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Preface

These are lecture notes for the course Advanced complex analysis which I held
in Vienna in Fall 2016 and 2017 (three semester hours). I am grateful to Gerald
Teschl, who based his Advanced complex analysis course on these notes in Fall 2019,
for corrections and suggestions that improved the presentation.

We follow quite closely the presentation of [11]. In the following the primary
sources for the single chapters are briefly indicated.

chapter 1: [11].
chapter 2: [1], [3], [8], [11], [13].
chapter 3: [8], [10], [11], [13].
chapter 4: [8], [11].
chapter 5: [8], [11], [13], [14].
chapter 6: [1], [3], [4], [5], [8], [11], [13], [14].
chapter 7: [8], [11].
chapter 8: [1], [3], [6], [7], [11].
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NOTATION v

Notation

A domain is a nonempty open subset U ⊆ C. A connected domain is called
a region. We denote by Dr(c) = {z ∈ C : |z − c| < r} the open disk of radius r
and center c. Dr(c) denotes the closed disk and ∂Dr(c) its boundary; if not stated
otherwise, it is always assumed to be oriented counterclockwise. By D we denote
the unit disk D = D1(0), by H := {z ∈ C : Im z > 0} the upper half plane. The

Riemann sphere C∪{∞} is denoted by Ĉ. We use C∗ = C \ {0} and C∗a = C \ {a},
for a ∈ C, as well as D∗ := D \ {0} and D∗r(a) := Dr(a) \ {a}. If V is a relatively
compact open subset of U we write V b U .

Let U ⊆ C be a domain. If K ⊆ U is compact and f is continuous on K, i.e.,
f ∈ C(K), then we write |f |K := supz∈K |f(z)|. By H(U) we denote the set of
all holomorphic functions f : U → C. And O(K) denotes the set of all f ∈ C(K)
such that f is the restriction to K of a function which is holomorphic on an open
neighborhood of K. By Aut(U) we denote the set of automorphisms of U .

We recall that the Cayley mapping

h : H→ D, z 7→ z − i
z + i

, h−1 : D→ H, z 7→ i
1 + z

1− z
,

is a biholomorphism.

We denote by |γ| := im(γ) the image of a curve γ : [0, 1]→ C; it is a compact
subset of C. For a, b ∈ C we write [a, b] for the oriented line segment for a to b, i.e.,
(1− t)a+ tb, t ∈ [0, 1].

un ↓ u means that un is a sequence of real valued functions such that un ≥ un+1

and un → u pointwise.

Let X be a Riemann surface. Then OX is the sheaf of germs of holomorphic
functions on X, and OX,x is the ring of germs of holomorphic functions at x ∈ X.
In the case of X = C we just write O = OC and Oa = OC,a if a ∈ C.





CHAPTER 1

Analytic continuation

1. Covering spaces

A mapping p : X ′ → X between topological spaces is a local homeomor-
phism if for each a′ ∈ X ′ there is an open neighborhood U ′ of a′ in X ′ such that
p(U ′) = U is open and p|U ′ is a homeomorphism onto U .

Let Y be a topological space and let f : Y → X be continuous. A lifting of f
to X ′ over p is a continuous mapping f ′ : Y → X ′ such that p ◦ f ′ = f .

Lemma 1.1 (uniqueness of liftings). Let X,X ′ be Hausdorff spaces and let p :
X ′ → X be a local homeomorphism. Let Y be a connected Hausdorff space. Let
f : Y → X be continuous and assume that f1, f2 are liftings of f . If there exists
y0 ∈ Y such that f1(y0) = f2(y0), then f1 = f2.

Proof. Let A = {y ∈ Y : f1(y) = f2(y)}. Then y0 ∈ A and A is closed, since X ′ is
Hausdorff (X ′ is Hausdorff if and only if the diagonal ∆ ⊆ X ′ ×X ′ is closed, A is
the preimage of ∆ under (f1, f2)). We claim that A is also open. For, let y ∈ A and
a′ = f1(y) = f2(y). There is an open neighborhood U ′ of a′ such that p(U ′) = U
is open and p|U ′ is a homeomorphism onto U . Since f1, f2 are continuous, there
is a neighborhood V of y such that f1(V ) ⊆ U ′, f2(V ) ⊆ U ′. For every v ∈ V ,
p(f1(v)) = f(v) = p(f2(v)), and thus, since p|U ′ is injective, f1 = f2 on V . That is
V ⊆ A, and A is open. �

A Hausdorff topological space X is an n-dimensional manifold if every point
a ∈ X has an open neighborhood U which is homeomorphic to an open set in Rn.

Let X,X ′ be manifolds and p : X ′ → X a continuous mapping. Then p is called
a covering map, and X ′ a covering of X, if every a ∈ X has a neighborhood U
with the following property: p−1(U) is a disjoint union of open sets U ′j ⊆ X ′, j ∈ J ,
such that p|U ′j is a homeomorphism onto U for each j ∈ J . Clearly, a covering map

is a local homeomorphism.

Lemma 1.2 (curve lifting property of coverings). Each curve γ : [0, 1]→ X in the
base space of a covering map p : X ′ → X with γ(0) = a can be lifted uniquely to a
curve γ′ : [0, 1]→ X ′ with γ′(0) = a′, where a′ ∈ p−1(a).

Proof. By Lemma 1.1, it suffices to show the existence of γ′.

Since [0, 1] is compact, there is a partition 0 = t0 < t1 < · · · < tn = 1 and
open sets Uj ⊆ X, 1 ≤ j ≤ n, such that γ([tj−1, tj ]) ⊆ Uj , p

−1(Uj) is a disjoint
union of open sets U ′jk ⊆ X ′, and p|U ′jk : U ′jk → Uj is a homeomorphism. We show

by induction on j the existence of a lifting γ′j on [0, tj ] with γ′j(0) = a′. There is
nothing to prove for j = 0. Suppose that j ≥ 1 and that γ′j−1 is already constructed.
Set x′j−1 := γ′j−1(tj−1). Then p(x′j−1) = γ(tj−1) ∈ Uj and x′j−1 lies in U ′jk for some
k. Setting

γ′j(t) :=

{
γ′j−1(t) if t ∈ [0, tj−1],

p|−1
U ′jk

(γ(t)) if t ∈ [tj−1, tj ],

1
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yields a lifting on [0, tj ]. �

We mention the following converse without proof.

Theorem 1.3. Let p : X ′ → X be a local homeomorphism between manifolds.
Then p is a covering map if and only if it has the curve lifting property.

Example 1.4. Let C∗ := C \ {0}. The mapping exp : C → C∗ is a covering
map. In fact, U := {z ∈ C : α < Im z < α + 2π}, for α ∈ R, is mapped to
expU = C∗ \ {reiα : r > 0}, and exp−1(expU) =

⋃
n∈Z(U + 2πin).

For every positive integer n, the mapping C∗ → C∗, z 7→ zn, is a covering map.

Exercise 1. Let n be a positive integer. Prove that C∗ → C∗, z 7→ zn, is a covering
map. Determine the lifting γ̃ of γ(t) = e2πit, t ∈ [0, 1], with γ̃(0) = 1.

2. The sheaf of germs of holomorphic functions

Let a ∈ C. Consider the set of pairs (U, f), where U ⊆ C is an open set
containing a and f ∈ H(U). We define an equivalence relation ∼ on this set by
(U, f) ∼ (V, g) if there exists an open set W with a ∈ W ⊆ U ∩ V such that
f |W = g|W . An equivalence class is called a germ of a holomorphic function
at a. The equivalence class of (U, f) is denoted by fa; we say that fa is the germ
of f at a. The set of all such germs at a is denoted by Oa. The value of the germ
fa ∈ Oa is defined by eva(fa) = fa(a) := f(a), where (U, f) is any representative
of fa.

Lemma 2.1. Addition and multiplication of functions induces the structure of com-
mutative ring on Oa. Oa is a complex vector space. The non-units of Oa form a
maximal ideal ma = {fa ∈ Oa : fa(a) = 0} in Oa. We have Oa/ma ∼= C.

Exercise 2. Prove Lemma 2.1.

Consider the disjoint union O :=
⊔
a∈COa. We introduce a topology on O as

follows. Let fa ∈ Oa and let (U, f) be a representative of fa. Set

N(U, f) := {fz ∈ Oz : fz is the germ at z ∈ U defined by (U, f)}. (2.1)

We require that the sets N(U, f), where (U, f) runs over all representatives of fa,
form a fundamental system of neighborhoods of fa.

Consider the mapping π : O → C given by π(fa) = a if fa ∈ Oa. Then (O, π)
is called the sheaf of germs of holomorphic functions on C.

Lemma 2.2. O is a Hausdorff space.

Proof. Let fa ∈ Oa, gb ∈ Ob, and suppose that fa 6= gb. Let (U, f), (V, g) be
representatives of fa, gb, respectively.

If a 6= b, there are neighborhoods U ′ ⊆ U , V ′ ⊆ V of a, b, respectively, such
that U ′ ∩ V ′ = ∅. Then N(U ′, f), N(V ′, g) are disjoint neighborhoods of fa, gb.

If a = b, let D ⊆ U ∩ V be a disk centered at a. Then N(D, f) ∩N(D, g) = ∅.
Indeed, if hz ∈ N(D, f) ∩N(D, g), then (U, f) and (V, g) both define the germ hz
at z. So there is a neighborhood W ⊆ D of z such that f |W = g|W . By the identity
theorem, f = g on D, in particular, fa = ga, a contradiction. �

Lemma 2.3. π : O → C is continuous and a local homeomorphism. Thus O is a
two-dimensional manifold.
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Proof. Let fa ∈ Oa and let (U, f) be a representative of fa. Note that π(N(U, f)) =
U . If V ⊆ C is an open set containing a, then π(N(U ∩ V, f)) = U ∩ V ⊆ V , so
that π is continuous. Moreover, π(N(U, f)) = U also implies that π is open.
The restriction π|N(U,f) is injective and has the inverse z 7→ fz, so π|N(U,f) is a
homeomorphism onto U . �

Let fa ∈ Oa and let γ : [0, 1] → C be a curve with γ(0) = a. An analytic
continuation of fa along γ is a lifting γ̃ of γ over π : O → C such that γ̃(0) = fa.

This means that for each t0 ∈ [0, 1] there is a neighborhood I of t0 in [0, 1], an
open set U ⊆ C with γ(I) ⊆ U , and f ∈ H(U) such that fγ(t) = γ̃(t) for all t ∈ I.
In fact, let t0 ∈ [0, 1] and suppose N(U, f) is a neighborhood of γ̃(t0) in O. Then
there is a neighborhood I of t0 in [0, 1] such that γ̃(I) ⊆ N(U, f). Thus γ(I) ⊆ U
and γ̃(t) = fγ(t).

Since [0, 1] is compact, this condition is equivalent to the following: there exist
a partition 0 = t0 < t1 < · · · < tn = 1, domains Uj ⊆ C with γ([tj−1, tj ]) ⊆ Uj ,
and fj ∈ H(Uj) such that

(1) fa is the germ of f1 at a,
(2) fj |Vj = fj+1|Vj , where Vj is the connected component of Uj ∩ Uj+1 that

contains γ(tj).

Lemma 2.4 (permanence of relations). Let γ : [0, 1]→ C be a curve with γ(0) = a.
Let fa, ga ∈ Oa and let P be a polynomial in two variables. Suppose that fa, ga can
be continued analytically along γ and that P (fa, ga) = 0. Then, if F (t),G(t) denote
the germs at γ(t) obtained by analytic continuation of fa, ga, respectively, along γ,
we have P (F (t), G(t)) = 0 for all 0 ≤ t ≤ 1.

Proof. Let D ⊆ C be a disk, and let ϕ,ψ ∈ H(D). If there is z ∈ D such that
P (ϕz, ψz) = 0 then P (ϕ,ψ) ≡ 0 on D, by the identity theorem. Thus the set
{t ∈ [0, 1] : P (F (t), G(t)) = 0} is open in [0, 1]. Clearly, it is also closed in [0, 1]
and contains 0, thus it is all of [0, 1]. �

Exercise 3. Show that the mapping π : O → C does not have the curve lifting
property and hence is not a covering map. Hint: Consider the germ ϕ at 1 of the
function z 7→ 1/z, and show that the curve γ : [0, 1] → C, γ(t) = 1 − t, does not
admit a lifting γ̃ to O with γ̃(0) = ϕ. Use Lemma 2.4.

Exercise 4. Let f ∈ H(C). Show that N(C, f) is the connected component in O
of the germ f0 at 0 of f . Hint: Use that an open subset X in the manifold O is
connected if and only if X is pathwise connected.
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3. Integration along curves

Germs of holomorphic functions can be differentiated. We define a mapping
d : O → O as follows. Let fa ∈ Oa and let (U, f) be a representative of fa. Then
dfa := (f ′)a is the germ at a of (U, f ′), where f ′ is the derivative of f .

Proposition 3.1. d : O → O is a covering map.

Proof. Let fa ∈ Oa and let (U, f) be a representative of fa. Let D ⊆ U be a disk
centered at a. Let F be a primitive of f on D. We claim that

d−1(N(D, f)) =
⋃
c∈C

N(D,F + c). (3.1)

We clearly have dN(D,F + c) = N(D, f). For the other inclusion, let z ∈ D,
gz ∈ Oz, and dgz = fz. Let (W, g) be a representative of gz, where W ⊆ D is a
connected neighborhood of z. Then g′ = f near z, hence on W , and consequently,
(g − F )′ = 0 on W . So there is a constant c ∈ C such that g = F + c on W , and
gz ∈ N(D,F + c). This shows (3.1). Clearly, the union is disjoint.

Let us prove that d|N(D,F+c) is a homeomorphism onto N(D, f) for each c ∈ C.
It suffices to check that d|N(D,F+c) is injective, which is obvious because d takes
distinct elements of N(D,F + c) to germs at different points of D. �

Let U ⊆ C be a domain, f ∈ H(U), and γ : [0, 1] → U a curve in U . A
primitive of f along γ is by definition a lifting over d : O → O of the curve
Γ : [0, 1] → O given by Γ(t) := fγ(t). It exists, by the curve lifting property of
coverings 1.2, since d : O → O is a covering map, by Proposition 3.1.

If F1, F2 are two primitives of f along γ, then there is a constant c such that
F1(t) = F2(t) + c for all t ∈ [0, 1]. This follows from the uniqueness of liftings 1.1,
since F1(0) and F2(0) are both primitives of f in a neighborhood of γ(0), and hence
F1(0) = F2(0) + c for some c ∈ C.

Proposition 3.2. Let U ⊆ C be a domain, f ∈ H(U), and γ : [0, 1]→ U piecewise
C1. Let F : [0, 1]→ O be a primitive of f along γ. Thenˆ

γ

f dz = F (1)(γ(1))− F (0)(γ(0)).

Proof. We define a mapping G : [0, 1] → O as follows. Let t ∈ [0, 1], and let D be
a disk centered at γ(t) and contained in U . Let h be the primitive of f on D for
which

h(γ(t)) =

ˆ t

0

f(γ(s))γ′(s) ds.

Let G(t) be the germ at γ(t) of h, i.e., G(t) := hγ(t). Then dG(t) = fγ(t). We
will show that G is a lifting of Γ, i.e., that G is continuous. This will imply the
assertion: there is a constant c such that F (t) = G(t) + c for all t ∈ [0, 1], and so

F (1)(γ(1))− F (0)(γ(0)) = G(1)(γ(1))−G(0)(γ(0))

=

ˆ 1

0

f(γ(s))γ′(s) ds =

ˆ
γ

f dz.

Let us prove that G is continuous. Let t0 ∈ [0, 1], and let D be a small disk
with center γ(t0). Let h ∈ H(D) be such that (D,h) is a representative of the germ

G(t0). Then, by definition, h(γ(t0)) =
´ t0

0
f(γ(s))γ′(s) ds. Let ε > 0 be such that
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γ(t) ∈ D if |t− t0| < ε. For such t,

h(γ(t))− h(γ(t0)) =

ˆ t

t0

d

ds
h(γ(s)) ds =

ˆ t

t0

f(γ(s))γ′(s) ds,

since h′ = f on D. Thus, h(γ(t)) =
´ t

0
f(γ(s))γ′(s) ds, so that G(t) = hγ(t) for

|t− t0| < ε. In particular, G(t) ∈ N(D,h), hence G is continuous. �

If γ : [0, 1]→ U is any curve, i.e., just continuous and not necessarily piecewise
C1, we may use this as the definition of

´
γ
f dz: if f ∈ H(U) and F : [0, 1]→ O is

a primitive of f along γ, then we defineˆ
γ

f dz := F (1)(γ(1))− F (0)(γ(0)). (3.2)

Corollary 3.3. Let U ⊆ C be a domain and f ∈ H(U). If f has a primitive on
U , then for any closed curve γ in U ,ˆ

γ

f dz = 0.

Proof. Let h be a primitive of f on U . Then F : [0, 1]→ O defined by F (t) := hγ(t)

is a primitive of f along γ. So
´
γ
f dz = h(γ(1))−h(γ(0)) = 0 since γ(1) = γ(0). �

4. The monodromy theorem

Let X be a manifold. Let γi : [0, 1]→ X, i = 0, 1, be curves in X. We say that
γ0 and γ1 are homotopic if there is a continuous mapping H : [0, 1]× [0, 1]→ X,
H(s, t) = Hs(t) = Ht(s), such that H0 = γ0 and H1 = γ1. The mapping H is
called a homotopy. It defines a one-parameter family of curves γs := Hs in X
which connects γ0 and γ1; we will also write H = {γs}s∈[0,1].

Suppose that H0(0) = H1(0) = a. We say that the homotopy H fixes a if
H(s, 0) = a for all s ∈ [0, 1]. Provided that also H0(1) = H1(1) = b, we say that H
fixes the endpoints if H(s, 0) = a and H(s, 1) = b for all s ∈ [0, 1].

Theorem 4.1 (general monodromy theorem). Let X,X ′ be manifolds and p : X ′ →
X a local homeomorphism. Let a′ ∈ X ′ and a = p(a′). Let H : [0, 1]2 → X be a
homotopy between γ0 and γ1 fixing the starting point a = γ0(0) = γ1(0). Suppose
that each curve γs := Hs, s ∈ [0, 1], has a lifting γ′s over p : X ′ → X which starts
at a′. Then H ′(s, t) := γ′s(t) is a homotopy between γ′0 and γ′1.

Proof. We must show continuity of H ′ : [0, 1]2 → X ′. Let I := [0, 1].

Fix (s0, t0) ∈ I2. Since γ′s0 is continuous and hence γ′s0(I) is compact, we may
choose open sets U ′0, . . . , U

′
n in X ′ and points 0 = τ0 < τ1 < · · · < τn = 1 such that

p|U ′j =: pj is a homeomorphism onto an open set Uj in X and γ′s0([τj , τj+1]) ⊆ U ′j ,
j = 0, 1, . . . , n− 1. We may assume without loss of generality that t0 is an interior
point of some [τj0 , τj0+1], unless t0 is 0 or 1.

By the continuity of H, there exists ε > 0 such that γs(t) ∈ Uj for |s− s0| < ε,
s ∈ I, t ∈ [τj , τj+1], and j = 0, 1, . . . , n − 1. We will prove that, for |s − s0| < ε,
s ∈ I, t ∈ [τj , τj+1], and j = 0, 1, . . . , n− 1,

γ′s(t) = p−1
j (γs(t)). (4.1)

This implies that H ′ is continuous at (s0, t0), since (s0, t0) is an interior point
(relative to I2) of the set {s ∈ I : |s− s0| < ε} × [τj0 , τj0+1].

We show (4.1) by induction on j. Let j = 0. Fix s ∈ I with |s − s0| < ε.
The curves γ′s and p−1

0 ◦ γs are both liftings of γs on the interval [τ0, τ1], and
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γ′s(0) = a′ = (p−1
0 ◦ γs)(0) (because a′ = γ′s0(0) ∈ U ′0). By uniqueness of liftings

1.1, (4.1) holds for j = 0.

Suppose that (4.1) has been proved for all 0 ≤ j < k. For fixed s, the curves
γ′s and p−1

k ◦ γs are both liftings of γs on the interval [τk, τk+1]. By Lemma 1.1, it
is enough to prove

γ′s(τk) = p−1
k (γs(τk)) for |s− s0| < ε, s ∈ I. (4.2)

By induction hypothesis, (4.1) for j = k − 1 and t = τk gives

γ′s(τk) = p−1
k−1(γs(τk)) for |s− s0| < ε, s ∈ I. (4.3)

In particular, for s = s0,

p−1
k (γs0(τk)) = γ′s0(τk) = p−1

k−1(γs0(τk)),

since γ′s0(τk) ∈ U ′k−1 ∩ U ′k. Thus, s 7→ p−1
k−1(γs(τk)) and s 7→ p−1

k (γs(τk)) are both
liftings of s 7→ γs(τk), for |s − s0| < ε, s ∈ I, and they coincide for s = s0. By
Lemma 1.1, p−1

k−1(γs(τk)) = p−1
k (γs(τk)) for all |s − s0| < ε, s ∈ I, which together

with (4.3) implies (4.2) and hence (4.1) for j = k. �

Corollary 4.2. Let X,X ′ be manifolds and p : X ′ → X a local homeomorphism.
Let a′ ∈ X ′, a = p(a′), and b ∈ X. Let H : [0, 1]2 → X be a homotopy between γ0

and γ1 fixing a = γ0(0) = γ1(0) and b = γ0(1) = γ1(1). Suppose that each curve
γs := Hs, s ∈ [0, 1], has a lifting γ′s over p : X ′ → X which starts at a′. Then the
endpoints of γ′0 and γ′1 coincide, and γ′s(1) is independent of s.

Proof. By Theorem 4.1, the mapping s 7→ γ′s(1) is continuous. Thus it is a lifting
of the constant curve s 7→ γs(1) = b, and so it is itself constant, by Lemma 1.1. �

Theorem 4.3 (classical monodromy theorem). Let γ0,γ1 be curves in C with the
same endpoints a = γ0(0) = γ1(0), b = γ0(1) = γ1(1), and let H = {γs}s∈[0,1] be a
homotopy between γ0 and γ1 fixing the endpoints. Let fa ∈ Oa and suppose that fa
can be continued analytically along γs for all s ∈ [0, 1]. Then analytic continuation
of fa along γ0 and γ1 result in the same germ at b.

Proof. Apply Corollary 4.2 to π : O → C. �

Next we will derive several applications of the monodromy theorem.

Theorem 4.4 (homotopy form of Cauchy’s theorem). Let U ⊆ C be a domain.
Let γ0, γ1 : [0, 1] → U be curves in U with the same endpoints, a = γ0(0) = γ1(0)
and b = γ0(1) = γ1(1). Suppose that there is a homotopy between γ0, γ1 in U fixing
the endpoints. Then, for each f ∈ H(U),ˆ

γ0

f dz =

ˆ
γ1

f dz.

Proof. Let H : [0, 1]2 → U be a homotopy between γ0, γ1 in U fixing the endpoints.
Then K : [0, 1]2 → O, where Ks(t) is the germ at Hs(t) of (U, f) is a homotopy
between K0 and K1 fixing the endpoints fa and fb. Let Fa be the germ at a of
some primitive of f in a neighborhood of a. Since d : O → O is a covering map, by
Proposition 3.1, Ks has a lifting K ′s : [0, 1] → O over d such that K ′s(0) = Fa, for
all s ∈ [0, 1]. By Corollary 4.2, K ′0(1) = K ′1(1), and henceˆ
γ0

f dz = K ′0(1)(γ0(1))−K ′0(0)(γ0(0)) = K ′1(1)(γ1(1))−K ′1(0)(γ1(0)) =

ˆ
γ1

f dz,

since K ′0(0)(γ0(0)) = K ′1(0)(γ1(0)) = Fa(a) and γ0(1) = γ1(1) = b. �
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It is not hard to show that any curve γ : [0, 1] → U is homotopic in U to a
piecewise C1-curve γ̃ : [0, 1] → U (by a homotopy fixing the endpoints). So, by
Theorem 4.4, it is no loss of generality to assume that γ is piecewise C1, if one
deals with path integrals

´
γ
f dz of holomorphic functions f .

A pathwise connected Hausdorff space X is said to be simply connected if
for any two curves γ0, γ1 in X with the same endpoints there is a homotopy in X
between γ0 and γ1 fixing the endpoints. If γ0 is homotopic in X to a constant curve
γ1 (i.e., a point), we say that γ0 is null-homotopic in X.

Corollary 4.5. If U ⊆ C is a simply connected domain, then for each f ∈ H(U)
and each closed curve γ in U , ˆ

γ

f dz = 0.

Proof. Apply the homotopy form of Cauchy’s theorem 4.4 to a homotopy between
γ and the constant closed curve γ(0). �

We will now show that continuous mappings f : Y → X, where Y is simply
connected, admit liftings over covering maps p : X ′ → X. In the proof we will
use concatenation of curves: if γi : [0, 1] → X, i = 1, 2, are curves such that
γ1(1) = γ2(0), then

γ1 · γ2(t) :=

{
γ1(2t) if t ∈ [0, 1/2],

γ2(2t− 1) if t ∈ [1/2, 1].

defines a curve γ1 · γ2 : [0, 1]→ X. (In homotopy theory this notation preferred in
contrast to γ1 + γ2 used in homology theory.)

The property of being homotopic defines an equivalence relation on the set
of all closed curves γ : [0, 1] → X with fixed endpoint γ(0) = γ(1) = a. The
concatenation of curves defines a binary operation on the set of equivalence classes
which turns it into a group π1(X, a). This group is called the first homotopy
group or fundamental group of X with base point a. One can show that the
fundamental group is independent of the base point if X is pathwise connected;
then one simply writes π1(X). Note that X is simply connected if and only if
π1(X) is trivial.

Exercise 5. Show that concatenation of curves defines a binary operation on the
set of all homotopy classes and turns it into a group π1(X, a).

Theorem 4.6 (existence of liftings). Let X,X ′ be manifolds and p : X ′ → X a
covering map. Let Y be a connected simply connected manifold. Let a′ ∈ X ′ and
a = p(a′). Suppose that f : Y → X is continuous and f(y0) = a for some y0 ∈ Y .
Then f has a lifting f ′ : Y → X ′ such that f ′(y0) = a′.

Proof. Let y0, y ∈ Y and let γ : [0, 1]→ Y be a curve from y0 to y. Then µ = f ◦ γ
is a curve in X starting at a which admits a lifting µ′ to X ′ with µ′(0) = a′, by the
curve lifting property of coverings 1.2. We define

f ′(y) := µ′(1).

Let us prove that f ′(y) is independent of γ. Set γ0 = γ and let γ1 be another curve
in Y from y0 to y. Since Y is simply connected there is a homotopy H between γ0

and γ1 fixing the endpoints. Then f ◦H is a homotopy between µ and µ1 := f ◦ γ1

fixing the endpoints. If µ′1 is the lifting of µ1 to X ′ with µ′1(0) = a′, then µ′ and
µ′1 have the same endpoints, by Corollary 4.2. Thus f ′(y) is independent of γ.
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Clearly, f ′ satisfies p ◦ f ′ = f . It remains to show that f ′ is continuous. Let
y1 ∈ Y and let γ1 be a curve in Y from y0 to y1. With the notation as above, let x1 =
f(y1), x′1 = f ′(y1) = µ′1(1) and let U ′, U , V be pathwise connected neighborhoods
of x′1, x1, y1, respectively, such that p|U ′ : U ′ → U is a homeomorphism and
f(V ) ⊆ U . For each y ∈ V choose a curve λ in V from y1 to y. Then γ1 · λ =: γ is
a curve from y0 to y in Y and f ◦ γ = µ1 · (f ◦ λ). The lifting of f ◦ γ starting at
a′ is µ′1 · (p|−1

U ′ ◦ f ◦ λ), and f ′(y) = (µ′1 · (p|−1
U ′ ◦ f ◦ λ))(1) = p|−1

U ′ (f(y)) ∈ U ′. Thus
f ′(V ) ⊆ U ′ so that f ′ is continuous. �

Corollary 4.7 (holomorphic liftings). Let U,U ′ ⊆ C be domains and let p : U ′ → U
be a holomorphic covering map. Suppose that V ⊆ C is a simply connected region
and let f : V → U be holomorphic. Then f has a holomorphic lifting over p.

Proof. Theorem 4.6 implies that that f admits a lifting f ′ : V → U ′. We claim that
f ′ is holomorphic. Let w ∈ V and z = f(w) ∈ U . Let D be an open neighborhood of
z in U and D′ an open neighborhood of z′ = f ′(w) in U ′ such that p|D′ : D′ → D is
a homeomorphism, and hence a biholomorphism. Then (f ′)−1(D′) = f−1(D) := B
is an open neighborhood of w in V . Since f ′|B = p|−1

D′ ◦ f |B is holomorphic, the
assertion follows. �

Theorem 4.8 (branches of the logarithm). Let U ⊆ C be a simply connected
domain. Let n ≥ 2 be an integer. If f ∈ H(U) is nowhere-vanishing in U , then
there exist g, h ∈ H(U) such that eg = f and hn = f .

Proof. This follows from Corollary 4.7 and Example 1.4. �

Theorem 4.9 (primitives). Let U ⊆ C be a simply connected domain. Any f ∈
H(U) has a primitive on U .

Proof. We give two proofs. First, fix z0 ∈ U and define

F (z) :=

ˆ
γz

f(ζ) dζ, z ∈ U,

where γz is any path in U from z0 to z; this is well-defined since
´
γ
f dz = 0 for every

closed curve γ in U , by Corollary 4.5. Let c ∈ U and r > 0 such that Dr(c) ⊆ U .
Then

F (z)− F (c)

z − c
=

1

z − c

(ˆ
γc+[c,z]

f(ζ) dζ −
ˆ
γc

f(ζ) dζ
)

=
1

z − c

ˆ
[c,z]

f(ζ) dζ → f(c) as z → c,

that is, F ′(c) = f(c).

Alternatively: Consider the mapping ϕ : U → O which sends z to the germ
of (U, f) at z. By Theorem 4.6, ϕ has a lifting Φ : U → O over the covering map
d : O → O (cf. Proposition 3.1). Define F : U → C by setting F (z) := Φ(z)(z). We
must show that F ∈ H(U); then since d ◦Φ = ϕ we have F ′ = f on U . Let z0 ∈ U
and let (V,G) be a representative of Φ(z0). That Φ is continuous means that, for
z in a neighborhood W of z0, Φ(z) is the germ at z of (V,G). Thus, F |W = G|W .
This implies that F ∈ H(U). �

Remark 4.10. Theorem 4.9 implies Theorem 4.8. If every f ∈ H(U) has a primi-
tive then for every non-vanishing f ∈ H(U) there are g, h ∈ H(U) such that eg = f
and hn = f . Indeed, suppose that f is non-vanishing in U . If the existence of g is
established, then h := eg/n is as required. Since f ′/f ∈ H(U), there is g ∈ H(U)
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with g′ = f ′/f . Adding a constant to g we may achieve that eg(c) = f(c) for some
c ∈ U . Then (fe−g)′ = 0 and thus fe−g = const = 1. Consequently, eg = f .





CHAPTER 2

Calculus of residues

5. The winding number

Usually, one defines the index or winding number of a closed path γ in C by
the path integral

indγ(z) :=
1

2πi

ˆ
γ

dζ

ζ − z
, z ∈ C \ |γ|. (5.1)

Then indγ is an integer valued function indγ : C \ |γ| → Z that is constant in each
connected component of C \ |γ| and 0 in the unbounded component of C \ |γ|; cf.
[12, Theorem 12.2].

Here we give a different definition of the index which is more in the spirit of the
previous chapter, and show then that it can be computed by the integral in (5.1).

Let γ : [0, 1] → C be a closed curve in C, and let z ∈ C \ |γ|. Recall that
C 7→ C∗z := C \ {z}, ζ 7→ z + eζ , is a covering map; cf. Example 1.4. Let γ̃ be a
lifting of γ over this covering map. We define the index or winding number of
γ at z by

indγ(z) :=
1

2πi
(γ̃(1)− γ̃(0)). (5.2)

It is easy to see that the index is independent of the choice of the lifting γ̃. Moreover,
it is clear from (5.2) that indγ(z) ∈ Z.

Proposition 5.1. The index is given by formula (5.1).

Proof. Let η : C∗z → O be the mapping which assigns to w the germ at w of the

function ζ 7→ 1/(ζ − z). Consider Γ := η ◦ γ and let Γ̃ be a lifting of Γ over

d : O → O. Fix w = γ(t), t ∈ [0, 1], and let Fw be the germ Γ̃(t). Let (D,F ) be
a representative of Fw on some disk centered at w. Then F ′(ζ) = 1/(ζ − z) for
ζ ∈ D, and thus d/dζ((ζ − z)e−F (ζ)) = 0 for ζ ∈ D.

Let γ1(t) be the value at γ(t) of the germ Γ̃(t). For s sufficiently close to t,

(γ(s)− z)e−γ1(s) = (γ(s)− z)e−F (γ(s)).

Since ζ 7→ (ζ − z)e−F (ζ) is constant on D, s 7→ (γ(s)− z)e−γ1(s) is locally constant,
hence constant on [0, 1]. Let c ∈ C be such that ec = (γ(t) − z)e−γ1(t) for all
t ∈ [0, 1]. Then t 7→ γ̃(t) := γ1(t) + c is a lifting of γ over ζ 7→ z + eζ . Then,

2πi indγ(z) = γ̃(1)− γ̃(0) = Γ̃(1)(γ(1))− Γ̃(0)(γ(0)) =

ˆ
γ

dζ

ζ − z
,

by (3.2). �

Exercise 6. Use the homotopy form of Cauchy’s theorem 4.4 to conclude that
indγ1(z) = indγ2(z), if γ1, γ2 are closed homotopic curves in C∗z.

11
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6. The homology form of Cauchy’s theorem

We consider formal sums γ1 + · · ·+ γn of curves in C and defineˆ
γ1+···+γn

f dz :=

ˆ
γ1

f dz + · · ·+
ˆ
γn

f dz (6.1)

Such formal sums of curves are called chains. (More formally, chains can be defined
as formal sums γ1 + · · ·+γn of linear functionals γi(f) =

´
γi
f dz for f ∈ C(

⋃
i |γi|),

cf. [13, 10.34].)

Chains are considered identical if they yield the same path integral for all
functions f . Thus two chains are identical if one is obtained from the other by per-
mutation of curves, subdivision of curves, fusion of sub-curves, reparameterization
of curves, cancellation of opposite curves. Chains can be added and (6.1) remains
valid for arbitrary chains. If identical chains are added, we denote the sum as a
multiple. By allowing a(−γ) = −aγ, every chain can be written as a finite linear
combination

γ = a1γ1 + · · ·+ anγn,

where ai ∈ Z, all γi are different, and no two γi are opposite. We allow zero
coefficients, in particular, the zero chain 0. Clearly, a chain can be represented as
a sum of paths in many ways.

For a formal sum γ = γ1 + · · ·+γn of paths γi we set |γ| =
⋃n
i=1 |γi| and |0| = ∅.

Note that |γ| depends on the representation of γ (due to cancellation of opposite
curves). We will consider chains contained in a given domain U ⊆ C. This means
that the chains have a representation by paths in U and only such representations
are considered.

A chain is called a cycle if it can be represented as a sum of closed curves. For
a cycle γ and a point z 6∈ |γ| the index of z with respect to γ is defined by

indγ(z) =
1

2πi

ˆ
γ

dζ

ζ − z
. (6.2)

Clearly,

indγ1+γ2(z) = indγ1(z) + indγ2(z), ind−γ(z) = − indγ(z). (6.3)

A cycle γ in a domain U ⊆ C is said to be homologous to zero with respect
to U if indγ(z) = 0 for all z ∈ C \ U ; we write γ ∼U 0. Two cycles γ1, γ2 in U are
homologous in U , in symbols γ1 ∼U γ2, if γ1 − γ2 ∼U 0. By (6.3),

γ1 ∼U γ2 ⇔ indγ1(z) = indγ2(z) for all z 6∈ U.

This defines an equivalence relation on the set of cycles in U . The set of equivalence
classes, called homology classes, forms an additive group, the homology group.
If γ ∼U 0 then γ ∼U ′ 0 for all U ′ ⊇ U .

Lemma 6.1. If f ∈ H(U) then

g : U × U → C, g(z, w) :=


f(z)− f(w)

z − w
z 6= w

f ′(z) z = w
(6.4)

is continuous.

Proof. We need to check continuity at points on the diagonal z = w. Fix a ∈ U and
ε > 0. Since f ′ is continuous, there is a disk Dr(a) ⊆ U such that |f ′(ζ)−f ′(a)| < ε
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if ζ ∈ Dr(a). If z, w ∈ Dr(a), z 6= w, then ζ(t) := (1− t)z + tw ∈ Dr(a), t ∈ [0, 1],
and

|g(z, w)− g(a, a)| =
∣∣∣f(z)− f(w)

z − w
− f ′(a)

∣∣∣ =
∣∣∣ ˆ 1

0

(f ′(ζ(t))− f ′(a)) dt
∣∣∣ ≤ ε.

Thus g is continuous at (a, a). �

Theorem 6.2 (homology form of Cauchy’s theorem). Let U ⊆ C be a domain and
let f ∈ H(U).

(1) If γ is a cycle that is homologous to zero in U , thenˆ
γ

f dz = 0, (6.5)

indγ(z)f(z) =
1

2πi

ˆ
γ

f(ζ)

ζ − z
dζ, z ∈ U \ |γ|. (6.6)

(2) If γ1 and γ2 are homologous cycles in U , thenˆ
γ1

f dz =

ˆ
γ2

f dz. (6.7)

Proof. (1) Consider the continuous function g in (6.4), and define

h(z) :=
1

2πi

ˆ
γ

g(z, w) dw, z ∈ U.

