infinite resilience

Optimization problem
Minimize a certain dynamic coherent risk measure
Model for price impact

Linear permanent and temporary impacts with the coefficients $\gamma \geq 0$ resp. $\kappa > 0$

Selling $x_k \geq 0$ shares at times k, $k = 0, 1, \ldots$:

$$\tilde{S}_{n+} = \tilde{S}_{n-} - (\kappa + \gamma)x_n,$$

where $\tilde{S}_{n-} = S_n - \gamma \sum_{i=0}^{n-1} x_i$

Payout at time n:

$$x_n \left(\tilde{S}_{n-} - \frac{\kappa + \gamma}{2} x_n \right)$$

Cf. with Bertsimas and Lo (1998), Almgren and Chriss (2001)

LOB with finite resilience:
Notation $X_n := X_0 - \sum_{i=0}^{n-1} x_i$, $n = 1, \ldots, N + 1$, the number of shares remaining at hand at time $n−$. Note that $X_{N+1} = 0$

$(x_i) \leftrightarrow (X_i)$

Properties of strategies desirable for practitioners

(A) Dynamic consistency

(B) Presence of an intrinsic time horizon N^\ast such that

- $N^\ast < N$ for small X_0,
- $N^\ast = N$ for large X_0,
- N^\ast is increasing as a function of X_0

(C) Relative selling speed decreasing in the position size:

$$\frac{x_0}{X_0}$$ decreases as a function of X_0
Notation \(R_{N+} \) revenue from the liquidation

Almgren and Chriss (2001)

\[
- \mathbb{E} R_{N+} + \lambda \text{Var} R_{N+} \xrightarrow{\mathcal{X}_{\text{det}}} \min
\]

Optimal strategy is of the form

\[
\mathcal{X}_n = C_1 e^{-Kn} - C_2 e^{Kn} \quad (\ast)
\]

(A) + (B) − (C) −

Konishii and Makimoto (2001)

\[
- \mathbb{E} R_{N+} + \lambda \sqrt{\text{Var} R_{N+}} \xrightarrow{\mathcal{X}_{\text{det}}} \min
\]

Optimal strategy is again of the form \((\ast)\)

(A) − (B) − (C) +
It would be more interesting to optimize over \mathcal{X} rather than over \mathcal{X}_{det}

Almgren and Lorenz (2007)

$$-E R_{N^+} + \lambda \text{Var} R_{N^+} \rightarrow \min_{\mathcal{X}}$$

(*) is no longer optimal

(A)–(C): ?

Schied, Schöneborn, and Tehranchi (2010) For $U(x) = -e^{-\alpha x}$,

$$E U(R_{N^+}) \rightarrow \max_{\mathcal{X}}$$

Optimal strategy is deterministic (cf. with Schied and Schöneborn (2009))

If (S_n) is a Gaussian random walk, then the optimal strategy is the Almgren–Chriss one with $\lambda = \alpha / 2$

(A) + (B) — (C) —
Outline

Optimal Portfolio Liquidation

Dynamic Risk

Main Result
Static Risk

(Ω, \mathcal{F}, P)

$R : \Omega \to \mathbb{R}$ P&L of a bank

How to measure risk of R?

Notation

$\rho(R)$ a law invariant coherent risk measure

$\tilde{\rho}(\text{Law } R) := \rho(R)$

E.g.

$\text{CV@R}_\lambda(R) = -E(R|R \leq q_\lambda(R))$

(modulo a technicality), where $q_\lambda(R)$ is λ-quantile of R
Dynamizing ρ

$$(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n=0}^N, P)$$

Cashflow $F = (F_n)_{n=0}^N$: an adapted process

F_n means P&L of a bank at time n

Need to define dynamic risk $\rho(F)$

$$\rho(F) = (\rho_n(F))_{n=0}^N$$ an adapted process

$\rho_n(F) \equiv \rho(F_n, \ldots, F_N)$ means the risk of the remaining part (F_n, \ldots, F_N) of the cashflow measured at time n

Define inductively:

$$\rho_N(F) = -F_N,$$

$$\rho_n(F) = -F_n + \rho(\text{Law}[-\rho_{n+1}(F) | \mathcal{F}_n]), \quad n = N - 1, \ldots, 0$$

Outline

Optimal Portfolio Liquidation

Dynamic Risk

Main Result
$X_0 > 0$ a large number of shares to sell until time N

$S_n = S_0 + \sum_{i=1}^{n} \xi_i$, where (ξ_i) iid

$\mathcal{F}_n = \sigma(\xi_1, \ldots, \xi_n)$, where $\mathcal{F}_0 = \text{triv}$

A strategy is an (\mathcal{F}_n)-adapted sequence $x = (x_i)_{i=0}^{N}$, where all $x_i \geq 0$ and $\sum_{i=0}^{N} x_i = X_0$

\mathcal{X} (resp., \mathcal{X}_{det}) denotes the set of all (resp., deterministic) strategies

$(x_i) \leftrightarrow (X_i)$, where $X_n = X_0 - \sum_{i=0}^{n-1} x_i$
Problem Settings

Setting 1 For a strategy $x = (x_i)_{i=0}^N$ define the cashflow F^x by

$$F^x_n = x_n \left(S_n - \gamma \sum_{i=0}^{n-1} x_i - \frac{\kappa + \gamma}{2} x_n \right), \quad n = 0, \ldots, N.$$

The problem: $\bar{\rho}_0(F^x) \longrightarrow \min$ over $x \in \mathcal{X}$

Setting 2 For a strategy x define G^x by $G^x_0 = 0$ and

$$G^x_n = x_{n-1} \left(S_{n-1} + \frac{\xi_n}{2} - \gamma \sum_{i=0}^{n-2} x_i - \frac{\kappa + \gamma}{2} x_{n-1} \right), \quad n = 1, \ldots, N+1.$$

The problem: $\bar{\rho}_0(G^x) \longrightarrow \min$ over $x \in \mathcal{X}$
Main Result

Standing assumption $0 < \tilde{\rho}(\text{Law } \xi) < \infty$

Set $a := \tilde{\rho}(\text{Law } \xi)/\kappa$, so $a > 0$

Theorem Optimal strategy is the same in both settings. Moreover, it is deterministic and given by the formulas

\[
x_i = \frac{X_0}{N^* + 1} + a \left(\frac{N^*}{2} - i \right), \quad i = 0, \ldots, N^*,
\]

\[
x_i = 0, \quad i = N^* + 1, \ldots, N,
\]

where

\[
N^* = N \land \left(\text{ceil} \frac{-1 + \sqrt{1 + 8X_0/a}}{2} - 1 \right)
\]

with ceil y denoting the minimal integer d such that $y \leq d$
Discussion

If we maximized over \mathcal{X}_{det} rather than over \mathcal{X}, then the optimizer would be the same in both settings. This is not clear a priori when we maximize over \mathcal{X}

The proof consists of two parts: first we prove that optimizing over \mathcal{X} does not do a better job, than optimizing over \mathcal{X}_{det}, and then perform just a deterministic optimization

Cf. with Alfonsi, Fruth, and Schied (2010), Schied, Schöneborn, and Tehranchi (2010), where the optimal strategies are also deterministic

Why is the optimal strategy deterministic?

Because here liquidity (κ) is deterministic

Cf. with Fruth, Schöneborn, and Urusov (2010), where stochastic liquidity leads to stochastic optimal strategies
Remarks

- (A) + (B) + (C) +
 (recall “+ − −” for the Almgren–Chriss strategy)

- \((X_n)\) parabola vs. \(X_n = C_1 e^{-Kn} - C_2 e^{Kn}\)
 (Almgren–Chriss is now a benchmark for practitioners)

- Setting \(N = \infty\) (time horizon is not specified by the client)
 we get a strategy with a purely intrinsic time horizon \(N^*\).
 Cf. with Almgren (2003), Schöneborn (2008)

- \(a \uparrow\) leads to a quicker liquidation in the beginning
 \(\implies\) reasonable dependence of the liquidation strategy on
 volatility risk \(\tilde{\rho}(\text{Law } \xi)\) and on liquidity risk \(\kappa\)
Thank you for your attention!
Possible Generalizations

- More general price impact?

 Optimal strategies are again deterministic

- Convex risk measure ρ?

 Optimal strategies are again deterministic, however, different in Settings 1 and 2

 Typically $(A) + (B) -$

 Also $(C) -$ in an example with entropic risk measure, which was worked out explicitly