For each w ∈ U we have g(·, w) ∈ H(U), since the singularity at z = w is removable
by Riemann’s theorem on removable singularities. Thus h ∈ H(U).

Our goal is to show that h(z) = 0 for z ∈ U \ |γ| which is equivalent to (6.6)
(by (6.2)). Set U1 := {z ∈ C \ |γ| : indγ(z) = 0} and define

h1(z) :=
1

2πi

ˆ
γ

f(w)

w − z
dw, z ∈ U1.

Since h1(z) = h(z) for z ∈ U ∩U1, there exists a function ϕ ∈ H(U ∪U1) such that
ϕ|U = h and ϕ|U1

= h1. Since γ is homologous to zero in U , the set U1 contains
C\U , so U ∪U1 = C and ϕ is entire. By definition U1 also contains the unbounded
connected component of the complement of |γ| on which indγ vanishes. Thus

lim
|z|→∞

ϕ(z) = lim
|z|→∞

h1(z) = 0.

By Liouville’s theorem, ϕ = 0 and hence h = 0. We proved (6.6).

Let us deduce (6.5) from (6.6). Fix a ∈ U \ |γ| and set F (z) := (z − a)f(z).
Then, as F (a) = 0,

1

2πi

ˆ
γ

f dz =
1

2πi

ˆ
γ

F (z)

z − a
dz = indγ(a)F (a) = 0.

(2) Apply (6.5) to γ = γ1 − γ2. �

Remark 6.3. Note that if γ1, γ2 are homotopic closed curves in a domain U , then
γ1, γ2 are homologous in U . The converse is false; see [12, 26.2].

Exercise 7. Let f be holomorphic in a neighborhood of the disk DR(a). Prove
that for each r ∈ (0, R) there is a constant C > 0 such that

‖f‖L∞(Dr(a)) ≤ C‖f‖L2(DR(a)),
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where ‖f‖L∞(U) = supz∈U |f(z)| and ‖f‖L2(U) = (
´
U
|f(z)|2 dx dy)1/2. Conclude

that a sequence (fn) ⊆ H(U) which is a Cauchy sequence with respect to the norm
‖ · ‖L2(U) converges uniformly on compact subsets of U to a holomorphic function.

7. Laurent series

We loosely follow the presentation in [8].

By a Laurent series we mean a (formal) series

f(z) =

∞∑
n=−∞

an(z − c)n. (7.1)

To discuss convergence of Laurent series, we must first agree on the meaning of
the convergence of a doubly infinite series

∑∞
n=−∞ αn, αn ∈ C. We say that such

a series converges if both
∑∞
n=0 αn and

∑∞
n=1 α−n converge. In this case we set

∞∑
n=−∞

αn =

∞∑
n=0

αn +

∞∑
n=1

α−n.

Exercise 8. Prove that
∑∞
n=−∞ αn converges to a complex number α if and only

if for each ε > 0 there is N ∈ N>0 such that |
∑`
n=−k αn − α| < ε if k, ` ≥ N .

A set of the form

Ar1,r2(c) := Dr2(c) \Dr1(c), 0 ≤ r1 ≤ r2 ≤ ∞, (7.2)

is called an annulus centered at c. In particular, A0,∞(c) = C \ {c} = C∗c . We

denote by Ar1,r2(c) the closure of Ar1,r2(c).

Lemma 7.1. Suppose that f(z) =
∑∞
n=−∞ an(z − c)n converges at z1 6= c and at

z2 6= c with |z1− c| < |z2− c|. Then f(z) converges normally on As1,s2(c) whenever
|z1 − c| < s1 ≤ s2 < |z2 − c|.

Proof. If f(z2) converges then
∑∞
n=0 an(z2− c)n converges and hence

∑∞
n=0 an(z−

c)n converges normally on Ds2(c) whenever s2 < |z2 − c| (by Abel’s lemma). If
f(z1) converges then so does

∑∞
n=1 a−n(z1 − c)−n. For z ∈ As1,s2(c), we have

0 < |z1 − c| < s1 ≤ |z − c| and hence |z − c|−1 ≤ s−1
1 < |z1 − c|−1. Thus∑∞

n=1 a−n(z − c)−n converges normally for |z − c| ≥ s1. �

Corollary 7.2 (annulus of convergence). Let f(z) =
∑∞
n=−∞ an(z − c)n. There

are unique numbers r1, r2 ∈ [0,∞] such that f(z) converges absolutely for all z ∈
Ar1,r2(c) and diverges for z 6∈ Ar1,r2(c). If r1 < s1 ≤ s2 < r2 then f(z) converges

normally on As1,s2(c).

Proof. Follows from Lemma 7.1. �

The function defined by a Laurent series on its annulus of convergence is holo-
morphic, since it is the uniform limit on compact subsets of a sequence of holomor-
phic functions. We will now prove the converse: any holomorphic function on an
annulus is given by a Laurent series that converges on that annulus.

We start by proving that there is at most one such expansion.

Lemma 7.3 (uniqueness of the Laurent expansion). Let 0 ≤ r1 < r2 ≤ ∞. If the
Laurent series

∑∞
n=−∞ an(z − c)n converges to a function f(z) on Ar1,r2(c), then
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for every r ∈ (r1, r2) and each n ∈ Z,

an =
1

2πi

ˆ
∂Dr(c)

f(ζ)

(ζ − c)n+1
dζ.

In particular, the an are uniquely determined by f .

Proof. Since the series converges uniformly on ∂Dr(c),ˆ
∂Dr(c)

f(ζ)

(ζ − c)k+1
dζ =

ˆ
∂Dr(c)

∞∑
n=−∞

an(ζ − c)n−k−1 dζ

=

∞∑
n=−∞

an

ˆ
∂Dr(c)

(ζ − c)n−k−1 dζ = 2πi ak. �

Theorem 7.4 (existence of the Laurent expansion). Let 0 ≤ r1 < r2 ≤ ∞. If
f ∈ H(Ar1,r2(c)) then f has a unique Laurent expansion f(z) =

∑∞
n=−∞ an(z−c)n

which converges absolutely, and normally on As1,s2(c) whenever r1 < s1 < s2 < r2.

Proof. The cycle ∂Ds2(c) − ∂Ds1(c) is homologous to 0 in Ar1,r2(c). By Cauchy’s
formula (6.6),

f(z) =
1

2πi

ˆ
∂Ds2 (c)

f(ζ)

ζ − z
dζ − 1

2πi

ˆ
∂Ds1 (c)

f(ζ)

ζ − z
dζ

for z ∈ As1,s2(c). For the second integral, observe that

1

ζ − z
= − 1

z − c
1

1− (ζ − c)/(z − c)
= − 1

z − c

∞∑
n=0

(ζ − c
z − c

)n
converges uniformly on ∂Ds1(c) because |(ζ−c)/(z−c)| = s1/|z−c| < 1. Therefore,

−
ˆ
∂Ds1 (c)

f(ζ)

ζ − z
dζ =

ˆ
∂Ds1 (c)

f(ζ)

∞∑
n=0

(ζ − c)n

(z − c)n+1
dζ

=
∑
m<0

( ˆ
∂Ds1 (c)

f(ζ)

(ζ − c)m+1
dζ
)

(z − c)m.

Similarly for the first integral, cf. [12, Theorem 12.1]. This implies the statement
in view of Corollary 7.2. �

Corollary 7.5. Let 0 ≤ r1 < r2 ≤ ∞ and f ∈ H(Ar1,r2(c)). There exists a

holomorphic function f+ on Dr2(c) and a holomorphic function f− on C \Dr1(c)
such that

f(z) = f+(z) + f−(z), z ∈ Ar1,r2(c). (7.3)

This decomposition is unique if we require that f−(z)→ 0 as |z| → ∞.

Proof. Let f(z) =
∑∞
n=−∞ an(z − c)n be the Laurent expansion of f and set

f+(z) :=
∑
n≥0

an(z − c)n and f−(z) :=
∑
n<0

an(z − c)n.

Then (7.3) holds, and f−(z)→ 0 as |z| → ∞. Let f(z) = f1(z) + f2(z) be another
such decomposition. Consider the function h defined by h(z) = f+(z) − f1(z) if
|z− c| < r2 and h(z) = f2(z)− f−(z) if |z− c| > r1. Then h ∈ H(C) and h(z)→ 0
as |z| → ∞. By Liouville’s theorem, h = 0. �

Let U be a domain and c ∈ U . A function f ∈ H(U \ {c}) is said to have an
isolated singularity at c. There are precisely three alternatives:
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(1) The singularity c of f is called removable if f has a holomorphic exten-

sion to c, i.e., there is a holomorphic function f̃ : U → C with f̃ |U\{c} = f .
By Riemann’s theorem on removable singularities, this is the case if and
only if f is bounded near c.

(2) The singularity c of f is called a pole of order m if there are complex
numbers a1, . . . , am, where m > 0 and am 6= 0, such that

f(z)−
m∑
k=1

ak
(z − c)k

has a removable singularity at c. Note that f has a pole at c if and only
if |f(z)| → ∞ as z → c.

(3) Singularities that are neither removable nor poles are called essential
singularities. For instance, f(z) = exp(1/z) has an essential singularity
at 0. The big Picard theorem 27.2 says that the f assumes all values in
C except possibly one in any neighborhood of an essential singularity.

Theorem 7.6 (classification of singularities via Laurent series). If f ∈ H(D∗r(c)),
where D∗r(c) := Dr(c) \ {c}, then f has a unique Laurent series expansion f(z) =∑∞
n=−∞ an(z − c)n on D∗r(c). There are three alternatives:

(1) an = 0 for all n < 0.
(2) an = 0 for all n < k < 0 and ak 6= 0.
(3) Neither (1) nor (2) applies.

They correspond precisely to the following cases:

(1’) c is a removable singularity of f .
(2’) c is a pole of order −k.
(3’) c is an essential singularity.

Proof. (1) ⇒ (1’) The power series f(z) =
∑∞
n=0 an(z − c)n converges on Dr(c)

and represents a holomorphic function on Dr(c).

(1’) ⇒ (1) If f̃ is the holomorphic extension of f to c then f̃ has a power series

expansion f̃(z) =
∑∞
n=0 bn(z − c)n on Dr(c). By the uniqueness of the Laurent

expansion 7.3, an = bn for n ≥ 0 and an = 0 for n < 0.

(2) ⇔ (2’) The statement is immediate since the equivalence of (1) and (1’) is
already established.

(3) ⇔ (3’) These are the only remaining possibilities. �

Let c be an isolated singularity of f . Let f(z) =
∑∞
n=−∞ an(z − c)n be the

Laurent expansion of f at c. If f 6≡ 0, we define the order of f at c by

ordc(f) := inf{n : an 6= 0}.

We also set ordc(0) :=∞. We call
∑−1
n=−∞ an(z − c)n the principal part of f at

c; note that it defines a function which is holomorphic in C∗c , cf. Corollary 7.5.

If c is a pole of f of order k, then we have

an = lim
z→c

1

(k + n)!

( d
dz

)k+n

(z − c)kf(z), n ≥ −k.

Example 7.7. (1) The Laurent series expansion of f(z) = z/(z − 1) about 1 is
given by

f(z) =
z

z − 1
=

1 + (z − 1)

z − 1
=

1

z − 1
+ 1.
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(2) The function f(z) = z−1(z − 1)−1 is holomorphic in C \ {0, 1}. It has two
Laurent series expansions about 0. Namely, for 0 < |z| < 1,

1

z(z − 1)
= −1

z
− 1

1− z
= −1

z
− 1− z − z2 − · · ·

and for |z| > 1,

1

z(z − 1)
= −1

z
+

1

z

1

1− z−1
=

1

z2
+

1

z3
+

1

z4
+ · · ·

Exercise 9. The function f(z) = 6z−1(z + 1)−1(z − 2)−1 is holomorphic in C \
{0,−1, 2}. It has three Laurent expansions about 0. Compute them.

Let U ⊆ C be a domain such that U ⊇ {z ∈ C : |z| > R} for some R > 0.

For f ∈ H(U) let us consider f̃ : {z ∈ C : 0 < |z| < 1/R} → C defined by

f̃(z) := f(1/z). We say that

(1) f has a removable singularity at ∞ if f̃ has a removable singularity
at 0.

(2) f has a pole of order k at ∞ if f̃ has a pole of order k at 0.

(3) f has a essential singularity at ∞ if f̃ has a essential singularity at 0.

The Laurent expansion of f̃ about 0, f̃(z) =
∑∞
n=−∞ anz

n, yields a series expansion
which converges for |z| > R,

f(z) = f̃(1/z) =

∞∑
n=−∞

anz
−n =

∞∑
n=−∞

a−nz
n.

It is called the Laurent expansion of f about ∞. By Theorem 7.6, f has
removable singularity at ∞ if and only if its Laurent series has no positive powers
of z with nonzero coefficients. Furthermore, f has a pole (resp. essential singularity)
at ∞ if and only if the Laurent series has only a finite number of (resp. infinitely
many) positive powers of z with nonzero coefficients.

Proposition 7.8. An entire function f has a pole at infinity if and only if f is a
non-constant polynomial. It has a removable singularity at ∞ if and only if it is
constant.

Proof. Since f is entire,

f(z) =

∞∑
n=0

anz
n (7.4)

for all z ∈ C. Hence f̃(z) =
∑∞
n=0 anz

−n for all z ∈ C \ {0}. Since the Laurent

expansion is unique, this is the only possible Laurent expansion of f̃ about 0, and
so (7.4) is the Laurent expansion of f about ∞. The assertions follow from the
observations made above. �

Let U ⊆ C be a domain, and let A be a discrete subset of U : by this we
mean that A is closed in U and has no accumulation point in U . Recall that a
function f ∈ H(U \A) is said to be meromorphic in U if f has either a removable
singularity or a pole at each point of A.

Let f be meromorphic on a domain U such that U ⊇ {z ∈ C : |z| > R} for some

R > 0. We say that f is meromorphic at ∞ if f̃(z) = f(1/z) is meromorphic
on D1/R(0), or equivalently, f has a removable singularity or a pole at ∞ and no
poles in {z ∈ C : |z| > R′} for some R′ > R. We will see in Proposition 31.2 that
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the meromorphic functions on the Riemann sphere Ĉ = C ∪ {∞} are precisely the
rational functions. A rational function is a quotient of polynomials.

8. The residue theorem

Let U ⊆ C be a domain and let A ⊆ U be a discrete subset. Let f ∈ H(U \A)
and let a ∈ A. Choose r > 0 such that Dr(a) ⊆ U and Dr(a) ∩ A = {a}. Then f
has a Laurent expansion

f(z) =

∞∑
n=−∞

cn(z − a)n, 0 < |z − a| < r.

The number c−1 is called the residue of f at a, we write res(f ; a) := c−1. If a is a
pole of order m of f , then

res(f ; a) = lim
z→a

1

(m− 1)!

( d
dz

)m−1

(z − a)mf(z).

Theorem 8.1 (residue theorem). Let U ⊆ C be a domain and let A ⊆ U be a
discrete subset. Let γ be a cycle in U \ A that is homologous to zero in U . Then,
for any f ∈ H(U \A), the set {a ∈ A : indγ(a) 6= 0} is finite and

1

2πi

ˆ
γ

f dz =
∑
a∈A

res(f ; a) indγ(a). (8.1)

Proof. Set B := {a ∈ A : indγ(a) 6= 0}. Let V be any connected component of
C \ |γ|. If V is unbounded or if V ∩ (C \ U) 6= ∅, then indγ vanishes on V , since
γ is homologous to zero in U and since indγ is locally constant. Since A has no
accumulation point in U , B must be finite.

Let a1, . . . , an be the points of B and let g1, . . . , gn be the principal parts of f
at a1, . . . , an. The function f −

∑n
j=1 gj has removable singularities at a1, . . . , an

and thus application of the homology form of Cauchy’s theorem 6.2 on the domain
U \ (A \B) gives ˆ

γ

f dz =

n∑
j=1

ˆ
γ

gj dz.

(Note that γ is homologous to zero with respect to U \ (A\B) since indγ(z) = 0 for
all z in C \ (U \ (A \B)) = (C \ U) ∪ (A \B) by assumption and by the definition

of B.) We have gj(z) =
∑−1
n=−∞ cj,n(z − aj)

n on C∗aj , and the series converges

uniformly on |γ|, whence

ˆ
γ

gj dz =

−1∑
n=−∞

cj,n

ˆ
γ

(z − aj)n dz = 2πi cj,−1 indγ(aj).

Here we use that only the summand for n = −1 is non-zero, by Corollary 3.3, since
(z − aj)

n has a primitive (z − aj)
n+1/(n + 1) on C∗aj if n 6= −1. This implies

(8.1). �

Theorem 8.2 (argument principle). Let f be meromorphic in U with zeros aj and
poles bk, and let γ be a cycle which is homologous to zero in U and does not pass
through any of the zeros or poles. Then

1

2πi

ˆ
γ

f ′

f
dz =

∑
j

indγ(aj)−
∑
k

indγ(bk), (8.2)

where multiple zeros or poles are repeated according to their order.
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Proof. Suppose that c is a zero of order m of f , i.e., f(z) = (z − c)mg(z), where g
is holomorphic and nowhere vanishing in a neighborhood of c. Thus,

f ′(z)

f(z)
=

m

z − c
+
g′(z)

g(z)
,

i.e., f ′/f has a simple pole with residue m at c. The same arguments show that if
f has a pole of order m at c, then f ′/f has a simple pole with residue −m at c. So
(8.2) follows from (8.1). �

Exercise 10. Prove: Let f be meromorphic in U with zeros aj and poles bk, and
let γ be a cycle which is homologous to zero in U and does not pass through any
of the zeros or poles. Then

1

2πi

ˆ
γ

zf ′(z)

f(z)
dz =

∑
j

indγ(aj)aj −
∑
k

indγ(bk)bk,

where multiple zeros or poles are repeated according to their order.

Theorem 8.3 (Rouché’s theorem). Let U ⊆ C be a domain and f, g ∈ H(U).
Suppose that Dr(c) ⊆ U and

|f(z)− g(z)| < |f(z)|+ |g(z)|, z ∈ ∂Dr(c). (8.3)

Then

#(zeros of f in Dr(c)) = #(zeros of g in Dr(c)) (8.4)

where the zeros are counted with their multiplicity.

Proof. The condition (8.3) implies that f and g cannot vanish on ∂Dr(c). Moreover,
f(z)/g(z) cannot take a value in (−∞, 0] for z ∈ ∂Dr(c); otherwise∣∣∣f(z)

g(z)
− 1
∣∣∣ = −f(z)

g(z)
+ 1 =

∣∣∣f(z)

g(z)

∣∣∣+ 1

which contradicts (8.3). It follows that tf(z) + (1 − t)g(z) 6= 0 for each t ∈ [0, 1]
and z ∈ ∂Dr(c).

Consider the curve of holomorphic functions ft(z) = tf(z)+(1−t)g(z), t ∈ [0, 1],
and the path integral

I(t) :=
1

2πi

ˆ
∂Dr(c)

f ′t(z)

ft(z)
dz, t ∈ [0, 1].

Then I(t) is a continuous function of t ∈ [0, 1] and I(t) = #(zeros of ft in Dr(c))
by the argument principle. This implies (8.4). �

Example 8.4. Let us determine the number of zeros of f(z) = z7 + 5z3 − z− 2 in
D. Set g(z) = 5z3. Then for |z| = 1,

|f(z)− g(z)| = |z7 − z − 2| ≤ 4 < |f(z)|+ |g(z)|.

Rouché’s theorem implies that f and g have the same number of zeros in D, namely
three.

Exercise 11. Deduce the fundamental theorem of algebra from Rouché’s theorem:
any polynomial P (z) = zn + an−1z

n−1 + · · · + a0 has n roots counted with their
multiplicities.

Theorem 8.5 (Hurwitz’ theorem). Let U ⊆ C be a region and let fk be a sequence
of non-vanishing holomorphic functions on U . If fk converges uniformly on compact
subsets of U to a function f , then either f is non-vanishing or f = 0.
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Proof. Assume that f 6= 0 and f(c) = 0 for some c ∈ U . There is r > 0 such that
Dr(c) ⊆ U and f is non-zero on Dr(c) \ {c}. By the argument principle 8.2,

1

2πi

ˆ
∂Dr(c)

f ′(z)

f(z)
dz = ordc(f) 6= 0, (8.5)

and for all k,
1

2πi

ˆ
∂Dr(c)

f ′k(z)

fk(z)
dz = 0. (8.6)

This leads to a contradiction, since the integrals in (8.6) tend to the integral in
(8.5) as k →∞, because fk → f and f ′k → f ′ uniformly on ∂Dr(c). �

9. Evaluation of integrals

The calculus of residues provides a method of computing a wide range of inte-
grals. Let us describe three standard classes of integrals.

Example 9.1. Consider an integral of the form

I =

ˆ 2π

0

R(cos t, sin t) dt,

where R(x, y) is a rational function without a pole on the circle x2 + y2 = 1. If we
set z = eit, then

cos t =
eit + e−it

2
=

1

2

(
z +

1

z

)
, sin t =

eit − e−it

2i
=

1

2i

(
z − 1

z

)
,

and thus

I =

ˆ
S1

1

iz
R
(1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
dz

= 2π
∑

res
[1

z
R
(1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))]
,

where the sum is over all poles in D of the function in the square brackets.

For instance, for a > 1,ˆ 2π

0

dt

a+ sin t
= 2π

∑
res

2i

z2 + 2aiz − 1
.

The function on the right-hand side has two simple poles p1 := −ia+ i
√
a2 − 1 and

p2 := −ia− i
√
a2 − 1, but only the first pole lies in D. Its residue is

lim
z→p1

(z − p1)
2i

z2 + 2aiz − 1
= lim
z→p1

2i

z − p2
=

1√
a2 − 1

.

Therefore, ˆ 2π

0

dt

a+ sin t
=

2π√
a2 − 1

.

Example 9.2. Let R(x) = P (x)/Q(x), where P , Q are polynomials in one variable
such that degQ ≥ degP + 2 and Q does not vanish on R. Let α ∈ R≥0. We claim
that ˆ ∞

−∞
R(x)eiαx dx = 2πi

∑
Im a>0

res(R(z)eiαz; a).

The integral
´∞
−∞R(x)eiαx dx converges absolutely, since degQ ≥ degP + 2. Let

γ(t) = ρeit, t ∈ [0, π], where ρ > 0. By the residue theorem 8.1,ˆ ρ

−ρ
R(x)eiαx dx+

ˆ
γ

R(z)eiαz dz = 2πi
∑

Im a>0

res(R(z)eiαz; a).
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provided that ρ is large enough. If z = ρeit, then there is a constantM > 0 such that
|R(z)| ≤M/ρ2 for large ρ, since degQ ≥ degP +2. Moreover, |eiαz| = e−α Im z ≤ 1
for z ∈ |γ|. Thus |

´
γ
R(z)eiαz dz| ≤Mπ/ρ→ 0 as ρ→∞.

Example 9.3. Let R(x) = P (x)/Q(x), where P , Q are polynomials in one variable
such that degQ ≥ degP + 2, Q does not vanish on R>0, and Q has a zero of order
at most 1 at 0. Let 0 < α < 1. We want to compute the integralˆ ∞

0

xαR(x) dx.

The set U := C \ R≥0 is simply connected, so there is a unique branch of the

logarithm g in U , i.e., g ∈ H(U) and eg(z) = z (cf. Theorem 4.8), such that

g(x+ iy)→ log x, for x > 0 as y → 0+.

Consequently,

g(x− iy)→ log x+ 2πi, for x > 0 as y → 0+.

Let γ = L1 + C1 + L2 + C2 be the path in the figure: L1, L2 are segments of the
lines Im z = ε, Im z = −ε, and C1, C2 are segments of the circles |z| = ρ, |z| = δ,
where ρ > δ, respectively.

If ρ is sufficiently large and δ sufficiently small, thenˆ
γ

eαg(z)R(z) dz = 2πi
∑
a∈U

res(eαg(z)R(z); a).

We have |eαg(z)| = eα log |z| = |z|α. Since Q has a zero of order at most 1 at 0, there
is a constant M > 0 such that |R(z)| ≤ M/|z| near 0. Thus |

´
C2
eαg(z)R(z) dz| ≤

2Mπδα → 0 as δ → 0. Since degQ ≥ degP + 2, we have |R(z)| ≤ N/|z|2 for large
|z| and some constant N > 0, and hence |

´
C1
eαg(z)R(z) dz| ≤ 2Nπρα−1 → 0 as

ρ→∞. For fixed δ and ρ,ˆ
L1+L2

eαg(z)R(z) dz → (1− e2πiα)

ˆ ρ

δ

eα log(x)R(x) dx as ε→ 0.

It follows thatˆ ∞
0

xαR(x) dx =
2πi

1− e2πiα

∑
a∈C\R≥0

res(eαg(z)R(z); a).
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Exercise 12. Show that ˆ ∞
0

dx

1 + x2
=
π

2
.

Hint: Integrate 1/(1 + z2) along the closed path formed by the segment [0, R], the
arc Reit, t ∈ [0, π], and the segment [−R, 0].

Exercise 13. Show that the function z 7→ π cot(πz) is meromorphic in C with a
simple pole with residue 1 at each integer n.

Exercise 14. Let f(z) = P (z)/Q(z) be a rational function such that degQ ≥
degP + 2. Let a1, . . . , am be its poles, all of them of order 1, and b1, . . . , bm the
respective residues, and assume that ai 6∈ Z for all i = 1, . . . ,m. Let γn be the
counter-clockwise oriented boundary of the square with vertices (n+ 1/2)(±1± i),
where n is a positive integer. Prove that there exist positive constants C,K > 0
independent of n such that |π cot(πz)| ≤ C on |γn| and |f(z)| ≤ K|z|−2 if |z| is
sufficiently large. Conclude that

lim
n→∞

ˆ
γn

f(z)π cot(πz) dz = 0,

and that

lim
n→∞

n∑
k=−n

f(k) = −
m∑
i=1

biπ cot(πai).

Note that limn,n′→∞
∑n′

k=−n f(k) exists, since |f(z)| ≤ K|z|−2 for large |z|, and
hence the last identity is equivalent to

∞∑
k=−∞

f(k) = −
m∑
i=1

biπ cot(πai).

Exercise 15. Use Exercise 14 to show that
∑∞
n=0 1/(n2 + 1) = (1 + π coth(π))/2.



CHAPTER 3

Runge’s theorem and its applications

10. The inhomogeneous Cauchy–Riemann equation

Holomorphic functions are characterized by the Cauchy–Riemann equation
∂f/∂z = 0. We shall now discuss the inhomogeneous equation ∂f/∂z = g.

We start with a Cauchy integral formula for C1-functions. For such functions,
Cauchy’s theorem is a special case of Stokes’ theorem. Let U ⊆ C be a bounded
domain such that the boundary ∂U consists of a finite number of simple closed
C1-paths. If g ∈ C1(U), then by Stokes’ theorem,ˆ

∂U

g dζ =

¨
U

dg ∧ dζ =

¨
U

(
gζ dζ + gζ dζ

)
∧ dζ =

¨
U

gζ dζ ∧ dζ, (10.1)

where ∂U is oriented such that U lies on the left of ∂U . So if g is also holomorphic
in U , then gζ = 0 and hence

´
∂U

g dζ = 0.

Proposition 10.1 (inhomogeneous Cauchy integral formula). Let U ⊆ C be a
bounded domain such that the boundary ∂U consists of a finite number of simple
closed C1-paths. If f ∈ C1(U), then

f(z) =
1

2πi

ˆ
∂U

f(ζ)

ζ − z
dζ +

1

2πi

¨
U

∂f(ζ)

∂ζ

1

ζ − z
dζ ∧ dζ, z ∈ U. (10.2)

The boundary ∂U is oriented such that U lies on the left of ∂U .

Proof. For fixed z set Uε := {ζ ∈ U : |z − ζ| > ε}, where ε > 0 is smaller that
the distance of z to the complement of U . We apply (10.1) to g : Uε → C, g(ζ) =
f(ζ)/(ζ − z), and note that Uε 3 ζ 7→ (ζ − z)−1 is holomorphic,¨

Uε

∂f(ζ)

∂ζ

1

ζ − z
dζ ∧ dζ =

ˆ
∂U

f(ζ)

ζ − z
dζ −

ˆ 2π

0

f(z + εeit)i dt. (10.3)

Now ζ 7→ (ζ − z)−1 is integrable over U , in fact, if ζ = ξ + iη = reiϕ,¨
U

|ζ − z|−1 d(ξ, η) =

¨
U−z
|ζ|−1 d(ξ, η) ≤

ˆ 2π

0

ˆ R

0

drdϕ <∞,

since U − z (being bounded) is contained in a large disk DR(0). Together with
the fact that f and ∂f/∂ζ are continuous, it implies (10.2) by letting ε → 0 in
(10.3). �

In the following

dξdη = − 1

2i
dζ ∧ dζ, (ζ = ξ + iη),

denotes the Lebesgue measure in the ζ-plane C.

Theorem 10.2 (inhomogeneous CR-equation (I)). Let f ∈ Ckc (C), k =
1, 2, . . . ,∞. Then the function

u(z) = − 1

π

¨
C

f(ζ)

ζ − z
dξdη =

1

2πi

¨
C

f(ζ)

ζ − z
dζ ∧ dζ (10.4)

23
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is in Ck(C) and satisfies
∂u

∂z
= f. (10.5)

Proof. We have

u(z) = − 1

π

¨
C

f(ζ)

ζ − z
dξdη = − 1

π

¨
C

f(ζ + z)

ζ
dξdη.

Since ζ 7→ 1/ζ is integrable on any compact subset of C, u is continuous. If h ∈ R,
h 6= 0,

u(z + h)− u(z)

h
= − 1

π

¨
C

1

ζ

f(ζ + z + h)− f(ζ + z)

h
dξdη

and letting h→ 0, we find

∂u

∂x
(z) = − 1

π

¨
C

1

ζ

∂f(ζ + z)

∂ξ
dξdη = − 1

π

¨
C

1

ζ − z
∂f(ζ)

∂ξ
dξdη,

and ∂u/∂x is continuous. Similarly ∂u/∂y is continuous and

∂u

∂y
(z) = − 1

π

¨
C

1

ζ − z
∂f(ζ)

∂η
dξdη.

Iterating this procedure we find that u ∈ Ck(C). The formulas for ∂u/∂x and
∂u/∂y give

∂u

∂z
(z) = − 1

π

¨
C

1

ζ − z
∂f(ζ)

∂z
dξdη

and by the inhomogeneous Cauchy integral formula (10.2) this equals f . �

The discussion of (10.5) will be continued in Theorem 12.2.

Exercise 16. Let f ∈ Ckc (C). Show that u(z) = −1/π
˜

C f(ζ)/(ζ − z) dξdη tends
to 0 as |z| → ∞. Prove that u is the only solution of ∂u/∂z = f with this property.
Hint: All other solutions are of the form u+ v, where v is entire.

Exercise 17. Let f ∈ Ckc (C) and let u be a solution of ∂u/∂z = f with compact
support. Let D be a large disk which contains suppu. Prove that¨

D

f(z) dz ∧ dz = 0.

Conclude that there are functions f ∈ Ckc (C) such that no solution u of ∂u/∂z = f
has compact support. Hint: Use Stokes’ theorem.

Exercise 18. Suppose that f ∈ C∞c (C) satisfies
˜

C f(z)zn dx dy = 0 for every
integer n ≥ 0. Prove that the solution (10.4) of (10.5) has compact support. Hint:
Expand the kernel 1/(ζ− z) into a geometric series for ζ in some disk D containing
supp f and z 6∈ D.

Theorem 10.3 (variant of the Cauchy integral formula). Let U ⊆ C be a domain,
K ⊆ U compact. Let ψ ∈ C∞c (U) be 1 on a neighborhood of K. Then for every
f ∈ H(U), we have

f(z) = − 1

π

¨
U

∂ψ(ζ)

∂ζ

f(ζ)

ζ − z
dξdη, z ∈ K. (10.6)

Proof. Define ϕ ∈ C∞c (C) by ϕ(z) := ψ(z)f(z) for z ∈ U and ϕ(z) := 0 if z 6∈ U .
For z ∈ K,

f(z) = ϕ(z) = − 1

π

¨
U

∂ϕ(ζ)

∂ζ

1

ζ − z
dξdη = − 1

π

¨
U

∂ψ(ζ)

∂ζ

f(ζ)

ζ − z
dξdη. �
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In comparison with the Cauchy integral formula (6.6) the integration along a
path γ has be replaced with integration over C (or actually over supp(ψ) \K) and
the winding number indγ(z) no longer appears.

11. Runge’s theorem

Let U ⊆ C be a domain and let K ⊆ U be compact. For continuous functions
f on K, we use the notation

|f |K = sup
z∈K
|f(z)|.

We define a topology on H(U) by taking as a fundamental system of neighborhoods
of f ∈ H(U) the sets

{g ∈ H(U) : |f − g|K < ε}, K ⊆ U compact, ε > 0. (11.1)

This topology is metrizable, namely it is defined by the metric

d(f, g) =

∞∑
n=1

2−n
|f − g|Kn

1 + |f − g|Kn
, f, g ∈ H(U), (11.2)

where Kn is a compact exhaustion of U (i.e. Kn are compact subsets of U with
Kn−1 ⊆ intKn for all n and U =

⋃
n≥1Kn). It makes H(U) a complete metric

space. This topology is called the topology of compact convergence, since a
sequence fn of functions in H(U) converges in H(U) if and only if fn converges
uniformly on any compact set in U . Sometimes it is also called the compact open
topology.

Exercise 19. Show that d defined by (11.2) is a metric onH(U) and that (H(U), d)
is a complete metric space. Prove that a sequence in H(U) converges uniformly on
every compact subset of U if and only if it converges for the metric d.

Exercise 20. Prove that the mapping f 7→ f ′ from H(U) to itself is continuous.

Let K ⊆ C be compact. Let O(K) denote the set of all f ∈ C(K) such that
there exists an open neighborhood U of K and F ∈ H(U) with F |K = f . We
consider O(K) as a subspace of the Banach space C(K); in general it is not closed.

If K is a compact subset of a domain U ⊆ C, then we denote by ρK : H(U)→
O(K) the restriction mapping ρK(f) = f |K .

Theorem 11.1 (Runge’s theorem (I)). Let U ⊆ C be a domain and let K ⊆ U be
compact. The following are equivalent:

(1) Every function which is holomorphic in a neighborhood of K can be ap-
proximated uniformly on K by functions in H(U), i.e., ρK(H(U)) is dense
in O(K).

(2) No connected component of U \K is relatively compact in U .
(3) For each a ∈ U \K there exists f ∈ H(U) with |f(a)| > |f |K .

We begin with an easy observation which we will use several times. Occasion-
ally, we will write V b U if we mean that V is an open relatively compact subset
of a domain U .

Lemma 11.2. Let U ⊆ C be a domain and let K ⊆ U be compact. Suppose that V
is a connected component of U \K which is relatively compact in U . Then ∂V ⊆ K.
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Proof. Suppose that a ∈ ∂V and a 6∈ K. Since V is relatively compact in U , we
have a ∈ U \K. There is r > 0 such that D = Dr(a) ⊆ U \K. Since D ∩ V 6= ∅,
D∪V is connected and D∪V ⊆ U \K. This implies D ⊆ V and thus a 6∈ ∂V . �

Proof of Runge’s theorem (I). (1)⇒ (2) Suppose that U \K has a connected com-
ponent V which is relatively compact in U . Let z0 ∈ V and f(z) = 1/(z − z0).
Then f is holomorphic in a neighborhood of K. If there is a sequence fn ∈ H(U)
which converges to f |K uniformly on K, then by the maximum principle and since
∂V ⊆ K, by Lemma 11.2,

|fn − fm|V = |fn − fm|∂V ≤ |fn − fm|K .

So fn|V converges to a function g ∈ H(V ) uniformly on V . On the other hand,
(z − z0)fn(z)→ 1 uniformly for z ∈ ∂V ⊆ K, and consequently, (z − z0)fn(z)→ 1
for z ∈ V , again by the maximum principle. Thus (z − z0)g(z) = 1 for z ∈ V , a
contradiction.

(2) ⇒ (1) Let E := ρK(H(U)). By the Hahn–Banach theorem, E is dense in
O(K) if and only if every bounded linear functional on C(K) which vanishes on E
also vanishes on O(K); see e.g. [13, Theorem 5.19]. By the Riesz representation
theorem (e.g. [13, Theorem 6.19]), it suffices to show that, if µ is a complex Borel
measure on K such that

´
K
g dµ = 0 for all g ∈ E, then also

´
K
f dµ = 0 for all

f ∈ O(K). (A proof which does not use the Riesz representation theorem can be
found in [11].)

Consider the function h ∈ H(C \K) defined by

h(z) :=

ˆ
K

dµ(ζ)

ζ − z
, z ∈ C \K.

(Holomorphy of h can be proved along the lines of [12, Theorem 12.1]: if z ∈ D =
Dr(a) ⊆ C \K then |z − a|/|ζ − a| ≤ |z − a|/r < 1, and hence the geometric series∑∞
n=0(z − a)n/(ζ − a)n+1 = 1/(ζ − z) converges uniformly on K, for fixed z ∈ D.

By interchanging summation and integration, we see that h is representable by a
power series in D.) If z ∈ C \ U then

h(k)(z) = k!

ˆ
K

dµ(ζ)

(ζ − z)k+1
= 0, k ≥ 0,

by the assumption on µ, because ζ 7→ 1/(ζ − z)k+1 belongs to H(U). Thus h
vanishes in every connected component of C \ K which intersects C \ U , by the
identity theorem. (Note that we need that all derivatives of h vanish at z ∈ C \ U ,
since the intersection of C \ K and C \ U need not be open.) Every bounded
connected component V of C \ K is of this type. For, otherwise V ⊆ U and
∂V ⊆ K ⊆ U (by Lemma 11.2, since V is relatively compact in C), hence V ⊆ U .
In this case V is a connected component of U \K which is relatively compact in
U , a contradiction. That h vanishes also in the unbounded component of C \ K
follows from the fact that, for fixed |z| > supζ∈K |ζ|,

−
N∑
n=0

ζn

zn+1
→ 1

ζ − z
as N →∞,

uniformly for ζ ∈ K. Summarizing, we showed that h = 0 on C \K.

Let f ∈ O(K). We must show that
´
K
f dµ = 0. Let W be an open neigh-

borhood of K and F ∈ H(W ) such that F |K = f . Choose ψ ∈ C∞c (W ) such that
ψ = 1 on a neighborhood W0 of K. By the variant of the Cauchy integral formula
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10.3, for z ∈ K

f(z) = − 1

π

¨
W

∂ψ(ζ)

∂ζ

F (ζ)

ζ − z
dξdη = − 1

π

¨
W\W0

∂ψ(ζ)

∂ζ

F (ζ)

ζ − z
dξdη.

By Fubini’s theorem,ˆ
K

f(z) dµ(z) = − 1

π

ˆ
K

¨
W\W0

∂ψ(ζ)

∂ζ

F (ζ)

ζ − z
dξdη dµ(z)

=
1

π

¨
W\W0

∂ψ(ζ)

∂ζ
F (ζ)h(ζ) dξdη = 0,

because h vanishes on C \K.

(2) ⇒ (3) Let U \K =
⋃
α Vα be the decomposition of U \K into connected

components. By assumption, none of the sets V α is compactly contained in U . Let
a ∈ U \ K and a ∈ Vβ . Set L := K ∪ {a}. Then U \ L =

⋃
α 6=β Vα ∪ Vβ \ {a} is

the decomposition of U \ L into connected components. No component of U \ L is
relatively compact in U . By the implication (2) ⇒ (1), the set ρL(H(U)) is dense
in O(L). The function ϕ defined by ϕ = 0 on K and ϕ(a) = 1 belongs to O(L),
since a 6∈ K. There is f ∈ H(U) such that |f − ϕ|L < 1/2, and hence

|f(a)| > 1

2
> |f |K .

(3) ⇒ (2) If V is a connected component of U \K which is relatively compact
in U , then ∂V ⊆ K, by Lemma 11.2. By the maximum principle, if a ∈ V , then

|f(a)| ≤ |f |∂V ≤ |f |K
for all f ∈ H(U), contradicting (3). �

Let U ⊆ C be a domain and K a compact subset of U . Let us define the
H(U)-hull of K by

K̂ = K̂U := {z ∈ U : |f(z)| ≤ |f |K for all f ∈ H(U)}.

Lemma 11.3 (properties of K̂). We have:

(1) dist(K,C \ U) = dist(K̂,C \ U).

(2) K̂ is contained in the convex hull of K.

(3) K̂ is the union of K and the components of U \ K which are relatively
compact in U .

(4) K̂ is compact and
̂̂
K = K̂.

(5) C \ K̂ has only finitely many connected components.

Proof. (1) Clearly, dist(K,C \ U) ≥ dist(K̂,C \ U) since K ⊆ K̂. For ζ 6∈ U the

function z 7→ 1/(z − ζ) belongs to H(U). So if z ∈ K̂ then

1

|z − ζ|
≤ sup
z∈K

1

|z − ζ|
=

1

dist(K, ζ)

which implies dist(K,C \ U) ≤ dist(K̂,C \ U).

(2) Let a ∈ C. Then f(z) = eaz belongs to H(U). If z ∈ K̂ then

|eaz| ≤ sup
w∈K

|eaw|

or equivalently

Re aRe z − Im a Im z ≤ sup
w∈K

(Re aRew − Im a Imw).
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That means that z is contained in the closed half-plane normal to (Im a,Re a)
which contains K. Since a ∈ C is arbitrary, z lies in the intersection of all closed
half-planes containing K which is precisely the convex hull of K, because K is
compact.

(3) Let V be a connected component of U \K which is relatively compact in
U . Then ∂V ⊆ K, by Lemma 11.2, and by the maximum principle

|f |V ≤ |f |K , for all f ∈ H(U).

That is, V ⊆ K̂. This shows that the union of K and all such components is

contained in K̂. Let us denote this union by K̃.

For the opposite inclusion K̂ ⊆ K̃, note first that U \ K̃ is open since it is a

union of open components of U \K. Thus K̃ is closed. We claim that K̃ is compact.
To this end let Ω b U with K ⊆ Ω. We assert that there are only finitely many
connected components V of U \K relatively compact in U and such that V 6⊆ Ω.

This implies the claim, since K̃ is contained in the finite union of Ω and such V ,
and is therefore relatively compact in U . There is a finite family D1, . . . , Dk of open
disks disjoint from K which cover ∂Ω. It suffices to show that every component
V of U \ K which is relatively compact in U and satisfies V 6⊆ Ω contains some
disk Dj ; no two components of U \K can contain the same disk. Since ∂V ⊆ K,
by Lemma 11.2, we have Ω ∩ V 6= ∅. Moreover, ∂Ω ∩ V 6= ∅ since otherwise
V = (V ∩Ω)∪ (V ∩ (U \Ω)) would be a partition of V into disjoint nonempty open
sets. Therefore V ∩Dj 6= ∅ for some j, so that V ∪Dj is a connected set contained

in U \K. It follows that Dj ⊆ V . This shows that K̃ is compact.

No connected component of U \ K̃ is relatively compact in U by the definition

of K̃. Thus, Runge’s theorem (I) 11.1 implies that for each a ∈ U \ K̃ there exists

f ∈ H(U) with |f(a)| > |f |K̃ , i.e., K̂ ⊆ K̃.

(4) We saw in the proof of (3) that K̂ is compact. That
̂̂
K = K̂ is obvious.

(5) Let D be an open disk which contains K̂. Since C\D is connected, there is

precisely one connected component V0 of C \ K̂ containing C \D. Let V1, V2, . . . be

the other connected components of C \ K̂; they are all contained in D. We assert

that Vj 6⊆ U for j ≥ 1. We have ∂Vj ⊆ K̂, by Lemma 11.2. If Vj ⊆ U then Vj
is a connected component of U \ K̂ and V j ⊆ U . That means Vj is a connected

component of U \ K̂ which is relatively compact in U , contradicting (3).

Suppose that the set {Vj}j≥1 is infinite. By the claim we may choose zj ∈ Vj\U .
Since Vj ⊆ D there is a subsequence again denoted by zj which converges to

some point z ∈ C \ U . Let B be an open disk centered at z and disjoint from K̂

(which is possible since K̂ is compact and contained in U). Then B is contained in

some connected component of C \ K̂. But the disk B meets infinitely many Vj , a
contradiction. �

So for every compact K ⊆ U the H(U)-hull K̂ is a compact subset of U con-
taining K for which the hypotheses of Runge’s theorem are satisfied. Consequently,

one may choose an increasing sequence Kj of compact sets in U such that Kj = K̂j

and every compact subset of U is contained in some Kj .

The next theorem is a version of Runge’s theorem for two open sets. We need
two topological lemmas.

Lemma 11.4. Let X be a locally compact Hausdorff space, and let K be a con-
nected component of X which is compact. Then K has a fundamental system of
neighborhoods N in X which are both open and closed in X.
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Proof. [11, Ch. 5 §3 Proposition 1]. �

Lemma 11.5. Let Y be a locally compact Hausdorff space, X a closed subset of Y ,
and K a compact connected component of X. Then there is a fundamental system
of neighborhoods U of K in Y such that ∂U ∩X = ∅.

Proof. Let Ω be an open relatively compact neighborhood of K in Y . There is a
compact set N ⊆ X which is open in X such that K ⊆ N ⊆ Ω, by Lemma 11.4.
Then A := X \ N is closed in X and hence in Y . There exist disjoint open
subsets U1, U2 of Y such that N ⊆ U1 ⊆ Ω and A ⊆ U2. (This is true since
one of the closed sets we want to separate is compact. Since Y is locally compact
and Hausdorff, we may consider its one-point compactification Ŷ which is compact
Hausdorff and hence normal. So there exist disjoint open subsets Û1, Û2 of Ŷ such
that Û1 contains N and Û2 contains the closure A of A. Note that N and A are
disjoint, because A differs from A at most by the added point ‘infinity’ (which is not

contained in any compact subset of Y ). Since Y is open in Ŷ , the sets Ui = Y ∩Ui,
i = 1, 2, are as required.) Then U1 ∩ A = ∅ and ∂U1 ∩ N = ∅. Consequently,
∂U1 ∩X = ∂U1 ∩ (N ∪A) = ∅. �

Theorem 11.6 (Runge’s theorem (II)). Let U1 ⊆ U2 be domains in C. The fol-
lowing are equivalent:

(1) Every function in H(U1) can be approximated by functions in H(U2) uni-
formly on every compact subset of U1, i.e., ρU1

(H(U2)) is dense in H(U1).
(2) No connected component of U2 \ U1 is compact.

Proof. (2) ⇒ (1) Let K be a compact subset of U1 and set L := K̂U1
. We claim

that L = L̂U2
, i.e., U2 \L has no relatively compact components in U2. In fact, if V

is a component of U2 \ L which is relatively compact in U2 then ∂V ⊆ L ⊆ U1, by
Lemma 11.2, and thus V 6⊆ U1 (otherwise V would be a component of U1 \L which
is relatively compact in U1). Let a ∈ V ∩ (U2 \ U1) and let C be the component of
U2 \ U1 containing a. Then V ∩ C 6= ∅ and so V ∪ C is connected, whence C ⊆ V .
But C is closed in U2 and V is relatively compact in U2, and hence C is compact,

contradicting (2). Thus we proved that L = L̂U2 .

Let f ∈ H(U1) and ε > 0. Then f |L ∈ O(L) and so by Runge’s theorem (I)
11.1 there exists F ∈ H(U2) such that |f − F |K ≤ |f − F |L < ε. This shows (1),
since K and ε were arbitrary.

(1) ⇒ (2) Suppose that U2 \ U1 has a compact connected component C. By
Lemma 11.5, there is an open relatively compact neighborhood V of C in U2 with
∂V ∩ (U2 \U1) = ∅, i.e., ∂V ⊆ U1. If a ∈ C then f(z) = 1/(z−a) belongs to H(U1).
By (1), there is a sequence of functions Fn ∈ H(U2) such that Fn → f uniformly
on ∂V . By the maximum principle,

|Fn − Fm|V ≤ |Fn − Fm|∂V → 0 as n,m→∞,
and so Fn converges uniformly on V to a function F . Again by the maximum
principle, 1 = limn→∞(z−a)Fn(z) = (z−a)F (z) for all z ∈ V , a contradiction. �

Theorem 11.7 (classical Runge theorem). Let U ⊆ C be a domain and let C \
U =

⋃
α∈A Cα be the decomposition of C \ U into connected components Cα. Let

A′ := {α ∈ A : Cα compact} and for each α ∈ A′ choose cα ∈ Cα. Then each
f ∈ H(U) can be approximated uniformly on compact subsets of U by rational
functions all of whose poles are contained in the set {cα}α∈A′ .

Proof. Let K be a compact subset of U . By Lemma 11.3, C \ K̂ has finitely many
connected components V0, V1, . . . , Vk; assume that V0 is the unbounded one. We
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saw in the proof of Lemma 11.3(5) that Vj 6⊆ U for j ≥ 1. So if C is the connected
component of C \ U containing a point z ∈ Vj \ U , then C ⊆ Vj , and thus C is
compact. Therefore, for each j ≥ 1 there is αj ∈ A′ such that Cαj ⊆ Vj .

Consider U0 := C\{cα1 , . . . , cαk}. Then K̂ ⊆ U0 and the connected components

of U0 \ K̂ are V0, V1 \ {cα1
}, . . . , Vk \ {cαk}, none of which is relatively compact in

U0. Thus, by Runge’s theorem (I) 11.1, if f ∈ H(U) and ε > 0, then f |K̂ ∈ O(K̂)

and there exists F ∈ H(U0) with |f − F |K̂ < ε. If gj(z) =
∑−1
n=−∞ aj,n(z − cαj )n

denotes the principal part of F at cαj then F = h+g1+. . .+gk for h ∈ H(C). There

is a polynomial p with |p− h|K̂ < ε. Moreover, if gNj (z) :=
∑−1
n=−N aj,n(z − cαj )n

then |gj − gNj |K̂ < ε for sufficiently large N . Thus, G := p + gN1 + · · · + gNk is a
rational function whose poles are among the points cα1 , . . . , cαk and which satisfies

|G− f |K̂ ≤ |G− F |K̂ + |F − f |K̂ < ε(k + 1) + ε.

The proof is complete. �

Corollary 11.8. Let U ⊆ C be a domain. Then {p|U : p polynomial} is dense in
H(U) if and only if C \ U has no compact connected component.

Proof. This follows from Theorem 11.6 and Theorem 11.7. �

Let us briefly discuss a result related to Runge’s theorem. Let K ⊆ C be
compact and let f : K → C be a function. Under what conditions is f the uniform

limit onK of rational functions with poles in Ĉ\K? There are two obvious necessary

conditions: f ∈ C(K) and f ∈ H(K̊). The Weierstrass approximation theorem
states that these conditions are also sufficient if K is an interval in R. Runge’s
theorem (I) 11.1 asserts that at least functions in O(K) have this property.

We state without proof a striking result of Mergelyan which says that the

mentioned necessary conditions are also sufficient provided that Ĉ \K has finitely
many connected components; for proofs see [13] or [8].

Theorem 11.9 (Mergelyan’s theorem). Let K ⊆ C be compact and such that Ĉ\K
has only finitely many connected components. Let f : K → C be continuous and
holomorphic in the interior of K. For each ε > 0 there is a rational function r with

poles in Ĉ \K such that |f − r|K < ε. In particular, if Ĉ \K is connected then r
can be taken to be a polynomial.

Exercise 21. Let K1 = D1(4), K2 = D1(4i), K3 = D1(−4), and K4 = D1(−4i).
Show that there exists a sequence of entire functions fn such that fn → j uniformly
on Kj for j = 1, 2, 3, 4.

Exercise 22. Prove that there exists a sequence of polynomials pn such that pn →
1 uniformly on compact subsets of {z ∈ C : Re z > 0}, pn → −1 uniformly on
compact subsets of {z ∈ C : Re z < 0}, and pn → 0 uniformly on compact subsets
of iR.

Exercise 23. Prove that there exists a sequence of entire functions fn such that
fn → 1 uniformly on compact subsets of the open upper half-plane and (fn) does
not converge at any point of the open lower half-plane.

12. The Mittag-Leffler theorem

Recall that C∗a := C \ {a}, for a ∈ C.
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Theorem 12.1 (Mittag-Leffler theorem). Let U ⊆ C be a domain and let A ⊆ U
be a discrete subset. Suppose that for each a ∈ A a function pa ∈ H(C∗a) is given.
Then there exists f ∈ H(U \ A) such that f − pa has a removable singularity at a
for all a ∈ A.

In particular, there is f ∈ H(U \ A) with prescribed principal parts at the
points of A.

Proof. If K ⊆ U is compact, then K̂ is compact and U \ K̂ has no components
which are relatively compact in U , see Lemma 11.3. There is a sequence of compact

sets Kj = K̂j such that Kj ⊆ K̊j+1 and
⋃
j≥1Kj = U .

Set gj :=
∑
a∈A∩Kj pa; the sum is finite, since A is discrete. Then gj+1 − gj =∑

a∈A∩(Kj+1\Kj) pa ∈ O(Kj). Since Kj = K̂j there exists hj ∈ H(U) such that

|gj+1 − gj − hj |Kj < 2−j , by Runge’s theorem (I) 11.1. We define

f := gj +
∑
k≥j

(gk+1 − gk − hk)− h1 − · · · − hj−1 on Kj \A.

Then f is well-defined and holomorphic in U \A, since

gj +
∑
k≥j

(gk+1 − gk − hk)− h1 − · · · − hj−1

= gj+1 +
∑
k≥j+1

(gk+1 − gk − hk)− h1 − · · · − hj .

The series
∑
k≥j(gk+1−gk−hk) converges uniformly on Kj and thus its sum belongs

to H(K̊j). Moreover, gj − pa is holomorphic at a if a ∈ A ∩Kj . �

Theorem 12.2 (inhomogeneous CR-equation (II)). Let U ⊆ C be a domain and
let f ∈ C∞(U). Then there exists u ∈ C∞(U) with

∂u

∂z
= f. (12.1)

Proof. For each compact K ⊆ U there is v ∈ C∞(U) with ∂v/∂z = f on a neigh-
borhood of K; apply Theorem 10.2 to ψf , where ψ ∈ C∞c (U) and ψ = 1 on some
neighborhood of K.

Let Kj be a sequence of compact sets in U such that Kj ⊆ K̊j+1, Kj = K̂j

and U =
⋃
j Kj . Let vj ∈ C∞(U) be such that ∂vj/∂z = f on some neighborhood

of Kj . Then vj+1 − vj ∈ O(Kj), since ∂/∂z(vj+1 − vj) = 0. By Runge’s theorem
(I) 11.1, there exists hj ∈ H(U) such that |vj+1 − vj − hj |Kj < 2−j . We define

u := vj +
∑
k≥j

(vk+1 − vk − hk)− h1 − · · · − hj−1 on Kj .

As in the proof of the Mittag-Leffler theorem 12.1, u is well-defined on U . Since
vk+1− vk−hk is holomorphic on K̊j for k ≥ j and the series

∑
k≥j(vk+1− vk−hk)

converges uniformly onKj , we have u−vj ∈ H(K̊j), and hence ∂u/∂z = ∂vj/∂z = f

on K̊j . The result follows, since j was arbitrary. �

Exercise 24. Let U ⊆ C be a domain and let f ∈ C∞(U). Prove that the equation
∆u = f admits a solution u ∈ C∞(U). Here ∆ = ∂2

x + ∂2
y = 4∂z∂z is the Laplace

operator. Conclude that if u ∈ C2(U) satisfies ∆u = 0, then u is actually in C∞(U).
Hint: Check that ∂zu = ∂zu and use Theorem 12.2 twice.
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We will now discuss the cohomological form of the Mittag-Leffler theorem 12.1
which provides a solution to the first (additive) Cousin problem for domains
in C. In the following we use the convention C∞(∅) = {0} and H(∅) = {0}.

Proposition 12.3. Let U be an open set in Rn. Let U = {Ui}i∈I be an open cover
of U . Suppose that for any pair (i, j) ∈ I× I there is a function fij ∈ C∞(Ui∩Uj),
and that for any triple (i, j, k) ∈ I × I × I we have

fik = fij + fjk on Ui ∩ Uj ∩ Uk. (12.2)

Then there exists a family of functions {fi}i∈I with fi ∈ C∞(Ui) such that

fi − fj = fij on Ui ∩ Uj for all i, j ∈ I.

Proof. Let {ϕi}i∈I be a partition of unity relative to U. The function{
ϕj(x)fij(x) if x ∈ Ui ∩ Uj ,
0 if x ∈ Ui \ (Ui ∩ Uj),

is in C∞(Ui); we denote this function simply by ϕjfij . Define

fi :=
∑

j∈I\{i}

ϕjfij on Ui.

This sum contains only finitely many nonzero terms near any point of Ui, since the
family {suppϕi} is locally finite. Thus fi ∈ C∞(Ui). Taking i = j = k in (12.2)
we may conclude that fii = 0 on Ui, and taking k = i we find fij + fji = fii = 0,
i.e., fij = −fji on Ui ∩ Uj . Then, with (12.2),

fk − f` =
∑

j∈I\{k,`}

ϕj(fkj − f`j) + ϕ`fk` − ϕkf`k

=
∑

j∈I\{k,`}

ϕjfk` + ϕ`fk` + ϕkfk` =
(∑
j∈I

ϕj

)
fk` = fk`. �

Theorem 12.4 (additive Cousin problem). Let U ⊆ C be a domain. Let U =
{Ui}i∈I be an open cover of U . Suppose that for any pair (i, j) ∈ I × I there is a
function fij ∈ H(Ui ∩ Uj), and that for any triple (i, j, k) ∈ I × I × I we have

fik = fij + fjk on Ui ∩ Uj ∩ Uk.
Then there exists a family of functions {fi}i∈I with fi ∈ H(Ui) such that

fi − fj = fij on Ui ∩ Uj for all i, j ∈ I.

Proof. By Proposition 12.3, there is a family {ϕi}i∈I where ϕi ∈ C∞(Ui) and
ϕi − ϕj = fij on Ui ∩ Uj for all i, j ∈ I. In particular, ∂ϕi/∂z − ∂ϕi/∂z = 0 on
Ui ∩ Uj . So there exists ϕ ∈ C∞(U) such that ϕ|Ui = ∂ϕi/∂z for all i ∈ I. By
Theorem 12.2, there is u ∈ C∞(U) satisfying ∂u/∂z = ϕ on U . Set fi := ϕi − u on
Ui. Then ∂fi/∂z = 0 on Ui, i.e., fi ∈ H(Ui). If i, j ∈ I then fi− fj = ϕi−ϕj = fij
on Ui ∩ Uj . �

Theorem 12.4 implies the Mittag-Leffler theorem 12.1. Let U ⊆ C be a domain and
let A ⊆ U be discrete. Let Ua be a neighborhood of a ∈ A in U not containing
any other point of A, and let pa ∈ H(Ua \ {a}). Let ∗ be some symbol and set
I := A ∪ {∗}, U∗ := U \ A, p∗ := 0. For i, j ∈ I, put fij := pi − pj on Ui ∩ Uj .
Then fij ∈ H(Ui∩Uj). By Theorem 12.4, there is a family {fi}i∈I with fi ∈ H(Ui)
and fi − fj = pi − pj on Ui ∩ Uj . Then there is a function f on U \ A with
f = pi − fi on Ui \ A. In particular, f = p∗ − f∗ = −f∗ ∈ H(U∗) = H(U \ A) and
f − pa = −fa ∈ H(Ua) for all a ∈ A. �
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Exercise 25. Let U1, U2 be domains in C and let f ∈ H(U1∩U2). Show that there
are functions f1 ∈ H(U1) and f2 ∈ H(U2) such that f = f1 − f2 on U1 ∩ U2. For
U1 = {z ∈ C : Re z < 1}, U2 = {z ∈ C : Re z > −1}, and f(z) = 1/(z2 − 1), find
explicit functions f1, f2 satisfying the above properties.

13. The cohomology form of Cauchy’s theorem

Let U ⊆ C be a domain. Let U = {Ui}i∈I be an open cover of U . Let
J := {(i, j) ∈ I × I : Ui ∩ Uj 6= ∅}. For every open subset V ⊆ C let us consider
C(V ) := {f : V → C : f locally constant}. Let

C1(U,C) :=
∏

(i,j)∈J

C(Ui ∩ Uj).

An element of C1(U,C) is called a 1-cochain of the cover U with values in C. The
1-cochains (cij)(i,j)∈J ∈ C1(U,C) which satisfy

cij + cjk + cki = 0 on Ui ∩ Uj ∩ Uk if Ui ∩ Uj ∩ Uk 6= ∅

are called 1-cocycles of the cover U with values in C. Let Z1(U,C) be the set of
all 1-cocycles. Let us consider the set of 0-cochains C0(U,C) :=

∏
i∈I C(Ui) and

define a mapping

δ : C0(U,C)→ Z1(U,C)

by assigning c = (ci)i∈I ∈ C0(U,C) the element δc ∈ Z1(U,C) given by

(δc)ij = ci|Ui∩Uj − cj |Ui∩Uj = ci − cj on Ui ∩ Uj for (i, j) ∈ J.

Set B1(U,C) := δC0(U,C). Observe that Z1(U,C) and B1(U,C) are complex vector
spaces and δ is C-linear. The quotient vector space

H1(U,C) := Z1(U,C)/B1(U,C)

is the first cohomology group of the cover U with values in C.

Let U ⊆ C be a domain. Let U = {Ui}i∈I be an open cover of U by connected,
simply connected sets Ui. We define a homomorphism of C-vector spaces

δU : H(U)→ H1(U,C)

as follows. Let f ∈ H(U). Then, since Ui is simply connected, there is a primitive
Fi of f on Ui, by Theorem 4.9. Then F ′i − F ′j = f − f = 0 on Ui ∩ Uj so that
cij := Fi − Fj is locally constant on Ui ∩ Uj . If Ui ∩ Uj ∩ Uk 6= ∅ then

cij + cjk + cki = Fi − Fj + Fj − Fk + Fk − Fi = 0,

so that (cij)(i,j)∈J ∈ Z1(U,C). We let δU(f) be the class in H1(U,C) of (cij)(i,j)∈J .

To show that this definition is meaningful we need to check that it does not
depend on the choice of the primitives Fi. Let {Gi}i∈I be a different choice. Then
G′i − F ′i = 0 on Ui, and since Ui is connected, ci := Gi − Fi is a constant. If
gij := Gi−Gj on Ui∩Uj , then gij − cij = ci− cj on Ui∩Uj , i.e., (gij − cij)(i,j)∈J ∈
B1(U,C). So δU is well-defined.

Let us denote by d = dU : H(U)→ H(U) the derivative d(f) = f ′.

Theorem 13.1 (cohomological form of Cauchy’s theorem). Let U ⊆ C be a region
and let U = {Ui}i∈I be an open cover of U by connected, simply connected sets Ui.
Then the following sequence is exact

0 −→ C iU−→ H(U)
dU−→ H(U)

δU−→ H1(U,C) −→ 0

where iU sends c ∈ C to the constant function z 7→ c on U .
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Proof. Clearly, iU is injective. We have dU (f) = f ′ = 0 if and only if f is constant
since U is connected, i.e., im(iU ) = ker(dU ).

Next we show ker(δU) = im(dU ). If f = dU (F ) then δU(f) is the class of
F |Ui − F |Uj = 0 on Ui ∩ Uj , thus, δU(f) = 0. That means im(dU ) ⊆ ker(δU).
Conversely, let f ∈ ker(δU). Let Fi be a primitive of f on Ui and set cij = Fi − Fj
on Ui ∩ Uj . Since δU(f) = 0 there exists (ci)i∈I , where ci is (locally) constant on
Ui, such that ci − cj = cij on Ui ∩ Uj . Thus, Fi − ci = Fj − cj on Ui ∩ Uj , and
consequently, there is a function F on U with F |Ui = Fi−ci. Obviously, F ∈ H(U)
and dU (F )|Ui = (Fi − ci)′ = f |Ui . Hence f ∈ im(dU ).

It remains to prove δU(H(U)) = H1(U,C). Let (cij) ∈ Z1(U,C). Then cij is
locally constant, in particular, cij ∈ H(Ui∩Uj). By Theorem 12.4, there is a family
(Fi)i∈I with Fi ∈ H(Ui) and Fi − Fj = cij on Ui ∩ Uj . Since dFi − dFj = dcij = 0
on Ui ∩ Uj , there exists f ∈ H(U) such that f |Ui = dFi. Then δU(f) is the class in
H1(U,C) of ((Fi − Fj)|Ui∩Uj ) = (cij). This proves the theorem. �

Corollary 13.2 (cohomological characterization of integrability). Let U ⊆ C be
a domain. Then every f ∈ H(U) has a primitive if and only if H1(U,C) = 0 for
some open cover U of U by connected, simply connected sets. If this holds for one
such cover, then it holds for any such cover.

Proof. Fix an open cover U of U by connected, simply connected sets. Since δU is
surjective, by Theorem 13.1, H1(U,C) = 0 if and only if ker(δU) = H(U) which is
the case if and only if H(U) = im(dU ). �

Corollary 13.3. Let U ⊆ C be a simply connected region. Then H1(U,C) = 0 for
any open cover U of U by connected, simply connected sets.

Proof. Theorem 4.9 and Corollary 13.2. �

We shall see in Theorem 21.3 that also the converse holds.

14. Infinite products

Before we continue with further applications of Runge’s theorem we need some
background on infinite products.

Let an ∈ C. An infinite product
∏∞
n=1(1 + an) is said to converge if

• an 6= −1 for almost all n ∈ N,

• if n0 > 0 is such that an 6= −1 for n > n0, then limN→∞
∏N
n=n0+1(1+an)

exists and is nonzero.

If
∏∞
n=1(1 + an) converges then we define its value to be

∞∏
n=1

(1 + an) :=

n0∏
n=1

(1 + an) · lim
N→∞

N∏
n=n0+1

(1 + an).

This is independent of n0. If
∏∞
n=1(1 + an) converges then limN→∞

∏N
n=1(1 + an)

exists and equals the value of
∏∞
n=1(1 + an). The converse is not true; e.g., an =

−1/2 for all n.

Exercise 26. Show that if
∏∞
n=1(1+an) converges then limM,N→∞

∏N
n=M (1+an)

exists and equals 1. In addition show that this is not necessarily true if we allow

limN→∞
∏N
n=n0+1(1+an) = 0 in the definition of the convergence of

∏∞
n=1(1+an).

Proposition 14.1. The infinite product
∏∞
n=1(1 + |an|) converges if and only if∑∞

n=1 |an| converges.
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Proof. Suppose that
∑∞
n=1 |an| = s <∞. Then, since 1 + x ≤ ex for x ≥ 0,

1 ≤ pN :=

N∏
n=1

(1 + |an|) ≤
N∏
n=1

e|an| = exp

N∑
n=1

|an| ≤ es. (14.1)

The sequence of partial products pN is increasing and hence converges to a nonzero
limit.

For the other direction observe that ex ≤ 1 + 2x for 0 ≤ x ≤ 1. So if |an| ≤ 1,

pN ≥
N∏
n=1

e|an|/2 = exp
1

2

N∑
n=1

|an|.

Thus convergence of pN implies convergence of
∑∞
n=1 |an|. �

Proposition 14.2. Convergence of
∏∞
n=1(1 + |an|) implies convergence of∏∞

n=1(1 + an).

Proof. Suppose
∏∞
n=1(1 + |an|) converges. By Proposition 14.1, |an| → 0, in par-

ticular, there is n0 such that an 6= −1 for n ≥ n0.

For N > n0, set qN :=
∏N
n=n0+1(1 + an) and q̃N :=

∏N
n=n0+1(1 + |an|). Then,

for N > M > n0,

|qN − qM | = |qM |
∣∣∣ N∏
n=M+1

(1 + an)− 1
∣∣∣ ≤ |q̃M |∣∣∣ N∏

n=M+1

(1 + |an|)− 1
∣∣∣ = |q̃N − q̃M |;

note that
∏N
n=M+1(1 + an)− 1 is a sum of monomials in the aj and

∏N
n=M+1(1 +

|an|) − 1 is the same sum, where each aj is replaced by its absolute value |aj |. So
the convergence of the sequence q̃N implies the convergence of the sequence qN .

We may choose M > n0 + 1 such that
∏N
n=M (1 + |an|) − 1 < 1/2 for all N > M .

Then, for such N , |
∏N
n=M (1+an)−1| < 1/2 and therefore |

∏N
n=M (1+an)| > 1/2.

It follows that

|qN | =
∣∣∣ M−1∏
n=n0+1

(1 + an)
∣∣∣∣∣∣ N∏
n=M

(1 + an)
∣∣∣ ≥ 1

2

∣∣∣ M−1∏
n=n0+1

(1 + an)
∣∣∣ > 0,

and so
∏∞
n=1(1 + an) converges. �

Let us now consider infinite products of holomorphic functions.

Theorem 14.3. Let U ⊆ C be a domain, and fn ∈ H(U). If
∑∞
n=1 |fn| converges

uniformly on compact sets, then the sequence of partial products

pN (z) =

N∏
n=1

(1 + fn(z))

converges uniformly on compact sets to a holomorphic limit function f ∈ H(U).
The function f vanishes at a point z0 ∈ U if and only if fn(z0) = −1 for some n,
and

ordz0(f) =
∑
n

ordz0(1 + fn).

Proof. Fix a compact set K ⊆ U . Since
∑∞
n=1 |fn| converges uniformly on K,

there is a constant C such that
∑N
n=1 |fn| ≤ C for all N uniformly on K. Then

pN :=
∏N
n=1(1 + |fn|) ≤ eC for all N uniformly on K, by (14.1).
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Let 0 < ε < 1 and choose L such that for N ≥ M ≥ L,
∑N
n=M |fn(z)| < ε for

all z ∈ K. Then, by (14.1),

|pN (z)− pM (z)| ≤ |pM (z)| ·
∣∣∣ N∏
n=M+1

(1 + |fn(z)|)− 1
∣∣∣

≤ pM (z)
(

exp
( N∑
n=M+1

|fn(z)|
)
− 1
)

≤ eC(eε − 1)→ 0 as ε→ 0.

So the sequence pN is uniformly Cauchy on K. This implies that fN is uniformly
convergent on K, by Proposition 14.2. Since K was arbitrary, the limit function f
is holomorphic on U .

Suppose that f(z0) = 0 for some z0 ∈ U . By the definition of the convergence

of infinite products, there is n0 such that limN→∞
∏N
n=n0+1(1 + fn(z)) does not

vanish at z0. This limit represents a holomorphic function and thus is non-vanishing
in some neighborhood of z0. Since

f(z) =

n0∏
n=1

(1 + fn(z)) · lim
N→∞

N∏
n=n0+1

(1 + fn(z))

the statements about the zeros follow. �

Exercise 27. Let (an) be a sequence (with repetitions) of points in D \ {0} satis-
fying

∑∞
n=1(1− |an|) <∞. Show that the so-called Blaschke product

f(z) =

∞∏
n=1

−an
|an|

z − an
1− anz

converges uniformly on every disk Dr(0) with r < 1 and defines a holomorphic
function on D with |f(z)| ≤ 1. Prove that the zeros of f are precisely the an’s
(counted according to their multiplicities). Hint: Apply Theorem 14.3.

15. The Weierstrass theorem

We will use a variant of Runge’s theorem (I) 11.1 in which only non-vanishing
functions are allowed.

Lemma 15.1. Let U ⊆ C be a domain, and let a, b, a 6= b, lie in the same connected
component of C \ U . Then there exists f ∈ H(U) such that

ef(z) =
z − a
z − b

, z ∈ U.

Proof. Let g(z) = (z−a)/(z− b). We will show that g′/g, which is holomorphic on
U , has a primitive h on U . Then (e−hg)′ = e−hg′ − e−hh′g = 0 and thus g = ceh

for some c 6= 0. If C is such that c = eC , then f = h+ C is the desired function.

To see that g′/g has a primitive on U , let γ be any closed curve in U . Thenˆ
γ

g′

g
dz =

ˆ
γ

( 1

z − a
− 1

z − b

)
dz = 2πi(indγ(a)− indγ(b)) = 0,

since a, b lie in the same connected component of C \ |γ|. �

Proposition 15.2 (variant of Runge’s theorem). Let U ⊆ C be a domain, and let

K be a compact subset of U such that K = K̂U . Let f ∈ O(K) such that f(z) 6= 0
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for all z ∈ K. Then for every ε > 0 there exists F ∈ H(U) such that F (z) 6= 0 for
all z ∈ U and |F − f |K < ε.

Proof. By Lemma 11.3, C \ K has only finitely many connected components
V0, V1, . . . , Vn, where V0 is the unbounded component. As seen in the proof of
Lemma 11.3, Vj 6⊆ U for all j ≥ 1. So there exist aj ∈ Vj \ U for all j = 1, . . . , n.
Let R > 0 be such that K ⊆ DR(0) and set a0 := R.

By the classical Runge theorem 11.7, there is a rational function g which is
holomorphic and non-vanishing on a neighborhood of K and |f − g|K < ε, so that

g(z) = c

d∏
i=1

(z − bi)mi ,

where c 6= 0, mi ∈ Z \ {0}, and bi ∈ C \K, i = 1, . . . , d.

For 0 ≤ j ≤ n, let Aj := {i : bi ∈ Vj}. Then

g(z) = cH(z)(z −R)n0

n∏
j=0

∏
i∈Aj

( z − bi
z − aj

)mi
,

where

H(z) :=

n∏
j=1

(z − aj)nj , nj :=
∑
i∈Aj

mi.

If i ∈ Aj then aj and bi both lie in Vj . By Lemma 15.1, there exists φi,j ∈ O(K)

such that (z − bi)/(z − aj) = eφi,j(z) on a neighborhood of K. Moreover, there is

φ0 ∈ H(DR(0)) such that z − R = eφ0(z) on DR(0), by Theorem 4.8. Thus, there
exists ` ∈ O(K) such that

g(z) = cH(z)e`(z),

for z in a neighborhood of K. By Runge’s theorem (I) 11.1, for every δ > 0 there
is L ∈ H(U) with |L− `|K < δ. Then

G := cHeL

satisfies |G − g|K < ε, if δ is sufficiently small, and hence |f − G|K < 2ε. Since
aj 6∈ U , H and thus G, does not vanish in U . �

Next we will see that, if U ⊆ C is a domain and A ⊆ U is discrete, there is a
holomorphic function f ∈ H(U) which has zeros at the points of A of prescribed
orders and is nonzero elsewhere.

Theorem 15.3 (Weierstrass theorem). Let U ⊆ C be a domain and let A ⊆ U
be discrete. Suppose that for each a ∈ A an integer ma is given. Then there is a
meromorphic function f on U such that f |U\A is holomorphic and nowhere zero,

and (z − a)−maf(z) is holomorphic and nonzero at a for all a ∈ A.

Proof. Let Kj be a sequence of compact sets in U such that Kj ⊆ K̊j+1, U =
⋃
j Kj ,

and Kj = K̂j . Set

Fj(z) =
∏

a∈A∩Kj

(z − a)ma .

Then Fj+1/Fj belongs to O(Kj) and has no zeros on Kj . By Proposition 15.2,
there exists hj ∈ H(U) which has no zeros in U and∣∣∣Fj+1

Fj
hj − 1

∣∣∣
Kj

<
1

2j+1
, j ≥ 1.
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Indeed, we apply Proposition 15.2 to Fj/Fj+1 to get hj ∈ H(U) such that∣∣∣hj − Fj
Fj+1

∣∣∣
Kj

<
1

2j+1Cj
,

where Cj := |Fj+1/Fj |Kj . Then
∏
k≥j hkFk+1/Fk is holomorphic and non-

vanishing on Kj , by Theorem 14.3. We define f by setting

f = Fj
∏
k≥j

(Fk+1

Fk
hk

)
h1 · · ·hj−1 on Kj .

Then f is meromorphic on U and has the required properties. �

Remark 15.4. For U = C the theorem can be proved by writing down an infinite
product with the required properties. Define E0(z) := 1− z and

Ep(z) = (1− z) exp
(
z +

z2

2
+ · · ·+ zp

p

)
, p = 1, 2, . . .

These functions are called elementary factors. They are all entire and their
only zero is 1. Let us enumerate the points in A \ {0} by a1, a2, a3, . . . and write
mn := man . One can show that for a suitable sequence {pn} of positive integers,
e.g., pn = |mn|n, the infinite product

zm0

∞∏
n=1

(
Epn

( z
an

))mn
has the required properties. The general theorem can be proved along similar lines;
for details see e.g. [9].

In particular, let f be an entire function. Suppose that f vanishes to order m
at 0, m ≥ 0. Let (an) be the other zeros of f listed with multiplicities, i.e., mn = 1
for all n ≥ 1. Then there is an entire function g and a sequence pn such that

f(z) = zmeg(z)
∞∏
n=1

Epn

( z
an

)
, z ∈ C.

This result is called the Weierstrass factorization theorem. In fact, the entire
function h(z) = zm

∏∞
n=1Epn(z/an) has the same zeros (with multiplicities) as

f . So f/h has only removable singularities, hence can be extended to an entire
non-vanishing function. Since C is simply connected, there is g ∈ H(C) such that
f = heg, by Theorem 4.8.

Exercise 28. One can show that the second (multiplicative) Cousin problem
is always solvable for domains in C: Let U ⊆ C be a domain. Let U = {Ui}i∈I be
an open cover of U . Suppose that for any pair (i, j) ∈ I×I there is a function fij ∈
H(Ui∩Uj) vanishing nowhere in Ui∩Uj , and that for any triple (i, j, k) ∈ I× I× I
we have

fik = fijfjk on Ui ∩ Uj ∩ Uk.
Then there exists a family of functions {fi}i∈I with fi ∈ H(Ui) nowhere vanishing
on Ui such that

fi/fj = fij on Ui ∩ Uj for all i, j ∈ I.
Prove that this implies the Weierstrass theorem 15.3. Hint: Set ϕa(z) := (z− a)ma

for z ∈ Ua := U \ {a} and a ∈ A, and fab := ϕb/ϕa.

As a consequence we shall now prove that every region U ⊆ C is a domain
of holomorphy, i.e., there is a function f ∈ H(U) which cannot be extended to a
holomorphic function on a domain larger than U .
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Let U ⊆ C be a region, and f ∈ H(U). Let a ∈ ∂U . We say that f is singular
at a if, given any curve γ : [0, 1]→ C such that γ(t) ∈ U for 0 ≤ t < 1 and γ(1) = a,
the germ at γ(0) of f cannot be analytically continued along γ. If f ∈ H(U) is
singular at every point of ∂U , we say that ∂U is a natural boundary of f .

Theorem 15.5 (domain of holomorphy). Let U ⊆ C be a region. Then there exists
f ∈ H(U) such that ∂U is a natural boundary of f .

Proof. Let Dn, n ≥ 1, be a sequence of open disks such that Dn ⊆ U , {Dn} is
locally finite, U =

⋃
nDn, and the radius rn of Dn tends to 0 as n → ∞. (The

existence of such a sequence can easily be established using a compact exhaustion
of U .) Choose a sequence of points an ∈ Dn, n ≥ 1, such that an 6= am if n 6= m.
By the Weierstrass theorem 15.3, there is a function f ∈ H(U) with zeros precisely
in the set {an}. We will show that ∂U is a natural boundary of f .

Let γ : [0, 1] → C be a curve such that γ(t) ∈ U for 0 ≤ t < 1 and γ(1) =
a ∈ ∂U . Suppose, for contradiction, that the germ at γ(0) of f can be continued
analytically along γ, and let Fa be the germ at γ(1) so obtained. Let (D,F ) be a
representative of Fa, where D = Dr(a) is a small disk centered at a and F ∈ H(D).
There is ε > 0 such that for 1 − ε ≤ t < 1, γ(t) ∈ D and Fγ(t) = fγ(t). If V is the
connected component of D∩U containing {γ(t) : 1− ε ≤ t < 1}, then F = f on V .

Let D′ = Dr/2(a) be the open disk with center a and half the radius of D.
Then γ(t) ∈ D′ ∩ V for t sufficiently close to 1, and so D′ ∩ V cannot be contained
in the union of finitely many disks Dn (which is relatively compact in U). Thus,
there exists a sequence nk such that Dnk ∩ (D′ ∩ V ) 6= ∅ and the radius of Dnk is
< r/4 for all k. It follows that Dnk ⊆ V for all k, since V is connected. Hence
F (ank) = f(ank) = 0, but the sequence ank is contained in ∈ D3r/4(a) and thus
has an accumulation point in D. Consequently, F ≡ 0 and, since U is connected,
f ≡ 0 on U , a contradiction. �

Exercise 29. Consider the power series

f(z) =

∞∑
n=0

z2n , |z| < 1,

with radius of convergence 1. Prove that the natural boundary of f is ∂D. Hint:
Let ϕ = 2π`/2k, where k, ` ∈ N, and show that |f(reiϕ)| → ∞ as r → 1−.

A further consequence is the following.

Theorem 15.6 (characterization of meromorphic functions). Every meromorphic
function in a domain U ⊆ C is a quotient of two holomorphic functions in U .

Proof. Suppose that f is meromorphic in U . Let A be the set of poles of f in U ,
and for each a ∈ A denote by ma the order of the pole of f at a. By the Weierstrass
theorem 15.3, there exists h ∈ H(U) whose zero set is precisely A and ma is the
order of the zero of h at a for each a ∈ A. The singularities of the function g := fh
at the points of A are removable. So g can be extended to a function holomorphic
in U . �

Finally, let us combine the Mittag-Leffler theorem 12.1 and the Weierstrass
theorem 15.3:

Theorem 15.7. Let U ⊆ C be a domain, and A ⊆ U a discrete subset. Suppose
that we are given for each a ∈ A a neighborhood Ua of a in U , a function ϕa ∈
H(Ua \ {a}), and an integer ma > 0. Then there exists f ∈ H(U \ A) such that
f − ϕa is holomorphic at a and orda(f − ϕa) > ma for all a ∈ A.



40 3. RUNGE’S THEOREM AND ITS APPLICATIONS

Proof. By the Weierstrass theorem 15.3, there is g ∈ H(U) such that g has no zeros
outside A and orda(g) > ma for all a ∈ A. By the Mittag-Leffler theorem 12.1,
there is h ∈ H(U \A) such that h−ϕa/g is holomorphic in some neighborhood Va
of a. We claim that f := gh has the required properties. Clearly, f ∈ H(U \ A).
Moreover, f − ϕa = g(h− ϕa/g) ∈ H(Va) and orda(f − ϕa) ≥ orda(g) > ma. �

Furthermore, if we exclude essential singularities:

Theorem 15.8. Let U ⊆ C be a domain, and A ⊆ U a discrete subset. Suppose
that we are given for each a ∈ A a meromorphic function ϕa in a neighborhood of
a, and an integer ma > 0. Then there exists a meromorphic function f on U which
is holomorphic and non-vanishing on U \ A and such that orda(f − ϕa) > ma for
all a ∈ A.

Proof. Let A0 := {a ∈ A : ϕa 6= 0} and let na := orda(ϕa) for a ∈ A0. By
the Weierstrass theorem 15.3, there is a meromorphic function g on U which is
holomorphic and non-vanishing on U \A and such that orda(g) = na if a ∈ A0 and
orda(g) > ma if a ∈ A \A0. Set ψa := ϕa/g for a ∈ A0. Then ψa is holomorphic at
a and ψa(a) 6= 0. So there is a small disk Da centered at a and ha ∈ H(Da) such
that ψa = eha on Da, by Theorem 4.8.

By Theorem 15.7, there is h ∈ H(U) such that orda(h−ha) > |na|+ma for all
a ∈ A0. Define f := geh. Evidently, f is holomorphic and non-vanishing on U \A.
We have

f − ϕa = g(eh − ψa) = geh(1− eha−h).

For a ∈ A0, orda(geh) = na and orda(1− eha−h) ≥ |na|+ma + 1 so that orda(f −
ϕa) ≥ na + |na| + ma + 1 > ma. If a ∈ A \ A0 then orda(f − ϕa) = orda(f) =
orda(g) > ma. �

16. Ideals in H(U)

Let us consider some consequences for ideals in H(U). We will show that every
finitely generated ideal in H(U) is principal, and that a proper ideal in H(U) is
finitely generated if and only if it is closed.

We denote by (g1, . . . , gn) := {
∑n
k=1 fkgk : fk ∈ H(U)} the ideal generated by

g1, . . . , gn ∈ H(U); note that (1) = H(U). An ideal I is called principal if there
exists g ∈ I such that I = (g).

Lemma 16.1. Let U ⊆ C be a region. If g1, . . . , gn ∈ H(U), no gk is identically 0,
and no point of U is a zero of all gk, then (g1, . . . , gn) = (1).

Proof. We proceed by induction on n. The case n = 1 is trivial. Let n > 1 and
let g1, . . . , gn ∈ H(U) have no common zero. By the Weierstrass theorem 15.3,
there exists f ∈ H(U) such that at every point z ∈ U the order of vanishing of f
is the minimal order of vanishing of the functions g1, . . . , gn−1. Then hk = gk/f ,
1 ≤ k ≤ n−1, belong to H(U) and have no common zero. By induction hypothesis,
(h1, . . . , hn−1) = (1) and so (g1, . . . , gn) = (f, gn). Note that gn does not vanish on
the zero set of f . By Theorem 15.7, there exists ϕ ∈ H(U) such that at each point
of U the order of vanishing of 1− ϕgn is at least as large as the order of vanishing
of f . Consequently, there is ψ ∈ H(U) such that 1 = ϕgn + ψf , which shows that
(g1, . . . , gn) = (1). �

Theorem 16.2 (finitely generated ideals in H(U) (I)). Every finitely generated
ideal in H(U) is principal.
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Proof. By treating connected components separately we may assume that U is
a region. Let G1, . . . , Gn ∈ H(U). We may assume without loss of generality
that no Gk is identically 0. By the Weierstrass theorem 15.3, there exists f ∈
H(U) such that at every point z ∈ U the order of vanishing of f is the minimal
order of vanishing of the functions G1, . . . , Gn. Then the functions gk = Gk/f are
holomorphic and have no common zeros. By Lemma 16.1, (g1, . . . , gn) = (1) and
hence (G1, . . . , Gn) = (f). �

Next we will show that a proper ideal in H(U) is finitely generated if and only
if it is closed.

Lemma 16.3. Let X be a C-linear closed subspace of H(U). Suppose that for every
z ∈ U there exists f ∈ X with f(z) 6= 0. Then there exist two functions g, h ∈ X
which have no common zeros in U .

Proof. For z ∈ U consider X(z) := {f ∈ X : f(z) 6= 0}. Then X(z) is open in X.
We claim that X(z) is dense in X. Let f ∈ X and g ∈ X with g(z) 6= 0. Then
f + λg ∈ X(z) if λ 6= −f(z)/g(z). So if λ → 0, λ 6= −f(z)/g(z), then f + λg → f

in H(U). Therefore, X(z) = X.

H(U) is a complete metric space, and since X ⊆ H(U) is closed, so is X. Let
{zn} a countable set in U . By Baire’s theorem,

⋂∞
n=1X(zn) is dense in X.

Let 0 6≡ g ∈ X and let {zn} be the set of zeros of g. Let h ∈
⋂∞
n=1X(zn); then

h(zn) 6= 0 for all n. �

Theorem 16.4 (finitely generated ideals in H(U) (II)). Let U ⊆ C be a region,
and let I be a proper ideal in H(U). Then I is finitely generated if and only if I is
closed in H(U).

Proof. Suppose that I is finitely generated. By Theorem 16.2, we may assume that
I = (g) for 0 6≡ g ∈ I. Let fn ∈ (g) and suppose that fn → f uniformly on compact
sets in U . Then fn = hng for hn ∈ H(U). Let A := {z ∈ U : g(z) = 0}.

Let w ∈ U . Let D be a disk centered at w such that D ⊆ U and ∂D ∩ A = ∅.
Then, by the maximum principle,

|hn − hm|D = |hn − hm|∂D ≤ ( inf
z∈∂D

|g(z)|)−1|fn − fm|∂D → 0,

as n,m → ∞. Thus (hn) converges uniformly on compact sets in U to some
h ∈ H(U) so that f = lim fn = limhng = hg. Hence I = (g) is closed.

For the converse, suppose that I 6= (0) is a closed ideal in H(U). For z ∈ U
set mz := inff∈I ordz(f). The set {z ∈ U : mz > 0} is discrete, since I 6= (0). By
the Weierstrass theorem 15.3, there exists g ∈ H(U) such that ordz(g) = mz for
all z ∈ U . If f ∈ I then ordz(f) ≥ ordz(g), for all z ∈ U , so that f/g ∈ H(U).
Consider the closed ideal J := {f/g : f ∈ I} in H(U); that J is closed follows from
the same arguments that showed that principal ideals in H(U) are closed. Note
that for every z ∈ U there is h ∈ J such that h(z) 6= 0: if f ∈ I and ordz(f) = mz,
then ordz(f/g) = 0.

By Lemma 16.3, there exist h1, h2 ∈ J without common zero. By Lemma 16.1,
there are k1, k2 ∈ H(U) with k1h1 + k2h2 = 1, and hence k1(h1g) + k2(h2g) = g,
i.e., g ∈ I. This implies I = (g), since, for each f ∈ I, f/g ∈ H(U) as noted
before. �

Remark 16.5. H(U) is not a Noetherian ring. In fact, let (zn) be a sequence in U
without accumulation point in U , and set In := {f ∈ H(U) : f(zm) = 0 for m ≥ n}.
Then In is an ideal inH(U), In ⊆ In+1, and In 6= In+1 (by the Weierstrass theorem
15.3). Also, the proper ideal

⋃
n≥1 In is not finitely generated.





CHAPTER 4

Harmonic functions

17. The Poisson integral formula

Let U ⊆ C be a domain. A function u ∈ C2(U) is said to be harmonic if

∆u =
( ∂2

∂x2
+

∂2

∂y2

)
u = 4

∂2

∂z∂z
u = 0.

Proposition 17.1 (harmonic conjugate). Let U ⊆ C be a simply connected region,
and let u : U → R be harmonic. Then there is a C∞-function v such that u+ iv :
U → C is holomorphic.

Proof. Consider the C1-function h = ux − iuy. Then ihx = iuxx + uyx = hy, since
∆u = 0, so that h is holomorphic. By Theorem 4.9, h has a primitive H = ũ+ iṽ.
Then H ′ = ũx − iũy = ux − iuy so that ũx = ux and ũy = uy, and hence ũ = u+ c
for a constant c. Thus, H − c = u+ iṽ is holomorphic. �

The imaginary part v is unique up to an additive constant; for, if u+ iv1 and
u+ iv2 are holomorphic then i(v1− v2) is holomorphic but not open. Any function
v such that u+ iv is holomorphic is called a harmonic conjugate of u.

Proposition 17.2 (maximum principle for harmonic functions). If u : U → R
is harmonic on a region U ⊆ C and there is a point z ∈ U such that u(z) =
supζ∈U u(ζ), then u is constant on U .

Proof. Let M := {z ∈ U : u(z) = supζ∈U u(ζ)}. We show that M is open and closed
in U , and hence M = U , in particular u is constant on U . That M is closed follows
from the continuity of u. Let z ∈M and let D := Dr(z) ⊆ U . By Proposition 17.1,
there is h ∈ H(D) with Reh = u. Define f := eh. Then |f(z)| = supζ∈U |f(ζ)| and
by the maximum principle for holomorphic functions f is constant on D. Then u
is constant on D and so M is open. �

By applying the proposition to −u we obtain the minimum principle for har-
monic functions, where sup is replaced by inf in the statement.

Corollary 17.3. Let U ⊆ C be a bounded region and let u : U → R be continuous
and harmonic in U . Then maxU u = max∂U u and minU u = min∂U u. �

Exercise 30. Prove Liouville’s theorem for harmonic functions: If u : C → R is
harmonic and bounded on C, then u is constant.

Proposition 17.4 (mean value property). Let u : U → R be harmonic on a domain
U ⊆ C, and let Dr(a) ⊆ U . Then

u(a) =
1

2π

ˆ 2π

0

u(a+ reit) dt.

43
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Proof. By Proposition 17.1, there is a holomorphic function h defined in a neigh-
borhood of Dr(a) such that h = u+ iv. Then

u(a) + iv(a) =
1

2πi

ˆ
∂Dr(a)

h(z)

z − a
dz

=
1

2π

ˆ 2π

0

u(a+ reit) dt+ i
1

2π

ˆ 2π

0

v(a+ reit) dt

which implies the assertion. �

Let ui : D→ R, i = 1, 2, be continuous and harmonic in D. If u1 = u2 on ∂D,
then u1 = u2 on D, by the maximum principle for harmonic functions 17.2. So a
harmonic function u on D that extends continuously to D is completely determined
by its values on the boundary ∂D. Proposition 17.4 makes this precise for the
origin. We will now derive a formula for the values of u at every point in D.

To this end observe that, for every a ∈ D, the mapping

ϕa(z) :=
z − a
1− az

(17.1)

is an automorphism of D which extends to a holomorphic and invertible map on a
neighborhood of D satisfying ϕ−1

a = ϕ−a and ϕa(a) = 0.

Exercise 31. Let a ∈ D. Prove that ϕa(z) = (z − a)/(1− az) is holomorphic and
invertible on a neighborhood of D with ϕ−1

a = ϕ−a. Show that |ϕa(z)| = 1 for
z ∈ ∂D.

Theorem 17.5 (Poisson integral formula). Let u be a harmonic function on a
neighborhood of D. Then

u(z) =
1

2π

ˆ 2π

0

u(eit)
1− |z|2

|z − eit|2
dt, z ∈ D. (17.2)

Proof. By the mean value property 17.4, applied to the harmonic function u ◦ ϕ−z
we get

u(z) = (u ◦ ϕ−z)(0) =
1

2π

ˆ 2π

0

u(ϕ−z(e
it)) dt =

1

2πi

ˆ
∂D

u(ϕ−z(ζ))

ζ
dζ.

The mapping ϕz restricts to a C1-diffeomorphism ∂D → ∂D with ϕ′z(w) = (1 −
|z|2)/(1− zw)2. Thus,

u(z) =
1

2πi

ˆ
∂D

u(w)

ϕz(w)
ϕ′z(w) dw

=
1

2π

ˆ 2π

0

u(eit)(1− zeit)
eit − z

1− |z|2

(1− zeit)2
eit dt

=
1

2π

ˆ 2π

0

u(eit)
1− |z|2

|z − eit|2
dt. �

Exercise 32. Show that if u : U → R is harmonic and h : V → U is holomorphic,
then u ◦ h is harmonic.

The expression

1

2π

1− |z|2

|z − eit|2
=

1

2π
Re

eit + z

eit − z
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is called the Poisson kernel of the unit disk. In polar coordinates z = reiθ it takes
the form

Pr(θ − t) :=
1

2π

1− r2

1− 2r cos(θ − t) + r2

and (17.2) reads

u(reiθ) =

ˆ 2π

0

u(eit)Pr(θ − t) dt.

For u ≡ 1 we obtain 1 =
´ 2π

0
Pr(θ − t) dt. If 0 < δ < π/2 and δ ≤ ϑ ≤ 2π − δ, then

0 < Pr(ϑ) ≤ 1

2π

1− r2

1− cos2 δ
(17.3)

for 0 ≤ r < 1. Indeed, if π/2 ≤ ϑ ≤ 3π/2 then cosϑ ≤ 0 so that 1−2r cos(ϑ)+r2 ≥
1. If δ ≤ ϑ ≤ π/2 then 0 ≤ cosϑ ≤ cos δ and hence 1−2r cos(ϑ)+r2 ≥ 1−2r cos(δ)+
r2 = 1− cos2 δ + (r − cos δ)2 ≥ 1− cos2 δ. Similarly for 3π/2 ≤ ϑ ≤ 2π − δ.

Exercise 33. Derive a formula analogous to the Poisson integral formula (17.2)
for the upper half plane H, by mapping H biholomorphically to D: if u is harmonic
on H, and continuous and bounded on H, then

u(z) =
1

π

ˆ ∞
−∞

u(t)
y

(x− t)2 + y2
dt, z = x+ iy ∈ H.

Theorem 17.6 (solution of the Dirichlet problem for the disk). Let f be a contin-
uous function on ∂D. Then

u(z) :=

{
1

2π

´ 2π

0
f(eit) 1−|z|2

|z−eit|2 dt if z ∈ D,
f(z) if z ∈ ∂D,

is continuous on D and harmonic on D.

Proof. Let us show first that u is harmonic in D. To this end we observe that

1− |z|2

|z − eit|2
=

eit

eit − z
+

e−it

e−it − z
− 1

and thus for z ∈ D,

u(z) =
1

2π

ˆ 2π

0

f(eit)
eit

eit − z
dt+

1

2π

ˆ 2π

0

f(eit)
e−it

e−it − z
dt− 1

2π

ˆ 2π

0

f(eit) dt.

The first integral is holomorphic, the second antiholomorphic, and the third con-
stant in z. Since ∆ = 4∂2/∂z∂z, we find that ∆u = 0 on D.

Fix t0 ∈ R. If z = reiθ ∈ D then

u(z)− f(eit0) =

ˆ 2π

0

(f(eit)− f(eit0))Pr(θ − t) dt.

Let ε > 0. By continuity of f , there is δ > 0 such that |f(eit) − f(eit0)| < ε if
|eit − eit0 | < δ. On the other hand, if |eit − eit0 | ≥ δ and eiθ is sufficiently close to
eit0 , then |ei(t−θ) − 1| ≥ δ/2. Thus, by (17.3),

|u(z)− f(eit0)| ≤
ˆ
{t:|eit−eit0 |<δ}

|f(eit)− f(eit0)|Pr(θ − t) dt

+

ˆ
{t:|eit−eit0 |≥δ}

|f(eit)− f(eit0)|Pr(θ − t) dt

≤ ε
ˆ
{t:|eit−eit0 |<δ}

Pr(θ − t) dt
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+ C(δ)(1− r2)

ˆ
{t:|eit−eit0 |≥δ}

|f(eit)− f(eit0)| dt

≤ ε+ C(δ)(1− r2)
( ˆ 2π

0

|f(eit)| dt+ 2π|f(eit0)|
)
≤ 2ε,

if r is sufficiently close to 1. �

Remark 17.7. The condition that f is continuous on ∂D can be replaced by
f ∈ L1(∂D) (where we identify functions on ∂D with 2π-periodic functions on R
and use the Lebesgue measure). Then u is harmonic on D and if f is continuous at
eit0 then u(z)→ f(eit0) as z → eit0 ; the proof is essentially the same.

By a change of variables, we can conclude the following. Let f be continuous
on ∂Dr(a) (or just integrable). Then the function defined by

u(z) :=

{
Pa,r(f)(z) if z ∈ Dr(a),

f(z) if z ∈ ∂Dr(a),

is continuous on Dr(a) (at points of ∂Dr(a), where f is continuous) and harmonic
on Dr(a), where

Pa,r(f)(z) :=

ˆ 2π

0

f(a+ reit)Pa,r(z, t) dt (17.4)

and

Pa,r(z, t) :=
1

2π
Re

reit + (z − a)

reit − (z − a)
.

Next we shall prove that a continuous function u with the mean value property
is harmonic. Actually, it suffices that for each a ∈ U there is ra > 0 such that
Dra(a) ⊆ U and for every 0 < r < ra

u(a) =
1

2π

ˆ 2π

0

u(a+ reit) dt.

Following [8] we say that u has the small circle mean value (SCMV) property
if this holds.

Lemma 17.8. Let U ⊆ C be a region, and let u : U → R be continuous with the
SCMV property. If u(z) = supζ∈U u(ζ) for some z ∈ U , then u is constant.

Proof. The set M = {z ∈ U : u(z) = supζ∈U u(ζ) =: s} is clearly closed and
nonempty. Let us prove that M is open. Let a ∈M . By assumption, for 0 < r < ra,

s = u(a) =
1

2π

ˆ 2π

0

u(a+ reit) dt ≤ 1

2π

ˆ 2π

0

s dt = s

so that u(a+ reit) = s for all 0 ≤ t ≤ 2π and all 0 < r < ra. So M is open. �

Theorem 17.9. Let U ⊆ C be a domain, and let f : U → R be continuous with
the SCMV property. Then f is harmonic.

Proof. Let D be a disk such that D ⊆ U . By Theorem 17.6, there is a harmonic
function uD : D → R such that

ũD(z) :=

{
uD(z) if z ∈ D,
f(z) if z ∈ ∂D,

is a continuous function on D. We claim that f = uD on D so that f is harmonic
on D, and thus, since D was arbitrary, also on U .
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The function h := f − ũD is continuous on D, vanishes on ∂D, and fulfills the
assumptions of Lemma 17.8 on D. Thus h ≤ 0 and h ≥ 0 (by applying the same
reasoning to −h). Thus h = 0 and f = uD on D. �

Corollary 17.10. If un : U → R is a sequence of harmonic functions which con-
verges uniformly on compact sets to u : U → R, then u is harmonic.

Proof. If Dra(a) ⊆ U then, by the mean value property 17.4,

un(a) =
1

2π

ˆ 2π

0

un(a+ reit) dt.

Letting n→∞ the assertion follows from Theorem 17.9. �

Exercise 34. Prove Jensen’s formula: Let f be holomorphic in a neighborhood
of Dr(0) with f(0) 6= 0. Assume that f does not vanish on ∂Dr(0) and let a1, . . . , ak
be the zeros of f in Dr(0) counted according to their multiplicities. Then

log |f(0)|+
k∑
j=1

log
r

|aj |
=

1

2π

ˆ 2π

0

log |f(reit)| dt. (17.5)

Hint: Use Exercise 31 to conclude that

g(z) =
f(z)∏k

j=1 ϕaj/r(z/r)
,

where ϕaj/r is defined by (17.1), is holomorphic in a neighborhood of Dr(0) and

has no zeros in Dr(0). Apply the mean value property to log |g| which is harmonic
in a neighborhood of Dr(0).

18. The Schwarz reflection principle

Lemma 18.1 (Schwarz reflection principle for harmonic functions). Let V ⊆ C be
a region such that V ∩ R = (a, b). Let U := {z ∈ V : Im z > 0} and let u : U → R
be harmonic such that for each x ∈ (a, b)

lim
z→x

u(z) = 0.

Then the function

ũ(z) :=


u(z) if z ∈ U,
0 if z ∈ (a, b),

−u(z) if z ∈ Ũ := {z : z ∈ U},

is harmonic on U ∪ (a, b) ∪ Ũ .

Proof. Obviously, ũ is continuous on W := U ∪ (a, b) ∪ Ũ . By Theorem 17.9, it
suffices to check that ũ has the SCMV property. This is clear for points in U , since
u is harmonic, and for points in Ũ , since z 7→ −u(z) is harmonic. Let x ∈ (a, b).
Let rx > 0 be such that Drx(x) ⊆W . Then, for 0 < r < rx,
ˆ 2π

0

ũ(x+ reit) dt =

ˆ π

0

ũ(x+ reit) dt+

ˆ π

0

ũ(x+ rei(t+π)) dt

=

ˆ π

0

u(x+ reit) dt−
ˆ π

0

u(x+ re−i(t+π)) dt = 0 = 2πũ(x).

The lemma follows. �
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Theorem 18.2 (Schwarz reflection principle for holomorphic functions). Let V ⊆
C be a region such that V ∩ R = (a, b). Let U := {z ∈ V : Im z > 0} and let
f : U → C be holomorphic such that for each x ∈ (a, b)

lim
z→x

Im f(z) = 0.

Let Ũ := {z : z ∈ U}. Then there exists a holomorphic function F on

U ∪ (a, b) ∪ Ũ such that F |U = f . In particular, F (z) = f(z) for z ∈ Ũ and
F (x) = limU3z→x Re f(z) for each x ∈ (a, b).

Proof. It is easy to see that z 7→ f(z) defines a holomorphic function on Ũ . If there

is a holomorphic extension F on W := U ∪ (a, b) ∪ Ũ of f , then F (z) = f(z) on Ũ ,

because z 7→ F (z) is holomorphic on W and agrees with F on (a, b).

Let x ∈ (a, b). Let D be a small disk centered at x and contained in W . Let
v(z) := Im f(z) for z ∈ D ∩ U . Then v is harmonic in D ∩ U and v(z) → 0 as
z → x ∈ (a, b)∩D. By the Schwarz reflection principle for harmonic functions 18.1,
v extends to a harmonic function ṽ on D. Choose ũ such that ũ+ iṽ is holomorphic
on D. Then, on D ∩ U , Im(f − (ũ+ iṽ)) = 0 and hence f = (ũ+C) + iṽ for some
real constant C.

Thus F0 := (ũ + C) + iṽ is a holomorphic extension of f to D. Moreover,

z 7→ F0(z) is a holomorphic function on D which coincides with F0 on D ∩ R and
thus on D. It follows that the function F defined by setting F (z) = f(z) for z ∈ U ,

F (z) = f(z) for z ∈ Ũ and F (x) = limU3z→x Re f(z) for x ∈ (a, b), is holomorphic
on U . �

Corollary 18.3. Let f ∈ C(D) such that f is holomorphic in D. If f vanishes on
an open arc I of ∂D, then f ≡ 0 on D.

Proof. If I = ∂D we may invoke the maximum principle. Otherwise there is a
point in ∂D \ I, and after applying a rotation we may assume that this point is −1.
Let ϕ : D \ {−1} → H be the inverse Cayley transform, ϕ(z) = i(1 − z)/(1 + z).
Then g := f ◦ ϕ−1 is holomorphic on H, continuous on H, and vanishes on the
interval J = ϕ(I) ⊆ R. Let U ⊆ H be an open half disk with ∂U ∩ R ⊆ J .
By the Schwarz reflection principle for holomorphic functions 18.2, g extends to a
holomorphic function on U ∪J ∪ Ũ . By the identity theorem, g ≡ 0 on U and hence
on H, which implies the assertion. �

Exercise 35. Let f be continuous on D and holomorphic in D. Assume that f is
nowhere zero on D and |f(z)| = 1 on ∂D. Prove that the function

F (z) :=

{
f(z) if |z| ≤ 1,

1/f(1/z) if |z| > 1,

is entire, and conclude that f must be constant. Hint: Show first that F is contin-
uous, then use Morera’s theorem.

19. Harnack’s principle

Proposition 19.1 (Harnack’s inequality). Let u ≥ 0 be a harmonic function on a
neighborhood of DR(a). Then, for z ∈ DR(a),

R− |z − a|
R+ |z − a|

u(a) ≤ u(z) ≤ R+ |z − a|
R− |z − a|

u(a)
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Proof. Without loss of generality a = 0. For z ∈ DR(0),

R− |z|
R+ |z|

≤ R2 − |z|2

|Reit − z|2
≤ R+ |z|
R− |z|

,

since R− |z| ≤ |Reit − z| ≤ R+ |z|. By the Poisson integral formula 17.2,

u(z) =
1

2π

ˆ 2π

0

u(Reit)
R2 − |z|2

|Reit − z|2
dt, z ∈ DR(0),

we may conclude (in view of the mean value property 17.4)

R− |z|
R+ |z|

u(0) ≤ u(z) ≤ R+ |z|
R− |z|

u(0). �

Theorem 19.2 (Harnack’s principle). Let u1 ≤ u2 ≤ · · · be harmonic functions
on a region U ⊆ C. Then either un → ∞ uniformly on compact sets or there is a
harmonic function u on U and un → u uniformly on compact sets.

So, if there is just one point z ∈ U such that {un(z)}n is bounded, then un
converges to a harmonic function u uniformly on compact sets.

Proof. If z ∈ U and un(z) → ∞, then there is n0 such that un0
(z) > 0 and hence

there is R > 0 such that DR(z) ⊆ U and un0
> 0 on DR(z). By Harnack’s

inequality 19.1, for ζ ∈ DR/2(z) and n ≥ n0,

un(ζ) ≥ R−R/2
R+R/2

un(z) =
1

3
un(z)→∞.

If z ∈ U and un(z) is bounded, then, provided DR(z) ⊆ U , by Harnack’s inequality
19.1, for ζ ∈ DR/2(z) and n ≥ m,

un(ζ)− um(ζ) ≤ R+R/2

R−R/2
(un(z)− um(z)) = 3(un(z)− um(z))→ 0.

Then un converges to a harmonic function uniformly on DR/2(z).

We have proved that the set of points on which un →∞ is open as well as the
set on which un is bounded. Since U is connected one of these two sets is empty.
Every compact subset K ⊆ U is covered by finitely many disks DR/2(z) and the
theorem follows. �





CHAPTER 5

The Riemann mapping theorem

20. The Riemann mapping theorem

We will use the Arzela–Ascoli theorem. Let (X, d) be a metric space, and
let F be a family of functions f : X → C. Then F is called equicontinuous if for
every ε > 0 there is δ > 0 such that |f(x)− f(y)| < ε for all f ∈ F and all x, y ∈ X
with d(x, y) < δ. We say that F is pointwise bounded if for each x ∈ X the set
{f(x) : f ∈ F} is bounded.

Theorem 20.1 (Arzela–Ascoli theorem). Let X be a separable metric space, and
let F be a equicontinuous pointwise bounded family of functions f : X → C. Then
every sequence (fn) in F has a subsequence which converges uniformly on compact
subsets of X.

Proof. Let E := {x1, x2, x3, . . .} be a dense subset in X. Set S0 := N>0. Suppose
that k ≥ 1 and an infinite set Sk−1 ⊆ S0 has been chosen. Then {fn(xk) : n ∈ Sk−1}
is a bounded set in C, and thus has a convergent subsequence. Let Sk ⊆ Sk−1 be
the set of indices of this subsequence. Inductively, we obtain infinite sets S0 ⊇ S1 ⊇
S2 ⊇ · · · such that lim fn(xj) exists for 1 ≤ j ≤ k if n→∞ within Sk.

Let rk be the kth term in Sk, and define S := {r1, r2, r3, . . .}. Then, for every
k, there are at most k− 1 terms of S not contained in Sk. It follows that lim fn(x)
exists for every x ∈ E as n→∞ within S.

Let K ⊆ X be compact, and let ε > 0. By equicontinuity, there is δ > 0 such
that

|fn(x)− fn(y)| < ε

if d(x, y) < δ. We may cover K be open balls B1, . . . , Bm of radius δ/2. Since E is
dense in X, there exist xi ∈ Bi ∩E for 1 ≤ i ≤ m. Thus lim fn(xi) exists for every
1 ≤ i ≤ m as n→∞ within S, whence

|fn(xi)− fm(xi)| < ε

for 1 ≤ i ≤ m provided that n,m ∈ S and n,m > N , for some integer N . If x ∈ K,
then x ∈ Bi for some i, and hence d(x, xi) < δ. Consequently,

|fn(x)− fm(x)| ≤ |fn(x)− fn(xi)|+ |fn(xi)− fm(xi)|+ |fm(xi)− fm(x)| ≤ 3ε

if n,m ∈ S and n,m > N . �

Let U ⊆ C be a region and Y a complete metric space. Then C(U, Y ) denotes
the set of continuous mappings f : U → Y . A subset F ⊆ C(U, Y ) is called
a normal family if every sequence of members of F has a subsequence which
converges uniformly on compact subsets of U . (The limit function is not required
to be in F .) We are mostly interested in the case Y = C. Later we shall also deal

with the case Y = Ĉ.

Theorem 20.2 (Montel’s theorem). Let F ⊆ H(U) be uniformly bounded on each
compact subset of the region U . Then F is a normal family.

51
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Proof. By assumption, for each compact K ⊆ U there is MK > 0 such that |f(z)| ≤
MK for all f ∈ F and all z ∈ K. Let Kn be a sequence of compact sets in U such
that Kn ⊆ K̊n+1, and U =

⋃
j Kj . There exist δn > 0 such that D2δn(z) ⊆ Kn+1

for all z ∈ Kn. Let z, w ∈ Kn such that |z − w| < δn. Then, by Cauchy’s integral
formula,

f(z)− f(w) =
1

2πi

ˆ
∂D2δn (z)

f(ζ)
( 1

ζ − z
− 1

ζ − w

)
dζ

=
z − w
2πi

ˆ
∂D2δn (z)

f(ζ)

(ζ − z)(ζ − w)
dζ.

Since |ζ − z| = 2δn and |ζ − w| > δn for ζ ∈ |γ|, we may conclude that

|f(z)− f(w)| ≤
MKn+1

δn
|z − w| (20.1)

for all f ∈ F and all z, w ∈ Kn with |z − w| < δn. That means that, for each Kn,
the restrictions of the members of F to Kn form an equicontinuous family.

Let (fk) ⊆ F be any sequence. The Arzela–Ascoli theorem 20.1 implies that
there is a subsequence which converges uniformly on K1. Applying the same ar-
gument again we find a subsequence of this sequence that converges uniformly on
K2, etc. By a diagonal argument we find a sequence gj ∈ F that is a subsequence
of each of the sequences formed above. Thus gj converges uniformly on each Kn,
and therefore on every compact K ⊆ U . �

Remark 20.3. This implies that H(U) has the Heine–Borel property: every
closed bounded subset is compact. Thus H(U) is a so-called Montel space. A
Montel space is a Hausdorff locally convex space which is barrelled and has the
Heine–Borel property. (The space H(U) is a Fréchet space and hence barrelled.)

Exercise 36. Let F be the family of all f ∈ H(D) such that f(z) = z + a2z
2 +

a3z
3 + · · · with |an| ≤ n for all n. Show that F is a normal family.

Exercise 37. Let U ⊆ C be a region such that C \ U has interior points. Let
z0 ∈ U . Prove that F = {f ∈ H(D) : f(D) ⊆ U and f(0) = z0} is compact in
H(D). Hint: If a ∈ C \ U , then z 7→ 1/(z − a) maps U biholomorphically on a
subset of a disk with finite radius.

Exercise 38. Consider the family S = {f ∈ H(D) : f injective, f(0) = 0, f ′(0) =
1} of schlicht functions.

(1) Let f ∈ S . Let r be the maximal radius such that Dr(0) ⊆ f(D). Prove
that r ≤ 1.

(2) Choose a ∈ ∂Dr(0) with a 6∈ f(D) and set g := f/a. Then D ⊆ g(D) and
1 6∈ g(D). Conclude that there is a holomorphic function ϕ : g(D) → C∗
such that ϕ(z)2 = z − 1 for all z ∈ g(D).

(3) Set h := ϕ ◦ g. Show that w ∈ h(D) implies −w 6∈ h(D).
(4) Let (fn) be a sequence of functions in S , and let an, gn, hn be as defined

in (1), (2), (3) relative to fn. Use Exercise 37 to conclude that (hn) and
(fn) have convergent subsequences.

(5) Conclude that S is compact in H(D). Hint: To see that the limit function
is injective use the argument principle 8.2.

Theorem 20.4 (Riemann mapping theorem). Every simply connected region U 6=
C is biholomorphic to D.
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The plane U = C has to be excluded, by Liouville’s theorem.

Proof. Let U 6= C be a simply connected region and let w0 6∈ U . Define F := {f ∈
H(U) : f injective, f(U) ⊆ D}. It suffices to prove that some f ∈ F is surjective
onto D.

First we show that F 6= ∅. Since U is simply connected there is ψ ∈ H(U)
such that ψ2(z) = z−w0 for all z ∈ U , by Theorem 4.8. Clearly, ψ is injective and
there are no points z1 6= z2 in U such that ψ(z1) = −ψ(z2). By the open mapping
theorem, ψ(U) contains a disk Dr(c) where 0 < r < |c|. Thus Dr(−c) ∩ ψ(U) = ∅
and f(z) := r/(ψ(z) + c) belongs to F .

Next we claim: If f ∈ F is such that f(U) 6= D and z0 ∈ U , then there is
f1 ∈ F with |f ′1(z0)| > |f ′(z0)|. We will use the functions

ϕa(z) :=
z − a
1− az

, a ∈ D,

which are automorphisms of D with inverse ϕ−a. Let f ∈ F and a ∈ D \ f(U).
Then ϕa ◦ f ∈ F and ϕa ◦ f does not vanish on U . So there exists g ∈ H(U) such
that g2 = ϕa ◦ f , by Theorem 4.8. It follows that g ∈ F . Moreover, if f1 := ϕβ ◦ g
where β = g(z0), then also f1 ∈ F . Setting s(z) = z2 we have

f = ϕ−a ◦ s ◦ g = ϕ−a ◦ s ◦ ϕ−β ◦ f1.

Thus, for F = ϕ−a ◦ s ◦ ϕ−β , we obtain,

f ′(z0) = F ′(0)f ′1(z0).

Since F (D) ⊆ D and F is not injective, the Schwarz lemma (see Exercise 39 below)
implies that |F ′(0)| < 1, and the claim follows. Indeed, application of the Schwarz
lemma to ϕf(z0) ◦ F gives |ϕ′f(z0)(f(z0))F ′(0)| < 1 and since ϕ′a(a) = (1− |a|2)−1,

we have |F ′(0)| < 1− |f(z0)|2 ≤ 1.

Fix z0 ∈ U and set η := supf∈F |f ′(z0)|. By the claim, any f ∈ F with
η = |f ′(z0)| satisfies f(U) = D. To finish the proof we must show the existence of
such an f . The family F is uniformly bounded by 1 on U , and so it is a normal
family, by Montel’s theorem 20.2. There is a sequence fk ∈ F such that |f ′k(z0)| → η
as k →∞. This sequence has a subsequence (again denoted by fk) which converges
uniformly on compact subsets of U to f ∈ H(U) and |f ′(z0)| = η. Since F 6= ∅ we
have η > 0 and so f is not constant. From fk(U) ⊆ D for all k we may conclude
f(U) ⊆ D, and by the open mapping theorem, f(U) ⊆ D. To see that f is injective
fix c ∈ U and set a = f(c) and ak = fk(c). Then each function fk − ak is nowhere-
vanishing in U \ {c}, since fk is injective. By Hurwitz’ theorem 8.5, also the limit
function f −a is nowhere-vanishing in U \ {c}, i.e., f is injective. Hence f ∈ F and
the proof is complete. �

Exercise 39. Prove the Schwarz lemma: Let f : D → D be holomorphic with
f(0) = 0. Then |f(z)| ≤ |z| for z ∈ D and |f ′(0)| ≤ 1. If for some c ∈ D∗ we
have either |f(c)| = |c| or |f ′(0)| = 1, then f is a rotation, i.e., f(z) = az for some
a with |a| = 1. Hint: Use the maximum principle for the holomorphic function
z 7→ f(z)/z.

Exercise 40. Let f : D→ D be holomorphic. Show that, if f has two fixed points,
then f(z) = z for all z ∈ D. Give an example of a holomorphic function f : D→ D
without fixed point.
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Exercise 41. The pseudo-hyperbolic distance between two points z, w ∈ D is
defined by

ρ(z, w) :=
∣∣∣ z − w
1− wz

∣∣∣.
Let f : D→ D be holomorphic. Show that

ρ(f(z), f(w)) ≤ ρ(z, w), z, w ∈ D,

and that equality holds if f ∈ Aut(D). Hint: Use the Schwarz lemma (Exercise 39).

Exercise 42. Prove the Schwarz–Pick lemma: Let f : D→ D be holomorphic.
Then

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
, z ∈ D.

Hint: Use Exercise 41.

Exercise 43. For w ∈ C and z ∈ D we define the hyperbolic length of w at z
by

‖w‖z :=
|w|

1− |z|2
.

The hyperbolic distance of two points z1, z2 ∈ D is defined by

d(z1, z2) := inf
{ˆ 1

0

‖γ′(t)‖γ(t) dt : γ ∈ C1([0, 1],D), γ(0) = z1, γ(1) = z2

}
.

Use the Schwarz–Pick lemma to prove that, for holomorphic f : D→ D,

d(f(z1), f(z2)) ≤ d(z1, z2), z1, z2 ∈ D.

Show that equality holds if f ∈ Aut(D).

Exercise 44. Show that the hyperbolic distance of 0 and s ∈ (0, 1) is given by

d(0, s) =
1

2
log

1 + s

1− s
.

Derive a formula for the hyperbolic distance of two arbitrary points z1, z2 ∈ D.
Hint: Find an automorphism ϕ of D such that ϕ(z1) = 0 and ϕ(z2) ∈ (0, 1).

21. Characterization of simply connected regions

We need a preparatory results which is of independent interest.

Lemma 21.1. Let Γ = {γ1, . . . , γN} be a finite collection of oriented intervals (line
segments) [a, b], a, b ∈ C. Suppose that for all z ∈ C,

|{γ ∈ Γ : γ starts at z}| = |{γ ∈ Γ : γ ends at z}|. (21.1)

Then γ1 + γ2 + · · ·+ γN is a cycle.

Proof. Choose β1 = [a0, a1] ∈ Γ. Assume that distinct members β1, . . . , βk of Γ
have been chosen such that βi = [ai−1, ai], for 1 ≤ i ≤ k. If ak = a0 we stop.
Otherwise ak 6= a0 and if precisely r of the intervals β1, . . . , βk end at ak then only
r − 1 of them start at ak. By (21.1), there exists an interval βk+1 ∈ Γ that starts
at ak. Since Γ is finite, we must return to a0 after finitely many, say n, steps.
Then β1 + β2 + · · ·+ βn forms a closed path. The remaining members of Γ form a
collection Γ′ that still satisfies (21.1). So the construction can be repeated for Γ′.
It follows that the members of Γ can be numbered in such a way that they form
finitely many closed paths. Their sum is a cycle. �
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Proposition 21.2. Let U ⊆ C be a domain and K ⊆ U a compact subset. There
is a cycle γ in U \K such that the Cauchy formula

f(z) =
1

2πi

ˆ
γ

f(ζ)

ζ − z
dζ (21.2)

holds for every f ∈ H(U) and every z ∈ K.

Proof. Let η := dist(K,U c)/2 > 0. Consider the (closed) squares of side length
η formed by the lattice ηZ2. Let Q1, . . . , Qm be those squares which intersect K;
they are all contained in U . Let ck denote the center of Qk and let ck + d be one
of its vertices. If we set

γk,j := [ck + ijd, ck + ij+1d]

then ∂Qk =
∑4
j=1 γk,j . Clearly, ind∂Qk(z) is either 1 if z ∈ Q̊k or 0 if z 6∈ Qk. Let

Γ̃ := {γk,j : 1 ≤ k ≤ m, 1 ≤ j ≤ 4}. Then Γ̃ satisfies (21.1). Let us remove all

members of Γ̃ whose opposites also belong to Γ̃. The collection Γ of the remaining
members still satisfies (21.1). Let γ be the cycle constructed from Γ by Lemma 21.1.
By construction, γ is a cycle in U \ K. Indeed, if E is an edge of some Qk that

intersects K then the two squares in whose boundaries E lies intersect K. So Γ̃
contains two opposite intervals with range E, and hence these intervals do not occur
in Γ.

By construction, indγ(z) =
∑m
k=1 ind∂Qk(z) if z is not in the boundary of any

Qk, and thus

indγ(z) =

{
1 if z ∈ Q̊k for some 1 ≤ k ≤ m,

0 if z lies in no Qk.

If z ∈ K, then z 6∈ |γ| and z is a limit point of the interior of some Qk. Since indγ
is constant in each component of C \ |γ|, we may conclude

indγ(z) =

{
1 if z ∈ K,

0 if z 6∈ U .

In particular, γ is homologous to zero in U and the statement follows from the
homology form of Cauchy’s theorem 6.2. �

Theorem 21.3 (characterization of simply connected regions). Let U ⊆ C be a
region. The following are equivalent:

(1) U is homeomorphic to D.
(2) U is simply connected.
(3) C \ U has no compact connected components.

(4) Ĉ \ U is connected.
(5) Any closed curve in U is homologous to 0 in U , i.e., indγ(z) = 0 for all

z ∈ C \ U .
(6) Any f ∈ H(U) can be approximated by polynomials, uniformly on compact

sets.
(7) For any open cover U of U by connected, simply connected sets, we have

H1(U,C) = 0.
(8) Any f ∈ H(U) has a primitive.
(9) If f ∈ H(U) is nowhere zero, then there exists g ∈ H(U) with eg = f .

(10) If f ∈ H(U) is nowhere zero, then there exists g ∈ H(U) with g2 = f .

Proof. (1)⇒ (2) Suppose that ϕ : U → D is a homeomorphism, and let γ : [0, 1]→
U be a closed curve in U . Then H(s, t) := ϕ−1(sϕ(γ(t))) defines a homotopy
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H : [0, 1]2 → U , where H(0, t) = ϕ−1(0), H(1, t) := γ(t), and H(s, 0) = H(s, 1)
because γ(0) = γ(1). Thus U is simply connected.

(2) ⇒ (8) ⇒ (9) ⇒ (10) was shown in Theorem 4.8, Theorem 4.9, and Re-
mark 4.10.

(10) ⇒ (1) Clearly, C is homeomorphic to D, for instance, via z 7→ z/(1 + |z|).
If U 6= C, then the (proof of the) Riemann mapping theorem 20.4 gives even a
biholomorphism between U and D.

(7) ⇔ (8) is the cohomological characterization of integrability 13.2.

(5)⇔ (8) That (5)⇒ (8) follows from the homology form of Cauchy’s theorem
6.2 and the proof of Theorem 4.9. Conversely, if c ∈ C \ U , then 1/(z − c) ∈ H(U)
and has a primitive, by (8). Then 2πi indγ(c) =

´
γ

1/(z− c) dz = 0 for every closed

path γ in U .

(5) ⇒ (4) If Ĉ \ U is not connected, then Ĉ \ U is the union of two nonempty
disjoint closed sets H and K. If we assume that ∞ ∈ H, then C \H = U ∪K and
K is compact. By Proposition 21.2, there is a cycle γ in U = (C \H) \K such that
indγ(z) = 1 for all z ∈ K, which contradicts (5).

(4) ⇒ (3) Suppose that C \ U has a compact connected component C. By
Lemma 11.4, there is a neighborhood N of C in C \ U which is open and closed in
C \ U , and relatively compact in C. Since N is closed in C \ U , and hence also in

C, N is compact. N is open in Ĉ \ U , since it is open in C \ U . N is also closed in

Ĉ\U , since it is compact. Being both open and closed, N is the union of connected

components of Ĉ \ U , none of which can contain ∞. This contradicts (4).

(3) ⇔ (6) Corollary 11.8.

(6) ⇒ (8) Let f ∈ H(U) and let γ be a closed curve in U . There is
a sequence of polynomials pn which converges to f , uniformly on |γ|. Then´
γ
f dz = limn→∞

´
γ
pn dz = 0. The proof of Theorem 4.9 implies (8). �

22. Continuity at the boundary

A Jordan curve or simple closed curve is an injective continuous function
γ : S1 → C. The celebrated Jordan curve theorem asserts that, if γ is a Jordan
curve, then C \ |γ| is the union for two disjoint open sets, one is unbounded and
the other is homeomorphic to D. We will take this result for granted.

A bounded region U ⊆ C whose boundary is a Jordan curve is called a Jordan
domain. A Jordan domain is simply connected, cf. Theorem 21.3. We will prove
in this section that a biholomorphic mapping ϕ : U1 → U2 between Jordan domains
extends to a homeomorphism ϕ̃ : U1 → U2.

Lemma 22.1. Let U be a Jordan domain bounded by the Jordan curve γ. There is
a function η defined for small r > 0 with η(r) → 0 as r → 0 such that if a, b ∈ |γ|
with |a− b| ≤ r then there is a unique arc of γ having endpoints a, b and diameter
≤ η(r).

Proof. Since γ : S1 → |γ| is an bijective continuous mapping between compact
Hausdorff spaces, it has a continuous inverse. So there is r0 > 0 such that |γ(ζ)−
γ(ζ ′)| ≤ r0 implies |ζ − ζ ′| < 2. Let σ be the unique shorter arc of S1 having
endpoints ζ, ζ ′. Let ρ := γ ◦ σ. By continuity of γ−1, we have diam(|ρ|) → 0
uniformly for |γ(ζ)− γ(ζ ′)| → 0. For 0 < r < r0 we set

η(r) := sup{diam(|ρ|) : |γ(ζ)− γ(ζ ′)| ≤ r}.
Then η(r) → 0 as r → 0, and if r1 < r0 is such that η(r1) < diam(|γ|)/2 then the
statement of the lemma holds for r ≤ r1. �
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If a, b ∈ |γ| with |a− b| sufficiently small then we say that the unique arc of γ
with endpoints a, b having diameter ≤ η(|a − b|) is the smaller arc of γ joining a
and b.

Theorem 22.2 (Carathéodory’s theorem). Let U1, U2 ⊆ C be Jordan domains. If
ϕ : U1 → U2 is a biholomorphic mapping, then ϕ extends to a homeomorphism
ϕ̃ : U1 → U2.

Proof. Let us first assume that U1 = D. Fix ζ ∈ ∂D. We will construct a continuous
extension of ϕ to ζ. Let γr denote the arc ∂Dr(ζ) ∩ D for 0 < r < 1. The curve
ϕ ◦ γr has length

L(r) =

ˆ t2(r)

t1(r)

|ϕ′(ζ + reit)|r dt,

where 0 ≤ t1(r) < t2(r) < 2π are the solutions of |ζ + reit| = 1. Let M denote
the area of ϕ(D1/2(ζ) ∩ D), which is finite since U2 is bounded. Then, by the
Cauchy–Schwarz inequality,ˆ 1/2

0

L(r)2

πr
dr =

ˆ 1/2

0

( ˆ t2(r)

t1(r)

|ϕ′(ζ + reit)|r dt
)2 1

πr
dr

≤
ˆ 1/2

0

ˆ t2(r)

t1(r)

|ϕ′(ζ + reit)|2r dt
ˆ t2(r)

t1(r)

r dt
1

πr
dr ≤M <∞.

Since 1/r is not integrable at 0, there must exists a sequence rn → 0 such that
L(rn)→ 0.

Let an, bn denote the endpoints of ϕ ◦ γrn ; they exist since each L(rn) < ∞.
Since ϕ : D→ U2 is a homeomorphism, we have an, bn ∈ ∂U2.

Set Γn := |ϕ ◦ γrn |. If an 6= bn let τn be the smaller (in the sense specified
after Lemma 22.1) of the two boundary arcs of U2 connecting an and bn. Then
Γn ∪ τn forms a Jordan curve. If an = bn, then Γn ∪ {an} is a Jordan curve. In
either case it surrounds a bounded region Wn, by the Jordan curve theorem. Let
Vn := Drn(ζ) ∩ D. Then either ϕ(Vn) = Wn or ϕ(Vn) = U2 \Wn. We claim that
ϕ(Vn) = Wn if n is sufficiently large.

In fact, let Tn := D \ V n and let n be fixed. If w ∈ Wn then w = ϕ(z)
for some z ∈ Vn ∪ Tn. If z ∈ Vn then ϕ(Vn) = Wn, by connectivity. If z ∈ Tn
then ϕ(Tn) ⊆ Wn. Let us prove that this is impossible for large n. Observe that
area(ϕ(Vn)) =

˜
Vn
|ϕ′|2 dx dy → 0 as n → ∞, and thus area(ϕ(Tn)) → area(U2).

We have |an − bn| ≤ L(rn) so that diam(τn) ≤ η(L(rn)) → 0, by Lemma 22.1. It
follows that the entire Jordan curve Γn ∪ τn, and thus also Wn, lies in the disk
centered at an with radius L(rn) + η(L(rn)). Consequently, area(Wn)→ 0 so that
ϕ(Tn) 6⊆Wn.

So we have proved that ϕ(Vn) = Wn if n is sufficiently large, as well as
diam(Wn)→ 0 and area(Wn)→ 0 as n→∞.

Let δi : [0, 1] → D, i = 1, 2, be any curves such that δi(t) ∈ D, for t ∈ [0, 1),
and δi(1) = ζ. We claim that the limits limt→1 ϕ(δi(t)), i = 1, 2, exist and coincide.
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Let ε > 0. Choose N sufficiently large that diam(WN ) < ε. If t is sufficiently
close to 1, then ϕ(δi(t)) ∈WN and hence |ϕ(δ1(t))−ϕ(δ2(t))| < ε. Thus the limits
limt→1 ϕ(δi(t)) exist and coincide with the unique point in

⋂
nWn.

This provides the continuous extension of ϕ to ∂D: if ζ ∈ ∂D choose a curve
δ : [0, 1] → D such that δ(t) ∈ D, for t ∈ [0, 1), and δ(1) = ζ, and define ϕ̃(ζ) :=
limt→1 ϕ(δ(t)); the limit exists and is independent of δ by the previous paragraph.

Let us check injectivity of ϕ̃ : D→ U2. It is enough to check that ϕ̃ is injective
on ∂D, since ϕ : D → U2 is injective and ϕ̃(∂D) ⊆ ∂U2. Let ζ, ζ ′ ∈ ∂D and
ϕ̃(ζ) = ϕ̃(ζ ′). Consider R := {rζ : 0 ≤ r ≤ 1} ∪ {rζ ′ : 0 ≤ r ≤ 1}. By assumption
ϕ(R) is a Jordan curve, let W be its interior. If V1, V2 are the connected components
of D \R, then either ϕ(V1) = W or ϕ(V2) = W . Suppose without loss of generality
that ϕ(V1) = W and let µ denote the segment on ∂D which bounds V1. Then
ϕ̃(µ) ⊆ W ∩ ∂U2 = {ϕ̃(ζ)}, i.e., ϕ̃ is constant on µ. By the Schwarz reflection
principle, see Corollary 18.3, ϕ is constant, a contradiction.

Thus we have shown that ϕ : D→ U2 extends to a bijective continuous mapping
ϕ̃ : D→ U2, thus, it is a homeomorphism. In the general case, when ϕ : U1 → U2,
let ϕi : D→ Ui, i = 1, 2, be biholomorphic mappings, which exist by the Riemann
mapping theorem 20.4. Then ϕi extends to a homeomorphism ϕ̃i : D → U i.
Similarly, the mapping ϕ−1

2 ◦ ϕ ◦ ϕ1 extends to a homeomorphism D → D. This
implies the theorem. �

Remark 22.3. The theorem extends without problems to Jordan domains in the

extended plane Ĉ.

Exercise 45. Let U ⊆ C be a bounded simply connected region with real analytic
boundary, i.e., the boundary is locally the graph of a function given by a convergent
power series. Let f : D → U be biholomorphic. Prove that f has a holomorphic
extension to some neighborhood of D. Hint: The problem is purely local. Use a
change of variables to reduce to the case that both boundaries are flat and apply
the Schwarz reflection principle.

23. Biholomorphisms of annuli

By the Riemann mapping theorem 20.4, there are, up to biholomorphism, only
two domains that are homeomorphic to the disk, namely, the disk and the plane.
If we allow holes, then the situation becomes more involved. We demonstrate this
by looking at annuli. If c > 0 and r1 < r2 then clearly the annuli Ar1,r2(0) and
Acr1,cr2(0) are biholomorphic under the mapping z 7→ cz. Surprisingly, these are
essentially the only circumstances under which two annuli are biholomorphic.

Theorem 23.1. Let Ai = {z ∈ C : 1 < |z| < Ri}, i = 1, 2, where Ri > 1.
Then A1, A2 are biholomorphic if and only if R1 = R2. Moreover, Aut(Ai) =
{eitz,Rieit/z : t ∈ R}.

Proof. Suppose that f : A1 → A2 is a biholomorphism. Then also g = R2/f :
A1 → A2 is a biholomorphism. We claim that

(1) |f(z)| has a limit as |z| → 1 which is either 1 or R2,
(2) if lim|z|→1 |f(z)| = 1 then |f(z)| → R2 as |z| → R1, and if lim|z|→1 |f(z)| =

R2 then |f(z)| → 1 as |z| → R1.

Set F := f if lim|z|→1 |f(z)| = 1 and F := g if lim|z|→1 |f(z)| = R2. Then |F (z)| →
1 as |z| → 1 and |F (z)| → R2 as |z| → R1.
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Consider the function u(z) := log |F (z)| − c log |z| for z ∈ A1, where c =
logR2/ logR1 > 0. Then u is harmonic on A1 and extends continuously by 0 to
∂A1. By the maximum principle for harmonic functions 17.2, u ≡ 0 on A1. Thus,
|F (z)| = |z|c for z ∈ A1. Let D = Dr(a) ⊆ A1. Let h ∈ H(D) be a branch of
the logarithm, i.e., z = eh(z) on D, by Theorem 4.8. Then |F (z)e−ch(z)| = 1 on
D so that F (z) = ech(z)+iθ on D for some real constant θ. Analytic continuation
of the germ Fa of F at a along the curve γ(t) = aeit, 0 ≤ t ≤ 2π, leads back to
Fa, since F is holomorphic on A1, while analytic continuation of the germ ha of h
at a along γ leads to ha + 2πi. It follows that e2πic = 1 so that c = n ∈ Z and
z−n ∈ H(A1). Consequently, F (z) = eiθzn. Since F is injective, only n = ±1
are possible, and since |F (z)| → R2 as |z| → R1 we have n = 1. Thus, either
f(z) = eiθz or R2/f(z) = g(z) = eiθz. Since |f(z)| → R2 as |z| → R1 in the first
case and |f(z)| → 1 as |z| → R1 in the second, the theorem follows.

It remains to prove the claim. Since f : A1 → A2 is biholomorphic, if a sequence
zn in A1 converges to the boundary of A1 (i.e., it has no interior accumulation
point) then so does the sequence f(zn) in A2. In particular, for small ε > 0, the set
f({z : 1 < |z| < 1 + ε}) does not intersect {z : |z| = (1 +R2)/2}. There is n0 such
that, for n ≥ n0, f(zn) is contained in a fixed component of {z : |z| 6= (1 +R2)/2}.
This implies (1). Let us assume that lim|z|→1 |f(z)| = 1. By the same reasoning
as before, |f(z)| has a limit as |z| → R1 which is either 1 or R2. By the maximum
principle, only the second possibility can occur. The claim is proved. �





CHAPTER 6

Elliptic functions and Picard’s theorem

24. Elliptic functions

Let f be meromorphic in C. Let per(f) be the set of all periods of f (including
0); recall that w is a period of f if f(z + w) = f(z) for all z. Clearly, per(f) is a
module over Z (i.e., if w1, w2 ∈ per(f) and n1, n2 ∈ Z then n1w1 +n2w2 ∈ per(f)),
so we call per(f) the period module of f .

The identity theorem implies that per(f) is discrete unless f is constant.

Lemma 24.1. For a discrete module Λ ⊆ C over Z we have three possibilities:

(1) Λ = {0},
(2) Λ = Zw for some w ∈ C∗,
(3) Λ = Zw1 + Zw2 for some w1, w2 ∈ C∗ such that w2/w1 6∈ R.

Proof. If Λ 6= {0} then there exists w1 ∈ Λ with minimal absolute value, since Λ is
discrete. Suppose that there is an element w2 ∈ Λ which is not an integer multiple
of w1, and we may assume that w2 has minimal absolute value. If w2/w1 ∈ R, then
there is an integer n such that n < w2/w1 < n+1 and hence 0 < |nw1−w2| < |w1|,
which contradicts minimality of w1.

Let us show that Λ = Zw1 +Zw2. Since w2/w1 6∈ R, we have C = Rw1 +Rw2.
Let w = λ1w1 + λ2w2 ∈ Λ. There exist integers m1,m2 such that |λi −mi| ≤ 1/2,
i = 1, 2. We have w′ := (λ1−m1)w1+(λ2−m2)w2 ∈ Λ and |w′| < |w1|/2+|w2|/2 ≤
|w2|, where the first inequality is strict, because w2/w1 6∈ R. By the way w2 was
chosen, w′ must be an integer multiple of w1, and thus w ∈ Zw1 + Zw2. �

We assume henceforth that the third alternative occurs: Λ = Zw1 + Zw2 for
some w1, w2 ∈ C∗ such that w2/w1 6∈ R.

A basis of the module Λ is any pair (w1, w2) such that every w ∈ Λ has a
unique representation w = n1w1 + n2w2. If (w1, w2) and (w′1, w

′
2) are two bases,

then there exist integers a, b, c, d such that(
w′1
w′2

)
=

(
a b
c d

)(
w1

w2

)
.

The same is true for the complex conjugates:(
w′1 w′1
w′2 w′2

)
=

(
a b
c d

)(
w1 w1

w2 w2

)
.

Since (w′1, w
′
2) also is a basis, there are integers a′, b′, c′, d′ such that(

w1 w1

w2 w2

)
=

(
a′ b′

c′ d′

)(
w′1 w′1
w′2 w′2

)
.

Consequently, (
w1 w1

w2 w2

)
=

(
a′ b′

c′ d′

)(
a b
c d

)(
w1 w1

w2 w2

)
61
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Now w1w2 − w1w2 6= 0, since otherwise any two elements in Λ would have a real
ratio, and thus (

a′ b′

c′ d′

)(
a b
c d

)
=

(
1 0
0 1

)
.

Since the entries are integers, the determinant is ±1. Linear transformations of this
type with integer coefficients and determinant ±1 are said to be unimodular. So
any two bases of a module Λ are connected by a unimodular transformation.

The so-called modular group is the group of Möbius transformations

f(z) =
az + b

cz + d
,

with a, b, c, d ∈ Z and ad − bc = 1. It is a discrete subgroup of the automorphism
group Aut(H) = {z 7→ (az + b)/(cz + d) : a, b, c, d ∈ R, ad − bc = 1} of the upper
half plane, and is isomorphic to PSL(2,Z) = SL(2,Z)/{± Id}.

Proposition 24.2 (canonical basis). There is a basis (w1, w2) such that τ :=
w2/w1 satisfies

(1) Im τ > 0,
(2) −1/2 < Re τ ≤ 1/2,
(3) |τ | ≥ 1,
(4) Re τ ≥ 0 if |τ | = 1.

The ratio τ is uniquely determined by these conditions, and there is a choice of 2,
4, or 6 corresponding bases.

The set of all τ satisfying (1)–(4) (depicted below) is called the fundamental
domain of the modular group; strictly speaking it is not a domain since it is
not open.

Proof. Select w1, w2 as in the proof of Lemma 24.1. Then |w1| ≤ |w2|, |w2| ≤
|w1 + w2|, and |w2| ≤ |w1 − w2|, or equivalently, |τ | ≥ 1 and |Re τ | ≤ 1/2. If
Im τ < 0 replace (w1, w2) by (−w1, w2), which makes Im τ > 0 without changing
the condition on Re τ . If Re τ = −1/2 replace (w1, w2) by (w1, w1 + w2), and if
|τ | = 1, Re τ < 0 replace (w1, w2) by (−w2, w1).

Next we show uniqueness of τ . We saw that two bases differ by a unimodular
transformation. Hence if the new ratio is τ ′ then

τ ′ =
aτ + b

cτ + d
, ad− bc = ±1, (24.1)

and hence

Im τ ′ =
± Im τ

|cτ + d|2
,

where the sign is the same as that of ad − bc. Suppose that τ and τ ′ are in the
fundamental domain. We must show that τ = τ ′. If τ, τ ′ are in the fundamental
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domain, then Im τ ′ = Im τ/|cτ + d|2 and thus ad− bc = 1. By symmetry, we may
assume that Im τ ′ ≥ Im τ and hence |cτ + d| ≤ 1. Since c, d are integers, very few
cases must be checked.

First let c = 0 and d = ±1. Then we have ad = 1 and hence a = d = 1 or
a = d = −1. By (24.1), τ ′ = τ±b. Since τ and τ ′ satisfy (2), |b| = |Re τ ′−Re τ | < 1
which implies b = 0. So τ ′ = τ .

Suppose that d = 0. In this case bc = −1 and hence either b = 1, c = −1 or
b = −1, c = 1. In any case |cτ + d| ≤ 1 becomes |τ | ≤ 1, and so |τ | = 1, by (3).
By (24.1), τ ′ = ±a − 1/τ = ±a − τ . We have |a| = |Re τ ′ + Re τ | ≤ 1, by (2).
Consequently, either τ ′ = τ = eiπ/3 or a = 0. In the latter case τ ′ = −τ which can
only happen if τ ′ = τ , in view of (4).

Finally, let c 6= 0 and d 6= 0. Then |cd| ≥ 1 and thus, by (2) and (3),

|cτ + d|2 = c2|τ |2 + d2 + 2cdRe τ ≥ c2 + d2 − |cd| = (|c| − |d|)2 + |cd| ≥ 1.

Our assumption |cτ + d| ≤ 1 implies that equality holds everywhere in this com-
putation. That means |τ | = 1 and Re τ = 1/2, or equivalently, τ = eiπ/3. Since
|cτ + d| = 1 we have Im τ ′ = Im τ , whence τ ′ (subject to (1)–(4)) must equal τ .

The canonical basis (w1, w2) can always be replaced by (−w1,−w2). There are
other bases with the same ratio τ if and only if τ is a fixed point of (24.1). This
happens only for τ = i which is a fixed point of τ 7→ −1/τ and τ = eπi/3 which is
a fixed point of τ 7→ −(τ + 1)/τ and of τ 7→ −1/(τ + 1). So there is a choice of 2,
4, or 6 corresponding bases. �

Let f be a meromorphic function in C. Let Λ be a module with basis (w1, w2),
where w2/w1 6∈ R (not necessarily canonical), and assume that Λ ⊆ per(f). Then
f is called an elliptic or doubly periodic function.

Let a ∈ C and let Pa be the parallelogram with vertices a, a + w1, a + w2,
a + w1 + w2. Then Pa, where part of the boundary is included, represents the
quotient space C/Λ of the equivalence relation z1 ∼ z2 if and only if z1 − z2 ∈ Λ.
So we may regard f as a function on Pa; cf. the figure on p. 85.

Theorem 24.3 (properties of elliptic functions). Let f be an elliptic function with
period module Λ.

(1) If f has no poles then f is constant.
(2) The sum of residues of f is zero.
(3) If f is non-constant, then the number of poles of f equals the number of

zeros of f .
(4) If a1, . . . , an are the zeros and b1, . . . , bn the poles of f , then

∑
ai−

∑
bi ∈

Λ.

Proof. (1) If f has no poles, then f is bounded on P a and thus on C. The assertion
follows from Liouville’s theorem.

(2) We may choose a ∈ C so that no poles of f lie on ∂Pa. By the residue
theorem 8.1, the sum of the residues at the poles in Pa equals

1

2πi

ˆ
∂Pa

f(z) dz

which vanishes, because by periodicity of f the integrals over opposite side of Pa
cancel against each other.

(3) The function f ′/f is elliptic. The poles and zeros of f are simple poles of
f ′/f , and the orders are the residues of f ′/f counted positive for zeros and negative
for poles. Thus (3) follows from (2).
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(4) We may assume that there are no zeros and poles of f on Pa. Moreover,
we may assume that all ai, bi lie in Pa, by taking the right representatives. By the
residue theorem 8.1 (cf. Exercise 10) and periodicity of f ,∑

ai −
∑

bi =
1

2πi

ˆ
∂Pa

zf ′(z)

f(z)
dz

=
1

2πi

(( ˆ
[a,a+w1]

−
ˆ

[a+w2,a+w1+w2]

)
+
( ˆ

[a+w1,a+w1+w2]

−
ˆ

[a,a+w2]

))zf ′(z)
f(z)

dz

=
−w2

2πi

ˆ
[a,a+w1]

f ′(z)

f(z)
dz +

w1

2πi

ˆ
[a,a+w2]

f ′(z)

f(z)
dz

= −w2 indf([a,a+w1])(0) + w1 indf([a,a+w2])(0) ∈ Λ. �

Corollary 24.4. If f is a non-constant elliptic function, then f and f − c have
the same number of zeros for every c ∈ C.

Proof. f and f − c have the same number of poles. �

25. The Weierstrass ℘-function

Let Λ be a module with basis (w1, w2), where w2/w1 6∈ R. The simplest elliptic
functions are of order 2. They have either a double pole with residue zero, or two
simple poles with opposite residues.

Suppose that f has a double pole at the origin with residue zero. By multiplica-
tion with a constant we may assume that the singular part of f is z−2. If f is ellip-
tic and has only this singularity (up to periodicity), then f must be even. Indeed,
f(z)−f(−z) has the same periods and no singularity, so f(z)−f(−z) = const = 0,
by setting z = w1/2. Thus the Laurent development of f at 0 has the form

z−2 + a2z
2 + a4z

4 + · · · , (25.1)

if we assume without loss of generality that a0 = 0.

We will show the existence of an elliptic function with this Laurent develop-
ment. Let Λ∗ := Λ \ {0} and define

℘(z) :=
1

z2
+
∑
w∈Λ∗

( 1

(z − w)2
− 1

w2

)
. (25.2)

We claim that the series converges uniformly on compact subsets of C\Λ. We have∣∣∣ 1

(z − w)2
− 1

w2

∣∣∣ =
∣∣∣ z(2w − z)
w2(z − w)2

∣∣∣ = O(|w|−3) as |w| → ∞.

Since w2/w1 6∈ R, there is a constant K > 0 such that |n1w1+n2w2| ≥ K(|n1|+|n2|)
for all integers n1, n2. There are 4n pairs (n1, n2) of integers with |n1|+ |n2| = n,
whence ∑ 1

|w|3
≤ 4

K3

∞∑
n=1

1

n2
<∞.

The claim is proved.

By termwise differentiation,

℘′(z) = − 2

z3
−
∑
w∈Λ∗

2

(z − w)3
= −2

∑
w∈Λ

1

(z − w)3
(25.3)

which is obviously elliptic. This implies that ℘(z+w1)−℘(z) and ℘(z+w2)−℘(z)
are constant. Since ℘ is even, by (25.2), choosing z = −w1/2 and z = −w2/2
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implies that the constants are zero. That means that ℘ has the periods w1, w2. We
may conclude that ℘ has the Laurent expansion (25.1) at the origin.

The function ℘ is called the Weierstrass ℘-function. Since ℘ is even and
periodic, ℘(wi−z) = ℘(z) and hence ℘′(wi−z) = −℘′(z), in particular, ℘′(wi/2) =
0 for i = 1, 2. Similarly, ℘′((w1 + w2)/2) = 0. The half-periods w1/2, w2/2, and
(w1 + w2)/2 are precisely the three simple zeros of ℘′ which is of order 3. Let us
set

e1 = ℘(w1/2), e2 = ℘(w2/2), e3 = ℘((w1 + w2)/2). (25.4)

Then the equation ℘(z) = e1 has a double root at w1/2, and since ℘ has order 2
there are no other roots in the fundamental parallelogram. Similarly, ℘(z) = e2 has
only a double root at w2/2, and ℘(z) = e3 has only a double root at (w1 + w2)/2.
We may conclude that e1, e2, e3 are distinct, for otherwise ℘ would have at least
four roots contradicting the fact that it assumes each value with multiplicity 2.

We claim that

(℘′(z))2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3). (25.5)

Indeed, f(z) := (℘(z) − e1)(℘(z) − e2)(℘(z) − e3) vanishes in the fundamental
parallelogram precisely at the points w1/2, w2/2, and (w1 + w2)/2 of order 2,
respectively. Also (℘′)2 has double zeros at these points. Moreover, f as well as
(℘′)2 has poles of order 6 at the points in Λ. It follows that (℘′)2/f is holomorphic
and elliptic, thus constant, by Theorem 24.3. That this constant equals 4 follows
from (25.2) and (25.3). Thus (25.5) is proved.

We remark that (25.5) takes the form

(℘′(z))2 = 4℘(z)3 − g2℘(z)− g3, (25.6)

where g2 = 60G2, g3 = 140G3, and Gk :=
∑
w∈Λ∗ w

−2k; cf. [1, p. 275]. We shall
see in Proposition 34.1 that (x, y) = (℘(z), ℘′(z)) parameterizes the elliptic curve
y2 = 4x3 − g2x− g3.

The differential equation (25.6) for w = ℘(z) can be solved explicitly:

z − z0 =

ˆ
γ

dw√
4w3 − g2w − g3

,

where γ is the image under ℘ of a path from z0 to z that avoid zeros and poles
of ℘′(z) and where the sign of the square root is chosen such that it equals ℘′(z).
Integrals of this type appear in the computation of the arc length of an ellipse and
are called elliptic integrals.

Proposition 25.1 (universality of ℘). Every elliptic function with period module
Λ is a rational function of ℘ and ℘′.

Proof. The proposition will follow from the claim that every even elliptic function
with period module Λ is a rational function of ℘. In fact, we may write

f(z) = feven(z) + fodd(z) :=
f(z) + f(−z)

2
+
f(z)− f(−z)

2

as a sum of an even and an odd part. Since fodd/℘
′ is even, the statement of the

proposition follows from the claim (applied to feven and fodd/℘
′).

Let us prove the claim. Suppose that f is an even elliptic function. If f has a
zero or pole at 0 it must be of even order, since f is an even function. Thus, there
is an integer m such that f℘m has no zero or pole at the points in Λ. Hence we
may assume without loss of generality that f has no zero or pole on Λ.

We saw before that ℘(z)− ℘(a) has a zero of order 2 if a is a half-period, and
two simple zeros at ±a otherwise. If a is a zero of f , then so is −a, since f is
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even. We have a − (−a) = 2a ∈ Λ if and only if a is a half-period; in this case
the zero is of even order. Consequently, if a1,−a1, a2,−a2, . . . , am,−am (counted
with multiplicities) are the zeros of f , then (℘(z) − ℘(a1)) · · · (℘(z) − ℘(am)) has
exactly the same zeros as f . A similar argument applies to the poles of f . We may
conclude that

g(z) :=
(℘(z)− ℘(a1)) · · · (℘(z)− ℘(am))

(℘(z)− ℘(b1)) · · · (℘(z)− ℘(bm))

is elliptic and has the same zeros and poles as f . So f/g is holomorphic and elliptic,
therefore constant, by Theorem 24.3. The claim is proved. �

26. Modular functions and the little Picard theorem

Recall that the modular group G is the group of Möbius transformations f(z) =
(az + b)/(cz + d), where a, b, c, d ∈ Z and ad − bc = 1. This is a subgroup of the
automorphism group of the upper half plane H. A modular function is a function
f : H → C which is invariant under the action of some nontrivial subgroup of G,
i.e., there is a nontrivial subgroup K of G such that

(f ◦ ϕ)(z) = f(z), for all ϕ ∈ K, z ∈ H.

We concentrate on the subgroup Γ of G generated by the two elements

σ(z) =
z

2z + 1
, τ(z) = z + 2.

Consider the set

W := {z ∈ H : −1 ≤ Re z < 1, |2z + 1| ≥ 1, |2z − 1| > 1}.

Proposition 26.1. W is a fundamental domain for the action of Γ on H, that is:

(1) If f, g ∈ Γ, f 6= g, then f(W ) ∩ g(W ) = ∅.
(2) H =

⋃
f∈Γ f(W ).

Furthermore, Γ = {f(z) = (az + b)/(cz + d) ∈ G : a, d odd, b, c even}.

Proof. Let Γ′ := {f(z) = (az + b)/(cz + d) ∈ G : a, d odd, b, c even}. It is easy to
check that Γ′ is a subgroup of G. Since σ, τ ∈ Γ′ we have Γ ⊆ Γ′. Let (1′) be the
statement obtained from (1) by replacing Γ with Γ′. Then Γ = Γ′ will follow from
(1′) and (2).

(1′) Let g, h ∈ Γ′, g 6= h, and set f := g−1 ◦ h. If z ∈ g(W ) ∩ h(W ), then
g−1(z) ∈ W ∩ f(W ). So it suffices to prove W ∩ f(W ) = ∅ if f ∈ Γ′, f 6= Id. If
f(z) = (az + b)/(cz + d), then

Im f(z) =
Im z

|cz + d|2
. (26.1)

We consider three cases.



26. MODULAR FUNCTIONS AND THE LITTLE PICARD THEOREM 67

If c = 0 then ad = 1 and hence a = d = ±1. Then f(z) = z + 2n for some
integer n 6= 0. Evidently, W ∩ f(W ) = ∅.

If c = 2d then c = ±2 and d = ±1 (using ad− bc = 1). Then f(z) = σ(z) + 2m
for some m ∈ Z. Observe that σ(W ) ⊆ D1/2(1/2) which implies the assertion.

If c 6= 0 and c 6= 2d, we claim that |cz + d| > 1 for all z ∈ W . Then, by
(26.1), Im f(z) < Im z for every z ∈ W . If z ∈ W ∩ f(W ) then we could apply
the same argument to f−1 and conclude that Im z = Im f−1(f(z)) < Im f(z), a
contradiction. So let us show that |cz + d| > 1 for all z ∈ W . Suppose, for some
z ∈ W , |cz + d| ≤ 1. Then W ∩D1/|c|(−d/c) 6= ∅. Since −d/c 6= −1/2, the open
disk D1/|c|(−d/c) must contain one of the points −1, 0, 1 which is clear by a glance
at the above picture. Hence |cw + d| < 1 for w = −1 or 0 or 1. But cw + d is an
odd integer, a contradiction.

(2) Let U :=
⋃
f∈Γ f(W ). Clearly, U ⊆ H. Note that τn(W ) ⊆ U for all

n ∈ Z, where τn(z) = z + 2n. Since σ maps the circle |2z + 1| = 1 onto the circle
|2z − 1| = 1, U contains all points z ∈ H with

|2z − (2m+ 1)| ≥ 1 for all m ∈ Z. (26.2)

Fix w ∈ H. Choose f0 ∈ Γ such that |cw + d| is minimal; this is possible since
as Imw > 0 there are only finitely many c, d such that |cw + d| lies below a given
bound. By (26.1),

Im f(w) ≤ Im f0(w), for all f ∈ Γ.

Putting z = f0(w) this becomes

Im f(z) ≤ Im z, for all f ∈ Γ.

In particular, for

(σ ◦ τ−n)(z) =
z − 2n

2z − 4n+ 1
and (σ−1 ◦ τ−n)(z) =

z − 2n

−2z + 4n+ 1

we obtain, with (26.1),

|2z − 4n+ 1| ≥ 1 and |2z − 4n− 1| ≥ 1, for all n ∈ Z.

Thus z satisfies (26.2) and so z ∈ U . Therefore, w = f−1
0 (z) ∈ U . �

We will now construct a particular modular function, the so-called elliptic
modular function.

Proposition 26.2 (elliptic modular function). There exists λ ∈ H(H) with the
following properties:

(1) λ ◦ f = λ for every f ∈ Γ.
(2) λ is injective on W .
(3) λ(H) = C \ {0, 1}.
(4) R is a natural boundary of λ.

In particular, λ : H→ C \ {0, 1} is a covering map.

Proof. Set W+ := {z ∈ W : Re z > 0}. By the Riemann mapping theorem 20.4,
there is a biholomorphic mapping g : W+ → H. By Carathéodory’s theorem 22.2

and Remark 22.3, g extends to an bijective continuous mapping g : W
+ → H.

Composing with a suitable automorphism we can assume g(0) = 0, g(1) = 1, and
g(∞) = ∞. By the Schwarz reflection principle for holomorphic functions 18.2,

we may extend g across the y-axis by setting g(−x + iy) = g(x+ iy). Then g is

continuous on W and holomorphic in W̊ with g(W̊ ) = C \ R≥0. Moreover, g is
injective on W and g(W ) = C \ {0, 1}.
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Since g is real on the boundary of W , we have

g(−1 + iy) = g(1 + iy) = g(1 + iy) = g(τ(−1 + iy)), y > 0,

and

g(− 1
2 + 1

2e
it) = g( 1

2 + 1
2e
i(π−t)) = g( 1

2 + 1
2e
i(π−t)) = g(σ(− 1

2 + 1
2e
it)), 0 < t < π.

We define λ : H→ C by setting

λ(z) := g(f−1(z)), for all z ∈ f(W ), f ∈ Γ;

by Proposition 26.1, each z ∈ H lies in f(W ) for precisely one f ∈ Γ. Then the
properties (1)–(3) are obvious, and λ is holomorphic in the interior of each f(W ). It
follows that λ is holomorphic in H, by an application of Morera’s theorem: it suffices
to show that if ϕ is continuous in a region U and holomorphic in U \ L = U1 ∪ U2,
where L is a line segment or a circular arc and U1, U2 are regions, then ϕ is
holomorphic in U . Up to a Möbius transformation, we may assume that L is a line
segment. The integral of ϕ over every closed curve γ homologous to zero in U1 or
U2 vanishes, and, by continuity of ϕ, this still holds if part of γ lies in L. If ∆ is
a triangle in U , then

´
∂∆

ϕdz is the sum of at most two such path integrals, and
Morera’s theorem implies the assertion.

Let us prove (4). Observe that the set {f(0) : f ∈ Γ} = {b/d : b, d ∈
Z, b even, d odd} = λ−1(0) is dense in R. So if λ could be extended to a neighbor-
hood of x ∈ R then x would be an accumulation point of the zero-set of λ, hence
λ ≡ 0, a contradiction. �

Theorem 26.3 (little Picard theorem). If f is an entire function such that the
range of f omits two distinct complex numbers α, β, then f is constant.

That the range of f can omit one point is shown by f = exp.

Proof. We may assume that α = 0 and β = 1, by replacing f by (f − α)/(β − α).
By Proposition 26.2, λ : H→ C \ {0, 1} is a covering map. By Corollary 4.7, there
is a holomorphic function g : C → H such that f = λ ◦ g. Then g is constant,
by Liouville’s theorem after composing with the Cayley mapping. Thus also f is
constant. �

Exercise 46. Deduce from the little Picard theorem 26.3 that every periodic entire
function has a fixed point.

Exercise 47. Let f and g be entire functions satisfying ef + eg = 1. Prove that f
and g are both constant.

27. The big Picard theorem

The following theorem is a strengthening of Montel’s theorem 20.2.

Theorem 27.1 (Montel–Carathéodory theorem). Let U ⊆ C be a domain and let
F ⊆ H(U) be such that f(U) ⊆ C\{0, 1} for all f ∈ F . Then F is a normal family

in C(U, Ĉ). More precisely: if (fn) is a sequence in F , then there is a subsequence
of (fn) which either converges uniformly on compact sets to a holomorphic function
f : U → C or converges uniformly on compact sets to ∞.

Proof. It suffices to show that F|D is normal in C(D, Ĉ) for each disk D ⊆ U . Let
(fn) be a sequence in F . By Montel’s theorem 20.2, it is enough to prove that there
is either a subsequence that is uniformly bounded on compact subsets of D or a
subsequence that converges to ∞ uniformly on compact subsets of D. Let c be the
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center of D. By passing to a subsequence we may assume that fn(c) → α ∈ Ĉ,

since Ĉ is compact.

Assume first that α 6= 0, 1,∞. By Proposition 26.2, there is a holomorphic
covering map µ : D→ C \ {0, 1} (compose λ with the Cayley mapping). Let V be
a neighborhood of α and W ⊆ D such that µ|W : W → V is a biholomorphism.
We may assume that fn(c) ∈ V for all n. By Corollary 4.7, for each n there is
a holomorphic mapping gn : D → D such that gn(c) ∈ W and µ ◦ gn = fn on
D. Since (gn) is uniformly bounded, there is a subsequence gnk which converges in
H(D) to a holomorphic function g, by Montel’s theorem 20.2. Clearly, |g(z)| ≤ 1
for all z ∈ D. We claim that actually |g(z)| < 1 for all z ∈ D. If there is z ∈ D
such that |g(z)| = 1 then g is constant, by the open mapping theorem, say g = d
with |d| = 1. But then gnk(c) → d and gnk(c) = µ|−1

W (fnk(c)) → µ|−1
W (α), whence

µ|−1
W (α) 6∈ D, a contradiction.

If K ⊂ D is compact, then |g|K < r < 1. Hence |gnk |K ≤ |gnk − g|K + |g|K ≤ r
for k sufficiently large. Since µ is bounded on Dr(0), we may conclude that (fnk)
is uniformly bounded on K. The theorem follows.

Let us consider the remaining cases. Assume α = 1. By Theorem 4.8, there
are functions hn ∈ H(D) such that h2

n = fn. Since fn(c) → 1 we can choose the
branch of the square roots so that hn(c)→ −1. Clearly, hn(D) ⊆ C \ {0, 1}. Thus,
by the above, there is a subsequence (hnk) which is uniformly bounded on compact
subsets of D. Then also (fnk) has this property.

The case α = 0 can be reduced to the previous case by setting hn = 1− fn.

If α =∞ then set hn = 1/fn. The preceding case implies that there is a subse-
quence (hnk) which converges uniformly on compact subsets of D to a holomorphic
function h. The functions hnk have no zeros while h(c) = 0, whence h ≡ 0, by
Hurwitz’ theorem 8.5. This means that fnk →∞ uniformly on compact subsets of
D. �

Recall that the Casorati–Weierstrass theorem says that in a neighborhood
of an essential singularity a holomorphic function assumes a dense set of values.
Actually, by the big Picard theorem, all values except possibly one are assumed.

Theorem 27.2 (big Picard theorem). Let D = DR(a). Let α, β ∈ C, α 6= β. If
f : D\{a} → C\{α, β} is holomorphic, then the singularity at a is either removable
or a pole.

Proof. We may assume that α = 0 and β = 1, by replacing f by (f − α)/(β − α).
Moreover, we may suppose that a = 0. Define fn : D \ {0} → C \ {0, 1} by
fn(z) := f(z/2n). By the Montel–Carathéodory theorem 27.1, {fn} is a normal

family in C(D \ {0}, Ĉ). So there is a subsequence (fnk) that converges uniformly

on compact subsets of D \ {0} to a holomorphic function g : D \ {0} → Ĉ.

Fix 0 < r < R and let C := {z : |z| = r} ⊆ D \ {0}. Then fnk → g uniformly
on C. If ∞ 6∈ im g, then there is a constant M such that |fnk(z)| ≤ M if |z| = r,
or equivalently, |f(z)| ≤M if |z| = r/2nk . By the maximum principle, |f(z)| ≤M
for z near 0, and so 0 is a removable singularity of f .

If ∞ ∈ im g, then g ≡ ∞, by the Montel–Carathéodory theorem 27.1. Hence
1/fnk → 0 uniformly on C, and thus for every ε > 0, there is k0 such that
|1/fnk(z)| < ε for all |z| = r and k ≥ k0. Then |1/f(z)| < ε for all |z| = r/2nk and
k ≥ k0. By the maximum principle, |f(z)| → ∞ as |z| → 0 so that 0 is a pole of
f . �
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The big Picard theorem implies the little Picard theorem. Let f be an entire func-
tion. If f is bounded near ∞ then it is bounded on C and Liouville’s theorem
implies that f is constant. So, if f is non-constant, it has either a pole or an es-
sential singularity at ∞. If it has a pole at infinity, then f is a polynomial and the
fundamental theorem of algebra implies that f assumes all complex values. If f
has an essential singularity at infinity, then by the big Picard theorem f assumes
all complex values except possibly one. �



CHAPTER 7

Subharmonic functions and the Dirichlet problem

28. Subharmonic functions

Let X = (X, d) be a metric space. A function u : X → R∪ {−∞} is said to be
upper semicontinuous (usc) if for each a ∈ X,

lim sup
x→a

u(x) ≤ u(a),

or equivalently, for every β ∈ R, the set u−1([−∞, β)) is open in X.

Let us collect a few facts on usc functions. Let u : X → R∪{−∞} be usc. Then
u is bounded above on every compact K ⊆ X. In fact, K ⊆

⋃
n≥1{x ∈ X : u(x) <

n} and hence K is contained in a finite union of the open sets {x ∈ X : u(x) < n}.
Assume that u is bounded above and let M := supX u(x). Then {x ∈ X :

u(x) = M} is closed in X. Indeed, {x ∈ X : u(x) = M} = {x ∈ X : u(x) ≥ M} is
the complement of the open set {x ∈ X : u(x) < M}.

If X is compact then there is x0 ∈ X such that u(x0) = supX u(x). Namely,
if M := supX u(x), then there is a sequence xn ∈ X such that u(xn) > M − 1/n.
Since X is compact there is a subsequence xnk which converges to some x0 ∈ X.
Then M ≥ u(x0) ≥ lim supk→∞ u(xnk) ≥ lim supk→∞M − 1/nk = M .

If u1, u2 are usc, then so are u1 + u2, max{u1, u2}, and λu1, for each constant
λ ≥ 0; note that, for any β ∈ R, the set {x : max{u1, u2}(x) < β} =

⋂
i=1,2{x :

ui(x) < β} is open.

If {ui}i∈I is an arbitrary family of usc functions on X, then u := infi∈I ui is
usc. In fact, for any β ∈ R, the set {x : u(x) < β} =

⋃
i∈I{x : ui(x) < β} is open.

In particular, if (un) is a sequence of usc functions such that un ≥ un+1, then the
pointwise limit u := limn→∞ un is usc; we shall write un ↓ u.

Lemma 28.1 (approximation by continuous functions). Let u : X → R ∪ {−∞},
u 6≡ −∞, be usc. Then there exists a sequence (un)n≥1 of continuous functions
such that un ↓ u.

Proof. We may assume that u is bounded above. In fact, since u is locally bounded
above there is a continuous function v on X such that u ≤ v. Then u − v is usc
and bounded above. If vn ↓ u− v then vn + v ↓ u.

Let M ∈ R such that u < M . Define, for n ≥ 1,

un(x) := sup
y∈X

(u(y)− nd(x, y)), x ∈ X.

Since u(y) > −∞ for some y ∈ X, we have un(x) > −∞ for all x ∈ X. Clearly,
un ≤ M . We have un(x) ≥ u(x) − nd(x, x) = u(x) and un ≥ un+1 is immediate
from the definition.

Let us prove that un(x)→ u(x). Assume first that u(x) > −∞. Since u is usc,
for every ε > 0 there is δ > 0 such that u(y) < u(x)+ ε if d(x, y) < δ. If d(x, y) ≥ δ,
then u(y)−nd(x, y) ≤M −nδ < −nδ/2 if n is sufficiently large. Thus, if n is large,

u(x) ≤ un(x) ≤ max{u(x) + ε,−nδ/2} = u(x) + ε

71
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and so un(x) → u(x). If u(x) = −∞ then for any N > 0 there is δ > 0 such that
u(y) < −N if d(x, y) < δ. Thus, un(x) ≤ max{M − nδ,−N} = −N for large n,
and so un(x)→ −∞.

It remains to show that un is continuous. Let ε > 0. There is y ∈ X such that
un(x) < u(y)− nd(x, y) + ε and hence, for x, x′ ∈ X,

un(x)− un(x′) ≤ n(d(x′, y)− d(x, y)) + ε ≤ nd(x, x′) + ε.

Since ε > 0 is arbitrary, un(x) − un(x′) ≤ nd(x, x′). Interchanging x,x′ we may
conclude that |un(x)− un(x′)| ≤ nd(x, x′). �

Exercise 48. Let u be usc and u ≥ 0. Show that v(x) := log u(x) if u(x) 6= 0 and
v(x) := −∞ if u(x) = 0 is usc.

Let U ⊆ C be a domain and let u : U → R ∪ {−∞} be usc. Then u is called
subharmonic if:

(1) u 6≡ −∞ on any connected component of U .
(2) Let V b U and let h : V → R be continuous and harmonic on V . Then

u(z) ≤ h(z) for all z ∈ ∂V implies u(z) ≤ h(z) for all z ∈ V .

Subharmonicity is the complex-analytic analogue of convexity: on R the ana-
logue of the Laplacian is d2/dt2 and the solutions of d2h/dt2 = 0 are the affine
linear functions. The analogy with convex functions is apparent.

Exercise 49. Let u be a subharmonic function on DR(0) such that u(z) = u(|z|)
for z ∈ DR(0). Prove that r 7→ u(r), r ∈ (0, R), is a convex function of log r: if
`(r) := a log r + b, r ∈ (0, R), and r1, r2 ∈ (0, R) are such that u(r1) ≤ `(r1) and
u(r2) ≤ `(r2), then u(r) ≤ `(r) for all r ∈ (r1, r2). Hint: `(z) := `(|z|) is harmonic
on DR(0) \ {0}.

Theorem 28.2 (characterization of subharmonicity). Let U ⊆ C be a domain and
let u be usc on U . Suppose that u 6≡ −∞ on any connected component of U . If u
is subharmonic on U , a ∈ U and r > 0 such that Dr(a) ⊆ U , then

u(z) ≤ Pa,r(u)(z), z ∈ Dr(a),

cf. (17.4); in particular,

u(a) ≤ 1

2π

ˆ 2π

0

u(a+ reit) dt. (28.1)

Conversely, if for every a ∈ U there exists ra > 0 such that (28.1) holds for all
0 < r < ra, then u is subharmonic.

Proof. Assume that u is subharmonic on U . By Lemma 28.1, there is a sequence
of continuous functions un ↓ u. By Theorem 17.6, hn := Pa,r(un) is continuous on

Dr(a), harmonic on Dr(a), and hn = un ≥ u on ∂Dr(a). Since u is subharmonic,

u(z) ≤ hn(z) =

ˆ 2π

0

un(a+ reit)Pa,r(z, t) dt, z ∈ Dr(a).

By the monotone convergence theorem,

u(z) ≤
ˆ 2π

0

u(a+ reit)Pa,r(z, t) dt = Pa,r(u)(z),

in particular, (28.1).

For the converse, let V b U and let h be continuous on V and harmonic on V .
Suppose that u ≤ h on ∂V . For contradiction, assume that there is z ∈ V such that
u(z) > h(z). Let f := u− h on V . If M := maxV f then K := {z ∈ V : f(z) = M}
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is a compact subset of V , in particular, K is a proper subset of V . Let w ∈ ∂K.
For some small r > 0 there is a point on ∂Dr(w) at which f is strictly less than
M . Since f is usc, f is less than M on an open arc J of ∂Dr(w). Thus,

f(w) = M >
1

2π

ˆ 2π

0

f(w + reit) dt

=
1

2π

ˆ 2π

0

u(w + reit) dt− 1

2π

ˆ 2π

0

h(w + reit) dt

=
1

2π

ˆ 2π

0

u(w + reit) dt− h(w),

since h is harmonic. This contradicts (28.1). �

This theorem implies that subharmonicity is a local condition: if u is usc on
U and each a ∈ U has a neighborhood V such that u|V is subharmonic, then u is
subharmonic.

Corollary 28.3. Let u1, u2 be subharmonic on U . Then u1 + u2 and max{u1, u2}
are subharmonic. If λ ≥ 0 then λu1 is subharmonic.

Proof. Follows from Theorem 28.2. �

Corollary 28.4. If f : U → C is harmonic, then |f | is subharmonic.

Proof. Use the mean value property 17.4 and Theorem 28.2. �

Corollary 28.5. Let (un)n≥1 be a sequence of subharmonic functions on U such
that un ↓ u and u 6≡ −∞ on any connected component of U . Then u is subharmonic
on U .

Proof. Follows from Theorem 28.2 and the monotone convergence theorem. �

Corollary 28.6. If u is subharmonic on U and ϕ : R → R is nondecreasing and
convex and ϕ(−∞) := limt→−∞ ϕ(t), then ϕ ◦ u is subharmonic on U .

Proof. Note that ϕ is continuous (since convex) and {x ∈ R : ϕ(x) < β} is either
empty if ϕ(−∞) ≥ β, of the form (−∞, α) if ϕ(−∞) < β ≤ ϕ(∞), or R if β > ϕ(∞),
since ϕ is nondecreasing. Consequently, ϕ ◦ u is usc.

If Dr(a) ⊆ U and
´ 2π

0
u(a+ reit) dt > −∞, then

ϕ(u(a)) ≤ ϕ
( 1

2π

ˆ 2π

0

u(a+ reit) dt
)
≤ 1

2π

ˆ 2π

0

ϕ(u(a+ reit)) dt,

by Jensen’s inequality (e.g. [13, p. 62]). If
´ 2π

0
u(a + reit) dt = −∞, then u(a) =

−∞, since u is subharmonic. Since ϕ is nondecreasing, ϕ(−∞) = ϕ(u(a)) ≤
ϕ(u(a+ reit)) and hence ϕ(u(a)) ≤ 1

2π

´ 2π

0
ϕ(u(a+ reit)) dt. �

For instance, ef is subharmonic if f is, and f2 is subharmonic provided that
f ≥ 0 is subharmonic.

Exercise 50. Let u : U → R be harmonic and let ϕ : R → R be convex (not
necessarily nondecreasing). Show that ϕ ◦ u is subharmonic. Give an example of a
subharmonic u and a convex ϕ such that ϕ ◦ u is not subharmonic.

Exercise 51. Let f be holomorphic on some domain U ⊆ C. Use Exercise 34 to
show that u = log |f | is subharmonic on U .
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Exercise 52. Let {ui}i∈I be an arbitrary family of subharmonic functions on U .
Suppose that u(z) := supi∈I ui(z), z ∈ U , is usc and u(z) <∞ for all z ∈ U . Prove
that u is subharmonic.

Exercise 53. Deduce Hadamard’s three circles theorem: Let f be holomor-
phic on DR(0). Let 0 < r1 < r2 < R and Mi := sup|z|=ri |f(z)|, i = 1, 2. Then, if

r ∈ (r1, r2),

sup
|z|=r

|f(z)| ≤Mλ(r)
1 M

1−λ(r)
2 ,

where

λ(r) =
log r2 − log r

log r2 − log r1
.

Hint: Apply Exercise 49 to u(z) = supt∈R log |f(zeit)|.

Theorem 28.7 (maximum principle for subharmonic functions). Let U ⊆ C be a
bounded region. Let u be subharmonic on U . If

M := sup
w∈∂U

lim sup
z→w

u(z),

then u(z) < M for all z ∈ U unless u is constant.

Proof. We may assume that M < +∞. Define

ϕ(w) :=

{
u(w) if w ∈ U,
lim supz→w u(z) if w ∈ ∂U.

We claim that ϕ is usc on U . It suffices to show that lim supw→a ϕ(w) ≤ ϕ(a) if
a ∈ ∂U . Let U 3 wn → a. There exist zn ∈ U such that |zn − wn| < 1/n and
ϕ(zn) = u(zn) > ϕ(wn)− 1/n. Hence

ϕ(a) = lim sup
z→a

u(z) ≥ lim sup
n→∞

u(zn) ≥ lim sup
n→∞

(ϕ(wn)− 1/n) = lim sup
n→∞

ϕ(wn).

Now suppose that u(z) ≥ M = supw∈∂U ϕ(w) for some z ∈ U . If M̃ :=

supw∈U ϕ(w) then the set A := {z ∈ U : u(z) = M̃} is nonempty; in fact, the usc

function ϕ attains its maximum on the compact set U . Moreover, A is closed in U ;
see the remarks at the beginning of the section. Let us show that A is also open.
Let a ∈ A and let Dr(a) ⊆ U . Then, by the characterization of subharmonicity
28.2,

M̃ = u(a) ≤ 1

2π

ˆ 2π

0

u(a+ reit) dt ≤ M̃

and hence u(a + reit) = M̃ for 0 ≤ t ≤ 2π and small r > 0, i.e., A is open. Since
U is connected, A = U , that is u is constant. �

There is no minimum principle for subharmonic functions.

Proposition 28.8. Let u be subharmonic on U . Then u cannot be −∞ on any
nonempty open subset of U .

Proof. Let A := {z ∈ U : u(z) = −∞}. Suppose that V := Å 6= ∅. We will
show that V is closed in U . This leads to a contradiction, since u 6≡ −∞ on any
connected component of U , by the definition of subharmonicity.

Let a ∈ V and Dr(a) ⊆ U such that ∂Dr(a) ∩ V 6= ∅. Since V is open,
a + reit ∈ V for t is some open interval I ⊆ [0, 2π], whence u(a + reit) = −∞ for
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t ∈ I. Thus, since u is locally bounded above (being usc),

Pa,r(u)(z) =

ˆ 2π

0

u(a+ reit)Pa,r(z, t) dt = −∞, for z ∈ Dr(a).

Since u is subharmonic, u(z) ≤ Pa,r(u)(z) for z ∈ Dr(a), and so Dr(a) ⊆ V . Thus
V is closed in U . �

Let us prove that a subharmonic function is locally integrable.

Proposition 28.9. Let u be subharmonic on U and let DR(a) ⊆ U . Then if
0 < ε < R then there is M = M(ε, R, a, u) such thatˆ 2π

0

|u(a+ reit)| dt ≤M, for ε ≤ r ≤ R.

Moreover, u ∈ L1
loc(U), i.e., for every compact K ⊆ U ,¨

K

|u(z)| dx dy <∞.

Proof. Let u(a + reit) = u+(t) − u−(t) be the decomposition into positive and
negative part. Since u being usc is bounded above on DR(a), there is a constant
C > 0 such that 0 ≤ u+(t) ≤ C for all t and r ≤ R. By Proposition 28.8, there is
z ∈ Dε/2(a) such that u(z) > −∞. By the characterization of subharmonicity 28.2,

u(z) ≤
ˆ 2π

0

(u+(t)− u−(t))Pa,r(z, t) dt.

By Harnack’s inequality 19.1,

r − |z − a|
r + |z − a|

≤ 2πPa,r(z, t) ≤
r + |z − a|
r − |z − a|

which implies 1/3 ≤ 2πPa,r(z, t) ≤ 3 if ε ≤ r ≤ R and |z − a| < ε/2. Then

1

3

ˆ 2π

0

u−(t) dt ≤ 3

ˆ 2π

0

u+(t) dt− 2πu(z) <∞

since u+(t) ≤ C. This implies the first assertion.

Every z ∈ U has a neighborhood of the form Aε,R(a) = DR(a) \Dε(a), where

DR(a) ⊆ U . Since¨
Aε,R(a)

|u(z)| dx dy =

ˆ R

ε

r

ˆ 2π

0

|u(a+ reit)| dt dr <∞,

the second statement follows. �

Next we show that subharmonic functions can be approximated by smooth
subharmonic functions on relatively compact subsets. We need the following lemma.

Lemma 28.10. Let u be subharmonic on DR(a). Then ϕ(r) :=
´ 2π

0
u(a+ reit) dt,

for 0 ≤ r < R, is increasing.

Proof. We may assume that a = 0. We extend the definition of ϕ to complex

values by putting ϕ(z) :=
´ 2π

0
u(zeit) dt, for z ∈ DR(0); observe that ϕ(z) = ϕ(|z|).

We will show that ϕ is subharmonic on DR(0). Then the statement follows from
the maximum principle for subharmonic functions 28.7: suppose that there are
0 ≤ r1 < r2 < R such that ϕ(r2) < ϕ(r1). Then by the maximum principle ϕ is
constant on Dr2(0).

Let us first check that ϕ is usc on DR(0). If u is continuous so is ϕ. In general,
there is a sequence of continuous functions un such that un ↓ u, by Lemma 28.1.
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Then ϕn(z) :=
´ 2π

0
un(zeit) dt is continuous and ϕn ↓ ϕ, by the monotone conver-

gence theorem. Consequently, ϕ is usc, by Corollary 28.5.

Next we prove that ϕ is subharmonic on DR(0). Let z ∈ DR(0). By the
characterization of subharmonicity 28.2, we must check that, for small r > 0,

ϕ(z) ≤ 1
2π

´ 2π

0
ϕ(z + reis) ds, i.e.,
ˆ 2π

0

u(zeit) dt ≤ 1

2π

ˆ 2π

0

ˆ 2π

0

u((z + reis)eit) dt ds. (28.2)

If z = 0 then, since u is subharmonic,ˆ 2π

0

u(0) dt = 2πu(0) ≤
ˆ 2π

0

u(reis) ds,

and (28.2) holds. If z 6= 0 then, by Proposition 28.9,
´ 2π

0

´ 2π

0
|u((z+reis)eit)| dt ds <

∞, and so (28.2) holds, by Fubini’s theorem and Theorem 28.2,

1

2π

ˆ 2π

0

ˆ 2π

0

u((z + reis)eit) dt ds =

ˆ 2π

0

1

2π

ˆ 2π

0

u(zeit + rei(s+t)) ds dt

≥
ˆ 2π

0

u(zeit) dt. �

Theorem 28.11 (approximation by smooth functions). Let U ⊆ C be a domain
and let u be subharmonic on U . For any V b U there is a sequence of subharmonic
functions un ∈ C∞(V ) such that un ↓ u.

Proof. Let ϕ ∈ C∞c (C) be a radially symmetric nonnegative function with suppϕ ⊆
D such that

˜
C ϕdx dy = 1. Then ϕε(z) := ε−2ϕ(z/ε), ε > 0, is nonnegative,

suppϕε ⊆ Dε(0), and
˜

C ϕε dx dy = 1.

Let 0 < ε < dist(V ,C\U). Set uε := u∗ϕε, i.e., uε(w) =
˜

C u(w−z)ϕε(z) dx dy,
which is well-defined since u is locally integrable, by Proposition 28.9. Then uε ∈
C∞(U). Replacing z by −εz and using radial symmetry of ϕ we get

uε(w) =

¨
D
u(w + εz)ϕ(z) dx dy =

ˆ 1

0

ρϕ(ρ)

ˆ 2π

0

u(w + ερeit) dt dρ.

We claim that uε is subharmonic in V . Let a ∈ V and r > 0 small. Then

1

2π

ˆ 2π

0

uε(a+ reis) ds =
1

2π

ˆ 2π

0

ˆ 1

0

ρϕ(ρ)

ˆ 2π

0

u(a+ reis + ερeit) dt dρ ds

=

ˆ 1

0

ρϕ(ρ)

ˆ 2π

0

1

2π

ˆ 2π

0

u(a+ ερeit + reis) ds dt dρ

≥
ˆ 1

0

ρϕ(ρ)

ˆ 2π

0

u(a+ ερeit) dt dρ = uε(a),

which implies the claim, by Theorem 28.2.

We have uε ≤ uε′ if ε ≤ ε′, because, for fixed w and ρ, ε 7→
´ 2π

0
u(w + ερeit) dt

is increasing, by Lemma 28.10.

Finally, we show that, for w ∈ V , uε(w) → u(w) as ε → 0. Since u is subhar-
monic,

uε(w) =

ˆ 1

0

ρϕ(ρ)

ˆ 2π

0

u(w + ερeit) dt dρ ≥ u(w) 2π

ˆ 1

0

ρϕ(ρ)dρ = u(w).

Since u is usc, for δ > 0 there is ε0 > 0 such that

u(w + ερeit) ≤ u(w) + δ if 0 < ε < ε0, 0 < ρ ≤ 1.
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Thus

uε(w) =

ˆ 1

0

ρϕ(ρ)

ˆ 2π

0

u(w + ερeit) dt dρ ≤ (u(w) + δ) 2π

ˆ 1

0

ρϕ(ρ)dρ = u(w) + δ

if 0 < ε < ε0. If u(w) = −∞, replace u(w) + δ by −1/δ. �

We end this section with a characterization of C2 subharmonic functions. We
need the following maximum principle.

Lemma 28.12 (maximum principle). Let U ⊆ C be a domain and let u ∈ C2(U)
be real valued. Suppose that ∆u ≥ 0 on U . Then, for any open V b U , we have
u(z) ≤ supw∈∂V u(w) for all z ∈ V .

Proof. Let us first assume that ∆u > 0 on U . Let V b U and let z0 ∈ V be such
that u(z0) = supw∈V u(w). Assume, for contradiction, that u(z) ≤ supw∈∂V u(w)
does not hold for all z ∈ V . Then z0 ∈ V and, consequently, ∆u(z0) ≤ 0, a
contradiction.

In the general case, ∆u ≥ 0 on U , consider uε(z) := u(z)+ε|z|2, for ε > 0. Then
∆uε = ∆u + 4ε > 0 on U , and thus, for V b U , we have uε(z) ≤ supw∈∂V uε(w)
for all z ∈ V . Letting ε→ 0 implies the statement. �

Theorem 28.13 (characterization of C2 subharmonic functions). Let U ⊆ C be
a domain and let u ∈ C2(U) be real valued. Then u is subharmonic if and only if
∆u ≥ 0 on U .

Proof. Assume that u ∈ C2(U) satisfies ∆u ≥ 0 on U . Let V b U and let h be
continuous on V , harmonic on V , and such that u ≤ h on ∂V . Since ∆(u − h) =
∆u ≥ 0 on V , for every W b V , we have u(z)− h(z) ≤ supw∈∂W (u(w)− h(w)) for
z ∈ W , by Lemma 28.12. We may infer u(z)− h(z) ≤ supw∈∂V (u(w)− h(w)) ≤ 0
for z ∈ V , by letting W run through an exhaustion of V by relatively compact sets.
Thus u is subharmonic.

Let u ∈ C2(U) be subharmonic. Suppose that ∆u(z) < 0 for some z ∈ U . Then
there is a neighborhood V of z such that ∆u < 0 on V so that −u is subharmonic
on V by the first part of the proof. By the characterization of subharmonicity 28.2,
u is harmonic on V and hence ∆u = 0 on V , a contradiction. �

We state without proof the following generalization of this result; see [11, p.
231] for a proof.

Theorem 28.14. Let U ⊆ C be a domain and let u ∈ L1
loc(U) be real valued. Then

there exists a subharmonic function ũ on U such that ũ = u a.e. if and only if
∆u ≥ 0 in the sense of distributions.

Here ∆u is the linear mapping C∞c (U)→ C defined by

〈∆u, ϕ〉 :=

¨
C
u(∆ϕ) dx dy,

and ∆u ≥ 0 in the sense of distributions means that 〈∆u, ϕ〉 ≥ 0 for all ϕ ≥ 0,
ϕ ∈ C∞c (U).

Exercise 54. Let U, V be regions in C and let f : V → U be a non-constant holo-
morphic mapping. Show that, if u is subharmonic on U , then u ◦ f is subharmonic
on V . Hint: Use approximation by smooth functions 28.11 and the characterization
of C2 subharmonic functions 28.13.
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29. The Dirichlet problem

The goal of this section is the solution of the Dirichlet problem: Let U ⊆ C
be any bounded domain and let f ∈ C(∂U). Is there a continuous function u on U
which is harmonic on U such that u|∂U = f?

We will say that the Dirichlet problem on U with boundary values f is solvable
if this question has an affirmative answer. If the Dirichlet problem on U with
boundary values f is solvable for all f ∈ C(∂U), then we say that the Dirichlet
problem is solvable on U .

Exercise 55. Solve the Dirichlet problem on the strip S = {z ∈ C : 0 < Re z < 1}
for the boundary function f which is 0 on {z : Re z = 0} and 1 on {z : Re z = 1}.
Hint: Check that z 7→ exp(iπz) is a biholomorphism between S and H which
extends continuously to S. Use Exercise 33.

The following example shows that the the Dirichlet problem is not always solv-
able.

Example 29.1. Let U = D \ {0} and let f(z) = 1 for z ∈ ∂D and f(0) = 0. Then
f is continuous on ∂U = ∂D ∪ {0}. Suppose that the Dirichlet problem on U with
boundary values f has a solution u. Note that u(z) = u(eitz) for any fixed t ∈ R;
this is because u(eitz) is a solution of the Dirichlet problem with boundary values
f as well and since there is at most one solution.

The Laplace operator in polar coordinates reads

∆ =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
(29.1)

and since u is independent of θ,

0 = ∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
.

Thus r∂u/∂r = c for some c ∈ C and therefore u = c log r + d for some d ∈ C. But
u cannot agree with f on ∂U .

Exercise 56. Prove that the Laplace operator in polar coordinates is given by the
formula (29.1).

The domain in the example is typical for having no solution of the Dirichlet
problem. We will show that the Dirichlet problem on U can be solved, if each
connected component of ∂U contains more than one point.

Given a function u on U and D := Dr(a) such that D ⊆ U , let us define a
function PD(u) on U by setting

PD(u) :=

{
u on U \D,
Pa,r(u) on D.

Lemma 29.2. If u is subharmonic on U then so is PD(u).

Proof. Assume first that u is also continuous on U . By the characterization of
subharmonicity 28.2, it suffices to check that for b ∈ ∂D and small ρ > 0,

PD(u)(b) ≤ 1

2π

ˆ 2π

0

PD(u)(b+ ρeit) dt
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We have PD(u)(z) = u(z) if z ∈ ∂D, and u ≤ PD(u) on D, since u is subharmonic.
So u ≤ PD(u) on U and u(b) = PD(u)(b), whence

PD(u)(b) = u(b) ≤ 1

2π

ˆ 2π

0

u(b+ ρeit) dt ≤ 1

2π

ˆ 2π

0

PD(u)(b+ ρeit) dt,

as required.

In the general case, let V b U be an open neighborhood of D, and let un be
a sequence of C∞ subharmonic functions on V such that un ↓ u, which exists by
Theorem 28.11. Then PD(un) is subharmonic on V and PD(un) ↓ PD(u), by the
monotone convergence theorem. So PD(u) is subharmonic, by Corollary 28.5. �

Let U ⊆ C be a bounded domain and let f ∈ C(∂U) be real valued. The family
of functions

P = Pf :=
{
u ∈ C(U) : u is subharmonic, lim sup

z→a
u(z) ≤ f(a) for all a ∈ ∂U

}
is called the Perron family of f . Note that ∂U is compact so that f is bounded
below by some m ∈ R. Thus u(z) = m belongs to Pf .

Theorem 29.3 (Perron). Let U ⊆ C be a bounded domain and let f ∈ C(∂U) be
real valued. Then the function

hf (z) := sup
u∈Pf

u(z), z ∈ U,

is harmonic on U . It is called the Perron function of f .

Proof. Let D := {D = Dr(a) : D ⊆ U}. By Lemma 29.2, if u ∈ Pf then also
PD(u) ∈ Pf for all D ∈ D.

Let a ∈ U and let (un) be a sequence of functions in Pf such that un(a) →
hf (a). Replacing un by max1≤i≤n ui we may assume that u1 ≤ u2 ≤ · · · on U .

Let D = Dr(a) ∈ D and set vn := PD(un). Since vn ∈ Pf we have vn(a) ≤
hf (a). Since un ≤ vn (cf. Lemma 29.2) and un(a) → hf (a), also vn(a) → hf (a).
Moreover, un ≤ un+1 implies vn ≤ vn+1. By Harnack’s principle 19.2, vn converges
to a harmonic function h, uniformly on compact subsets of D. Clearly, h ≤ hf on
D and h(a) = hf (a).

We claim that h = hf on D. Since D was arbitrary, this will show that hf
is harmonic on U . To prove the claim let z ∈ D and let (wn) be a sequence of
functions in Pf such that wn(z) → hf (z). Replacing wn be max{vn, wn} we may
assume that vn ≤ wn on U . Setting pn := PD(max1≤i≤n wi) we have pn ≥ vn,
pn+1 ≥ pn, pn ∈ Pf , pn|D is harmonic, and pn(z) → hf (z) (similarly as before).
By Harnack’s principle 19.2, pn converges to a harmonic function p, uniformly on
compact subsets of D. Moreover, h ≤ p ≤ hf and h(a) = p(a) = hf (a). The
maximum principle for harmonic functions 17.2 applied to h− p implies that h = p
on D, and consequently h(z) = p(z) = hf (z). �

If the Dirichlet problem on U is solvable with boundary values f , and H is
the solution, then H = hf . For, H ≤ hf because H ∈ Pf . On the other hand, if
u ∈ Pf then lim supz→a(u(z) − H(z)) ≤ f(a) − f(a) = 0 for all a ∈ ∂U . Thus,
u ≤ H on U , by the maximum principle for subharmonic functions 28.7, and hence
hf ≤ H.

Thus, to solve the Dirichlet problem, we have only to look for conditions under
which hf converges to f at ∂U .

Let U ⊆ C be a bounded domain. A point a ∈ ∂U is a peak point of U if
there is an open set a ∈ V ⊆ C and a continuous subharmonic function p on U ∩V
such that:
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(1) p(z)→ 0 as z → a.
(2) lim supz→b p(z) < 0 if b ∈ (∂U) ∩ V and b 6= a.
(3) p(z) < 0 for z ∈ U ∩ V .

Then p is called a peaking function or barrier at a.

Lemma 29.4. If a is a peak point of U , then, given α, β ∈ R and a small neigh-
borhood W of a, there is a continuous subharmonic function u on U such that:

(1) u(z)→ α as z → a.
(2) lim supz→b u(z) ≤ α for all b ∈ (∂U) ∩W .
(3) u(z) ≤ β for z ∈ U \W .

Proof. We may suppose that β < α. Let V and p be as in the definition of a peak
point. Let W be a relatively compact neighborhood of a in V . Then there is δ > 0
such that p(z) ≤ −δ for z ∈ (∂W ) ∩ U . For some N > (α− β)/δ set

u(z) :=

{
β if z ∈ U \W,
α+ max{β − α,Np(z)} if z ∈ U ∩W.

Then u is subharmonic on U ∩W and u = β in a neighborhood of (∂W ) ∩ U , thus
u is subharmonic and continuous on U . It is then easy to check that u satisfies
u(z)→ α as z → a and lim supz→b u(z) ≤ α for all b ∈ (∂U) ∩W . �

Proposition 29.5. Let U ⊆ C be a bounded domain and let a ∈ ∂U be a peak
point of U . If f ∈ C(∂U), then hf (z)→ f(a) as z → a.

Proof. Let M > 0 be such that |f |∂U ≤ M . Let ε > 0. Let V be a neighborhood
of a such that |f(w)− f(a)| < ε for all w ∈ (∂U) ∩ V .

By Lemma 29.4, there is a continuous subharmonic function u on U such that
u(z)→ f(a) as z → a, lim supz→b u(z) ≤ f(a) for all b ∈ (∂U)∩V , and u(z) ≤ −M
for z ∈ U \V . Then v := u− ε belongs to Pf . In fact, lim supz→w v(z) ≤ −M − ε <
f(w) if w ∈ (∂U) \ V and lim supz→w v(z) ≤ f(a) − ε < f(w) if w ∈ (∂U) ∩ V .
Consequently, v ≤ hf and so

hf (z) ≥ v(z) = u(z)− ε→ f(a)− ε as z → a.

Since ε > 0 is arbitrary, lim infz→a hf (z) ≥ f(a).

By Lemma 29.4, there is a continuous subharmonic function s on U such that
s(z)→ −f(a) as z → a, lim supz→b s(z) ≤ −f(a) for all b ∈ (∂U) ∩ V , and s(z) ≤
−M for z ∈ U \ V . Let u ∈ Pf . Then lim supz→w(u(z) + s(z)) ≤ f(w)− f(a) < ε
if w ∈ (∂U) ∩ V and lim supz→w(u(z) + s(z)) ≤ f(w) −M ≤ 0 if w ∈ (∂U) \ V .
By the maximum principle for subharmonic functions 28.7, u+ s < ε on U . Hence
hf ≤ ε− s on U , and so

hf (z) ≤ ε− s(z)→ ε+ f(a) as z → a.

Since ε > 0 is arbitrary, lim supz→a hf (z) ≤ f(a). �

Conversely, we have the following proposition.

Proposition 29.6. Let U ⊆ C be a bounded domain and let a ∈ ∂U . Assume that,
for every f ∈ C(∂U), we have hf (z) → f(a) as z → a. Then there is a harmonic
function u on U such that u(z) → 0 as z → a and lim supz→b u(z) < 0 for all
b ∈ ∂U , b 6= a. In particular, a is a peak point of U .

Proof. Let f(w) := |w − a|, w ∈ ∂U . Then f ∈ C(∂U). The function z 7→ |z − a|
belongs to Pf (cf. Corollary 28.4). Thus, |z − a| ≤ hf (z) for all z ∈ U , and so
lim infz→b hf (z) > 0 for all b ∈ ∂U , b 6= a. By assumption, hf (z) → f(a) = 0
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as z → a. It follows that u := −hf is as required, since hf is harmonic, by
Theorem 29.3. �

Thus, we have proved the following theorem.

Theorem 29.7 (solution of the Dirichlet problem (I)). Let U ⊆ C be a bounded
domain. The Dirichlet problem is solvable on U if and only if every boundary point
of U is a peak point.

In the rest of the section we will give geometric conditions which imply the
existence of peaking functions.

Proposition 29.8 (Bouligand). Let U ⊆ C be a bounded domain and let a ∈
∂U . Suppose that there is an open neighborhood V of a in C and a continuous
subharmonic function p on U ∩ V such that p(z) < 0 for z ∈ U ∩ V and p(z) → 0
as z → a. Then there is a harmonic function h on U such that h(z)→ 0 as z → a
and lim supz→b h(z) < 0 for all b ∈ ∂U , b 6= a. In particular, a is a peak point of
U .

Note that, in the hypothesis of the proposition, condition (2) of the definition
of a peaking function p is dropped.

Proof. Let f(w) := |w − a|, w ∈ ∂U . The proof of Proposition 29.6 shows that it
suffices to prove that hf (z) → 0 as z → a; then h := −hf is a function with the
required properties.

By assumption, there is an open neighborhood V of a in C and a continuous
subharmonic function p on U ∩ V such that p(z) < 0 for z ∈ U ∩ V and p(z) → 0
as z → a. Let Dr(a) ⊆ V . Let 0 < ε < r and ρ > 0. Set I = I(ε) := ∂Dε(a) ∩ U .
Let C be a compact subset of I such that the measure of I \ C is < ρ. Consider
the function χ on ∂Dε(a) defined by χ(ζ) = M := supw∈∂U f(w) if ζ ∈ I \ C and
χ(ζ) = 0 otherwise; then χ ∈ L1(∂Dε(a)). The function

v(z) :=

ˆ 2π

0

χ(a+ εeit)Pa,ε(z, t) dt, z ∈ Dε(a),

is harmonic and > 0 on Dε(a), and

v(a) =
1

2π

ˆ 2π

0

χ(a+ εeit) dt <
ρM

2π
.

Set δ := − supζ∈C p(ζ). Then δ > 0, since C is a compact subset of U ∩ V .

Let u ∈ Pf (i.e., u is continuous subharmonic on U and lim supz→w u(z) ≤ f(w)
for all w ∈ ∂U) and define a subharmonic function s on Dε(a) ∩ U by setting

s(z) := u(z)− ε+
M

δ
p(z)− v(z).

We claim that

lim sup
z→w

s(z) ≤ 0 for all w ∈ ∂(Dε(a) ∩ U). (29.2)

We consider three cases which correspond to the decomposition ∂(Dε(a) ∩ U) =
(Dε(a) ∩ ∂U) ∪ (I \ C) ∪ C.

Let w ∈ Dε(a) ∩ ∂U . Since u ∈ Pf , lim supz→w u(z) ≤ f(w) = |w − a| ≤ ε.
Moreover, lim supz→w p(z) ≤ 0 and lim infz→w v(z) ≥ 0 which implies (29.2).

Let w ∈ I \ C ⊆ U . We have v(z)→ M as z → w, by Remark 17.7, and thus,
since p < 0 and u ≤M on U ∩ V (by the maximum principle),

lim sup
z→w

s(z) ≤ u(w)− ε−M ≤ 0.
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Let w ∈ C ⊆ U . Then p(z) ≤ −δ and thus, since v > 0,

lim sup
z→w

s(z) ≤ u(w)− ε+
M

δ
(−δ) ≤ 0.

Thus the claim is proved.

Now, by (29.2) and the maximum principle for subharmonic functions 28.7,
s ≤ 0 on Dε(a) ∩ U , i.e.,

u(z) +
M

δ
p(z) ≤ v(z) + ε, for z ∈ Dε(a) ∩ U.

Since this holds for all u ∈ Pf , we get

hf (z) +
M

δ
p(z) ≤ v(z) + ε, for z ∈ Dε(a) ∩ U.

Letting z → a we find

lim sup
z→a

hf (z) ≤ v(a) + ε <
ρM

2π
+ ε.

Since hf ≥ 0 and ε, ρ were arbitrary, this implies hf (z) → 0 as z → a, and the
proposition follows. �

Theorem 29.9 (solution of the Dirichlet problem (II)). Let U ⊆ C be a bounded
domain such that no connected component of C \ U reduces to a point. Then the
Dirichlet problem is solvable on U .

Proof. Let a ∈ ∂U and suppose that the connected component of C \U containing
a does not reduce to {a}. We will show that a is a peak point. This implies the
theorem, by Theorem 29.7.

Let b 6= a lie in the connected component of C \ U containing a. Then there
exists f ∈ H(U) such that ef(z) = (z−a)/(z− b), by Lemma 15.1. Let V := Dr(a).
If r > 0 is sufficiently small then |(z − a)/(z − b)| < 1 for z ∈ V . If we set
p(z) := Re(1/f(z)) = (Re f(z))/|f(z)|2, z ∈ U ∩ V , then p(z) < 0 and

|f(z)| ≥ |Re f(z)| =
∣∣∣ log

∣∣∣z − a
z − b

∣∣∣∣∣∣→∞ as z → a,

so that p(z)→ 0 as z → a. Proposition 29.8 implies that a is a peak point. �



CHAPTER 8

Introduction to Riemann surfaces

This chapter is intended as a short introduction to the basics on Riemann
surfaces. The main goal is to convey the idea that Riemann surfaces are natu-
ral domains for holomorphic and meromorphic functions and to interpret some of
the results in earlier chapters in this more general framework. The literature on
Riemann surfaces is vast; we recommend [2], [6], and [7] for further reading.

30. Definitions, basic properties, and examples

Let X be a 2n dimensional manifold. A complex structure on X is an open
cover {Ui}i∈I of X together with homeomorphisms ϕi : Ui → Vi, Vi open in Cn,
such that the transition mappings

ϕi ◦ ϕ−1
j |ϕj(Ui∩Uj) : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj)

are holomorphic for all i, j ∈ I. Two complex structures on X are said to be
equivalent if their union is again a complex structure.

A complex manifold is a 2n dimensional manifold X equipped with an equiv-
alence class of complex structures on X. Then n is the complex dimension of
X. Given an open subset U ⊆ X and a homeomorphism ϕ : U → V onto an
open set V ⊆ Cn, then (U,ϕ) is called a chart on X, if (U,ϕ) ∪ {(Ui, ϕi)}i∈I is a
complex structure, where {(Ui, ϕi)}i∈I is in the given equivalence class on X. The
components ϕ1, . . . , ϕn of ϕ are called local coordinates on U .

Let X, Y be complex manifolds with a complex structures {(Ui, ϕi)}i∈I ,
{(Vj , ψj)}j∈J , respectively. A continuous mapping f : X → Y is said to be holo-
morphic if

ψj ◦ f ◦ ϕ−1
i : ϕi(Ui ∩ f−1(Vj))→ ψj(Vj)

is holomorphic for all i ∈ I, j ∈ J . A mapping f : X → Y is a biholomorphism if
there is a holomorphic mapping g : Y → X such that f ◦ g = IdY and g ◦ f = IdX .
The set of holomorphic mappings f : X → Y is denoted by H(X,Y ). We set
H(X) = H(X,C), where C is equipped with the complex structure (C, Id).

A Riemann surface is a connected complex manifold X of complex dimension
1 having a countable base for its topology; the last condition is actually automati-
cally satisfied by a theorem of Radó.

Note that a holomorphic mapping between Riemann surfaces is a biholomor-
phism if and only if it is a homeomorphism.

Many results for holomorphic functions defined in domains in C persist on
Riemann surfaces:

Theorem 30.1. Let X, Y be Riemann surfaces and let f ∈ H(X,Y ). Then:

(1) (Principle of analytic continuation). If there is a nonempty open subset Ω
of X such that f |Ω = const = y, then f ≡ y on X.

(2) (Open mapping theorem). If f is not constant, then f is an open mapping.

83
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(3) (Maximum principle). If f ∈ H(X) and there is a ∈ X such that |f(x)| ≤
|f(a)| for all x ∈ X, then f is constant.

(4) If fn ∈ H(X) converges uniformly on compact subsets of X to f , then
f ∈ H(X).

(5) (Montel’s theorem). If F ⊆ H(X) is bounded on compact subsets of X,
then any sequence of functions in F has a subsequence which converges
uniformly on compact subsets of X.

(6) (Riemann’s theorem on removable singularities). If f ∈ H(X \ {a})
is bounded in a neighborhood of a, then there is F ∈ H(X) such that
F |X\{a} = f .

Proof. (1) Let A := {x ∈ X : f ≡ y near x}. Then A is open and Ω ⊆ A. Since
X is connected, it suffices to show that A is closed. Let x ∈ A, and choose charts
(U,ϕ), (V, ψ) such that x ∈ U and f(x) ∈ V . Let W be the connected component of
ϕ(U ∩f−1(V )) ⊆ C containing ϕ(x). Since A is open, any open set in X containing
x intersects A in a nonempty open set. Thus ϕ(A) ∩W is a nonempty open set,
and F := ψ ◦ f ◦ ϕ−1 is holomorphic on W and constant ψ(y) on ϕ(A) ∩W . By
the identity theorem, F ≡ ψ(y) on W . Thus x ∈ A.

(2) Let Ω ⊆ X be open, x ∈ Ω. Choose charts (U,ϕ), (V, ψ) such that x ∈ U
and f(x) ∈ V . Let Ω0 be the connected component of Ω ∩ U ∩ f−1(V ) containing
x. By (1), f |Ω0

is not constant so that F := ψ ◦ f ◦ ϕ−1 is not constant on ϕ(Ω0).
By the open mapping theorem in C, F (ϕ(Ω0)) is open in C and thus f(Ω0) is open
in Y . So f(Ω) is a neighborhood of f(x).

(3) The condition means that f(X) ∈ D|f(a)|(0). So f(X) is not open, and the
statement follows from (2).

(4), (5), (6) follow easily from their corresponding version in C. �

Exercise 57. Prove the items (4), (5), and (6) of Theorem 30.1.

Corollary 30.2. Any holomorphic function on a compact Riemann surface is con-
stant.

Proof. If f ∈ H(X) then f(X) is compact in C. So Theorem 30.1(2) implies that
f is constant. �

Let X be a Riemann surface defined by the complex structure {(Ui, ϕi)}i∈I . If
U ⊆ X is open, then {(U ∩Ui, ϕi|U∩Ui)}i∈I is a complex structure on U , called the
induced complex structure. So each connected component of U is a Riemann
surface.

Example 30.3 (connected components of O). Let O be the sheaf of germs of holo-
morphic functions on C, and let π : O → C be the mapping given by π(fa) = a.
We saw in Lemma 2.3 that π is a local homeomorphism and O is a two dimen-
sional manifold. Let {Ui}i∈I be an open cover of O such that πi := π|Ui is a
homeomorphism onto π(Ui). Then {(Ui, πi)}i∈I is a complex structure on O, since
the transition maps πi ◦ π−1

j |πj(Ui∩Uj) are the identity maps. So any connected
component of O is a Riemann surface in a natural way.

Example 30.4 (Riemann sphere). The one point compactification Ĉ = C ∪ {∞}
is homeomorphic to S2 = {x ∈ R3 : |x| = 1} via the stereographic projection. Let
U1 := C and U2 := C∗∪{∞}. Let ϕ1 := Id : U1 → C and let ϕ2 : U2 → C be defined
by ϕ2(z) = 1/z if z ∈ C∗ and ϕ2(∞) = 0. Then ϕ1, ϕ2 are homeomorphisms, and
the transition map ϕ1 ◦ ϕ−1

2 : ϕ2(U1 ∩ U2)→ ϕ1(U1 ∩ U2) is the mapping z → 1/z

from C∗ to itself. This complex structure makes the Riemann sphere Ĉ to a
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compact Riemann surface, also called the complex projective line and denoted
by P1.

Exercise 58. The complex projective line is the quotient space P1 := C2 \{0}/ ∼,
where (z1, z2) ∼ (w1, w2) if and only if there exists λ ∈ C∗ such that (z1, z2) =
λ(w1, w2). It is endowed with the quotient topology, i.e., the largest topology
for which the quotient projection C2 \ {0} → P1 is continuous. The equivalence
class of (z1, z2) is denoted by [z1, z2]. Show that P1 is a complex manifold which
is biholomorphic to the Riemann sphere. Hint: Show that ϕ1 : P1 \ {[1, 0]} →
C, [z, 1] 7→ z, and ϕ2 : P1 \ {[0, 1]} → C, [1, z] 7→ z, define two charts which cover
P1. Compute the transition map ϕ1 ◦ ϕ−1

2 .

Example 30.5 (complex tori). Let w1, w2 ∈ C∗ be such that Im τ > 0, where
τ = w2/w1, and let Λ = Zw1 + Zw2. Then Λ is a subgroup of C and acts on C by
λ(z) = z+λ, λ ∈ Λ, z ∈ C. Consider the equivalence relation on C defined by z ∼ w
if z−w ∈ Λ and the corresponding quotient space X = C/Λ. Then X is Hausdorff
and the quotient map π : C→ X is a covering map. Let {Vi}i be an open cover of
C by disks such that πi := π|Vi is a homeomorphism onto Ui := π(Vi). We claim
that {(Ui, π−1

i )}i is a complex structure on X. Let x ∈ Ui ∩ Uj and zi = π−1
i (x),

zj = π−1
j (x). Then λ = zi − zj ∈ Λ. The transition map π−1

i ◦ πj : π−1
j (Ui ∩Uj)→

π−1
i (Ui ∩ Uj) is the mapping z 7→ z + λ. The Riemann surface X defined by this

complex structure is a complex torus. The mapping π : C → X is holomorphic.
A model of X is obtained by identifying opposite side of the parallelogram with
vertices 0, w1, w2, and w1 + w2.

Let X1 = C/Λ1, X2 = C/Λ2 be two biholomorphic complex tori, where Λ1 =
Z + Zτ1 and Λ2 = Z + Zτ2. What can be said about the relationship of τ1,τ2? If
f : X1 → X2 is a biholomorphism, then there is a biholomorphism f̃ : C→ C such
that the following diagram commutes.

C
f̃ //

π1

��

C

π2

��
X1

f // X2

This follows from Corollary 4.7. Then f̃ induces a group isomorphism ψ : Λ1 → Λ2

by λ 7→ f̃ ◦ λ ◦ f̃−1. Since f̃ ∈ Aut(C), f̃(z) = az + b for some a ∈ C∗, b ∈ C.
Therefore, there are k, `,m, n ∈ Z such that

a = ψ(1) = k + `τ2, aτ1 = ψ(τ1) = m+ nτ2

and since ψ is an isomorphism the matrix
(
k `
m n

)
is invertible, thus kn− `m = ±1.

It follows that

τ1 =
m+ nτ2
k + `τ2



86 8. INTRODUCTION TO RIEMANN SURFACES

and since τ1, τ2 ∈ H, we have kn− `m = 1. Conversely, if τ1, τ2 are related in this
way then they correspond to biholomorphic complex tori. By Proposition 24.2,
we have shown that the set of equivalence classes of complex tori up to biholomor-
phism (called moduli space) is in one-to-one correspondence with the fundamental
domain of the modular group, depicted on p. 62.

Example 30.6 (orbit spaces H/Γ). Let Γ be a discrete fixed point free subgroup
of Aut(H) = {z 7→ (az + b)/(cz + d) : a, b, c, d ∈ R, ad − bc = 1}. The orbit space
X = H/Γ is Hausdorff and the quotient map π : H → X is a covering map. In
analogy to Example 30.5, there is a natural complex structure on X (with z 7→ γ(z),
γ ∈ Γ, as transition maps) which makes X to a Riemann surface and the projection
π : H→ X holomorphic. A particular example was discussed in section 26.

Exercise 59. Prove: f(z) = (az + b)/(cz + d) ∈ Aut(H) is fixed point free in H if
and only if |a+ d| ≥ 2.

Remark 30.7. The uniformization theorem states that any simply connected

Riemann surface is biholomorphic to either C, Ĉ, or H; note that this is a general-
ization of the Riemann mapping theorem 20.4. See e.g. [6].

Let X, Y be connected topological spaces and let p : Y → X be a covering map.
Then p : Y → X is called a universal covering of X if it satisfies the following
universal property: for every covering map q : Z → X, where Z is connected, and
all y0 ∈ Y , z0 ∈ Z with p(y0) = q(z0) there is a unique mapping f : Y → Z such
that p = q ◦ f and f(y0) = z0. There is up to isomorphism at most one universal
covering of X.

Let X be a connected manifold. If Y is a connected, simply connected manifold
and p : Y → X is a covering map, then p is the universal covering of X. If X
is a connected manifold, then there always exists a connected, simply connected

manifold X̃ and a covering map p : X̃ → X; thus p : X̃ → X is the universal

covering of X. If X is a Riemann surface, then X̃ has a unique complex structure

which makes it a Riemann surface and the mapping p : X̃ → X holomorphic.

Let X be a Riemann surface and let p : X̃ → X be its universal covering. Let

G be the group of homeomorphisms g : X̃ → X̃ such that p = p ◦ g, i.e., the group
of deck transformations. Then G is isomorphic to the fundamental group π1(X)

and it acts properly discontinuously and fixed point freely on X̃. With respect to

the complex structure on X̃, G is actually a group of holomorphic automorphism

of X̃.

By the uniformization theorem we have only three candidates for X̃, namely

C, Ĉ, or H. Each of these domains has the property that its automorphism group
is a group of Möbius transformations. It follows that every Riemann surface X is

biholomorphic to D/G, where D is either C, Ĉ, or H and G is a group of Möbius
transformations isomorphic to π1(X) which acts properly discontinuously and fixed
point freely on D.

31. Meromorphic functions

Let X be a Riemann surface, let a ∈ X, and let U be a neighborhood of a in
X. Let f ∈ H(U \ {a}). We say that a is a removable singularity of f if there
exists F ∈ H(U) with F |U\{a} = f . We say that a is a pole of f if |f(x)| → ∞
as x → a. If a is neither a removable singularity nor a pole, then a is called an
essential singularity of f .
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Let A be a discrete subset of X and let f ∈ H(X \ A). We say that f is
meromorphic on X if each point of A is either a removable singularity or a pole
of f . Let B ⊆ A be the set of poles of f . Then f defines a holomorphic mapping

f : X \B → C, and induces a mapping F : X → Ĉ by

F (x) :=

{
f(x) if x ∈ X \B,
∞ if x ∈ B.

Proposition 31.1. The mapping F : X → Ĉ is holomorphic.

Proof. F is continuous since |f(x)| → ∞ as x → b for each b ∈ B. Let D1(∞) :=

{z ∈ Ĉ : |z| > 1}. Then U := F−1(D1(∞)) is open in X. It suffices to check

that F : U → Ĉ is holomorphic, that is, that g := ϕ ◦ F is holomorphic, where
ϕ : D1(∞) → D with ϕ(z) = 1/z if z 6= ∞ and ϕ(∞) = 0. This follows from
Riemann’s theorem on removable singularities 30.1(6), since g(x) → 0 = g(b) as
x→ b for all b ∈ B. �

If, conversely, F : X → Ĉ is a non-constant holomorphic mapping and B :=
F−1(∞), then f = F |X\B is holomorphic on X\B, meromorphic on X, and B is the
set of its poles. Thus, non-constant meromorphic functions are just non-constant

holomorphic functions into Ĉ.

Meromorphic functions can be added and multiplied. If f is meromorphic on
X and f 6≡ 0 then 1/f is meromorphic on X. So the set M(X) of meromorphic
functions on a Riemann surface X forms a field, the so-called function field of X.

Let f ∈M(X) and a ∈ X. The order of f at a is defined by

orda(f) := ordϕ(a)(f ◦ ϕ−1),

where (U,ϕ) is any chart with a ∈ U . It is well-defined, since the order is invariant
under biholomorphisms. If orda(f) = k > 0 then a is a zero of order k, if orda(f) =
−k < 0 then a is a pole of order k.

Proposition 31.2 (function field of the Riemann sphere). The function fieldM(Ĉ)
consists precisely of the rational functions.

Proof. Clearly, every rational function is in M(Ĉ). Let f ∈ M(Ĉ), f 6= 0. Let
a1, . . . , an ∈ C be the poles of f in C and let −kj = ordaj (f); there are finitely

many since Ĉ is compact. The function g = f
∏n
j=1(z − aj)kj is meromorphic on

Ĉ and has no poles in C. Then w 7→ g(1/w) is meromorphic in a neighborhood of
w = 0. Thus, there is M > 0, ρ > 0 such that

|wNg(1/w)| ≤M for 0 < |w| < ρ,

where N = − ord0(g(1/w)). Hence

|g(z)| ≤M |z|N for 1/ρ < |w| <∞.
Since g is entire, it must be a polynomial (by the Cauchy inequalities). Thus f is
a rational function. �

Proposition 31.3 (function field of complex tori). Let Λ = Zw1 + Zw2, where
w1, w2 ∈ C∗ with τ := w2/w1 ∈ H. Let C/Λ be the corresponding complex torus.
The function field M(C/Λ) is in one-to-one correspondence with the elliptic func-
tions with period group Λ.

Proof. Let f ∈M(C/Λ). We may assume that f is non-constant. Thus f : C/Λ→
Ĉ is holomorphic and hence f̃ := f ◦π : C→ Ĉ is holomorphic, where π : C→ C/Λ
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is the quotient map. Thus f̃ is meromorphic and Λ-invariant, i.e., Λ ⊆ per(f).

Conversely, every elliptic function f̃ with period group Λ induces a meromorphic
function on C/Λ. �

32. Holomorphic mappings between Riemann surfaces

Let X,Y be Riemann surfaces and let p ∈ H(X,Y ) be non-constant. Then p
is open and every fiber p−1(y), y ∈ Y , is discrete, by Theorem 30.1. A function
f ∈ H(X) (or f ∈ M(X)) can be considered as a multi-valued function on Y :
if y ∈ Y and p−1(y) = {xi : i ∈ I}, then f(xi), i ∈ I, are the different values of f
at the point y.

Example 32.1 (Riemann surface of the logarithm). Consider p = exp : C → C∗.
Then f = Id : C → C corresponds to the multi-valued logarithm log : C∗ → C. A
geometric model for the Riemann surface of the logarithm is obtained as follows:
the preimage p−1(C−) of the set C− = C \ R≤0 has infinitely many components
Sn, n ∈ Z, on which p is bijective onto C−. We may think of the components Sn
to be all copies of C− and stacked one above the other. Then the second quadrant
edge of Sn is glued to the third quadrant edge of Sn+1 for all n, which results in
an infinite spiral, the Riemann surface of the logarithm. On this Riemann
surface the logarithm is a single-valued function.

A point x ∈ X is called a branch point or ramification point of p if there
is no neighborhood U of x such that p|U is injective.

Lemma 32.2. Let X,Y be Riemann surfaces and let p ∈ H(X,Y ) be non-constant.
Then p has no branch points if and only if p is a local homeomorphism.

Proof. This follows easily from the fact that p is continuous and open. �

For instance, exp : C→ C∗ has no branch points.

Example 32.3 (Riemann surface of the square root). Let p : C → C be the
mapping z 7→ z2. Then 0 ∈ C is a branch point of p. Here f = Id : C →
C corresponds to the multi-valued square root. Let us look at the graph X :=
{(z, w) ∈ C2 : w = z2} of p. Then the projection pr1 : X → C, (z, w) 7→ z,
defines a biholomorphism between X and C; it is the single-valued square root
function z =

√
w. As in Example 32.1 we may construct a geometric model of the

Riemann surface of the square root by gluing the components of the preimage
p−1(C \ R<0) which consist of two sheets S1 and S2, both copies of C \ R<0. Here
the second quadrant edge of S1 is is glued to the third quadrant edge of S2 and the
second quadrant edge of S2 is is glued to the third quadrant edge of S1.

Evidently, we can treat p(z) = zn, for any integer n > 2, in the same way.

Proposition 32.4 (local form of holomorphic maps). Let X,Y be Riemann sur-
faces and let f ∈ H(X,Y ) be non-constant. Let a ∈ X and b = f(a). Then there is
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an integer n ≥ 1 and charts (U,ϕ), (V, ψ) on X, Y , respectively, such that a ∈ U ,
ϕ(a) = 0, b ∈ V , ψ(b) = 0, f(U) ⊆ V and

ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V ) : z 7→ zn.

Proof. Let F := ψ ◦ f ◦ ϕ−1. Then F (0) = 0 and so there is a positive integer
n such that F (z) = zng(z), where g(0) 6= 0. Thus, there is a neighborhood of 0
and a holomorphic function on this neighborhood such that hn = g. The mapping
α(z) := zh(z) is a biholomorphism from an open neighborhood of 0 onto an open
neighborhood of 0. Replacing the chart ϕ by α ◦ ϕ the statement follows. �

The number n is the ramification number or multiplicity of f at a, we
write ma(f). The mapping f : X → Y is said to take the value b ∈ Y , m times
(counting multiplicities) if m =

∑
x∈f−1(b)mx(f).

A continuous mapping f : X → Y between manifolds is called proper if the
preimage of every compact set is compact. Any proper mapping is closed, i.e., maps
closed sets to closed sets.

Exercise 60. Prove that a proper mapping f : X → Y between manifolds is
closed.

Let X,Y be Riemann surfaces. A proper non-constant holomorphic mapping
f : X → Y is called a branched covering.

Theorem 32.5 (degree). Let X,Y be Riemann surfaces, and let f : X → Y be a
branched covering. Then there is a positive integer n such that f takes every value
b ∈ Y , n times. The number n is called the degree of f .

Proof. The set of branch points A of f is closed and discrete by Proposition 32.4.
Since f is proper, also B = f(A) is closed and discrete. Set Y ′ := Y \ B and
X ′ := X \ f−1(B). Then f |X′ : X ′ → Y ′ is a holomorphic covering map with
a finite number, say n, of sheets: by the uniqueness of liftings 1.1 of curves, any
two fibers f−1(y) have the same cardinality, which is finite since f is proper. Let
b ∈ B, f−1(b) = {x1, . . . , xk} and mj = mxj (f). By Proposition 32.4, there exist
disjoint neighborhoods Uj of xj and Vj of b such that for each c ∈ Vj \ {b} the set
f−1(c) ∩ Uj consists of exactly mj points. We claim that there is a neighborhood
V ⊆ V1 ∩ · · · ∩ Vk of b such that f−1(V ) ⊆ U1 ∪ · · · ∪Uk (take V := Y \ f(X \ (V1 ∩
· · · ∩ Vk)) which is open since f is closed). Then, for every c ∈ V ∩ Y ′, the fiber
f−1(c) consists of m1 + · · ·+mk points. Thus n = m1 + · · ·+mk. �

Corollary 32.6. Let X be a compact Riemann surface X and let f ∈ M(X) be
non-constant. Then f has as many zeros as poles (counted according multiplicities).

Proof. The mapping f : X → Ĉ is proper, sinceX is compact. Apply Theorem 32.5.
�

For the special case of complex tori we already proved this in Theorem 24.3;
cf. Proposition 31.3.

Corollary 32.7 (fundamental theorem of algebra). Any polynomial p(z) = a0z
n+

a1z
n−1 + · · ·+ an ∈ C[z], a0 6= 0, has n roots (counted according multiplicities).

Proof. p ∈M(Ĉ) has a pole of order n at ∞. �

Let us state without proof that every covering map of D∗ := D \ {0} is either
isomorphic to the covering given by the exponential mapping or else by the nth
power; for a proof see [7, Theorem 5.10].
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Theorem 32.8. Let X be a Riemann surface and let p : X → D∗ be a covering
map. Then one of the following occurs:

(1) If p has an infinite number of sheets, then there is a biholomorphism ϕ :
X → {z ∈ C : Re z < 0} such that p = eϕ.

(2) If p has n sheets, then there is a biholomorphism ϕ : X → D∗ such that
p = ϕn.

Corollary 32.9. Let X be a Riemann surface and let p : X → D be a branched
covering such that p : p−1(D∗) → D∗ is a covering map. Then there is an integer
n ≥ 1 and a biholomorphism ϕ : X → D such that p = ϕn.

Proof. By the previous theorem and Theorem 32.5, there exists n ≥ 1 and a biholo-
morphism ϕ : p−1(D∗) → D∗ such that p = ϕn. We claim that p−1(0) consists of
only one point a ∈ X. Then, by setting ϕ(a) := 0, ϕ extends to a biholomorphism
ϕ : X → D such that p = ϕn, by Theorem 30.1(6).

Suppose that p−1(0) consists of k ≥ 2 points a1, . . . , ak. Then there are disjoint
open neighborhoods Ui of ai and r > 0 such that p−1(Dr(0)) ⊆ U1 ∪ · · · ∪ Uk.
Set D∗r(0) := Dr(0) \ {0}. Then p−1(D∗r(0)) is homeomorphic to D∗

r1/n
(0), and

thus connected. Every ai is an accumulation point of p−1(D∗r(0)), and hence also
p−1(Dr(0)) is connected, a contradiction. �

33. Construction of Riemann surfaces by analytic continuation

Let us now consider the construction of Riemann surfaces by analytic continu-
ation of function germs.

Let X be a Riemann surface. In analogy to section 2 we define the sheaf of
germs of holomorphic functions on X: we set OX :=

⊔
x∈X OX,x, where OX,x

is the set of germs at x ∈ X. A germ of a holomorphic function at x ∈ X is an
equivalence class with respect to the equivalence relation

(U, f) ∼ (V, g) :⇔ ∃W such that x ∈W ⊆ U ∩ V and f |W = g|W,
where U, V,W ⊆ X are open neighborhoods of x and f, g are holomorphic. Endow-
ing OX with the topology generated by the fundamental system of neighborhoods
(cf. (2.1))

N(U, f) := {fx ∈ OX,x : fx is the germ at x ∈ U defined by (U, f)}
makes OX to a Hausdorff space and the projection π : OX → X, π(fx) = x, to a
local homeomorphism; this can be seen as in Lemma 2.2 and Lemma 2.3.

Let fx ∈ OX,x and let γ : [0, 1] → X be a curve with γ(0) = x. An analytic
continuation of fx along γ is a lifting γ̃ of γ to OX such that γ̃(0) = fx. By
uniqueness of liftings 1.1, the analytic continuation of a germ is unique if it exists.
The general monodromy theorem 4.1 implies that if γ0, γ1 are homotopic curves
in X from a to b and fa ∈ OX,a is a germ which admits an analytic continuation
along every curve in a homotopy {γs}s∈[0,1] connecting γ0 and γ1, then the analytic
continuations of fa along γ0 and γ1 result in the same germ. In particular, if
X is simply connected and fa ∈ OX,a admits an analytic continuation along every
curve starting in a, then there exists a unique globally defined holomorphic function
f ∈ H(X) such that fa is the germ at a of f .

In general, if X is not simply connected, by considering all germs that arise by
analytic continuation from a given germ we obtain a multi-valued function. Let us
make this precise.

First we make the following observation. Suppose that X,Y are Riemann
surfaces and p : Y → X is a holomorphic mapping which is a local homeomorphism.
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Since p is locally biholomorphic, it induces an isomorphism p∗ : OX,p(y) → OY,y
(where p∗(f) = f ◦ p). Let p∗ : OY,y → OX,p(y) denote the inverse of p∗.

Let X be a Riemann surface, a ∈ X, and fa ∈ OX,a. By an analytic contin-
uation (Y, p, f, b) of fa we mean the following data: Y is a Riemann surface and
p : Y → X is a holomorphic mapping which is a local homeomorphism, b ∈ p−1(a),
and f ∈ H(Y ) is such that p∗(fb) = fa. An analytic continuation (Y, p, f, b) of fa is
called maximal if it has the following universal property: if (Z, q, g, c) is another
analytic continuation of fa then there is a holomorphic mapping ϕ : Z → Y such
that ϕ(c) = b, ϕ∗(f) = g, and ϕ∗(p) = q. By uniqueness of liftings 1.1, a maximal
analytic continuation is unique up to isomorphism.

Y
p //

f

��

X

C Z

q

OO

g
oo

ϕ
``

We will show that there always exists a maximal analytic continuation.

Theorem 33.1 (maximal analytic continuation). Let X be a Riemann surface, a ∈
X, and fa ∈ OX,a. Then there exists a maximal analytic continuation (Y, p, f, b)
of fa.

Proof. Let Y be the connected component of OX containing fa. Then p : Y → X,
fx 7→ x, is a local homeomorphism. There is a natural complex structure on Y
which makes it a Riemann surface and p : Y → X holomorphic; this follows from
the arguments in Example 30.3. Let f : Y → C be defined by f(h) := evp(h)(h),
i.e., h ∈ Y is a germ at p(h) and f(h) is its value. Then f ∈ H(Y ) and p∗(fh) = h
for every h ∈ Y , in particular, for b := fa, we have p∗(fb) = fa. Thus (Y, p, f, b) is
an analytic continuation of fa.

Let us show maximality. Let (Z, q, g, c) be another analytic continuation of
fa. Let z ∈ Z. The germ q∗(gz) ∈ OX,q(z) arises by analytic continuation along a
curve from a to q(z), and hence there is precisely one h ∈ Y such that q∗(gz) = h.
Define a mapping ϕ : Z → Y by setting ϕ(z) := h. Then ϕ(c) = b, ϕ∗(f) = g, and
ϕ∗(p) = q. �

34. Elliptic curves

Consider the elliptic curve

w2 = 4(z − e1)(z − e2)(z − e3) =: p(z), (34.1)

where e1, e2, e3 ∈ C are pairwise distinct. Then p′(ei) 6= 0 for all i = 1, 2, 3. We

will construct a compact Riemann surface on which the function w =
√
p(z) is

single-valued. Set

X := {(z, w) ∈ C2 : w2 = p(z)}.
Let (z0, w0) ∈ X be such that w0 6= 0. Then z0 6= ei, i = 1, 2, 3, and we may
take (z, w) 7→ z as a local coordinate in a neighborhood of (z0, w0). At a point
(z0, 0) ∈ X, z0 = ei for some i and hence p′(z0) 6= 0. By the implicit function
theorem, there is a holomorphic function f defined in a neighborhood of 0 such
that z = f(w) near (z0, 0) and z0 = f(0). Thus we may take (z, w) 7→ w as a local
coordinate in a neighborhood of (z0, 0). This defines a complex structure on X
and the projection p = pr1 : X → C, pr1(z, w) = z is holomorphic. The Riemann
surface X has two sheets, since to a general value of z correspond two values of w.
(Note that also pr2 : X → C is holomorphic.)
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Let us complete X to a Riemann surface X̂ over Ĉ. Let P2 be the complex
projective plane, i.e., P2 = C3 \ {0}/ ∼, where (z1, z2, z3) ∼ (w1, w2, w3) if there
is λ ∈ C∗ such that (z1, z2, z3) = λ(w1, w2, w3). We denote by [z1, z2, z3] the equiv-
alence class of (z1, z2, z3) and say that [z1, z2, z3] are homogeneous coordinates.
Define

X̂ := {[z, w, t] ∈ P2 : w2t = 4(z − e1t)(z − e2t)(z − e3t)}.
We identify X with {[z, w, t] ∈ X̂ : t = 1}. The complement X̂ \ X consists of a
single point, at infinity with the homogeneous coordinates [0, 1, 0] (setting t = 0
gives z3 = 0 thus z = 0). Let this point be denoted by ∞. In a neighborhood of

∞, we can take X̂ 3 [z, w, t] → z/w ∈ C as a local coordinate. In fact, replacing
[z, w, t] by [z′, w′, t′] = [z/w, 1, t/w] gives

t′ = 4(z′ − e1t
′)(z′ − e2t

′)(z′ − e3t
′),

and by the implicit function theorem, t′ is a holomorphic function of z′ in some

neighborhood of (z′, t′) = (0, 0). This defines a complex structure on X̂ and a

holomorphic projection p̂ : X̂ → Ĉ which coincides with p on X and sends ∞ ∈ X̂
to ∞ ∈ Ĉ. The Riemann surface X̂ is the compactification of X and p̂ : X̂ → Ĉ
is a two-sheeted branched covering with branch points e1, e2, e3,∞. A geometric

model of X̂ is obtained by slicing two copies of Ĉ along some path from e1 to e2

and some path from e3 to ∞, say, and identifying the boundaries crosswise.

Topologically, the resulting surface is a torus, which is illustrated in the figure
below.

Proposition 34.1. Let Λ = Zw1 + Zw2, where Imw2/w1 > 0, and assume that
e1, e2, e3 satisfy (25.4) for the associated Weierstrass ℘-function. Then the mapping

ϕ : C/Λ→ X̂,

ϕ(z) :=

{
[℘(z), ℘′(z), 1] if z 6= 0,

[℘(z)/℘′(z), 1, 1/℘′(z)] if z = 0,

is a biholomorphism.
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Proof. Since ℘ satisfies the differential equation (25.5), ϕ maps C/Λ into X̂. We
have the following commuting diagram.

C/Λ
ϕ //

℘
  

X̂

p̂
��
Ĉ

Then ϕ is surjective, since ℘ is surjective, by Corollary 24.4. Let us show that
ϕ is injective. Let z, z′ ∈ C be such that z′ − z 6∈ Λ and ℘(z) = ℘(z′). Assume
first that 2z 6∈ Λ. We have z′ + z ∈ Λ, since ℘(−z) = ℘(z), because ℘ is even,
but ℘ assumes every value exactly twice. Consequently, ℘′(z) 6= ℘′(z′) and hence
ϕ(z) 6= ϕ(z′), since otherwise ℘′(z) = ℘′(−z′) = −℘′(z′) = −℘′(z), as ℘′ is odd,
and hence ℘′(z) = 0, which contradicts 2z 6∈ Λ; recall that the zeros of ℘′ are w1/2,
w2/2, and (w1 + w2)/2. In the case that 2z ∈ Λ we also have 2z′ ∈ Λ, because
℘(−z′) = ℘(z′), since ℘ is even, and ℘ assumes every value exactly twice. Thus,
z, z′ ∈ {w1/2, w2/2, (w1 + w2)/2} modulo Λ. But e1 = ℘(w1/2), e2 = ℘(w2/2),
e3 = ℘((w1 + w2)/2) are pairwise distinct, which implies z′ − z ∈ Λ. This implies
that ϕ is injective.

Thus ϕ : C/Λ → X̂ is a holomorphic bijective mapping from a compact space
to a Hausdorff space. It follows that ϕ is a homeomorphism, and hence a biholo-
morphism. �

Also the converse is true: For every Riemann surface X̂ of an equation w2 =
4(z − e1)(z − e2)(z − e3), where e1, e2, e3 are distinct and satisfy e1 + e2 + e3 = 0,

there is a discrete subgroup Λ = Zw1 +Zw2, where Imw2/w1 > 0, such that X̂ can
be realized as in the proposition.





List of exercises

Exercise 1. Let n be a positive integer. Prove that C∗ → C∗, z 7→ zn, is a covering
map. Determine the lifting γ̃ of γ(t) = e2πit, t ∈ [0, 1], with γ̃(0) = 1.

Exercise 2. Prove Lemma 2.1.

Exercise 3. Show that the mapping π : O → C does not have the curve lifting
property and hence is not a covering map. Hint: Consider the germ ϕ at 1 of the
function z 7→ 1/z, and show that the curve γ : [0, 1] → C, γ(t) = 1 − t, does not
admit a lifting γ̃ to O with γ̃(0) = ϕ. Use Lemma 2.4.

Exercise 4. Let f ∈ H(C). Show that N(C, f) is the connected component in O
of the germ f0 at 0 of f . Hint: Use that an open subset X in the manifold O is
connected if and only if X is pathwise connected.

Exercise 5. Show that concatenation of curves defines a binary operation on the
set of all homotopy classes and turns it into a group π1(X, a).

Exercise 6. Use the homotopy form of Cauchy’s theorem 4.4 to conclude that
indγ1(z) = indγ2(z), if γ1, γ2 are closed homotopic curves in C∗z.

Exercise 7. Let f be holomorphic in a neighborhood of the disk DR(a). Prove
that for each r ∈ (0, R) there is a constant C > 0 such that

‖f‖L∞(Dr(a)) ≤ C‖f‖L2(DR(a)),

where ‖f‖L∞(U) = supz∈U |f(z)| and ‖f‖L2(U) = (
´
U
|f(z)|2 dx dy)1/2. Conclude

that a sequence (fn) ⊆ H(U) which is a Cauchy sequence with respect to the norm
‖ · ‖L2(U) converges uniformly on compact subsets of U to a holomorphic function.

Exercise 8. Prove that
∑∞
n=−∞ αn converges to a complex number α if and only

if for each ε > 0 there is N ∈ N>0 such that |
∑`
n=−k αn − α| < ε if k, ` ≥ N .

Exercise 9. The function f(z) = 6z−1(z + 1)−1(z − 2)−1 is holomorphic in C \
{0,−1, 2}. It has three Laurent expansions about 0. Compute them.

Exercise 10. Prove: Let f be meromorphic in U with zeros aj and poles bk, and
let γ be a cycle which is homologous to zero in U and does not pass through any
of the zeros or poles. Then

1

2πi

ˆ
γ

zf ′(z)

f(z)
dz =

∑
j

indγ(aj)aj −
∑
k

indγ(bk)bk,

where multiple zeros or poles are repeated according to their order.

Exercise 11. Deduce the fundamental theorem of algebra from Rouché’s theorem:
any polynomial P (z) = zn + an−1z

n−1 + · · · + a0 has n roots counted with their
multiplicities.
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Exercise 12. Show that ˆ ∞
0

dx

1 + x2
=
π

2
.

Hint: Integrate 1/(1 + z2) along the closed path formed by the segment [0, R], the
arc Reit, t ∈ [0, π], and the segment [−R, 0].

Exercise 13. Show that the function z 7→ π cot(πz) is meromorphic in C with a
simple pole with residue 1 at each integer n.

Exercise 14. Let f(z) = P (z)/Q(z) be a rational function such that degQ ≥
degP + 2. Let a1, . . . , am be its poles, all of them of order 1, and b1, . . . , bm the
respective residues, and assume that ai 6∈ Z for all i = 1, . . . ,m. Let γn be the
counter-clockwise oriented boundary of the square with vertices (n+ 1/2)(±1± i),
where n is a positive integer. Prove that there exist positive constants C,K > 0
independent of n such that |π cot(πz)| ≤ C on |γn| and |f(z)| ≤ K|z|−2 if |z| is
sufficiently large. Conclude that

lim
n→∞

ˆ
γn

f(z)π cot(πz) dz = 0,

and that

lim
n→∞

n∑
k=−n

f(k) = −
m∑
i=1

biπ cot(πai).

Note that limn,n′→∞
∑n′

k=−n f(k) exists, since |f(z)| ≤ K|z|−2 for large |z|, and
hence the last identity is equivalent to

∞∑
k=−∞

f(k) = −
m∑
i=1

biπ cot(πai).

Exercise 15. Use Exercise 14 to show that
∑∞
n=0 1/(n2 + 1) = (1 + π coth(π))/2.

Exercise 16. Let f ∈ Ckc (C). Show that u(z) = −1/π
˜

C f(ζ)/(ζ − z) dξdη tends
to 0 as |z| → ∞. Prove that u is the only solution of ∂u/∂z = f with this property.
Hint: All other solutions are of the form u+ v, where v is entire.

Exercise 17. Let f ∈ Ckc (C) and let u be a solution of ∂u/∂z = f with compact
support. Let D be a large disk which contains suppu. Prove that¨

D

f(z) dz ∧ dz = 0.

Conclude that there are functions f ∈ Ckc (C) such that no solution u of ∂u/∂z = f
has compact support. Hint: Use Stokes’ theorem.

Exercise 18. Suppose that f ∈ C∞c (C) satisfies
˜

C f(z)zn dx dy = 0 for every
integer n ≥ 0. Prove that the solution (10.4) of (10.5) has compact support. Hint:
Expand the kernel 1/(ζ− z) into a geometric series for ζ in some disk D containing
supp f and z 6∈ D.

Exercise 19. Show that d defined by (11.2) is a metric onH(U) and that (H(U), d)
is a complete metric space. Prove that a sequence in H(U) converges uniformly on
every compact subset of U if and only if it converges for the metric d.

Exercise 20. Prove that the mapping f 7→ f ′ from H(U) to itself is continuous.

Exercise 21. Let K1 = D1(4), K2 = D1(4i), K3 = D1(−4), and K4 = D1(−4i).
Show that there exists a sequence of entire functions fn such that fn → j uniformly
on Kj for j = 1, 2, 3, 4.
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Exercise 22. Prove that there exists a sequence of polynomials pn such that pn →
1 uniformly on compact subsets of {z ∈ C : Re z > 0}, pn → −1 uniformly on
compact subsets of {z ∈ C : Re z < 0}, and pn → 0 uniformly on compact subsets
of iR.

Exercise 23. Prove that there exists a sequence of entire functions fn such that
fn → 1 uniformly on compact subsets of the open upper half-plane and (fn) does
not converge at any point of the open lower half-plane.

Exercise 24. Let U ⊆ C be a domain and let f ∈ C∞(U). Prove that the equation
∆u = f admits a solution u ∈ C∞(U). Here ∆ = ∂2

x + ∂2
y = 4∂z∂z is the Laplace

operator. Conclude that if u ∈ C2(U) satisfies ∆u = 0, then u is actually in C∞(U).
Hint: Check that ∂zu = ∂zu and use Theorem 12.2 twice.

Exercise 25. Let U1, U2 be domains in C and let f ∈ H(U1∩U2). Show that there
are functions f1 ∈ H(U1) and f2 ∈ H(U2) such that f = f1 − f2 on U1 ∩ U2. For
U1 = {z ∈ C : Re z < 1}, U2 = {z ∈ C : Re z > −1}, and f(z) = 1/(z2 − 1), find
explicit functions f1, f2 satisfying the above properties.

Exercise 26. Show that if
∏∞
n=1(1+an) converges then limM,N→∞

∏N
n=M (1+an)

exists and equals 1. In addition show that this is not necessarily true if we allow

limN→∞
∏N
n=n0+1(1+an) = 0 in the definition of the convergence of

∏∞
n=1(1+an).

Exercise 27. Let (an) be a sequence (with repetitions) of points in D \ {0} satis-
fying

∑∞
n=1(1− |an|) <∞. Show that the so-called Blaschke product

f(z) =

∞∏
n=1

−an
|an|

z − an
1− anz

converges uniformly on every disk Dr(0) with r < 1 and defines a holomorphic
function on D with |f(z)| ≤ 1. Prove that the zeros of f are precisely the an’s
(counted according to their multiplicities). Hint: Apply Theorem 14.3.

Exercise 28. One can show that the second (multiplicative) Cousin problem
is always solvable for domains in C: Let U ⊆ C be a domain. Let U = {Ui}i∈I be
an open cover of U . Suppose that for any pair (i, j) ∈ I×I there is a function fij ∈
H(Ui∩Uj) vanishing nowhere in Ui∩Uj , and that for any triple (i, j, k) ∈ I× I× I
we have

fik = fijfjk on Ui ∩ Uj ∩ Uk.

Then there exists a family of functions {fi}i∈I with fi ∈ H(Ui) nowhere vanishing
on Ui such that

fi/fj = fij on Ui ∩ Uj for all i, j ∈ I.

Prove that this implies the Weierstrass theorem 15.3. Hint: Set ϕa(z) := (z− a)ma

for z ∈ Ua := U \ {a} and a ∈ A, and fab := ϕb/ϕa.

Exercise 29. Consider the power series

f(z) =

∞∑
n=0

z2n , |z| < 1,

with radius of convergence 1. Prove that the natural boundary of f is ∂D. Hint:
Let ϕ = 2π`/2k, where k, ` ∈ N, and show that |f(reiϕ)| → ∞ as r → 1−.

Exercise 30. Prove Liouville’s theorem for harmonic functions: If u : C → R is
harmonic and bounded on C, then u is constant.
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Exercise 31. Let a ∈ D. Prove that ϕa(z) = (z − a)/(1− az) is holomorphic and
invertible on a neighborhood of D with ϕ−1

a = ϕ−a. Show that |ϕa(z)| = 1 for
z ∈ ∂D.

Exercise 32. Show that if u : U → R is harmonic and h : V → U is holomorphic,
then u ◦ h is harmonic.

Exercise 33. Derive a formula analogous to the Poisson integral formula (17.2)
for the upper half plane H, by mapping H biholomorphically to D: if u is harmonic
on H, and continuous and bounded on H, then

u(z) =
1

π

ˆ ∞
−∞

u(t)
y

(x− t)2 + y2
dt, z = x+ iy ∈ H.

Exercise 34. Prove Jensen’s formula: Let f be holomorphic in a neighborhood
of Dr(0) with f(0) 6= 0. Assume that f does not vanish on ∂Dr(0) and let a1, . . . , ak
be the zeros of f in Dr(0) counted according to their multiplicities. Then

log |f(0)|+
k∑
j=1

log
r

|aj |
=

1

2π

ˆ 2π

0

log |f(reit)| dt. (17.5)

Hint: Use Exercise 31 to conclude that

g(z) =
f(z)∏k

j=1 ϕaj/r(z/r)
,

where ϕaj/r is defined by (17.1), is holomorphic in a neighborhood of Dr(0) and

has no zeros in Dr(0). Apply the mean value property to log |g| which is harmonic
in a neighborhood of Dr(0).

Exercise 35. Let f be continuous on D and holomorphic in D. Assume that f is
nowhere zero on D and |f(z)| = 1 on ∂D. Prove that the function

F (z) :=

{
f(z) if |z| ≤ 1,

1/f(1/z) if |z| > 1,

is entire, and conclude that f must be constant. Hint: Show first that F is contin-
uous, then use Morera’s theorem.

Exercise 36. Let F be the family of all f ∈ H(D) such that f(z) = z + a2z
2 +

a3z
3 + · · · with |an| ≤ n for all n. Show that F is a normal family.

Exercise 37. Let U ⊆ C be a region such that C \ U has interior points. Let
z0 ∈ U . Prove that F = {f ∈ H(D) : f(D) ⊆ U and f(0) = z0} is compact in
H(D). Hint: If a ∈ C \ U , then z 7→ 1/(z − a) maps U biholomorphically on a
subset of a disk with finite radius.

Exercise 38. Consider the family S = {f ∈ H(D) : f injective, f(0) = 0, f ′(0) =
1} of schlicht functions.

(1) Let f ∈ S . Let r be the maximal radius such that Dr(0) ⊆ f(D). Prove
that r ≤ 1.

(2) Choose a ∈ ∂Dr(0) with a 6∈ f(D) and set g := f/a. Then D ⊆ g(D) and
1 6∈ g(D). Conclude that there is a holomorphic function ϕ : g(D) → C∗
such that ϕ(z)2 = z − 1 for all z ∈ g(D).

(3) Set h := ϕ ◦ g. Show that w ∈ h(D) implies −w 6∈ h(D).
(4) Let (fn) be a sequence of functions in S , and let an, gn, hn be as defined

in (1), (2), (3) relative to fn. Use Exercise 37 to conclude that (hn) and
(fn) have convergent subsequences.
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(5) Conclude that S is compact in H(D). Hint: To see that the limit function
is injective use the argument principle 8.2.

Exercise 39. Prove the Schwarz lemma: Let f : D → D be holomorphic with
f(0) = 0. Then |f(z)| ≤ |z| for z ∈ D and |f ′(0)| ≤ 1. If for some c ∈ D∗ we
have either |f(c)| = |c| or |f ′(0)| = 1, then f is a rotation, i.e., f(z) = az for some
a with |a| = 1. Hint: Use the maximum principle for the holomorphic function
z 7→ f(z)/z.

Exercise 40. Let f : D→ D be holomorphic. Show that, if f has two fixed points,
then f(z) = z for all z ∈ D. Give an example of a holomorphic function f : D→ D
without fixed point.

Exercise 41. The pseudo-hyperbolic distance between two points z, w ∈ D is
defined by

ρ(z, w) :=
∣∣∣ z − w
1− wz

∣∣∣.
Let f : D→ D be holomorphic. Show that

ρ(f(z), f(w)) ≤ ρ(z, w), z, w ∈ D,

and that equality holds if f ∈ Aut(D). Hint: Use the Schwarz lemma (Exercise 39).

Exercise 42. Prove the Schwarz–Pick lemma: Let f : D→ D be holomorphic.
Then

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
, z ∈ D.

Hint: Use Exercise 41.

Exercise 43. For w ∈ C and z ∈ D we define the hyperbolic length of w at z
by

‖w‖z :=
|w|

1− |z|2
.

The hyperbolic distance of two points z1, z2 ∈ D is defined by

d(z1, z2) := inf
{ˆ 1

0

‖γ′(t)‖γ(t) dt : γ ∈ C1([0, 1],D), γ(0) = z1, γ(1) = z2

}
.

Use the Schwarz–Pick lemma to prove that, for holomorphic f : D→ D,

d(f(z1), f(z2)) ≤ d(z1, z2), z1, z2 ∈ D.

Show that equality holds if f ∈ Aut(D).

Exercise 44. Show that the hyperbolic distance of 0 and s ∈ (0, 1) is given by

d(0, s) =
1

2
log

1 + s

1− s
.

Derive a formula for the hyperbolic distance of two arbitrary points z1, z2 ∈ D.
Hint: Find an automorphism ϕ of D such that ϕ(z1) = 0 and ϕ(z2) ∈ (0, 1).

Exercise 45. Let U ⊆ C be a bounded simply connected region with real analytic
boundary, i.e., the boundary is locally the graph of a function given by a convergent
power series. Let f : D → U be biholomorphic. Prove that f has a holomorphic
extension to some neighborhood of D. Hint: The problem is purely local. Use a
change of variables to reduce to the case that both boundaries are flat and apply
the Schwarz reflection principle.

Exercise 46. Deduce from the little Picard theorem 26.3 that every periodic entire
function has a fixed point.
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Exercise 47. Let f and g be entire functions satisfying ef + eg = 1. Prove that f
and g are both constant.

Exercise 48. Let u be usc and u ≥ 0. Show that v(x) := log u(x) if u(x) 6= 0 and
v(x) := −∞ if u(x) = 0 is usc.

Exercise 49. Let u be a subharmonic function on DR(0) such that u(z) = u(|z|)
for z ∈ DR(0). Prove that r 7→ u(r), r ∈ (0, R), is a convex function of log r: if
`(r) := a log r + b, r ∈ (0, R), and r1, r2 ∈ (0, R) are such that u(r1) ≤ `(r1) and
u(r2) ≤ `(r2), then u(r) ≤ `(r) for all r ∈ (r1, r2). Hint: `(z) := `(|z|) is harmonic
on DR(0) \ {0}.

Exercise 50. Let u : U → R be harmonic and let ϕ : R → R be convex (not
necessarily nondecreasing). Show that ϕ ◦ u is subharmonic. Give an example of a
subharmonic u and a convex ϕ such that ϕ ◦ u is not subharmonic.

Exercise 51. Let f be holomorphic on some domain U ⊆ C. Use Exercise 34 to
show that u = log |f | is subharmonic on U .

Exercise 52. Let {ui}i∈I be an arbitrary family of subharmonic functions on U .
Suppose that u(z) := supi∈I ui(z), z ∈ U , is usc and u(z) <∞ for all z ∈ U . Prove
that u is subharmonic.

Exercise 53. Deduce Hadamard’s three circles theorem: Let f be holomor-
phic on DR(0). Let 0 < r1 < r2 < R and Mi := sup|z|=ri |f(z)|, i = 1, 2. Then, if

r ∈ (r1, r2),

sup
|z|=r

|f(z)| ≤Mλ(r)
1 M

1−λ(r)
2 ,

where

λ(r) =
log r2 − log r

log r2 − log r1
.

Hint: Apply Exercise 49 to u(z) = supt∈R log |f(zeit)|.

Exercise 54. Let U, V be regions in C and let f : V → U be a non-constant holo-
morphic mapping. Show that, if u is subharmonic on U , then u ◦ f is subharmonic
on V . Hint: Use approximation by smooth functions 28.11 and the characterization
of C2 subharmonic functions 28.13.

Exercise 55. Solve the Dirichlet problem on the strip S = {z ∈ C : 0 < Re z < 1}
for the boundary function f which is 0 on {z : Re z = 0} and 1 on {z : Re z = 1}.
Hint: Check that z 7→ exp(iπz) is a biholomorphism between S and H which
extends continuously to S. Use Exercise 33.

Exercise 56. Prove that the Laplace operator in polar coordinates is given by the
formula (29.1).

Exercise 57. Prove the items (4), (5), and (6) of Theorem 30.1.

Exercise 58. The complex projective line is the quotient space P1 := C2 \{0}/ ∼,
where (z1, z2) ∼ (w1, w2) if and only if there exists λ ∈ C∗ such that (z1, z2) =
λ(w1, w2). It is endowed with the quotient topology, i.e., the largest topology
for which the quotient projection C2 \ {0} → P1 is continuous. The equivalence
class of (z1, z2) is denoted by [z1, z2]. Show that P1 is a complex manifold which
is biholomorphic to the Riemann sphere. Hint: Show that ϕ1 : P1 \ {[1, 0]} →
C, [z, 1] 7→ z, and ϕ2 : P1 \ {[0, 1]} → C, [1, z] 7→ z, define two charts which cover
P1. Compute the transition map ϕ1 ◦ ϕ−1

2 .
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Exercise 59. Prove: f(z) = (az + b)/(cz + d) ∈ Aut(H) is fixed point free in H if
and only if |a+ d| ≥ 2.

Exercise 60. Prove that a proper mapping f : X → Y between manifolds is
closed.





Bibliography

1. L. V. Ahlfors, Complex analysis: An introduction of the theory of analytic functions of one
complex variable, Second edition, McGraw-Hill Book Co., New York-Toronto-London, 1966.

MR 0188405 (32 #5844)

2. L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Prince-
ton University Press, Princeton, N.J., 1960. MR 0114911

3. H. Cartan, Elementary theory of analytic functions of one or several complex variables, Dover

Publications, Inc., New York, 1995, Translated from the French, Reprint of the 1973 edition.
MR 1348633 (96e:32001)

4. J. B. Conway, Functions of one complex variable, second ed., Graduate Texts in Mathematics,

vol. 11, Springer-Verlag, New York-Berlin, 1978. MR 503901
5. , Functions of one complex variable. II, Graduate Texts in Mathematics, vol. 159,

Springer-Verlag, New York, 1995. MR 1344449
6. H. M. Farkas and I. Kra, Riemann surfaces, Graduate Texts in Mathematics, vol. 71, Springer-

Verlag, New York-Berlin, 1980. MR 583745

7. O. Forster, Lectures on Riemann surfaces, Graduate Texts in Mathematics, vol. 81, Springer-
Verlag, New York, 1991, Translated from the 1977 German original by Bruce Gilligan, Reprint

of the 1981 English translation. MR 1185074

8. R. E. Greene and S. G. Krantz, Function theory of one complex variable, third ed., Gradu-
ate Studies in Mathematics, vol. 40, American Mathematical Society, Providence, RI, 2006.

MR 2215872

9. M. Heins, Complex function theory, Pure and Applied Mathematics, Vol. 28, Academic Press,
New York-London, 1968. MR 0239054
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big Picard theorem, 69

biholomorphism, 83

Blaschke product, 36, 97

branch point, 88

branched covering, 89

Carathéodory’s theorem, 57

Casorati–Weierstrass theorem, 69

Cauchy’s theorem

cohomological form, 33

homology form, 13

homotopy form, 6

Cayley mapping, v

chains, 12

chart, 83

compact open topology, 25

complex dimension, 83

complex manifold, 83

complex projective line, 85

complex projective plane, 92

complex structure, 83

complex torus, 85

concatenation of curves, 7

convergent doubly infinite series, 14

covering, 1

covering map, 1

cycle, 12

deck transformation, 86

degree, 89

Dirichlet problem, 78

discrete set, 17

domain of holomorphy, 38

doubly periodic, 63

elementary factors, 38

elliptic function, 63

elliptic modular function, 67

equicontinuous, 51

essential singularity, 86

essential singularity at ∞, 17

first (additive) Cousin problem, 32

first cohomology group, 33

first homotopy group, 7

function field, 87

fundamental domain of the modular group,
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general monodromy theorem, 5

germ of a holomorphic function, 2

germ of a holomorphic functions, 90

Hadamard’s three circles theorem, 74, 100
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harmonic conjugate, 43

harmonic function, 43

Harnack’s inequality, 48

Harnack’s principle, 49
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holomorphic, 83
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homologous, 12
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homotopy, 5

Hurwitz’ theorem, 19

hyperbolic distance, 54, 99

hyperbolic length, 54, 99
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induced complex structure, 84

infinite product, 34

inhomogeneous Cauchy integral formula, 23

inhomogeneous CR-equation, 23

Jensen’s formula, 47, 98

Jordan curve, 56

Jordan domain, 56

Laurent expansion of f about ∞, 17

Laurent series, 14

lifting, 1

little Picard theorem, 68

local coordinates, 83
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local homeomorphism, 1

manifold, 1
maximum principle, 84

maximum principle for harmonic functions,

43
Maximum principle for subharmonic

functions, 74

mean value property, 43
Mergelyan’s theorem, 30

meromorphic, 17, 87

meromorphic at ∞, 17
Mittag-Leffler theorem, 31

modular function, 66
modular group, 62

moduli space, 86

Montel space, 52
Montel’s theorem, 51

Montel–Carathéodory theorem, 68

multi-valued function, 88
multiplicity, 89

natural boundary, 39
normal family, 51

null-homotopic, 7

open mapping theorem, 83
order, 16, 87

pole, 16

peak point, 79

peaking function, 80

period, 61
period module, 61

Perron family, 79

Perron function, 79
pointwise bounded, 51

Poisson integral formula, 44

Poisson kernel, 45
pole, 16, 86

pole at ∞, 17
primitive of f along γ, 4

principal ideal, 40

principal part, 16
principle of analytic continuation, 83

proper, 89
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ramification number, 89

ramification point, 88
rational function, 18

removable singularity, 86
removable singularity at ∞, 17
residue, 18
residue theorem, 18
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Riemann sphere, 84

Riemann surface, 83
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Riemann surface of the square root, 88
Rouché’s theorem, 19

Runge’s theorem, 25, 29

schlicht functions, 52, 98

Schwarz lemma, 53, 99

Schwarz reflection principle, 47

Schwarz–Pick lemma, 54, 99

SCMV property, 46
second (multiplicative) Cousin problem, 38,
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sheaf of germs of holomorphic functions, 2,
90

simple closed curve, 56

simply connected, 7
singular, 39

singularity

essential, 16
isolated, 15

removable, 16
subharmonic, 72

topology of compact convergence, 25

uniformization theorem, 86

unimodular, 62

universal covering, 86
upper semicontinuous (usc), 71

value of a germ, 2

Weierstrass ℘-function, 65

Weierstrass factorization theorem, 38

Weierstrass theorem, 37
winding number, 11
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